
A Formal Approach to Modelling Time Properties
of Service-Oriented Systems?

L. Bocchi1, J. Fiadeiro1, S. Gilmore2, J. Abreu1, M. Solanki1, and V. Vankayala1

1 Department of Computer Science, University of Leicester
{lb148,jose,jpad2,ms491}@mcs.le.ac.uk
2 School of Informatics, The University of Edinburgh

stg@staffmail.ed.ac.uk

Abstract. We provide a formal model for expressing and analysing time-related
properties of service-oriented systems. Our approach extends SRML, a high-level
modelling language that we have been developing in the SENSORIA project. We
introduce new primitives for SRML that capture several kinds of delays that can
occur during service provision (e.g., the time taken by components to process
events and perform computations, the time taken by the SOA middleware for dis-
covering, selecting and binding services, etc.). Finally, we show how we can use
the stochastic process algebra PEPA and its development environment to repre-
sent and analyse time properties of SRML models.

1 Introduction

Service-oriented systems have come a long way in the past decade and are now consid-
ered one of the key technologies for building new generations of digital business sys-
tems. Service-based enterprise applications are usually composed “on-the-fly” from ser-
vices individually provided by different providers. The run-time provision of composed
services is governed by negotiations/agreements defining expected quality-of-service
metrics. The conformance of such systems to mutually negotiated timing-related poli-
cies is crucial when analysing the fulfilment of their contractual obligations.

The work presented in this paper addresses the modelling and analysis of time-
related properties of service-oriented models. For instance, we have in mind the ability
to certify that a mortgage-brokerage service satisfies properties of the form “In at least
80% of the cases, a reply to a request for a mortgage proposal will be sent within 7
seconds”. Properties of this kind are extremely important in a number of application
domains and are usually part of the service level agreements (SLAs) that are negoti-
ated between clients and providers. However, to the best of our knowledge, we are still
lacking a formal model of how such timing issues arise in service-oriented architectures
(SOAs) as well as modelling and analysis tools that can be used by designers to develop
services that can be certified to meet given timing constraints.

To this aim, we extended SRML, a modelling language for service-oriented com-
puting (SOC) developed by the SENSORIA consortium, with primitives that allow us to
capture, model and analyse typical time-related SLAs. SRML is a “prototype language”
? This work has been partially sponsored by the project SENSORIA, IST-2005-016004.

developed to capture the foundational aspects of SOC (including service composition,
dynamic binding/reconfiguration and service level agreements) while remaining simple
enough to represent these aspects within one integrated formal framework. Details on
the language and associated methodology can be found in [12, 5] (see also [1, 13] for
a formal semantics of its static and dynamic aspects). Qualitative analysis using model-
checking techniques is addressed in [2].

In SRML, the orchestration of services is expressed in terms of a number of compo-
nents that are connected to each other through interaction protocols and jointly execute
a (distributed) business process. The configuration of this business process may change
at run time as the discovery of required services is triggered. Interactions are expressed
in terms of a number of events that occur according to a conversational protocol that
captures typical peer-to-peer business interconnections. SRML allows modellers to de-
scribe a service-oriented application by defining the structure of the model, including
components and abstract references to services that will be possibly discovered at run-
time. The architectural definition has been inspired by the Service Component Archi-
tecture [11], a set of specifications proposed by an industrial consortium that describe a
middleware-independent model for building software applications over SOAs. Differ-
ently from SCA, SRML offers primitives to provide a high-level behavioural description
of each element of the model.

The extensions that we propose in this paper allow us to capture different kinds of
delays that can occur during service provision: the time that components take to process
events and perform computations on their local states, the time that wires take to trans-
mit events between parties, and the delays with which the SOA middleware performs
discovery, selection and binding of services. SRML offers a number of advantages in
the analysis of the time-related properties of a service-oriented model, namely in help-
ing to (i) identify the delays deriving from the structure of the model, (ii) identify the
delays due to the behaviour of each single entity and (iii) investigate the inter-relation
between (i) and (ii), determining the influence of the delays of each part of the system
in the whole business process. From a methodological point of view, the aim is to vali-
date a model against a number of time-related requirements (e.g., upper bounds on the
delays between interactions) and to suggest improvements in both the overall structure
(e.g., adding or substituting components) and the individual components themselves to
meet such requirements. The analysis offers a modular specification of the time-related
properties that each component/service should meet.

In order to analyse our models for the properties that can be ensured of the ser-
vices that implement them, we use the markovian process algebra PEPA [17]. PEPA
was adopted in SENSORIA to perform quantitative analysis in general because it has a
well-defined meaning and is supported by a range of efficient software tools that can
perform the analysis needed for service-level agreements. Our experience showed that
PEPA is indeed well suited to give a timed account of behaviour as specified in SRML
and evaluate the service-level agreements that are of interest to us here.

We illustrate our approach by using a simplified version of a case study on mortgage-
brokerage services that we have developed within SENSORIA [5, 13]. Another example
was developed around stock trading as part of an MSc thesis [23].

2 Preliminaries

Section 2.1 illustrates the architectural and behavioural aspects of SRML that are nec-
essary to understand the delays modelled in Section 4. PEPA provides a very concise
set of constructs, which are briefly summarized in Section 2.2.

