
– 1 –

A Use-Case Driven Approach to
Formal Service-Oriented Modelling†

Laura Bocchi1, José Luiz Fiadeiro1 and Antónia Lopes2

1 Department of Computer Science, University of Leicester
University Road, Leicester LE1 7RH, UK

{bocchi,jose}@mcs.le.ac.uk

2 Department of Informatics, Faculty of Sciences, University of Lisbon
Campo Grande, 1749-016 Lisboa, PORTUGAL

mal@di.fc.ul.pt

Abstract. We put forward a use-case based approach for SRML – a formal
framework that is being defined by the SENSORIA consortium for service-
oriented modelling. We expand on the way SRML contributes to the engineer-
ing of software systems and we propose a number of extensions to the UML for
supporting that approach. We use a mortgage brokerage scenario for illustrat-
ing our approach.

1 Introduction

This paper is about a new way of developing software, which we believe requires that
we revisit the methods and techniques that software engineers have been using so far.
This new approach is based on Service-Oriented Computing (SOC) over Global
Computers (GC).

We view SOC as a new computing paradigm in which interactions are no longer
based on fixed or programmed exchanges of products with specific parties – what is
known as clientship in object-oriented programming – but on the provisioning of
services by external providers that are procured on the fly subject to a negotiation of
service level agreements (SLAs). More precisely, the processes of discovery and
selection of services as required by an application are not programmed (at design
time) but performed by the middleware according to functional and non-functional
requirements (SLAs). The process of binding the client application and the selected
service is not performed by skilled software developers, but also at run time, by the
middleware. Because the set of available services changes as providers update their
portfolios, and that service-level agreements may involve context-dependent condi-
tions, different instances of the same application may bind to different services and
operate according to different SLAs resulting from different negotiations.

† This work was partially supported through the IST-2005-16004 Integrated Project SENSORIA: Software

Engineering for Service-Oriented Overlay Computers.

– 2 –

Having said this, one has to recognise that these capabilities of SOC as a paradigm
are not always fully exploited by current Web/Grid-based technologies. One of the
aims of the SENSORIA project [17] is to provide a framework in which the promise
of SOC can be captured and used for evolving existing software technologies and
engineering methodology. In this context, several formal languages and techniques
are being developed that address different aspect or phases of the envisaged develop-
ment process. Among these is SRML – the SENSORIA Reference Modelling Lan-
guage – aimed at supporting the more abstract levels of design specification, what we
call ‘business modelling’. Modelling in SRML is independent of the languages in
which services are programmed and the platforms in which they are deployed.

SRML provides a minimalistic textual language that has been devised in order to
facilitate the definition of a mathematical semantics for its constructs and the whole
process of service discovery and binding [1,10]. In this paper, we focus mainly on
methodological aspects, namely on a process that can be followed to arrive at (formal)
service models in SRML starting from informal (or semi-formal) specifications in
notations that are typical of the UML, including use-case diagrams to capture re-
quirements. The paper proceeds as follows. In Section 2, we provide an overview of
the engineering ‘architecture’ and processes that we see supporting SOC in GC. In
Section 3, we provide a brief overview of SRML. In Section 4, we investigate use
cases as a means of deriving the structure of SRML modules. In Section 5, we con-
sider the use of statecharts for the definition of the orchestration of services. As a
running example, we will use a mortgage brokerage service.

2 Service-overlay Computers

Following the Global Computing EU initiative [12], ‘global computers’ are “compu-
tational infrastructures available globally and able to provide uniform services with
variable guarantees for communication, co-operation and mobility, resource usage,
security policies and mechanisms”. The notion of ‘service-overlay computer’ ex-
plored by SENSORIA addresses precisely the development of highly distributed
loosely coupled applications that can exploit services that are globally available.

In this setting, there is a need to rethink the way we engineer software applications,
moving from the typical ‘static’ scenario in which components are assembled to build
a (more or less complex) system that is delivered to a customer, to a more ‘dynamic’
scenario in which (smaller) applications are developed to run on such global com-
puters and respond to business needs by interacting with services and resources that
are globally available. In this latter setting, there is much more scope for flexibility in
the way business is supported: business processes can be viewed globally as emerging
from a varying collection of loosely coupled applications that can take advantage of
the availability of services procured on the fly when they are needed.

