
Modelling of Bonding with Processes and Events

Iain Phillips1, Irek Ulidowski2, and Shoji Yuen3

1 Department of Computing, Imperial College London, England
iccp@doc.ic.ac.uk

2 Department of Computer Science, University of Leicester, England
iu3@mcs.le.ac.uk

3 Graduate School of Information Science, Nagoya University, Japan
yuen@is.nagoya-u.ac.jp

Abstract. We introduce two forms of modelling of systems that consist
of objects that are combined together by the means of bonds. In reac-
tion systems for bonding we define how bonds are created and dissolved
via reduction-style semantics. The usefulness of reaction systems is illus-
trated with examples taken from software engineering and biochemistry.
We also introduce reversible event structures and define the notion of
configuration. We then discuss how to give semantics of reaction sys-
tems for bonding in terms of reversible event structures.

1 Introduction

Undoing of computation in concurrent and distributed systems has many tech-
nical and conceptual challenges. There are several forms of undoing computa-
tion that have been studied over the last ten years. Backtracking and reversing
of computation that preserves causal order were considered, for example, in
[5, 3, 10, 11, 7, 2]. Reversing out of causal order, however, which is a very com-
mon mode of operation in biochemical systems, has not been studied widely. The
first attempt was made in [12] where an extension of the reversible process cal-
culus CCSK with the execution control operator was proposed. A different form
of controlling reversibility based on the rollback construct of the higher-order π
calculus was given in [6].

Let us recall what backtracking and reversing is, both in causal order and
out of causal order [12]. Consider a computation where the event a causes the
event b, written a < b, and the event c occurs independently of a and b. The
three traces of this computation that preserve causality are abc, acb and cab:
note that a always precedes b. There are several conceptually different ways of
undoing these events. Backtracking is undoing in precisely the inverse order in
which they happened. So, undo b undo c undo a, written as b c a, is a backtrack
of acb. Reversing is more general: here events can be undone in any order as long
as causality is preserved, meaning that causes cannot be undone before effects.
For example, c b a is a reversal of acb for a, b and c as defined above. However,
there are processes, especially common in cell biochemistry, where events are un-
done, out of causal order. The creation and breaking of molecular bonds between

the proteins involved in the ERK signalling pathway or the creation of polymers
by scaffolding proteins, described in Sections 2 and 3, are good examples. Sim-
plifying, let us assume that the creation of molecular bonds is represented by
events a, b, c where, as above, a < b and c is independent of a and b. In the
ERK pathway, the molecular bonds are broken in the following order: a, b and
c, which apparently reverses the cause a before the effect b.

In the paper we propose two alternative methods (to [12]) for defining for-
wards and reverse computation. We draw some inspiration from the fields of
graph and term rewriting, and define reaction systems for creating and dissolv-
ing bonds between objects, and explain how computation, both forwards and in
reverse, can be modelled as a process of bonding and unbonding. We show with
examples that reaction systems for bonding can represent naturally reversing
out of order, and that they have an expressive power comparable to CCSK with
the execution control operator [12].

Event structures were proposed by Winskel in [16] as a denotational model
of concurrent computation. Systems are represented as sets of events which are
constrained by relations of consistency and enabling. Event structures allow us
to discuss directly relationships between events such as concurrency, causality
and conflict. Our contribution is a definition of reversible event structures. To the
best of our knowledge this is the first form of event structure where computation
can proceed both forwards and in reverse, both in and out of causal order. We
also describe, given a reaction system and an initial process, how to construct a
reversible event structure that captures the behaviour of the initial process.

The benefits of reaction systems for bonding and reversible event structures
are demonstrated with several examples taken from software engineering and cell
biochemistry. We consider the modelling of long-running transactions, creation
of a polymer by scaffolding proteins, and a signal-passing mechanism employed
by a section of the ERK signalling pathway. All our examples show how crucial
out-of-order reversing is in the world of artificial and natural systems.

2 Reaction systems for bonding

We develop reaction systems for representing objects that can bond with each
other, thus creating more complex objects, and where bonds can be dissolved
within a composite object. The building blocks of the calculus are the base
objects, or simply called bases. A base object has a sort, for example A, and an
arity which is the maximal number of bonds the base object can have with other
base objects. Consider two bases of sort A and arity 1 and a base of sort B and
arity 2. We shall write a collection of these three objects simply using their sort
names as A,A,B, or as A1, A2, B if we wish to distinguish between objects of
the same sort (here A). A creation of a single bond between A and B is defined
by the relation →, for example

A,B → A ·B

where ‘·’ in A·B denotes the bond between the A and B, andA·B is a (composite)
object consisting of bases A and B. A single bond can be dissolved and this is

2

given by the relation , for example

A · B A,B

A system of objects, also called a process, is a collection of objects written with
the comma operator ‘,’, for example A,A,B. Many of our examples are inspired
by biochemistry, and so we shall call objects molecules and a system of objects a
solution. The order in which objects are written in a system is irrelevant, and can
be changed. A molecule can move around in a solution, thus changing relative
position with respect to other molecules. This is defined by structural equiva-
lence X,Y ≡ Y,X , where X,Y are objects or molecules. Systems, processes or
solutions, S and T can be combined by taking their multiset union, written as
S, T . Clearly, S, T ≡ T, S.