2.1 SRML

SRML provides primitives for modelling composite service-oriented applications by
orchestrating interactions among components and services provided by external parties.
The SRML unit of design is called a “module”. A module M consists of:

– A set nodes(M) and a set edges(M) where each edge w is a set of two nodes
w : n↔ m. Edges are also called “wire-interfaces”.

– nodes(M) consists of four partitions: (1) a set provides(M) consisting of one
“provides-interface”, (2) a set uses(M) of “uses-interfaces”, (3) a set requires(M)
of “requires-interfaces”, and (4) a set components(M) of “components”.

– An internal configuration policy that, for every n ∈ requires(M), consists of
trigger(n) – a pair (m, e) where m ∈ nodes(M) and e is an event published by
m as part of an interaction between the components that bind to n and m.

– An external configuration policy represented as a constraint system cs(M) involv-
ing a set sla(M) of constraints.

A labelling function labelM associates a specification with every node and edge of
M . All the specifications involve a signature sign(labelM (n)) that consists of the set of
interactions that the entity n can engage in, and a definition of the behavioural protocol
that is required of those interactions. Different formalisms are used for defining the pro-
tocol depending on the nature of the node, as described below. The c-semiring approach
to constraint satisfaction and optimisation [4] is used for the external configuration pol-
icy. Constraints are used for modelling the SLAs involved in service discovery and
selection. They involve a number of quality-of-service parameters, including delays.

Business Roles. The behavioural description of every node n ∈ components(M)
is given as a ‘business role’ — which describe an orchestration of the events associ-
ated with the interactions in sign(labelM (n)). Orchestrations are modelled as state ma-
chines and represented as UML statecharts involving two types of nodes, ‘state-nodes’
and ‘transition-nodes’, as illustrated in Fig 3. SRML transitions are represented in the
statechart by a node reflecting the fact that, according to our computational model, a
transition involves two steps. The first step is executed by the trigger of the transition,
which leads to an intermediate state where the component processes the reaction to the
trigger. Depending on the trigger, the SRML transition may branch to a number of exit
states. We denote by (trans(labelM (n))) the set of state transitions of the node n.

Business Protocols. The specifications used for provides- and requires-interfaces
are called ‘business protocols’ and consist of collections of statements that capture typ-
ical patterns of conversational behaviour that arise in service provision. The semantics
of such statements is expressed as sentences of the temporal logic UCTL [18], which
facilitates the use of model-checking techniques for analysing functional properties of

the services specified through the modules [2]. Notice that by e? we refer to the pro-
cessing of event e and, by e! to its publication. If we want to refer generically to either
the processing or the publication of event e we use e∗.

– initiallyEnabled e?: the event e is never discarded until it is executed.
– e1 ∗ enables e2? until e3∗: after e1∗ happens, and while e3∗ does not happen, e2

will not be discarded. Also, e2 cannot be executed neither before e1∗ nor after e3∗.
– e1 ∗ ensures e2!: e2 will be published after, but not before, e1∗ happens.

Layer Protocols. The specifications associated with uses-interfaces are called ‘layer
protocols’. They specify synchronous interactions with persistent components, for in-
stance to obtain or store information in database systems.

Interaction Protocols. Every edge n↔ m is associated with a ‘connector’ 〈µA, P, µB〉,
where P is an ‘interaction protocol’ with two ‘roles’ roleAP and roleBP , and µA

(resp. µB) is an attachment between roleAP and sign(labelM (n)) (resp. roleBP and
sign(labelM (m))). Interaction protocols are specifications of the way wires coordinate
interactions between parties. In order to simplify the treatment of timing issues, we
restrict ourselves to linear protocols, which ensure that events are transmitted to the
corresponding co-party in the order that they are received, but with a possible delay.
More specifically, we restrict ourselves to the case where a connector is a collection
pairs(w) of pairs 〈a, b〉 where a is an interaction of sign(labelM (n)) and b is an inter-
action of sign(labelM (m)) with opposite types, i.e. the types of a and b must be one of
〈s&r,r&s〉, 〈snd,rcv〉, 〈ask,rpl〉, 〈tll,prf〉 or their dual.

The pair 〈s&r,r&s〉 and its dual capture asynchronous conversational interactions;
〈snd,rcv〉 is for asynchronous one-way interactions, i.e. when a reply is not expected;
〈ask,rpl〉 and 〈tll,prf〉 are for synchronous interactions, the first for queries and
the second for updates.

A number of events are associated with an asynchronous conversation interaction
a: a֠ is the initiation event, a� is the reply, aX is the commit, a8 is the cancel event,
and a� is the compensation.

2.2 PEPA

We perform quantitative analysis of SRML models by mapping to PEPA and using the
PEPA analysis tools [22, 10]. PEPA is a timed process algebra in which model compo-
nents perform activities with exponentially-distributed rates.