The notion of ‘system’ itself, as it applies to software, also needs to be revised. If
we take one of the accepted meanings of ‘system’ – a combination of related elements
organised into a complex whole – we can see why it is not directly applicable to

– 3 –

SOC/GC: services get combined at run time and redefine the way they are organised
as they execute; no ‘whole’ is given a priori and services do not compute within a
fixed configuration of a ‘universe’. In a sense, we are seeing reflected in software
engineering the trend for ‘globalisation’ that is now driving the economy.

SOC brings to the front many aspects that have already been discussed about com-
ponent-based development (CBD) [8]. Given that different people have different
perceptions of what SOC and CBD are, we will simply say that, in this paper, we will
take CBD to be associated with what we called the ‘static’ engineering approach. For
instance, starting from a universe of (software) components as ‘structural entities’,
Broy et al view a service as a way of orchestrating interactions among a subset of
components in order to obtain some required functionality – “services coordinate the
interplay of components to accomplish specific tasks” [6]. As an example, we can
imagine that a bank will have available a collection of software components that im-
plement core functionalities such as computing interests or charging commissions,
which can be used in different products such as savings or loans.

SOC differs from this view in that there is no such fixed system of components that
services are programmed to draw from but, rather, an evolving universe of software
applications that service providers publish so that they can be discovered by (and
bound to) business activities as they execute. For instance, if documents need to be
exchanged as part of a loan application, the bank may rely on an external courier
service instead of imposing a fixed one. In this case, a courier service would be dis-
covered for each loan application that is processed, possibly taking into account the
address to which the documents need to be sent, speed of delivery, reliability, and so
on. However, the added flexibility provided through SOC comes at a price – dynamic
interactions impose the overhead of selecting the co-party at each invocation – which
means that the choice between invoking a service and calling a component is a deci-
sion that needs to be taken according to given business goals. This is why SRML
makes provision for both SOC and CBD types of interaction (through requires and
uses interfaces as discussed in the next section).

To summarise, the impact that we see (and explore) SOC to have on software en-
gineering methodology stems from the fact that applications are built without know-
ing who will provide services that may be required, and that the discovery and selec-
tion of such services is performed, on the fly, by dedicated middleware components.
This means that application developers cannot rely on the fact that someone will im-
plement the services that may be required so as to satisfy their requirements. There-
fore, service-oriented ‘clientship’ needs to be based on shared ontologies of data and
service provision. Likewise, service development is not the same as developing soft-
ware applications to a costumer’s set of requirements: it is a separate business that,
again, has to rely on shared ontologies of data and service provision so that providers
can see the services that they provide discovered and selected.

This view is summarised in Figure 1, where:
• Activities correspond to applications developed according to requirements pro-

vided by a business organisation, e.g. the applications that, in a bank, imple-
ment the financial products that are made available to the public. The activity
repository provides a means for a run-time engine to trigger such applications

– 4 –

when the corresponding requests are published, say when a client of the bank
requests a loan at a counter or through on-line banking. Activities may be im-
plemented over given components (for instance, a component for computing
and charging interests) in a traditional CBD way, but they can also rely on ser-
vices that will be procured on the fly using SOC (for instance, an insurance for
protecting the customer in case he/she is temporarily prevented from re-paying
the loan due to illness or job loss). Activities are typed by activity modules.
As discussed in Section 3, these identify the components that activities need to
be bound to when they are launched and the services (types) that they may re-
quire as they execute. Modules also include a specification of the workflow
that orchestrates the interactions among all the parties involved in the activity.

Figure 1: Overall ‘engineering’ architecture and processes

• Services differ from activities in that they are not developed to satisfy specific
business requirements of a given organisation but to be published (in service
repositories) in ways that allow them to be discovered when a request for an
external service is published in the run-time environment. As such, they are
classified according to generic service descriptions – what in the next section
we call ‘business protocols’ – that are organised in a hierarchical ontology to

Current configuration
(software components and interaction protocols that

interconnect them [18])

Triggers

Reconfiguration

Discovery and selection Invocation

Business
IT teams

Service
providers

Publication Application
development

Ontology
(data and service

descriptions)

Configuration Management

Service repository

t
t

Activity repository

– 5 –

facilitate discovery. Services are typed by ‘service modules’, which, like ac-
tivity modules, identify the components and additional services that may be
required together with a specification of the workflow that orchestrates the in-
teractions among them so as to deliver the properties declared in the service
description – its ‘provides-interface’. Modules also specify ‘service-level
agreements’ that need to be negotiated during matchmaking and selection.

