
Service-Oriented Modelling of Automotive Systems
Laura Bocchi

Department of Computer Science
University of Leicester

Leicester LE1 7RH
United Kingdom

bocchi@mcs.le.ac.uk

José Fiadeiro
Department of Computer Science

University of Leicester
Leicester LE1 7RH

United Kingdom

jose@mcs.le.ac.uk

Antónia Lopes
Departamento de Informática

Fac. Ciências, Universidade de Lisboa
Campo Grande, 1749-016 Lisboa

Portugal

mal@di.fc.ul.pt

ABSTRACT
We discuss the suitability of service-oriented computing for the
automotive domain. We present a formal high-level language in
which complex automotive activities can be modelled in terms of
core components and services that can either be provided by other
components of the on-board software system or procured from
external providers (e.g. via the web) through a negotiation process
that involves quality of service attributes and constraints. We ar-
gue that the ability to re-configure activities, in real-time, through
service discovery and dynamic binding takes us one step further
from current component-based development techniques: it en-
hances flexibility and adaptability to changes that occur in the en-
vironment in which the system operates (driver, automobile, and
external circumstances) and, ultimately, leads to improved levels
of satisfaction, safety and reliability.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Techniques and Tools –
modules, interfaces.

General Terms
Design, Languages, Theory.

Keywords
Services: Composition, Discovery, Selection, Binding.

1. INTRODUCTION
Service-Oriented Computing (SOC) is emerging as a preferred
paradigm for the development of systems that can take advantage
of the new modes of computation that are being made available
based on code and data mobility over wide area networks (what is
usually called Global Computing), enabling the flexible intercon-
nection of autonomously developed and operated applications dis-
covered in real-time according to required levels of service. In
this paper we discuss the suitability of SOC to the automotive
domain, namely the way it can enhance the adaptability of auto-
motive systems to the properties of the environment in which they
operate (driver, automobile, and external circumstances) and, ul-
timately, improve levels of user satisfaction, safety and reliability.

We present and discuss results and experiences gathered during
the IST-FET integrated project SENSORIA [15], namely in using
the SENSORIA Reference Modelling Language (SRML) in an
automotive case study. SRML is a high-level modelling language
with a mathematical semantics in which complex services can be
modelled using concepts and primitives that are independent of
the technologies that provide the middleware infrastructure over
which services can be deployed, published and discovered. In this
sense, our work is very different from the languages and notations
that have been proposed for supporting the description of web

services and their composition – WSDL, BPEL4WS, WS-
POLICY, inter alia – which are tailored to the technological infra-
structure that is currently enabling web services [1]. In the case of
this paper, this is reflected in the fact that we will concentrate on
the way the principles of SOC in general (and not just existing
web-service technologies) can be used in modelling systems for
the automotive domain and the benefits that can ensure for high-
level properties of such systems.

This is why, in the rest of this section and throughout the paper,
we compare SOC with what is still the prevailing approach to
automotive system design: component-based development (CBD).
This comparison is made not at the level of the specific languages
used in SOC or CBD, but of the methodological and architectural
principles that distinguish them. In fact, we will see that SRML
offers primitives for building systems based on the use of both
components and services, thus getting the best of both worlds.

The paper is organised as follows. Section 2 discusses the way
we see SOC to contribute beyond CBD in general, and automotive
applications in particular. Section 3 presents the case study that is
used in the rest of the paper. Section 4 presents the notion of
module, the cornerstone of our modelling approach – SRML.
Section 5 presents the language primitives that are used in SRML
for modelling the static aspects of service behaviour and composi-
tion, and Section 6 addresses the dynamic aspects.

2. SERVICES vs COMPONENTS
The term ‘service’ is being widely used in software engineering
with a variety of meanings, which suggests that we make clear
from the very beginning what precise aspects we are capturing
with SRML. One can find in [7] a comprehensive overview of
some of the concepts of service that have been around, and a pro-
posal for a (formal) model of services based on CBD. It so hap-
pens that [7] uses an automotive case study to illustrate the pro-
posed approach, which suggests that it is indeed a good choice of
a CBD approach for comparing with SRML.