In practical applications, it is rarely the case that it is possible to obtain a com-
plete response-time distribution of all services in the problem under study. It is far more
likely that one will only know the average response time. In this setting, it is indeed
correct to capture the inherent stochasticity in the system through a exponential dis-
tribution. The exponential distribution requires only a single parameter, the average
response time.3 We apply our modelling only in settings where the average response
time is a meaningful quantity to use. For example, we do not model systems that have

3 Other distributions would require knowledge of higher moments and other parameters which
we do not have. We take care not to require too many parameters because finding each one
accurately may require careful measurement or estimation.

a substantial component requiring a response from a single human participant because
the great variance in human response time makes knowledge of the average response
time alone insignificant for analysis purposes. This setting connects us to the rich theory
of stochastic process including continuous-time Markov chains (CTMC), and a wealth
of efficient numerical procedures for their analysis.

PEPA models consist of a parallel composition of sequential components and thus
are finite-state by construction. Activities may be performed in isolation or in coopera-
tion with another component. The term (α, r).P denotes a component which performs
activity α at rate r and evolves to P . This can be performed in cooperation with a com-
ponent (α,>).Q which allows the other partner in the cooperation to determine the rate
of the shared activity (the symbol> denotes this permission). In the term P BC

L
Q com-

ponents P and Q cooperate on the activities in the set L, but are free to proceed with
other activities independently. Finally, a choice such as (α, pλ).P1 + (α, (1− p)λ).P2

performs activity α with rate λ and evolves to P1 with probability p and P2 with prob-
ability 1− p.

3 The Mortgage-Brockerage Case Study

In this section we present the case study that we use to illustrate our approach. Figure 1
illustrates the structure of the SRML module GetMortgage that models a complex
service able to find the best mortgage according to the personal data and preferences
obtained from the client application.

GETMORTGAGE

SLA_GM

RE:
Registry

MA:
MortgageAgent

LE:
Lender

intLE

BA:
Bank

intBA

IN:
Insurance

intIN

CM CR:
 Customer

ME

ML

MB

MI

intMA

Fig. 1. Structure of the SRMLmodule GetMortgage

GetMortgage includes (1) the provides-interface CR, which describes the inter-
face of the service that is offered by the module, (2) one uses-interface RE that de-
scribes the interface to a persistent resource (a registry of trusted lenders that is con-
sulted when selecting the lender), (3) three requires-interfaces, LE,BA, and IN , spec-
ifying the interfaces to the services that may need to be procured on the fly from ex-
ternal parties (the loan, the bank account and the insurance, respectively), and (4) one
interface MA to the components that orchestrates the interactions among the parties. A
number of wires establish interaction protocols between the different entities involved
in the service. Each requires-interfaces has a trigger event (e.g. intLE for LE) that

launches the run-time discovery of a service that matches with the requires-interface.
The discovery and selection process involves the negotiation of service level agreements
according to the external configuration policy SLA GM .

Figure 2 illustrates a fragment of the statechart diagram that defines the behaviour of
MortgageAgent, involving two transitions GetClientRequest and GetProposal. As
an example of a business protocol, the statement initiallyEnabled askProposal֠ ?
is used in the business protocol Lender to express that the lender should be ready to
accept a request for a proposal from the moment it is bound to the broker.

start

 / askProposal

<<StateNode>>
INITIAL

<< StateNode>>
WAIT_PROPOSAL

<< StateNode>>
WAIT_DECISION

askProposal /

<<StateNode>>
FINAL

end

[askProposal.Reply] / getProposal

<<TransitionNode>>
GetClientRequest

getProposal /

<<TransitionNode>>
GetProposal

[¬askProposal.Reply]
/ getProposal

...

GetClientRequest is triggered by getProposal (i.e.,
the customer initiates a conversation asking for a
mortgage proposal) and is guarded by the fact that the
process is in the state INITIAL.

The execution of GetClientRequest publishes the
event askProposal (i.e., the mortgage agent initiates a
conversation with the lender to ask for a proposal) and
moves the process to the state WAIT_PROPOSAL.

GetProposal is triggered by askProposal (i.e. the
broker receives the reply from the lender) and forwards
the reply to the customer through getProposal.

Depending on the value of the boolean parameter
Reply, the business process either proceeds (i.e., goes
to state WAIT_DECISION, waiting for the decision of
the customer on whether to accept the proposal) or
terminates (i.e., goes to state FINAL).

Fig. 2. Textual and graphical representation of a fragment of the behaviour of MortgageAgent

4 Timing Issues in SRML Models

In this section we show how SRML can be extended in order to model the delays in-
volved in the business process through which a service is provided. We analyse proper-
ties such as the one discussed in Section 1 (i.e., certify that GetMortgage ensures, up
to a certain percentage, an upper bound to the delay of a mortgage proposal requested
by a customer). This approach draws from the work reported in [23] and builds on the
computational and coordination model that was presented in [1].

Given two events e1 and e2, we denote by Delay(e1, e2) the time that separates
their occurrences, e.g. Delay(getProposal֠ , getProposal�) in the example above.
We follow the approach discussed in Section 2.2 and assume that such delays follow
an exponential distribution of the form FDelay(e1,e2)(t) = 1− e−rt. The rate r is asso-
ciated with the entity that processes and publishes the events, and used as a modelling
primitive in the proposed extension of SRML. Event-based selection of continuations
in SRML becomes probabilistic choice in PEPA. We estimate the probability of the
relative outcomes and use the resulting probabilities to weight the rates in the PEPA

model to ensure the correct distribution across the continuations. In this way all number
distributions remain exponential and thus we can achieve probabilistic branching while
remaining in the continuous-time Markovian realm.