• The configuration management unit is responsible for the binding of the new
components and connectors that derive from the instantiation of new activities
or services. A formal model of this unit can be found in [11].

• The ontology unit is responsible for organising both data and service descrip-
tions. In this paper, we do not discuss the classification and retrieval mecha-
nisms per se. See, for instance, [14,16] for some of the aspects involved when
addressing such issues. Notice that the ‘business IT teams’ and the ‘service
providers’ can be totally independent and unrelated: the former are interested
in supporting the business of their companies or organisations, whereas the lat-
ter run their own businesses. They share the ontology component of the archi-
tecture so that they can do business together.

3 The SENSORIA Reference Modelling Language

In this section, we provide an overview of SRML focusing on the concepts needed to
understand the rationale for the use-case-based approach that is proposed in Section 4.
The main modelling primitive offered by SRML is called a module, with two speciali-
sations – activity and service modules – in the sense discussed in Section 2.

A module M consists of:
• A graph graph(M), i.e. a set nodes(M) of nodes and a set edges(M) of M where

each edge e is associated with two nodes – e:n↔m. Edges are also called
‘wire interfaces’.

• A distinguished subset of nodes requires(M)⊆nodes(M), called ‘requires-
interfaces’.

• A distinguished subset of nodes uses(M)⊆nodes(M), called ‘uses-interfaces’.
• In the case of service modules, a node provides(M)∈ nodes(M) distinct from

requires(M) and uses(M), called the ‘provides-interface’.
• In the case of activity modules, a node serves(M)∈ nodes(M) distinct from re-

quires(M) and uses(M), called the ‘serves-interface’.
• We denote by components(M) the set of nodes(M) that are not in provides(M)

or serves(M), nor in requires(M) or uses(M) – these are called ‘component
interfaces’.

• A labelling function labelM that assigns
o A ‘business role’ to every n∈components(M)
o A ‘business protocol’ to every n∈provides(M)∪requires(M)
o A ‘layer protocol’ to every n∈serves(M)∪uses(M)

– 6 –

o A connector <µA,P,µB> to every edge (e:n↔m) where P is an ‘interac-
tion protocol’ with two ‘roles’ roleAP and roleBP, and µA (resp. µB) is an
attachment between roleAP and labelM(n) (resp. roleBP and labelM(m)).

• An internal configuration policy (indicated by the symbol) consisting of
o For every node n∈requires(M), a condition trigger(n) that identifies the

trigger of the external service discovery process.
o For n∈components(M), two boolean functions init(n) and term(n) that de-

termine initialisation and termination conditions, respectively.
• An external configuration policy (indicated by) consisting of:

o A constraint system cs(M) based on a fixed c-semiring [4].
o A set sla(M) of constraints over cs(M).
o For every variable in cs(M), a type.
o A partial assignment owner of either a node or an edge of M to the vari-

ables of cs(M).
 Variables and constraints in cs(M) determine the quality profile to which the discov-
ered services need to adhere. A precise account can be found in [11].

The formalisms used in SRML for defining business roles, business protocols,
layer protocols and interaction protocols are discussed in [2,9]: business roles are
(declarative) specifications of state transition systems in terms of state variables,
triggers, guards, and publication of events; business protocols consist of temporal
logic sentences (we are using a version of UCTL [3]) that specify properties of the
(service-oriented) conversations held with external parties; interaction protocols are
specifications of the way wires coordinate interactions between parties; layer proto-
cols specify properties of the (component-based) interactions held with persistent
components and top-level users.

An activity module (ACT), depicted using the diagrammatic notation adopted in
SRML, is shown in Figure 2:

• The serves-interface (at the top-end of the module) identifies the
interactions that should be maintained between the activity and
the rest of the system in which it will operate.