Given A,B → A ·B, we would like to deduce that a system containing A and
B can evolve to a system that contains A ·B. This is done by having two global
rules inspired by the laws for the chemical abstract machine [1]:

S → S′

S, T → S′, T
(c1)

S S′

S, T S′, T
(c2)

We call this substitutivity in the ‘,’ context. We shall also have rules for structural
equivalence:

S ≡ S′ S′ → T ′ T ′ ≡ T

S → T
(s1)

S ≡ S′ S′
 T ′ T ′ ≡ T

S T
(s2)

We do not have substitutivity in the ‘·’ context. If A·B A,B, we do not always
wish to have C · A ·B C ·A,B, for example, when C inhibits the dissolution
of A ·B. Our reaction systems are unlike term or graph rewrite systems for this
reason.

Two bases D of arity 2 can have two bonds between each other; this is

written as D ·D or, equivalently, D ·D. A ring of three copies of D is D ·D ·D
or D ·D ·D. Let x · A denote an object consisting of a base A and an object
x where there is precisely one bond between A and some base in x. We can
generalise this notation (using over- or under-bracket notation) to denote that
there are k bonds between A and other base molecules in x, assuming that
the arity of A is n ≥ k and x has capacity for at least k fresh bonds. Since
all examples in this paper and in [12] use molecules with arity at most 3 the

notation x · A, x · A, x ·A is sufficient.

Next, we set out rules for structural equivalence for bonding ≡. Objects can
be seen as undirected graphs, where the bases of an object are the nodes and the
bonds between the bases of the object are the edges, and the arity of a base is
an upper bound on the degree of the corresponding node. Structural equivalence
of two objects implies that the underlying graphs are isomorphic, and we note
that isomorphism of graphs with bounded degree is decidable in polynomial time
[8]. For illustration, we give a set of rules for ≡ for objects with bases of arity

3

at most two. Let y represent a possibly empty arbitrary string of bonded bases
A1 · · ·An (n ≥ 0), and let y−1 represent y in reverse order, i.e. An · · ·A1.

A · y ≡ y−1 ·A A · y ·B ≡ B · y−1 ·A

A · y ·B · C ≡ C · A · y · B A, y ·B ≡ A · B · y−1

A · y ·B ≡ A · y ·B

Our first example is a reaction system that models how a catalyst molecule
helps otherwise inactive molecules to bond.

Example 2.1. Consider molecules of sort A and B and arity 2 and 1 respectively
that cannot bond easily unless they are “assisted” by a catalyst molecule of sort
C and arity 1. In a solution that contains copies of A,B and C, molecules C and
A bond initially by the rule

C,A → C · A

Then, molecules C ·A combine with copies of B

C · A,B → C ·A ·B

Finally, having helped A and B to react, the bond between C and A is broken
thus releasing C into a solution to help other A,B pairs

C · A ·B C,A ·B

Consider a solution S = A,B,A,B,C. It computes as follows:

S ≡∗ C,A,B,A,B → C ·A,B,A,B → C · A ·B,A,B C,A · B,A,B

Next, the molecules rearrange themselves into A·B,C,A,B and the computation
continues as follows:

A · B,C,A,B → A · B,C ·A,B → A · B,C · A ·B A · B,C,A · B

producing two molecules A ·B and, of course, the original C. This solution could
have produced the same outcome by following a different route: C could have
reacted with the second pair of A and B first by positioning itself initially in the
middle of the solution.

Definition 2.2. A reaction system for bonding is a tuple P = (Σ,→,) where
the signature Σ contains the bonding operator ‘·’, the solution operator ‘,’ and
the definitions of base objects in the form of sort, arity pairs. Objects are either
base objects or collections of bonded bases such that the arities of the bases are
not exceeded and each base is connected to another base via a sequence of bonds.
A process (or a system or solution) is either an object or a collection of objects
composed with the solution operator. Reduction relations → and are binary
relations over processes. A computation starts with an initial process (solution),
which is a multi-set of bases taken from Σ, and is a sequence of transitions
derived from → and and the rules (c1-c2) and (s1-s2).