We report below a number of delays that, according to the computation and coor-
dination model of SRML, can affect service execution. The rates can be negotiated as
SLAs with service providers in the constraint systems mentioned in Section 2.

Delays in components. Because they may be busy, components store the events they
receive in a buffer where they wait until they are processed, at which point they are
either executed or discarded. Two kinds of rates are involved in this process:

processingRate. This rate represents the time taken by the component to remove an
event from the buffer. Different components may have different processing rates
but all events are treated equally by the same component.

executionRate. This represents the time taken by the component to perform the transi-
tion triggered by the event, i.e. making changes to the state and publishing events.
We assume that discarding an event does not take time. Each transition declared
in a business role has its own execution rate, which should be chosen taking into
account the specific effects of that transition.

Delays of requires-interfaces. As already mentioned, requires-interfaces represent par-
ties that have to be discovered at run time when the corresponding trigger becomes true.
Two kinds of rates are involved in this process:

compositionRate. This rate applies to the run-time discovery, selection and binding
processes as performed by the middleware, i.e. (1) the time to connect to a broker,
(2) the time for matchmaking, ranking and selection, and (3) the time to bind the
selected service. We chose to let different requires-interfaces have different com-
position rates in order to reflect the fact that different brokers may be involved,
depending on the nature of the required external services.

responseRate. These are rates that apply to the responses that the business protocol
requires of the external service through statements of the form e1 ∗ ensures e2!.
More specifically, we consider a rate responseRate(e1, e2) for each such pair of
events, which include responseRate(a֠ , a�) for every interaction a of type r&s
declared in the business protocol.

Delays in wires. Each wire of a module has an associated transfer rate. As mentioned in
Section 2, we are considering only interaction protocols that affect a linear transmission
from one party to its co-party, and do not involve complex data transformation.

Delays in synchronous communication and resource contention. The interface of a
resource consists of a number of synchronous interactions . We define a synchronisation
rate for each such interactions and associate it with the events that resolve synchronisa-
tion requests by replying to a query or executing an operation.

In summary, we extend every module M with a time policy P that consists of sev-
eral collections of rates. Each rate is a term of type R+ ∪ {>}, where > is the passive
rate (i.e., the event with a passive rate occurs only in collaboration with another event,
when this second event is ready):

CMCR MA ML LE

getProposal

getProposal

askProposal

askProposal

askProposa

askProposal

getProposal

getProposal

3
4

5

4

6

Delay(getProposal,getProposal)

transferRate(CM)

processingRate(MA)
executionRate(MA)(P1)

processingRate(MA)
executionRate(MA)(P2)

transferRate(ML)

compositionRate(LE)
responseRate(LE)(askProposal,askProposal)

1

2

2

1

2

3

4

5

6

Fig. 3. Cascade of delays in a fragment of GetMortgage

– For every requires-interface n ∈ requires(M)
• compositionRate(n)
• responseRate(n)(e1, e2) for every statement (e1 ∗ ensures e2!)

– For every w ∈ edges(M), transferRate(w).
– For every n ∈ components(M)
• processingRate(n)
• executionRate(n, P) for every transition P ∈ trans(labelM (n))

– for every n ∈ components(M)∪ serves(M)∪uses(M) and interaction i of type
rpl and prf, synchronisationRate(n)(i).

The sequence diagram in Figure 3 illustrates how the response time associated with
getProposal֠ depends on the delays associated with the rates discussed in this section.
The value of the rates that apply to components and wires to other components or uses-
interfaces are fixed when the module is instantiated, i.e. when the interfaces are bound
to components or network connections. The rates that involve requires-interfaces are
fixed at run time, subject to SLAs.

5 Representing SRML Timing Issues as Stochastic Processes

In this section, we explain how a SRML module can be coded as a stochastic process
so that the timing properties that derive from the timing policy of the module can be
analysed using PEPA. This encoding involves several steps. First, the structure of the
SRML module is decomposed into a PEPA configuration consisting of a number of
PEPA terms. Each PEPA term corresponds to either a node or a wire of the original
SRML model. In this way we can easily map the results of the quantitative analysis back
to the original SRML specification. Second, the behavioural interface of each entity of
the SRML model is encoded into a PEPA term, enabling to analyze the delays due to
each single component. We use 〈〈m〉〉 = t to express that the encoding of the SRML
element m is the PEPA term t.

Encoding the signature. In SRML the signatures (sets of interactions) associated with
specifications of different entities involved in a module are not assumed to be mutually
disjoint. This is because we want to promote reuse, which is also why interconnections
are established explicitly through wires. Therefore, because in PEPA interconnections
are based on shared names, the first step of our encoding consists in renaming all the
interactions to guarantee that the interconnections of the SRML model are properly
represented by the scopes of action names in PEPA. We do so by defining, for every
node n, its encoding signature esignM (n) obtained by prefixing each interaction name
in sign(labelM (n)) with n.