Starting from a universe of (software) components as “structural
entities”, CBD (in the sense of [7]) views a service as a way of
orchestrating interactions among a subset of components in order
to obtain some required functionality – “services coordinate the
interplay of components to accomplish specific tasks”. Hence, a
car can offer several different services (e.g. unlocking doors, stor-
ing driver’s identifier, fetching the tuner’s presets from a data-
base) using a fixed pool of components (a control unit, a key fob
for remote and mechanical entry that also stores the driver’s iden-
tification, a lock manager, a lighting system, a tuner, a database of
presets, and a user interface for operating the tuner). In summary,
services are seen as “crosscutting elements of the system under
consideration”, describing “partial views on the set of components
in the system under consideration” [7].

SOC differs in that there is no “system under consideration”, con-
ceived a priori, that services crosscut. If we take one of the ac-
cepted meanings of ‘system’ – a combination of related elements
organised into a complex whole – we can see why it is not directly
applicable to SOC: services in the sense of SOC get combined at
run time and redefine the way they are orchestrated as they exe-
cute; no ‘whole’ is given a priori and services do not compute
within a fixed configuration of a ‘universe’.

Indeed, the very basic difference between SOC and CBD (which
we share with [8]) is in the fact that, in SOC, we are dealing with
run-time, not design-time complexity. In CBD, selecting the
components that deliver a service is a design time activity: the
way the control unit, the key fob and the lock manager together
unlock the doors is fixed when the on-board system is designed
and installed. If a new lock manager is installed (say to comply
with new safety legislation), the software that provides the un-
lock-doors service needs to be redesigned and implemented. One
can also program this selection in the sense that more than one
orchestration of the existing components may deliver the service,
but the universe in which this selection is made is fixed.

Instead, SOC provides a means of obtaining functionalities by
orchestrating interactions among components that are procured at
run time according to given (functional) types and service level
constraints from a universe that is not fixed a priori. Discovery
and selection do not need to be programmed: these activities are
provided by the underlying middleware (SOA) from a set of serv-
ices (and service providers) that is itself dynamically changing.
This means that, when designing a system, we can abstract from
the identity of the components that will provide required services
and the mechanisms that will be responsible for discovering and
binding these services to the running system.

The added flexibility provided through SOC comes at a price –
dynamic interactions have the overhead of selecting the co-party
at each invocation – which means that the choice between invok-
ing a service and calling a component needs to be carefully justi-
fied. This is why SRML makes a provision for both types of in-
teraction as explained in the paper. For instance, in automotive
systems, this dynamic aspect of SOC may not (always) make
sense: the key fob, the tuner, the database of presets, and so on,
are all there in the car and do not need to be discovered as the
driver operates the key (drivers are known to lose keys and tuners
sometimes get stolen, but such situations are not part of the engi-
neering process).

However, one could well imagine that, as the driver presses the
key, the onboard control system detects that the weather condi-
tions are particularly adverse and procures a component for the
ABS that can optimise the car’s performance in the new situation.
This procurement is performed according to criteria and rules that
will have been decided at design time, but the binding of the com-
ponents that provide the selected service to the onboard system
will take place at run time (which does not mean that it takes
place while the car is running ;-). There is no a priori knowledge
of the structure of the discovered service and, hence, of the way
the run-time configuration of the onboard system will change as a
result of the binding. However, as explained in the paper, a mod-
elling language like SRML can offer formal mechanisms through
which one can ascertain that global properties will be enforced
regardless of the way the configuration changes.

The increasing availability of sensor-networks helps explain why
SOC can enhance adaptability: each time an activity needs to run,
it can bind to the services that offer the best properties for the en-

vironment in which it is operating (driver, automobile, and exter-
nal circumstances). Having said this, one has to recognise that
these capabilities of SOC as a paradigm are not always fully ex-
ploited by current Web/Grid-based technologies, especially in
their ability to cope with the increasing complexity of sensor net-
works and other aspects of the technological platforms in which
services will operate. In particular, one of the aims of SRML (and
SENSORIA in general) is to provide a modelling framework that
is abstract enough to tame this level of (run-time) complexity.
Ultimately, developers of systems that, like in the automotive do-
main, have safety-critical aspects will need to trust service pro-
viders. That is, there are aspects that the underlying service-
oriented architecture will need to guarantee for SOC to be effec-
tively used. As already mentioned, we do not address such as-
pects in this paper: SRML is concerned with modelling systems
over platforms that are assumed to deliver the required architec-
tural elements (registries, discover mechanisms, and so on) and
levels of interconnectivity and trust.