4

In the setting of reaction systems for bonding, we specify which bonds are created
and dissolved, and in which order, by the reduction style relations→ and . This
is in contrast to the majority of previously considered reversible calculi where
the syntax of processes (prefixing, keys, parallel composition and restriction) and
global operational semantics determine the forwards and reverse computation.

The next example is a reaction system for the modelling of long-running
transactions with a compensation. Previously, transactions were also considered
in the setting of reversible process calculi in [4, 12].

Example 2.3. We define the signature first. A transaction is a sequence of n ≥ 3
steps Ai for 1 ≤ i < n of sort A and arity 3. It starts with the initial step I,
arity 2, which never fails. I is followed by the steps Ai, where A1 bonds with I
and then each consecutive Ai+1 bonds to Ai, indicating a successful completion
of Ai. Finally, a success step S of arity 1 occurs which is represented by a bond
between An and S. A transaction can fail at any stage after I. This is represented
by a fail object F of arity 2 bonding with the last Ai, which represents the failure
of Ai. When this happens all steps Ak for 1 ≤ k ≤ i are undone, and then the
compensation step C of arity 1 takes place.

The forwards and reverse reduction relations determine which bonds are
created and which are dissolved. Firstly, the chain of Ais is created

I, A1 → I · A1

I ·A1, A2 → I · A1 ·A2

x · Ai · Ai+1, Ai+2 → x ·Ai ·Ai+1 ·Ai+2 1 ≤ i < n− 2

x · An, S → x ·An · S

Fail can occur at any stage of building the chain of Ais, where 1 ≤ i < n:

I · A1, F → I ·A1 · F → I · A1 · F

x ·Ai ·Ai+1, F → x · Ai · Ai+1 · F → x ·Ai ·Ai+1 · F

Following a fail transaction steps are undone

I ·A1 · F I, A1 · F I · F, A1

x · Ai · Ai+1 · F x ·Ai, Ai+1 · F x · Ai · F, Ai+1

Note that I, A1 · F ≡ I · F · A1 cannot bond with A2, and correspondingly
x ·Ai ·F ·Ai+1 cannot bond with Ai+2. This is due to the form of the first four
rules for →.

Finally, compensation takes place

C, I · F → C · I · F C · I, F

The initial process S = I, A1, . . . , An, S, C, F can reach one of the two termi-
nated processes: the transaction has completed successfully I · A1 · . . . · An ·
S, C, F , or the transaction has failed and the compensation has taken place
I · C, A1, . . . , An, S, F .

5

Example 2.4. This reaction system describes how a polymer is constructed by a
scaffolding protein. We have scaffolding proteins S of arity 2 and and polymer
molecules Q of arity 3. Firstly, two molecules of sort S combine into a scaffolding
and then attract copies of Q

S, S → S · S S · S,Q → S · S ·Q x · S · S,Q → x · S · S ·Q

Once two copies of Q are bonded to the scaffolding they bond together

Q · S · S ·Q → Q · S · S ·Q ≡ Q ·Q · S · S

x ·Q · S · S ·Q → x ·Q · S · S ·Q ≡ x ·Q ·Q · S · S

Note that for the last structural equivalence we need a further rule, where y, z
can be empty, in addition to those we gave earlier for arities at most two

y ·A ·B · z · C ≡ y ·A · C · z−1 ·B

Now the bond between the last S and Q breaks

Q ·Q · S · S Q ·Q · S · S

x ·Q ·Q · S · S x ·Q ·Q · S · S

The S at the end is now available to bond to an unattached Q (using the rule
x · S · S,Q → x · S · S · Q given above), and the process can continue while
unattached Qs remain.

An initial solution consisting of two copies of S and four copies of Q becomes
eventually the solution Q ·Q ·Q ·Q · S · S. If we add two further rules below for
breaking bonds between molecules bonded to S, the solution computes further
to Q ·Q ·Q ·Q,S, S.

x · S · S x, S · S

S · S S, S

The addition of S·S S, S makes the computation potentially non-terminating:
S, S → S · S S, S

The last two examples show that reactive systems are capable of expressing
both causal reversing and out-of-causal-order reversing and, in this respect, re-
active systems are comparable to CCSK with the execution control operator [12]
and extend what RCCS [3] and higher order roll-π [6] can express.

3 Reversible event structures

In this section we recall what event structures are, define the reversible form of
event structures including a new notion of configuration in the reversible setting,
and discuss how simple reaction systems from Section 2 can be given meaning
in terms of reversible event structures.