The overall encoding 〈〈M〉〉 of a module M is a cooperation process that includes
one sequential component for each node ofM , one sequential component for each edge
of M , and one additional sequential component for each requires-interface:

〈〈M〉〉 =
n

n∈nodes(M)

〈〈n〉〉 BC
L1

n

w∈edges(M)

〈〈w〉〉 BC
L2

n

n∈requires(M)

〈〈trigger n〉〉

The cooperation set L1 includes all the interaction events associated with all the in-
teraction names of all the nodes (note that the synchronisation event associated with
synchronous interaction types has the same name as the interaction):

L1 =
[

n∈nodes(M)

[
i∈esignM (n)

{i֠ i� , iX, i8, i� , i}

The cooperation setL2 includes all the interaction events that act as triggers for requires-
interfaces and, for each requires interface n, an event that controls the discovery process
associated with n.

L2 = {m e : trigger(n) = (m, e), n ∈ requires(M)}∪{discovery n : n ∈ requires(M)}

Let n be a requires-interface with trigger(n) = (m, e).

〈〈trigger n〉〉 = P where P = (m e,>).(discovery n, compositionRate(n)).P

This term models the delay due to the discovery process that occurs when the trigger
becomes true. As shown in Section 5, a wire connecting a node to a requires-interface
n must wait for the activity discovery n before enacting any interaction with n.

Encoding components. The PEPA term corresponding to a component-interface n is
obtained in two steps: (1) we refine the statechart that defines the business role associ-
ated with n, (2) we apply the translation provided by the PEPA toolset [9] to obtain the
corresponding PEPA term.

The refinement of the statechart is performed in three substeps. First, the events that
occur in the SRML statechart are translated using esignM (n) as defined in the previous
paragraph. That is, given an asynchronous interaction a, 〈〈a֠ 〉〉 = n a֠ , 〈〈a� 〉〉 =
n a� , 〈〈aX〉〉 = n aX, 〈〈a8〉〉 = n a8 and 〈〈a� 〉〉 = n a� . For every synchronous
interaction i, 〈〈i〉〉 = n i. The second step assigns a probability to the branches of
the statechart that are associated with each SRML transition. More precisely, given a
transition P with n branches Pci , we associate a probability pci with each branch such
that

∑
i=1..n pci

= 1. The designer can assign these probabilities taking into account

start

 / askProposal / rate(executionRate(MA)(GetGlientRequest))

<<StateNode>>
INITIAL

<< StateNode>>
WAIT_PROPOSAL

<< StateNode>>
WAIT_DECISION

askProposal / rate(processingRate(MA))

<<StateNode>>
FINAL

end

<<TransitionNode>>
GetClientRequest

MAgetProposal / rate(processingRate(MA))

<<TransitionNode>>
GetProposal

MAgetProposal / rate(p(executionRate(MA)(GetProposal)))

...

MAgetProposal / rate((1-p)(executionRate(MA)(GetProposal)))

Fig. 4. Statechart for MA with the notation for performance analysis with PEPA

specific knowledge of the application domain, or decide for an equal probability 1/n,
or yet experiment with different values to analyse different possible behaviours. The
third step consists in adding the rates. For every SRML transition P of a component
n, the incoming arrow is assigned the rate processingRate(n) and each branch Pci is
assigned the rate pci

∗executionRate(n, P). Figure 4 illustrates the statechart diagram
for the orchestration of MA, annotated with information on executionRate for each
transition.

Wires and Interaction Protocols. In order to encode a SRML edge w : n ↔ m, we
consider first the case when none of the nodes involved is a requires-interface. In this
case, all we have to do is to model the transfer of the events from one component to
the other. As discussed in Section 2, every wire w defines a set of pairs of interactions
pairs(w). We define

〈〈w〉〉 =
n

〈a,b〉∈pairs(w)

〈〈〈a, b〉〉〉

The encoding of the pairs of interactions depends on their types. Consider the case
of 〈s&r ,r&s 〉. In this case, the wire forwards the initiation, commit, cancel and
revoke events from n to m and the reply back from m to n. We assign the delay
r = transferRate(w) to the second leg (delivery to the target):

〈〈〈a, b〉〉〉 = Q
Q = (n a֠ ,>).(m b֠ , r).Q + (n aX,>).(m bX, r).Q + (n a8,>).(m b8, r).Q

+(n a� ,>).(m b� , r).Q + (m b� ,>).(n a� , r).Q

The encoding that applies to the other types of interaction is defined in a similar way.
In the case of a one-way asynchronous protocol 〈snd ,rcv 〉 we have:

〈〈〈a, b〉〉〉 = Q where Q = (n a֠ ,>).(m b֠ , transferRate(w)).Q

In the case of a synchronous interaction 〈ask ,rpl 〉 we have:

〈〈〈a, b〉〉〉 = Q where Q = (n a,>).(m b֠ , synchronisationRate(m, b)).Q

The case of 〈tll ,prf 〉 is identical. In the case of an edge connecting a requires-
interface n, the encoding is:

〈〈w〉〉 = (discovery n,>).
n

〈a,b〉∈pairs(w)

〈〈〈a, b〉〉〉.