3. THE ON-ROAD REPAIR CASE STUDY
A class of automotive scenarios in which the advantages of SOC
are perhaps clearer concerns applications that span over the
boundaries of a single vehicle. This may happen when we want a
car to interact with external parties, for example another vehicle, a
hotel or restaurant at the destination, or an emergency service.

The case study that we consider in this paper involves an activity,
embedded in a vehicle, that handles engine failure as triggered by
a sensor. When the activity is triggered, the system (1) deter-
mines the current location of the car by using a GPS component,
(2) searches for the garage that is closest to the current location
and can ensure minimal levels of repair as required for the prob-
lem detected in the engine and calls a tow truck and (3) contacts a
car rental service near the garage.

Figure 1: Reconfiguration of the OnRoadRepair activity

The activity, in its initial configuration as it is triggered by the
sensor, involves the following software entities: SM (the sensor
that triggers the activity), GP (the GPS system), DI (the interface
to the driver), OR (the orchestrator that coordinates the interac-
tions with the external services and GP), IM (the component that
manages the interactions with the driver through DI). These enti-
ties are interconnected through wires, each of which defines an
interaction protocol between two entities. Typically, wires are
required for dealing with the heterogeneity of partners involved in
the activity by performing data (or, more, generally, semantic)
integration, which is useful for instance when a car has to travel
across different countries.

In addition, the activity relies on a number of external services
that will be discovered if and when required according to given
constraints: (1) the service for booking a garage and for calling a
tow-truck and (2) the service for booking a rental car. This de-
pendency on external services is made explicit in the module On-
RoadRepair that constitutes the type of the activity in its initial

configuration. This module is shown in Figure 2. As the compo-
nents execute as part of the configuration, the discovery and bind-
ing of external services identified in the activity module may be
triggered, leading to a reconfiguration of the activity. This recon-
figuration is depicted in the right-hand side of Figure 1 for the
case of the discovery of a service that matches the requires-
interface GA (garage), e.g., RepairService in Figure 3. The new
configuration is obtained by adding the components and wires that
provide the required service and wires that connect them to com-
ponents of the old configuration.

Figure 2: The activity module OnRoadRepair

The shadows in Figure 1 represent the fact that, in SRML, com-
ponents may reside in three different layers. Layers are architec-
tural abstractions that reflect different levels of organisation and
change. SM belongs to the top layer; it is the software component
that triggers the creation and uses the activity. The middle layer is
the one that evolves as services are discovered and bound. When
the OnRoadRepair activity is launched, (new instances of) the
components IM and OR are added to the middle layer with the aim
of orchestrating the interactions with the services to be discovered
(e.g., GA) or resources belonging to the bottom layer.

Entities of the bottom layer provide services in the CBD sense.
They are persistent as far as the life cycle of the activities is con-
cerned, and can be shared by multiple instances of the same activ-
ity. For example, the driver interface DI and GPS GP compo-
nents can be used by other activities of the on-board system or
other instances of the OnRoadRepair activity. The entities in the
bottom layer can also be used to ensure that the effects of an ac-
tivity will persist beyond its lifetime, for instance by updating a
database. In the rest of the paper, we present the primitives of
SRML through which activities and services can be modelled, and
discuss the process of reconfiguration.

4. MODULES AS UNITS OF DESIGN
The unit of design in SRML is the module. A module is specified
in terms of a number of entities and the way they are intercon-
nected. Figure 2 illustrates the activity module OnRoadRepair.
SRML also offers a textual notation:

MODULE OnRoadRepair(carID:vehicleId)

SERVES

SM: SensorMonitor

COMPONENTS

OR: Orchestrator(carId)

 intOR init: s=INIT

 intOR term: s=FINAL

IM: InterfaceManager

USES

GP: GPS
DI: DriverInterface

REQUIRES

GA: Garage
 intGA trigger: default

CR: CarRental

 intCR trigger: bookGarage!

EXTERNAL POLICY

 (see Section 6)

WIRES

OR

Orchestrator
c3 OG d3

GA
Garage

bookGarage
 collectPnt
 servicePrice
 card

S
i
o
c

pORGA
(carID)

R
i1
i2
o
c

acceptBooking
 carID
 collectPnt
 servicePrice
 card

 ...