6

3.1 Event structures

Event structures were defined by Winskel [16] following earlier work by Nielsen,
Plotkin and Winskel [9]. They were further developed, for example, in [14, 13, 17]
and in [15].

Definition 3.1 ([16, Def. 1.1.1]). Event structures are triples E = (E,Con,⊢)
where E is a set of events with typical elements e, e′, Con ⊆ Pfin(E) is the
consistency relation which is non-empty and satisfies the property Y ⊆ X ∈ Con

implies Y ∈ Con (downwards closure), and ⊢ ⊆ Con×E is the enabling relation
which satisfies the weakening condition X ⊢ e and X ⊆ Y ∈ Con implies Y ⊢ e
for all e ∈ E.

We omit brackets for singleton sets in expressions X ⊢ e where convenient.
Informally, events are things that happen, for example a creation of a bond

between bases A and B, a communication of a value between a sender and a
receiver, a part of a long-running transaction. Configurations are the sets of
events that have occurred (in accordance with Con and ⊢):

Definition 3.2 ([16, Def. 1.1.2]). Let E = (E,Con,⊢) be an event structure.
The set S(E) of configurations of E consists of X ⊆ E which are

– consistent : every finite subset of X is in Con;
– secured : for all e ∈ X there is a sequence of events e0, . . . , en ∈ X such that

en = e and for all i < n, {e0, . . . , ei−1} ⊢ ei.

Example 3.3. Consider the events a, b with all subsets of {a, b} in Con, and the
enabling relation ∅ ⊢ a, a ⊢ b. We notice that {a} is a configuration because
{a} ∈ Con and a is enabled without any preconditions: ∅ ⊢ a. Once a takes place,
b can happen because {a, b} ∈ Con and b is enabled by the already performed a:
a ⊢ b. We can say here that a causes b and b cannot take place before a happens
first.

Some events are in conflict : they cannot happen in the same computation.
Consider the events a, b as above and the event c which is conflict with a. This is
represented by {a, c} /∈ Con and, by the downwards closure property, {a, b, c} /∈
Con. The enabling relation is ∅ ⊢ a, a ⊢ b and ∅ ⊢ c. The configurations are ∅,
{a}, {a, b} and {c} representing that either a or c can happen initially, but once
one has taken place the other cannot happen.

Example 3.4. Some events are independent of each other, or concurrent. Con-
sider the events a, b and d, with no events in conflict. The enabling relation is
∅ ⊢ a, a ⊢ b and ∅ ⊢ d. Since a and d are not in conflict ∅ ⊢ a, ∅ ⊢ d imply that
a, d can happen independently of one another, in any order. Moreover, b and d
are independent and can happen in any order provided that b always follows a.
The configurations are ∅, {a}, {a, b}, {d}, {a, d}, {a, b, d}.

The next definition is equivalent to Definition 3.2; it will be easier to gen-
eralise to the reversible setting. It is partly inspired by the step-wise securings
of [13, Definition 3.5].

7

Definition 3.5. Let E = (E,Con,⊢) be an event structure. A set X ⊆ E is a
configuration of E if there is an infinite sequence X0, . . . with X =

⋃∞

n=0
Xn,

X0 = ∅, Xn ⊆ Xn+1 and Xn consistent (all n ∈ N), where for every n ∈ N, and
every e ∈ Xn+1 \Xn, there is a rule X ′ ⊢ e with X ′ ⊆fin Xn.

Proposition 3.6. Let E = (E,Con,⊢) be an event structure and let X ⊆ E.
Then X is a configuration according to Definition 3.2 iff X is a configuration
according to Definition 3.5.

There is a natural notion of computation for configurations. A transition
relation can now be defined to represent how a new event can happen in a
configuration giving rise to a bigger configuration. Given configurations X,Y
we have X → Y if Y = X ∪ {e} (with e 6∈ X) and X ′ ⊢ e, for some e and
X ′ ⊆fin X . A computation of the event structure E is a computation (sequence
of transitions) starting from ∅E , the empty configuration of E . As an illustration,
∅ → {d} → {a, d} → {a, b, d} is a part of a computation of the event structure
in Example 3.4. We also have ∅ → {a} → {a, d} → {a, b, d} and ∅ → {a} →
{a, b} → {a, b, d}. See Figure 1.

∅ {a}

{d}

{a, b}

{a, d} {a, b, d}

Fig. 1. Configurations and transitions in Example 3.4.