• Uses-interfaces (at the bottom-end of the module) are defined for
those (persistent) components of the underlying configuration
that the activity will need to interact with once instantiated. The
corresponding layer protocols identify the views of those
components that the activity will need to see supported, i.e. the behaviour re-
quired of the actual interfaces that need to be set up for the activity to interact
with components that correspond to (persistent) business entities.

• Requires-interfaces (on the right of the module) are defined (in
association with the configuration policies) for services that the
activity will have to procure from external providers if and
when needed. Typically, these reflect the structure of the business domain it-
self in the sense that they reflect the existence of business services provided
outside the scope of the local context in which the activity will operate.

– 7 –

• Component and wire interfaces (inside the module)
should be defined for orchestrating all these entities
(actors) in ways that will deliver stated user re-
quirements through the serves-interface. The actual
choice of the component interfaces and corresponding
business roles may also reflect the existence of pre-defined patterns of orches-
tration that are available to the designers or reflect business components that
will be created in support of the activity.

• The choice of the internal architecture of the module (components and wires)
should also reflect the nature of the communication and distribution network
over which the activity will run.

Figure 2: Diagrammatic notation for activity (top) and service (bottom) modules

In the case of a service module, a similar diagrammatic notation is used except that
a provides-interface is used instead of a server-interface, as shown at the bottom of
Figure 2 (module SER). In this case:

• The provides-interface should be chosen from the hierarchy of
standard business protocols because the purpose here is to make
the service available to the wider market, not to a specific client.

• Some of the component interfaces will correspond to standard components that
are part of the provider’s portfolio. For instance, these may be application
domain dependent components that correspond to typical entities of the busi-
ness domain in which the service provider specialises.

– 8 –

• Uses-interfaces should be used for those components that the service provider
has for insuring persistence of certain effects of the services that it offers.

4 From Use-Case Diagrams to SRML

In this section, we propose an extension of use-case diagrams for service-oriented
applications and discuss how to use these diagrams to obtain the skeleton of SRML
modules. In order to illustrate our proposal, we will use a fragment of a financial case
study. We consider the case of a financial services organisation that wants to develop
a mortgage brokerage service GetLoan capable of binding a customer activity with a
number of components with which it needs to interact to get a mortgage. This service
involves the following steps: (1) proposing the best mortgage deal to the customer
that invoked the service; (2) taking out the loan if the customer accepts the proposal;
(3) opening a bank account associated with the loan if the lender does not provide
one; and (4) getting insurance if required by either the customer or the lender.

The selection of lenders needs to be restricted to firms that are considered reliable.
For this reason, we consider an UpdateRegistry activity supporting the management
of a registry of reliable lenders. This activity relies on an external certification auth-
ority that may vary according to the identity of the lender. Reporting to Figure 1,
notice that while the aim is to publish GetLoan in a service repository for being dis-
covered and invoked by other services, the UpdateRegistry activity is driven by the
requirements of the financial services organisation itself – it will be stored in an ac-
tivity repository and will be invoked by internal applications (e.g., a web interface).

4.1 Use-case diagrams for service-oriented applications

Traditionally, use-case diagrams are used for providing an overview of usage re-
quirements for a system that needs to be built. As discussed in Section 2, our aim is
to address a novel development process that does not aim at the construction of a
‘system’ but, rather, of two kinds of software applications – services and activities –
that can be bound to other software components either statically (in a component-
based way) or dynamically (in a service-oriented way).

The methodological implications of this view are twofold. On the one hand, ser-
vices and activities have the particularity that each has a single usage requirement.
Hence, they can be perceived as use cases. On the other hand, from a business point
of view, the services and activities to be developed by an organisation constitute logi-
cal units. For instance, in our example, the UpdateRegistry activity and the GetLoan
service can be seen to operate as part of a same business unit and, hence, it makes
sense to group them together in the same use-case diagram. That is, use-case dia-
grams may become useful to structure usage requirements of units of business logic.