External-Interfaces. The encoding of requires-interfaces n is defined in terms of two
processes that cooperate over the set L including all the events in esignM (n) and, for
each e ∈ esignM (n), the actions enables e and disables e. One of the processes (rep-
resented by the term Sn) encodes the statements that define the required behaviour of
the external party. The other process (represented by the term En) controls the enabling
and disabling of the interaction events in which the external party can be involved. That
is,

〈〈n〉〉 = Sn BC
L

En.

Let us consider each process in turn, starting with En. We need to control the incoming
events, i.e. those received by the external party, all of which have a passive rate. The
outgoing events are controlled by the components that receive them through the use of
guards as discussed before.

En =
n

type(i)
=rcv

E(n i֠)
n

type(i)
=s&r

E(n i�)
n

type(i)
=r&s

E(n i֠) | E(n iX) | E(n i8) | E(n i�)

E(e) = (enables e,>).E′(e) where E′(e) = (e,>).E(e) + (disables e,>).E(e)

That is, E(e) synchronises with the enabling of the event, after which it either executes
it or disables it again. Consider now the term Sn. We have seen in Section 2.1 that
the business protocol associated with a requires-interface n defines a set of statements
statementsM (n). We distinguish three kinds of statements: those that use the connec-
tive initiallyEnabled – the set of which we denote byA1; those that use enablesUntil
– the set of which we denote by A2; and those of the form ensures – the set of which
we denote by A3. Each kind of statement is encoded separately, leading to:

Sn =
n

s1∈A1

〈〈s1〉〉
n

s2∈A2

〈〈s2〉〉
n

s3∈A3

〈〈s3〉〉 where 〈〈initiallyEnabled e1?〉〉 = enables 〈〈e1〉〉

The enabling action for e1 has no associated rate (i.e., it is an immediate action, as
defined in [3]), because the activity does not involve any of the delays of a SRML
module we want to analyze.

〈〈e1 ∗ enables e2? until e3∗〉〉 = (〈〈e1〉〉,>).P1 + (〈〈e3〉〉,>).P2

P1 = enables 〈〈e2〉〉.(〈〈e3〉〉,>).disables 〈〈e2〉〉.〈〈e1 ∗ enables e2? until e3∗〉〉
P2 = disables 〈〈e2〉〉.〈〈e1 ∗ enables e2? until e3∗〉〉

We distinguish between the situation in which e3 occurs first, disabling e2, or e1 occurs
first, enabling e2 until e3 occurs. The enabling/disabling are immediate actions.

〈〈e1 ∗ ensures e2!〉〉 = (〈〈e1〉〉,>).(〈〈e2〉〉, responseRate(n)(e1, e2))

That is, the execution of e1 is followed by that of e2 with a delay whose rate is given by
an SLA variable as discussed in Section 3.

Uses-interfaces. As explained in Section 2.1, uses-interfaces provide synchronous in-
teractions with components that offer a certain degree of persistence. For the nodes
n ∈ serves(M) (notice that synchronous interactions can occur more than once during
one module instance):

〈〈n〉〉 =
X

∀i∈sign(labelM (n))

Pni where Pni = (n i, synchronisationRate(i)).Pni

6 Quantitative Analysis of Time Properties

In this section we discuss the quantitative analysis that we are able to perform on a
SRML module by using the PEPA Eclipse Plug-in [22] and IPC [10], formal analysis
components of the SENSORIA Development Environment4. First, we use the PEPA
Eclipse Plug-in tool to generate the statespace of the derived PEPA configuration. We
used the static analyser and qualitative analysis capabilites of this tool to determine that
the configuration is deadlock free and has no unreachable local states in any component
(no “dead code” in the model).

The analysis of a PEPA term encoding a SRML module is inexpensive because
the statespace of the model is relatively small, meaning that the number of states of
a module grows linearly with respect to the number of nodes. The reason is that the
nodes of a SRML module do not execute independently but they wait for one another
(i.e., typically not more than one at a time is active).

We performed the passage time analysis of the example illustrated in Figure 3,
to investigate the probability of each possible delay between CRgetProposal֠ and
CRgetProposal� . We conducted a series of experiments on our PEPA model to de-
termine the answers to the following questions:

1. Is the advertised SLA ”80% of requests receive a response within 7 seconds” sat-
isfied by the system at present?

2. What is the bottleneck activity in the system at present (i.e. where is it best to invest
effort in making one of the activities more efficient?)

The first question is answered by computing the cumulative distribution function
(CDF) for the passage from request to response and determining the value at time t =
10. The second question is answered by performing a sensitivity analysis. That is, we
vary each of the rates used in the model (both up from the true value, and down from
it) and evaluate the CDF repeatedly over this range of values. The resulting graphs are
shown in Figure 5 (the plus denotes the coordinate for 7 seconds and 80%).

Each of the graphs is a CDF which plots the probability of having completed the
passage of interest by a given time bound. To determine whether the stated SLA is sat-
isfied we need only inspect the value of this probability at the time bound. For the given
values of the rates we find that it is the case that this SLA is not satisfied (Figure 5(a)).