We now return to Example 2.1. The bonds in C ·A and A ·B are the events,
and we denote them as ca and ab. The enabling relation is ∅ ⊢ ca, ca ⊢ ab. If
we consider the order in which the bonds are created we deduce that ca causes
ab. If these bonds were to be dissolved in a causality preserving manner, then
ab ought to be reversed first, and only then ca. But breaking the bonds in this
manner would not lead to any real change or progress: we would end up where we
started. If the bonds are undone out of causal order, then there may be progress.
In this example, if ca is dissolved and ab is left untouched, we have the molecule
A · B at the end. This would have not been possible if we reversed in causal
order. The main question of this paper thus arises: how do we represent undoing
of events in any order in the setting of event structures?

3.2 Reversible event structures

Let E be a set of events. We define the corresponding set of undone events
(strictly speaking, events that are to be undone) to be E = {e : e ∈ E}, where
E is disjoint from E. For e ∈ E, let e∗ be either e or e; we sometimes use the
notation X + e∗ to mean either X ∪ {e} or X \ {e} respectively.

8

Definition 3.7. A reversible event structure (RES for short) is a triple E =
(E,Con,⊢) where E and Con are as before and ⊢ ⊆ Con×P(E)× (E ∪E) is the
enabling relation satisfying:

1. if X ; Y ⊢ e∗ then (X ∪ {e}) ∩ Y = ∅;
2. if X ; Y ⊢ e then e ∈ X ;
3. weakening: if X ; Y ⊢ e∗ and X ⊆ X ′ ∈ Con then X ′

; Y ⊢ e∗, provided
X ′ ∩ Y = ∅.

We shall write X;∅ ⊢ e∗ as X ⊢ e∗ for short. Also we omit brackets for singleton
sets in expressions X ; Y ⊢ e∗ where convenient.

The new enabling relation ⊢ extends the enabling relation from Definition 3.1 in
two directions. Firstly, it permits reversing of events as e∗ in X ;Y ⊢ e∗ can be
an undone event. Secondly, it allows us to specify which events prevent e∗ (here
those in Y) in addition to the events that enable e∗ (those in X). For example,
{a, b} ; {c, d} ⊢ a says that a can be undone in a configuration which contains
a and b and does not contain c and d.

Example 3.8. Consider an RES with a single event e and the enabling rule ∅ ⊢ e.
As in the previous subsection the sets ∅ and {e} are configurations. Next we add
another rule e ⊢ e. This allows us to regress from {e} to ∅. Now the sets ∅
and {e} are reachable from ∅ in any number of steps; they are configurations
according to Definition 3.10 below. There is, however, an infinite computation
sequence ∅, {e}, ∅, {e},

The example illustrates that in the reversible setting sets of events can grow and
and shrink as computation progresses. Also, it may happen that sets of events
grow non-monotonically as, for example, in a0, b, a1, b, a2, b, a3, b, a4, So we
shall need to consider limits of infinite sequences of subsets of E in order to
define configurations. Recall that a subset S ⊆ N is cofinite if N \ S is finite.

Definition 3.9. Let X0, . . . be an infinite sequence of subsets of E. We say that
X = limn→∞ Xn if for every e ∈ E:

1. {n ∈ N : e ∈ Xn} is either finite or cofinite;
2. e ∈ X iff {n : e ∈ Xn} is cofinite.

Note that a sequence of sets does not necessarily have a limit. The sequence
∅, {e}, ∅, {e}, . . . has no limit, since e belongs to infinitely many sets and does
not belong to infinitely many sets. However if Xn ⊆ Xn+1 (all n ∈ N) then
limn→∞ Xn exists and is

⋃∞

n=0
Xn. Also note that a finite sequence X0, . . . , Xn

can be extended to an infinite sequence by letting Xm = Xn for all m > n; the
extended sequence has the limit Xn. In Example 3.8 the sequence ∅, {e} can be
extended to an infinite sequence ∅, {e}, {e}, . . . and has the limit {e}.

Next we define configurations for RESs. Our aim is that they generalise
configurations in Definition 3.5. We use the notational convention that e ∈ A\B
means e ∈ B \A.

9

Definition 3.10. Let E = (E,Con,⊢) be an RES. A set X ⊆ E is a con-
figuration of E if there is an infinite sequence X0, . . . with X = limn→∞ Xn,
X0 = ∅ and Xn ∪Xn+1 consistent (all n ∈ N), where for every n ∈ N, and every
e∗ ∈ Xn+1 \Xn, there is a rule X ′

; Y ′ ⊢ e∗ such that:

1. X ′ ⊆fin Xn and X ′ + e∗ ⊆ Xn+1;
2. Y ′ ∩ (Xn ∪Xn+1) = ∅.

We require Xn ∪Xn+1 to be consistent, as configurations can only be extended
in a consistent fashion. However, there is no requirement that Xi ∪ Xj is con-
sistent if j > i+ 1; events in Xi which are inconsistent with Xj can be reversed
in constructing Xi+1, . . . , Xj−1. Also, note that the Xis in the above definition
can grow smaller as well as bigger as computation progresses. Moreover, a finite
sequence X0, . . . , Xn = X that satisfies the conditions of Definition 3.10 is suf-
ficient for X to be a configuration. The sequence ∅, {e} in Example 3.8 can be
extended to an infinite sequence and, since the conditions of Definition 3.10 are
satisfied, its limit {e} is a configuration.