In order to reflect these methodological implications in the usage of use cases, we
propose a number of extensions to the standard notation. Figure 3 illustrates our

– 9 –

proposal using the mortgage example: the diagram represents a business logical unit
with the two use cases identified before. The rectangle around the use cases, which in
traditional use-case diagrams indicates the boundary of the system at hand, is used to
indicate the scope of the business unit. Anything within the box represents function-
ality that is in scope and anything outside the box is considered not to be in scope.

For the UpdateRegistry service, the primary actor is Registry Manager; its goal is
to control the way a registry of trusted lenders is updated. The registry itself is re-
garded as a supporting actor. The Certification Authority on which UpdateRegistry
relies is also considered a supporting actor in the use case because it is an external
service that needs to be discovered based on the nature of each candidate lender.

In the GetLoan activity, the primary actor is a Customer that wants to obtain a
mortgage. The use case has four supporting actors: Lender, Bank, Insurance and
Registry. The Lender represents the bank or building society that lends the money to
the customer. Because only reliable firms can be considered for the selection of the
lender, the use case involves communication with Registry. When the lender does not
provide a bank account, the use case involves an external Bank for opening of a new
account. Similarly, the use case involves interaction with an Insurance provider for
cases where the lender requires insurance or the customer decides to get one.

Mortgage Finder

Customer

GetLoan

Lender

Bank

Insurance

Registry
Manager

UpdateRegistry

Certification
Authority

Registry

service-actorresource-actoruser-actor requester-actor

Figure 3: Service-oriented use-case diagram for Mortgage Finder

– 10 –

As happens in traditional use cases, we view an actor as any entity that is external
to the business unit and interacts with at least one of its elements in order to perform a
task. As motivated above, we can distinguish between different kinds of actors,
which led us to customise the traditional icons as depicted in Figure 3. These allow
us to discriminate between user/requester and resource/service actors.

User-actors and requester-actors are similar to primary actors in traditional use-
case diagrams in the sense that they represent entities that initiate the use case and
whose goals are fulfilled through the successful completion of the use case. The
difference between them is that a user-actor is a role played by an entity belonging to
the business organisation that operates the activity triggered by the entity, while a
requester-actor is a role played by any entity (usually belonging to a different busi-
ness organisation) that triggers the discovery of (and binds to) the service.

For instance, the user-actor Registry Manager represents an interface for an em-
ployee of the business organisation that is running Mortgage Finder whereas the
requester-actor Customer represents an interface for a service requester that can come
from any external organisation. A requester-actor can be regarded as an interface to
an abstract user of the functionality that is exposed as a service; it represents the range
of potential customers of the service and the requirements typically derive from stan-
dard service descriptions stored in service repositories such as the UDDI. In SRML,
and reporting to Figure 1, these descriptions are given by business protocols and or-
ganised in a shared ontology, which facilitates and makes the discovery of business
partners more effective. The identification of requester-actors may take advantage of
existing descriptions in the ontology or it may identify new business opportunities. In
this case, the ontology would be extended with new business protocols corresponding
to the new types of service.

Resource-actors and service-actors of a use case are similar to supporting actors in
traditional use-case diagrams in the sense that they represent entities to rely on in
order to achieve the underlying business goal. The difference is that a service-actor
represents an outsourced functionality to be procured on the fly and, hence, will typi-
cally vary from instance to instance, whereas a resource-actor is an entity that is stati-
cally bound and, hence, is the same for all instances of the use case. Resource-actors
are typically persistent sources/repositories of information. In general, they are com-
ponents already available to be shared within a business organisation.

The user- and resource-actors, which we represent on the top and bottom of our
specialised use-case diagrams, respectively, correspond in fact to the actors that are
presented on the left and right-hand side in traditional use-case diagrams, respec-
tively. In contrast, the ‘horizontal dimension’ of the new diagrams, comprising re-
quester- and service-actors, captures the types of interactions that are specific to SOC.

We assume that every use case corresponds to a service-oriented artefact and that
the association between a primary actor and a use case represents an instantia-
tion/invocation. For this reason, in this context, we constrain every use case to be
associated with only one primary actor (either a requester or a user).