In performing sensitivity analysis we vary each rate through a fixed number of pos-
sible values to see if we can identify an improvement which satisfies the SLA. We have

4 Our aim is to discuss the proposed method rather than focusing on the results related to the
specific case study, which is used for illustrative purposes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9 10

P
ro

b
a
b
ili

ty
 o

f
c
o
m

p
le

ti
o
n

Time

Rates of the initial model

+

 CDF

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9 10

P
ro

b
a
b
ili

ty
 o

f
c
o
m

p
le

ti
o
n

Time

Varying transferRate(CM)

+

transferRate(CM)=0.25
transferRate(CM)=0.5

transferRate(CM)=0.75
transferRate(CM)=1.0

transferRate(CM)=1.25
transferRate(CM)=1.5

transferRate(CM)=1.75

(a) (b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9 10

P
ro

b
a
b
ili

ty
 o

f
c
o
m

p
le

ti
o
n

Time

Varying responseRate(LE)

+

responseRate(LE)=1.25
responseRate(LE)=1.5

responseRate(LE)=1.75
responseRate(LE)=2.0

responseRate(LE)=2.25
responseRate(LE)=2.5

responseRate(LE)=2.75

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9 10

P
ro

b
a
b
ili

ty
 o

f
c
o
m

p
le

ti
o
n

Time

Varying executionRate(MA)(P1)

+

executionRate(MA)(P1)=1.25
executionRate(MA)(P1)=1.5

executionRate(MA)(P1)=1.75
executionRate(MA)(P1)=2.0

executionRate(MA)(P1)=2.25
executionRate(MA)(P1)=2.5

executionRate(MA)(P1)=2.75

(c) (d)

Fig. 5. Sensitivity analysis of response time distributions

begun by considering seven possible values here. Three of these are above the true value
(i.e. the activity is being performed faster) and three are below (i.e. the activity is being
performed slower). From the sensitivity analysis we determine (from Figure 5(b)) that
variations in rate parameter transferRate(CM) have the greatest impact on the pas-
sage of interest. Due to the structure of the model this rate controls the entry into the
passage from request to response so delays here have a greater impact further through
the passage. In contrast variations in rate parameter responseRate(LE) (seen in Fig-
ure 5(c)) and executionRate(MA)(P1) (seen in Figure 5(d)) have the least impact
overall. Thus if seeking to improve the performance of the system we should invest in
improving coTransferRate before trying to improve responseTime(LE). Figure 5(b)
illustrates, for example, how the advertised SLA is satisfied by improving the value
of transferRate(CM) to 1.25. It is entirely possible that the sensitivity analysis will
identify several ways in which the SLA can be satisfied. In this case the service stake-
holders can evaluate these in terms of implementation cost or time and identify the most
cost-effective way to improve the service in order to meet the SLA.

7 Related Work

Performance evaluation of service-oriented systems is of interest to many authors. We
can only survey a few related papers here. In [15] the authors focus on tools for busi-
ness process composition, performance engineering and dynamic system architectures.
In this approach the authors may describe systems in Business Process Modelling No-

tation (BPMN) [24], their own high-level modelling notation or at a lower level of
abstraction in a performance modelling formalism. The authors’ tool suite generates
code to implement this performance evaluation as a Java application, an Apache JMe-
ter script, or in other formats. Stub code is generated for services with either delays
according to a stochastic model or according to historical measurement data.

Our process calculus models are obtained by mapping from SRML but other authors
prefer to sometimes work with timed process calculi directly (untimed calculi are used
in [8, 6], timed calculi are used in [20, 19]). In other work process calculi models are
generated from formalisms such as BPMN [21], WS-CDL [14, 7] or BPEL [16].

8 Concluding Remarks

We presented an encoding from SRML, which allows high level modelling of struc-
tural/behaviour aspects of service-oriented applications, into PEPA, which enables quan-
titative analysis of timing properties. The aim is to certify SLAs of complex services
modelled in SRML, defining an upper bound, up to a certain probability, for the delay
between pairs of events. Through sensitivity analysis of response time distributions, the
tools offered by PEPA enable to vary rates for efficiency to improve the overall perfor-
mance. We tested the proposed approach on a financial case study. A formal proof of
correctness of the encoding based on the semantics of both languages is also under way,
which should be quite straightforward as the delays were placed on SRML transitions
according to the model presented in [1].

At the moment, the encoding is intended as a guideline for analysis performed by
humans. As future work, we plan to increase the automation of the analysis by integrat-
ing the tools currently available for PEPA with the SRML editing environment. This
would allow us, for example, to define orchestrations as statechart diagrams with the
SRML editor and automatically transform them into PEPA terms.

We also plan to further investigate the implications of delays in expressing SLA
constraints in SRML. We are currently working on a more accurate representation of
interaction parameters, namely when they influence the choice of a branch in an or-
chestration. The aim is to represent them as probabilities, specifically the probability of
receiving such a value through an interaction, and to associate them with the rates in a
way that does not alter the analysis by introducing unwanted delays.