The next result shows that RESs are a generalisation of event structures.

Proposition 3.11. Suppose E = (E,Con,⊢) is an event structure. Then E ′ =
(E,Con,⊢′) is a reversible event structure, where we define X ; ∅ ⊢′ e iff X ⊢ e
(and there are no reverse enablings X ; Y ⊢′ e). Moreover, X is a configura-
tion of E according to Definition 3.5 iff X is a configuration of E ′ according to
Definition 3.10.

Our generalised enabling rules are powerful enough that we no longer need
the consistency relation.

Proposition 3.12. Let E = (E,Con,⊢) be an RES. Define Con
′ = Pfin(E) and

define ⊢′ by X ; [Y ∪ (E \Z)] ⊢′ e∗ whenever X,Y, Z are such that X ;Y ⊢ e∗,
Z is consistent with respect to Con and X + e∗ ⊆ Z. Then E ′ = (E,Con′,⊢′) is
an RES, and X is a configuration of E iff X is a configuration of E ′.

In the light of the previous result, we could dispense with Con altogether in
the setting of RESs. However we allow Con as sometimes it may be natural or
convenient to identify certain configurations as being consistent or inconsistent,
before defining enabling rules in detail.

Example 3.13. Let E = {a, b, c}, Con = {{a, c}, {b, c}} plus deducible subsets,
and ∅ ⊢ a, ∅ ⊢ b, a ⊢ c, b ⊢ c. Then E = (E,Con,⊢) is a (reversible) event
structure where either a or b causes c, and {a, b} is inconsistent. We can use
the procedure of Proposition 3.12 to convert E into E ′ = (E,Con′,⊢′) where
Con

′ = Pfin(E) and ∅; b ⊢′ a, ∅;{b, c} ⊢′ a, ∅;a ⊢′ b, ∅;{a, c} ⊢′ b, a; b ⊢′ c,
b ; a ⊢′ c.

Configurations are ∅, {a}, {b}, {a, c}, {b, c} for both E and E ′. However in
E ′ there are two extra consistent sets, namely {a, b} and {a, b, c}.

Note that the converted RES can be optimised by removing ∅ ; {b, c} ⊢′ a
and ∅;{a, c} ⊢′ b, since they are implied by ∅;b ⊢′ a and ∅;a ⊢′ b, respectively.

10

Definition 3.14. Given configurations X,Y of a reversible event structure E
we let

– X → Y if Y = X ∪ {e} and X ′
; Z ⊢ e for some e,X ′, Z with e 6∈ X ,

X ′ ⊆fin X and Z ∩ (X ∪ {e}) = ∅;
– X Y if Y = X \ {e} and X ′

;Z ⊢ e for some e,X ′, Z with X ′ ⊆fin X and
Z ∩X = ∅.

As before, a computation of E is a computation starting from ∅E .

Example 3.15. Consider events a and b in Example 3.4. We have that a causes
b so if we wish to achieve causal-order reversing we need to add the following to
the definition of ⊢: b ⊢ b and a; b ⊢ a. The configuration {a, b} can reverse to a
by undoing b as allowed by b ⊢ b. But it cannot regress to {b} because a; b ⊢ a
can only be applied in a configuration that contains a and does not contain b.
See Figure 2(i).

(i) (ii) (iii)

∅∅∅

{a}{a}{a}

{b}{b}

{a, b}{a, b}{a, b}

Fig. 2. Configurations and transitions in Example 3.15.

If reversing out of order is required, we instead add to the definition of ⊢
in Example 3.4 the following: a ⊢ a and b ; a ⊢ b. This means that a can be
reversed in any configuration that contains a (with or without b), and b can be
reversed only when a is not present. Since a causes b, this means that b can
be reversed only when a is reversed. See Figure 2(ii), where reverse transitions
are indicated by dashed lines. Finally, if we would like instead that a and b are
reversed in any order, then we would extend the enabling relation simply with
b ⊢ b and a ⊢ a. See Figure 2(iii).