Every activity module declares interfaces of four possible kinds:
• One (and only one) serves-interface that binds the activity to

a component in the top layer. This interface is typed by a
layer protocol that specifies the interactions that the top
layer component (the user of the activity) can maintain with
the (service-layer) components that orchestrate the behav-
iour of the activity. In OnRoadRepair, the serves-interface
binds to the sensor that detects engine failures.

• A number of uses-interfaces (possibly none) that bind to
components in the bottom layer of the configuration, such
as a GPS or a component that provides an interface to an
external entity like the driver in OnRoadRepair. Uses-
interfaces are also typed by layer protocols.

• A number of component-interfaces (at least one) that bind to
service-layer components that are created when the activity
is triggered by the top-layer component. The service-layer
components interact with each other and all the other com-
ponents in the top and bottom layer that are bound to the
corresponding serves and uses-interfaces. Bottom-layer
components are not created by the module; they already ex-
ist when the activity is launched and bind to the correspond-
ing uses-interfaces at that moment. Component-interfaces
are typed by business roles as discussed in Section 5.

• A number of requires-interfaces (possibly none) that bind
the activity to services that are procured externally when
triggered by component execution. Requires-interfaces are
typed by business protocols as discussed in Section 5.

The workflow of the activity is defined collectively by the com-
ponents in its configuration and the wires that connect them. The
possibility of defining the business process in terms of different
components and wires facilitates modular development, reflecting
the structure of the business domain.

In a module, wire-interfaces are given by connectors. A connec-
tor consists of an interaction protocol (e.g., the interaction proto-
col pORGA for the wire OG presented in Section 5) and two at-
tachments that link the roles of the protocol (c3 and d3) to the in-
terfaces that are being interconnected (OR and GA, respectively).

Finally, every module also defines:
• An internal configuration policy (indicated by the symbol

) that identifies the triggers of the external service dis-

carID is the identifier of the
car in which the activity will
run, which is passed as a
parameter when the activ-
ity is launched.

initialization and termina-
tion conditions for OR

the discovery of CR is
triggered by the request to
book the garage.

the discovery of GA is
triggered by the first inter-
action with GA.

covery process, and the initialization and termination condi-
tions of the components.

• An external configuration policy (indicated by the sym-
bol) that consists of the variables and con-
straints that determine the quality profile of the activity to
which the discovered services need to adhere.

The configuration policies (both internal and external) are dis-
cussed in Section 6.

Activities reconfigure their workflows at run time by triggering
and binding to services after a discovery, ranking and selection
process. Services are modelled in SRML through service mod-
ules, which are like activity modules except that they include a
‘provides-interface’ through which customers can connect to the
service. Like requires-interfaces, provides-interfaces are typed by
business protocols that describe the properties that a customer can
expect from the interactions with that service. On the other hand,
service modules do not include a serves-interface for the top layer:
interactions with the top layer are performed exclusively by ac-
tivities; services compose only horizontally. Uses-interfaces can
be included in service modules in the same way as for activities.

Figure 3 presents RepairService, one of the possible service mod-
ules that could bind with the interface GT of OnRoadRepair. The
module relies on the bottom layer entities BK, which binds to the
bank through which the garage handles payments, and LA which
binds to the agenda of the repair service. When according to this
agenda there are no locally available tow trucks, the service may
decide to invoke an external service for hiring a tow truck, which
is represented by the interface TT.

Figure 3: The service module RepairService through

which a garage and a tow truck can be booked

5. MODULE SPECIFICATION
All interfaces are formal specifications that involve a signature
declaring the set of supported interactions, which can be of sev-
eral different types:

r&s— The co-party initiates the interaction and expects a re-
ply. It does not block while waiting for the reply.

s&r— The party initiates the interaction and expects a reply. It
does not block while waiting for the reply.

rcv— The co-party initiates the interaction and does not ex-
pect a reply.

snd— The party initiates the interaction and does not expect a
reply.

ask— The party synchronises with the co-party to obtain data.
rpl— The co-party synchronises with the party to send data.
tll— The party requests the co-party to perform an action and

blocks until the action is done.
prf— The party performs an action and frees the co-party.

Interactions of type r&s or s&r are durative/conversational. We
distinguish several events that can occur during such interactions:

• interaction is the event that initiates interaction.
• interaction is the reply-event of interaction.
• interaction is the commit-event of interaction.
• interaction is the cancel-event of interaction.
• interaction is the revoke-event of interaction.