References

1. J. Abreu and J. L. Fiadeiro. A coordination model for service-oriented interactions. In
Coordination Languages and Models, volume 5052 of LNCS, pages 1–16. Springer, 2008.

2. J. Abreu, F. Mazzanti, J. Fiadeiro, and S. Gnesi. A model-checking approach for service
component architectures. In Formal Methods for Open Object-Based Distributed Systems,
LNCS. Springer, 2009.

3. A. Argent-Katwala, J. Bradley, A. Clark, and S. Gilmore. Location-aware quality of service
measurements for service-level agreements. In Trustworthy Global Computing (TGC’07),
volume 4912 of LNCS, pages 222–239. Springer, 2008.

4. S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based constraint satisfaction and opti-
mization. J. ACM, 44(2):201–236, 1997.

5. L. Bocchi, A. Lopes, and J. Fiadeiro. A use-case driven approach to formal service-oriented
modelling. In International Symposium on Leveraging Applications of Formal Methods,
Verification and Validation (ISOLA’08), volume 17 of CCIS, pages 155–169. Springer, 2008.

6. M. Boreale, R. Bruni, R. D. Nicola, and M. Loreti. Sessions and pipelines for structured ser-
vice programming. In Formal Methods for Open Object-Based Distributed Systems, volume
5051 of LNCS, pages 19–38. Springer, 2008.

7. M. Bravetti, I. Lanese, and G. Zavattaro. Contract-driven implementation of choreographies.
In TGC, volume 5474 of LNCS, pages 1–18. Springer, 2008.

8. M. Bravetti and G. Zavattaro. Service oriented computing from a process algebraic perspec-
tive. J. Log. Algebr. Program., 70(1):3–14, 2007.

9. C. Canevet, S. Gilmore, J. Hillston, M. Prowse, and P. Stevens. Performance modelling with
the unified modelling language and stochastic process algebras. In Computers and Digital
Techniques, IEE Proceedings, volume 150, pages 107–120. IEEE, 2003.

10. A. Clark. The ipclib PEPA Library. In M. Harchol-Balter, M. Kwiatkowska, and M. Telek,
editors, Proceedings of the 4th International Conference on the Quantitative Evaluation of
SysTems (QEST), pages 55–56. IEEE, Sept. 2007.

11. S. Consortium. Building Systems using a Service Oriented Architecture. Whitepaper, 2005.
12. J. L. Fiadeiro, A. Lopes, and L. Bocchi. A Formal Approach to Service Component Ar-

chitecture. In Web Services and Formal Methods, volume 4184 of LNCS, pages 193–213.
Springer, 2006.

13. J. L. Fiadeiro, A. Lopes, and L. Bocchi. An abstract model of service discovery and binding,
2009. Submitted (available from www.cs.le.ac.uk/people/jfiadeiro).

14. R. Gorrieri, C. Guidi, and R. Lucchi. Reasoning about interaction patterns in choreography.
In M. Bravetti, L. Kloul, and G. Zavattaro, editors, EPEW/WS-FM, volume 3670 of Lecture
Notes in Computer Science, pages 333–348. Springer, 2005.

15. J. Grundy, J. Hosking, L. Li, and N. Liu. Performance engineering of service compositions.
In Service-Oriented Software Engineering, pages 26–32, New York, NY, USA, 2006. ACM.

16. C. Guidi, R. Lucchi, N. Busi, R. Gorrieri, and G. Zavattaro. SOCK: a calculus for service ori-
ented computing. In Proc. of International Conference on Service Oriented Computing’06,
volume 4294 of LNCS, pages 327–338. Springer, 2006.

17. J. Hillston. A Compositional Approach to Performance Modelling. Cambridge University
Press, 1996.

18. M. Beek, A. Fantechi, S. Gnesi, and F. Mazzanti. An Action/State-Based Model-Checking
Approach for the Analysis of Communication Protocols for Service-Oriented Applications.
In Formal Methods for Industrial Critical Systems, volume 4916 of LNCS, pages 133–148.
Springer, 2008.

19. R. D. Nicola, D. Latella, M. Loreti, and M. Massink. MarCaSPiS: a Markovian extension of
a calculus for services. In Proceedings of the workshop on Structural Operational Semantics,
Satellite workshop of ICALP, Reykjavik, Iceland, 2008.

20. D. Prandi and P. Quaglia. Stochastic COWS. In B. J. Krämer, K.-J. Lin, and P. Narasimhan,
editors, International Conference on Service Oriented Computing, volume 4749 of Lecture
Notes in Computer Science, pages 245–256. Springer, 2007.

21. D. Prandi, P. Quaglia, and N. Zannone. Formal analysis of BPMN via a translation into
COWS. In COORDINATION, volume 5052 of LNCS, pages 249–263. Springer, 2008.

22. M. Tribastone. The PEPA Plug-in Project. In Quantitative Evaluation of SysTems, pages
53–54. IEEE, 2007.

23. V. Vankayala. Business process modelling using SRML (Advanced System Design - Project
Dissertation), 2008.

24. S. A. White and D. Miers. BPMN Modeling and Reference Guide. Perfect Paperback, 2008.