We now give an example where we get an infinite configuration as a limit of
a non-monotonically increasing sequence.

Example 3.16. Let E = (E,Con,⊢) where E = {ai : i ∈ N} ∪ {bj : j ∈ N} and
Con = {ai, b0, . . . , bj} (any i, j ∈ N) plus deducible subsets, with

∅ ⊢ a0 ai ⊢ bi {ai, bi} ⊢ ai bi ⊢ ai+1 (all i ∈ N)

The only possible computation sequence is a0, b0, a0, a1, b1, . . ., with which we
can associate a sequence X0 = ∅, X1 = {a0}, This has limit the infinite set
{bj : j ∈ N}, which is therefore a configuration of E ; note that each ai appears
finitely often in the sequence Xn, while each bj appears cofinitely often.

11

3.3 Modelling of bonding with events

We now discuss how reaction systems from Section 2 can be given meaning in
terms of reversible event structures. Recall that an object of a reaction system
can be seen as an undirected graph, where the bases of the object are the nodes
and the bonds between the bases are the edges. We shall represent the bonds,
and thus the edges of the associated graph, as events. Given bases X,Y of a
reaction system each bond X · Y will be denoted by the event xy.

We begin with a simple reaction system in Example 2.1. The events are ca
and ab (representing the bonds C · A and A · B) and Con = P({ca, ab}). The
bonds are created by ∅ ⊢ ca, ca ⊢ ab, and are broken by {ca, ab} ⊢ ca. Note that
we do not require here the full generality of the new enabling relation.

The next example is inspired by the ERK signalling pathway [12].

Example 3.17. We describe bonding and unbonding that takes place along a
section of the ERK signalling pathway. The molecule A receives a signal P at
the top of the pathway by bonding to it. The molecule P ·A travels then towards
the middle of the pathway where it combines with B. A bond between P and
B is then created and the bond between P and A is dissolved thus, in a sense,
passing the signal P to B. Once the bond between A and B is broken B is able
to pass P towards the bottom of the pathway. The forwards reduction rules are

P, A → P · A P · A,B → P ·A ·B P ·A · B → P · A · B

and the reverse rules for dissolving the bonds are

P · A · B P, A · B (≡ A · B · P) A ·B · P A, B · P B · P B, P

The events are xy for everyX ·Y and Con is defined as P({pa, ab, bp}). We derive
the following enabling rules from the forwards reduction rules

∅ ⊢ pa pa ⊢ ab {pa, ab} ⊢ bp

and we obtain the following enabling rules from the reverse reduction rules

{pa, ab, bp} ⊢ pa {ab, bp}; pa ⊢ ab bp ; {pa, ab} ⊢ bp

Note the form of the last three rules and how the operator ; is used in the last
two rules to enforce the order of undoing of pa, ab and bp.

The configurations are ∅, {pa}, {pa, ab}, {pa, ab, bp}, {ab, bp}, {bp}, and the
creation and dissolving of the bonds happens in the following order: pa, ab, bp,
pa, ab, bp. We deduce that pa causes ab which causes bp, and we note that the
bonds are reversed out of causal order.

We now return to the reaction system in Example 2.3.

Example 3.18. The events are xy for every bond X ·Y among the bases X,Y in
Example 2.3. We take Con to be the powerset of the set of all events. Step Ai of
the transaction either succeeds by bonding to the next step or it fails by bonding

12

to F for 1 ≤ i ≤ n. So we need to express this in the enabling relation by stating
that if aiai+1 takes place then (a) ai+1ai+2 can happen if ai+1f did not take
place, and (b) ai+1f can happen if ai+1ai+2 did not take place for i < n−1. This
negative information is represented using ; in the following two sets of enabling
rules. Transaction steps occur as follows:

∅ ; if ⊢ ia1

ia1 ; a1f ⊢ a1a2

aiai+1 ; ai+1f ⊢ ai+1ai+2 1 ≤ i ≤ n− 2

an−1an ; anf ⊢ ans

Fail can bond with the transaction steps as follows:

ia1 ; a1a2 ⊢ a1f

a1f ⊢ if

aiai+1 ; ai+1ai+2 ⊢ ai+1f 1 ≤ i ≤ n− 2

an−1an ; ans ⊢ anf

ai+1f ; {ai+1ai+2, ai+2f} ⊢ aif 1 ≤ i ≤ n− 2

anf ⊢ an−1f

Next, bonds of the transaction steps are undone so we need to use the full
strength of the enabling relation, where 1 ≤ i < n

{ia1, a1f, if} ⊢ ia1

{a1f, if} ; ia1 ⊢ a1f

{aiai+1, ai+1f, aif} ⊢ aiai+1

{ai+1f, aif} ; aiai+1 ⊢ ai+1f

Consider {aiai+1, ai+1f, aif}. Here F is bonded with Ai and Ai+1. We require
that the bond Ai ·Ai+1 breaks first, and then Ai+1 ·F breaks. We achieve this by
requiring that all events aiai+1, ai+1f, aif are present in order to undo aiai+1,
and we undo ai+1f when ai+1f, aif are present and aiai+1 is not. Correspond-
ingly for {ia1, a1f, if}.