All interactions can have parameters for transmitting data when
they are initiated, declared as . Conversational interactions can
additionally have parameters for carrying a reply, declared as 
and for carrying data if there is a commit, a cancel or a revoke,
declared as ,  and  respectively. A mathematical semantics
of these operators can be found in [1].

Each specification – business roles, business protocols, layer pro-
tocols and interaction protocols – provides a slightly different
style of behavioural description. A business role defines an exe-
cution pattern involving the interactions that it declares in its sig-
nature, what we call an orchestration. The orchestration is defined
in terms of local variables that store data and model the abstract
state of the component, and a number of guarded transitions.
Every transition may cause a change in the local state, specified as
effects, and trigger a number of interaction events, specified as
sends. The orchestration of the service provided by the module is
the composition of the orchestrations defined within its compo-
nents and the way they are wired together.

The following is an excerpt of the business role Orchestrator:
BUSINESS ROLE Orchestrator is

 INTERACTIONS
 tll engineFailure
 ask currentLocation:location

 s&r askUsrDetails
  cust:customerId
 card:paydata
 workRelated:boolean
 destination:location
 s&r bookGarage

  collectPnt:location
  servicePrice:moneyVal
  card:paydata
 rcv confirmation
 s&r rentACar
  cust:customerId
 card:paydata

ORCHESTRATION
 local s:[INIT,FAILURE_DETECTED,CONTEXT_RECEIVED,CAR,
 GARAGE&TT,CAR+GARAGE&TT,FINAL],l:location

transition StartProcess

triggeredBy engineFailure
guardedBy s=INIT
effects s’=FAILURE_DETECTED
 ∧ l’=currentLocation
sends askUsrDetails

 transition getContextData
triggeredBy askUsrDetails
guardedBy s=FAILURE_DETECTED
effects s’=CONTEXT_RECEIVED
sends bookGarage
 ∧ bookGarage.collectPnt=l

 ...

Requires and provides-interfaces are typed by business protocols.
The difference between business protocols and roles is that, in-
stead of an orchestration, they provide a set of properties that de-
scribe the behaviour that can be expected of the service (in case of

When a reply to a request
for user details is received
after a failure has been
detected, a garage is
booked and the current
location is transmitted.

When a failure is detected
in the initial state, the
current location is re-
corded and the user is
asked for details.

provides-interface) or specify the behaviour that is expected (in
the case of requires-interface) of the external party. For instance,
the type of the requires-interface GA is the business protocol Ga-
rage specified as follows:
BUSINESS PROTOCOL Garage is
INTERACTIONS
 r&s acceptBooking
  carId:vehicleId
 collectPnt:location
  servicePrice:moneyVal
  card:paydata
 snd confirmation
BEHAVIOUR
 initiallyEnabled acceptBooking?
 acceptBooking? ensures confirmation!

Typically, uses and servers interfaces involve synchronous inter-
actions as in:
LAYER PROTOCOL GPS is
INTERACTIONS
 tll where:location
BEHAVIOUR

In this case, we do not make any special requirement on the GPS
component that we wish OnRoadRepair to bind to.

As already mentioned, wires are typed by connectors defined in
terms of business protocols and attachments. Because interaction
protocols establish a relationship between two parties, the interac-
tions in which they are involved are divided in two subsets called
roles – A and B. The “semantics” of the protocol is provided
through a collection of properties that establish how the interac-
tions are coordinated, which may include routing events or trans-
forming sent data to the format expected by the receiver. This is
precisely what happens in the wire OG connecting the orchestra-
tor and the garage as presented in Section 4. The garage expects a
car identifier, which the interaction protocol sets to the value of
the parameter carID of the module.

INTERACTION PROTOCOL pORGA(id:vehicleId) is

ROLE A
 snd S

  i:location
  o:moneyVal
  c:paydata

ROLE B
 rcv R

  i1:vehicleId
 i2:location
  o:moneyVal
  c:paydata

 COORDINATION
 R ≡ S
 R.i1=id
 R.i2=S.i
 R.o=S.o

 R.c=S.c

6. CONFIGURATION POLICIES
SRML offers primitives for modelling the dynamic aspects con-
cerned with session management and service level agreement,
which together we call configuration policies.

The internal configuration policy defines:
• For each component-interface, a (initialisation) condition

init that holds when the session is initiated and a (termi-
nation) condition term that determines when the corre-
sponding component will no longer have to be available for
interactions (and may thus be removed from the configura-
tion). For example, the initialisation of OR sets the state

variable s to the value INIT and termination occurs when
the final state s=FINAL is reached.

• For each requires-interface, a (trigger) condition trigger,
specifies the condition that launches the discovery process
for that requires-interface. The default trigger (as in GA)
launches the discovery when the first interaction declared in
the interface is required. The trigger of CR launches the
discovery on the occurrence of the first interaction of OR
with GA – bookGarage?.

The external configuration policy concerns the constraints that the
process of discovery, negotiation and binding must satisfy to es-
tablish service level agreements (SLA) with service providers. In
SRML, we use the algebraic approach developed in [4] for con-
straint satisfaction and optimization.

In the case of OnRoadRepair, we use a constraint system where
the degree of satisfaction has fuzzy values, i.e. it takes value in the
interval [0,1]. In order to define the constraints that we wish to
apply to the module, we use the following SLA variables:
GA.LOCATION – the location of the garage, CR.LOCATION – the
location of the car rental, and CR.COST – the cost of the car rental
service. We consider three constraints:

• CheapRent applies to the cost of the car rental service. The
best degree of satisfaction is when the trip is work-related
(i.e., the driver will be reimbursed) otherwise it is inversely
proportional to the cost. Information about whether the trip
is work-related is provided by the value of the interaction
parameter OR.askUsrDetails.workRelated.

• Closeness1 and Closeness2 minimize the distance between
garage and destination, and between car rental and garage,
respectively. The destination and location are provided by
OR.askUsrDetails.destination, OR.bookGarage.collectPnt.
The best degrees of satisfaction are when the distances be-
tween garage-destination and garage-car rental are less than
20. Otherwise they are inversely proportional to the dis-
tance. The function distance returns the distance between
two locations.

EXTERNAL CONFIGURATION POLICY

SLA VARIABLES

 GA.LOCATION, CR.LOCATION, CR.COST

CONSTRAINTS

 CheapRent: {CR.COST}

 def1(c)=

!

1 if OR.askUsrDetails.workRelated

1000/c otherwise

"

$

 Closeness1: {GA.LOCATION}

 def2(g)=

!

1 if " (g)<20

100/"(g) otherwise

$
%

 Δ(g)=distance(g,OR.askUsrDetails.destination)

 Closeness2: {CR.LOCATION,GR.LOCATION}

 def3(c,g)=

!

1 if distance(c,d)<20

100/distance(c,d) otherwise

"

$

For each potential garage and car rental partner, the set of con-
straints has to be solved. The solution assigns a degree of satis-
faction to each possible tuple of values for the SLA variables.
Negotiation in our framework consists in finding an assignment
that maximizes the degree of satisfaction. Hence, the outcome of
the negotiation between OnRoadRepair and the potential partner
is any tuple that maximizes the degree of satisfaction. Selection

The acceptance of a book-
ing is enabled from the
beginning of the session
until it occurs.

A confirmation will be sent
after a commitment is
received for the booking.

all interaction parameters
are shared except for i1:
vehicleId which is set to
the protocol parameter id.

then picks a partner with a service level agreement that offers the
best degree of satisfaction.

7. CONCLUDING REMARKS
The main goal of this paper was to put forward the case for serv-
ice-oriented computing to be used in the automotive domain as a
means of enhancing flexibility and adaptability of systems to
changes that occur in the domain in which they operate (driver,
automobile, and external circumstances). More specifically,
whereas in component-based development services are defined
statically at design time (e.g. [7]), we claim that SOC lets services
be procured and bound at run time so as to optimise the level of
satisfaction of a constraint system that captures quality of service
properties.

For this purpose, we used a language – SRML – that we are defin-
ing in the context of the SENSORIA project for service-oriented
modelling. SRML is inspired by recent work on the Service
Component Architecture (SCA) [14] and Web Services [3], but is
more abstract than the typical languages that one finds for web
services – e.g. WSDL and BPEL – in the sense that it abstracts
away the behaviour of services from the way the components that
provide them are programmed. For instance, a specific mapping
has now been defined from BPEL to SRML [5].