Finally, compensation takes place

if ; {ia1, a1f} ⊢ ci {if, ci} ⊢ if

We can reach form ∅ two terminated configurations (where no forwards or
reverse transitions are possible), namely {ia1, . . . , aiai+1, . . . , ans} which denotes
the successful completion of the transaction, or {ci} which is the compensation
following the failure.

4 Conclusion

We have introduced simple reaction systems for bonding and illustrated their
usefulness with examples taken from software engineering and biochemistry, in-
cluding long running transactions with compensation, polymer creation by scaf-
folding proteins, and a signal passing mechanism used by the ERK pathway. We

13

have proposed reversible event structures, which has not been done before, de-
fined the notion of configuration, and discussed how to give semantics to reaction
systems for bonding in terms of reversible event structures.

It remains for future work to clarify the expressive power of reversible event
structures and in particular whether they can model reversible process calculi.

Acknowledgements We thank the referees of Reversible Computation 2013
for their comments and suggestions. The second author acknowledges partial
support from the JSPS Invitation Fellowship grant S13054.

References

[1] G. Berry and G. Boudol. The chemical abstract machine. Theoretical Computer

Science, 96(1):217–248, 1992.
[2] L. Cardelli and C. Laneve. Reversible structures. In Proceedings of CMSB 2011,

pages 131–140. ACM, 2011.
[3] V. Danos and J. Krivine. Reversible communicating systems. In Proceedings of

CONCUR 2004, volume 3170 of LNCS, pages 292–307. Springer, 2004.
[4] V. Danos and J. Krivine. Transactions in RCCS. In Proceedings of CONCUR

2005, volume 3653 of LNCS, pages 398–412. Springer, 2005.
[5] V. Danos and J. Krivine. Formal molecular biology done in CCS-R. In Proceedings

of BioConcur 2003, volume 180 of ENTCS, pages 31–49, 2007.
[6] I. Lanese, C.A. Mezzina, A. Schmitt, and J-B. Stefani. Controlling reversibility in

higher-order pi. In Proceedings of CONCUR 2011, volume 6901 of LNCS, pages
297–311. Springer, 2011.

[7] I. Lanese, C.A. Mezzina, and J-B. Stefani. Reversing higher-order pi. In Proceed-

ings of CONCUR 2010, volume 6269 of LNCS, pages 478–493. Springer, 2010.
[8] E.M. Luks. Isomorphism of graphs of bounded valence can be tested in polynomial

time. Journal of Computer and System Sciences, 25(1):42–65, 1982.
[9] M. Nielsen, G.D. Plotkin, and G. Winskel. Petri nets, event structures and do-

mains, part I. Theoretical Computer Science, 13:85–108, 1981.
[10] I.C.C. Phillips and I. Ulidowski. Reversibility and models for concurrency. In

Proceedings of SOS 2007, volume 192 of ENTCS, pages 93–108, 2007.
[11] I.C.C. Phillips and I. Ulidowski. Reversing algebraic process calculi. Journal of

Logic and Algebraic Programming, 73:70–96, 2007.
[12] I.C.C. Phillips, I. Ulidowski, and S. Yuen. A reversible process calculus and the

modelling of the ERK signalling pathway. In Proceedings of Reversible Computa-

tion 2012, volume 7581 of LNCS, pages 218–232. Springer, 2013.
[13] R. J. van Glabbeek and G. D. Plotkin. Configuration structures, event structures

and Petri nets. Theoretical Computer Science, 410(41):4111–4159, 2009.
[14] R.J. van Glabbeek and G.D. Plotkin. Event structures for resolvable conflict. In

Proceedings of MFCS 2004, volume 3153 of LNCS, pages 550–561. Springer, 2004.
[15] D. Varacca and N. Yoshida. Typed event structures and the linear π-calculus.

Theoretical Computer Science, 411(19):1949–1973, 2010.
[16] G. Winskel. Event structures. In Advances in Petri Nets 1986, volume 255 of

LNCS, pages 325–392. Springer, 1987.
[17] G. Winskel. Events, causality and symmetry. Computer Journal, 54(1):42–57,

2011.

14