A distinctive feature of SRML is that it supports, in an integrated
way, both CBD and SOC-based service provision. Indeed, the
proposed notion of module and the separation of components in
three architectural layers have the advantage that they clearly
separate the service-oriented (horizontal) layer from the compo-
nent-based (vertical) one while working on a uniform modelling
language and environment. In this respect, there are clear advan-
tages in using declarative languages such as SRML over formal-
isms based on, say Petri-Nets [13], in the sense that SRML offers
a higher-level, more domain-level support for modelling.

SRML also offers the advantage of having a mathematical seman-
tics covering the static aspects of composition [10], its dynamic
aspects [11], as well the computational aspects that relate to the
way sessions are executed [1]. The latter are being mapped into a
logic adapted from µUCTL, a logic developed within SENSORIA
for supporting qualitative analysis [12]. The aim is to provide (1)
a notion of correctness for service modules (i.e., the properties of
a provides-interface are entailed by the body of a module, assum-
ing the properties described in the requires/uses-interfaces), (2) a
way of formalising the matching of provides/requires-interfaces,
and (3) a means for validation of activity and service design. To-
gether with the usage of the c-semiring approach to constraint op-
timisation [4], SRML offers the means through which one can
improve levels of user satisfaction, safety and reliability to auto-
motive system while enhancing adaptability.

8. ACKNOWLEDGMENTS
We would like to thank our colleagues in the SENSORIA project
(IST-2005-16004) for many useful discussions on the topics cov-
ered in this paper.

9. REFERENCES
[1] Abreu, J. and Fiadeiro, J. A Coordination Model for Service-

Oriented Interactions. University of Leicester, 2008.

[2] Alonso, G., Casati, F., Kuno, H. and Machiraju, V. Web
Services. Springer, 2004.

[3] Baina, K., Benatallah, B., Casati, F. and Toumani, F. Model-
Driven Web Service Development. In Proceedings of CAiSE
2004 (Riga, Latvia, June 2004).

[4] Bistarelli, S., Montanari, U. and Rossi, F. Semiring-based
constraint satisfaction and optimization. Journal of the ACM,
44(2): 201-236, 1997.

[5] Bocchi, L., Hong, Y., Lopes, A. and Fiadeiro, J. From BPEL
to SRML: a formal transformational approach. In Web Serv-
ices and Formal Methods. LNCS, Springer, to appear.

[6] BPEL for Web Services. ftp://www6.software.ibm.com/
software/developer/library/ws-bpel.pdf

[7] Broy, M., Krüger, I. and Meisinger M. A formal model of
services. ACM TOSEM 16(1): 1-40, 2007.

[8] Elfatatry, A. Dealing with change: components versus serv-
ices. Communications of the ACM 50(8): 35-39, 2007.

[9] Fiadeiro, J.L., Lopes, A. and Bocchi, L. A formal approach
to service-oriented architecture. In Web Services and Formal
Methods, LNCS 4184, pp 193-213, 2006.

[10] Fiadeiro, J. L., Lopes, A. and Bocchi, L. Algebraic semantics
of service component modules. In: J. L. Fiadeiro and P. Y.
Schobbens (eds) Algebraic Development Techniques. LNCS
4409, Springer, pp 37-55, 2006.

[11] Fiadeiro, J. L., Lopes, A. and Bocchi, L. A business-oriented
semantic model of service-oriented system configuration.
University of Leicester, 2008.

[12] Gnesi, S. and Mazzanti, F. A model checking verification
environment for UML Statecharts. In: Proceedings of XLIII
Congresso Annuale AICA "Comunita' Virtuale dalla Ricerca
all'Impresa dalla Formazione al Cittadino", University of
Udine – AICA, 2005. (paper available from fmt.isti.cnr.it).

[13] Reisig, W. Modeling and analysis techniques for web serv-
ices and business processes. In Proceedings of FMOODS
2005, LNCS 3535, Springer, pp 243-258, 2005.

[14] SCA Consortium. Building Systems using a Service Oriented
Architecture. Whitepaper. www-128.ibm.com/ developer-
works/library/specification/ws-sca (version 0.9), 2005.

[15] SENSORIA consortium (2007) White paper.
http://www.sensoria-ist.eu/files/whitePaper.pdf.

[16] Web Service Description Language (WSDL).
http://www.w3.org/TR/wsdl.