– 11 –

4.2 Deriving the structure of SRML modules

The proposed specialisations of use-case diagrams allow us to derive a number of
aspects of the structure of SRML modules. Each use case, representing either a ser-
vice or an activity, is naturally modelled as either a SRML service module or activity
module, respectively. The actors associated with a use case identify the interfaces
used in the module. It is straightforward to model each actor type with a specific type
of interface of the SRML module. Each user-actor, which represents the interface to
the user that triggers the instantiation of an activity, is modelled as a SRML serves-
interface. Each requester-actor, which represents the interface to the entity that in-
vokes a service, is modelled as a SRML provides-interface. Similarly, service-actors
are modelled as requires-interfaces and resource-actors as serves-interfaces. Figure 4
presents the structure of the modules derived from the use-case diagram in Figure 3.

The definition of the internal structure of the module (i.e., the components and
wires that define the internal workflow) may depend on the portfolio of components
already available for reuse within the business organisation. In our case study, the
orchestration of the modules relies on a single component. The definition of a com-
plex internal structure from scratch, deriving from the decomposition of the orchestra-
tion in a number of coordinated units, can be done using traditional techniques for
CBD. We leave this topic for further investigation and discussion.

Figure 4: The SRML modules for the service GetLoan and the activity UpdateRegistry

– 12 –

5 Using Statecharts for SRML Orchestration

Section 4.2 describes how to derive the structure of SRML modules corresponding to
use cases. In this section, we discuss how in SRML we model the internal behaviour
of a module in terms of a (possibly distributed) orchestration of a number of interac-
tions among the identified partners. For this purpose, we adapt UML statechart dia-
grams to operate with the interaction primitives that are available in SRML.

We illustrate the method considering the orchestration of the SRML module Get-
Loan. Initially, the customer sends his/her profile and preferences for the mortgage.
If the customer accepts the proposal, and depending on the services provided by the
lender, some additional activities may be performed separately: opening a bank ac-
count and buying insurance. The workflow terminates when the customer rejects the
proposal or the deal is signed off.

start

Customer.getProposal! / Lender.askProposal!

INITIAL

WAIT_PROPOSAL

WAIT_DECISION

Lender.askProposal" / Customer.getProposal"

FINAL
Customer.getProposal! / Lender.askProposal !

PROPOSAL_ACCEPTED

Customer.getProposal! / Lender.processLoan!

READY2SIGN

[needInsurance ! needAccount]

openAccount [¬needInsurance] "

Lender.processLoan"(needInsurance,needAccount)

SIGNING

/ Lender.signOutLoan!

Lender.signOutLoan" /

Customer.confirmation!

end

PROCESSING

Ins1

[needInsurance] /

Insurance.getInsurance!

[needAccount] /

Bank.openAccount!

Ins2

Acc1 Acc2

Insurance.getInsurance"
Ins3

Acc3
Bank.openAccount"

[¬ needInsurance]

[¬ needAccount]

[¬(needInsurance ! needAccount)]

Figure 5: Statechart diagram for GetLoan

Figure 5 presents the statechart corresponding to the orchestration of GetLoan.
The labels of the transitions (triggers and effects) use the language of interaction
events that is provided by SRML. SRML supports asynchronous one-way (receive
and send) and conversational (send&receive and receive&send) interactions. A con-
versational interaction may involve a number of possible steps, which we call interac-
tion events: the initiation of the interaction (e.g., getProposal), the reply event (e.g.,
getProposal) sent by the co-partner, the confirmation and cancellation events (e.g.,
getProposal and getProposal), and a revoke event (e.g., getProposal) that trig-
gers a compensation process. A one-way interaction is associated with only one
event. The language and semantics of this language is discussed in [1,2].

– 13 –

Such a statechart defines what in Section 3 we called a ‘business role’, i.e. the type
of orchestration that every instantiation of the service will implement to coordinate
the interactions among the parties involved in the provision of the service. SRML
also offers a textual notation for business roles that consists of a declaration of the
interactions in which the components can be involved and a specification of the state
parameters and state transitions of the orchestration process.

Figure 6 presents the interactions supported by WorkFlow, the specification of the
component WF of the module GetLoan.

BUSINESS ROLE WorkFlow is

INTERACTIONS
 r&s getProposal
  idData:usrdata
 income:moneyvalue
 partnerIncome:moneyvalue
 preferences:prefdata
  proposal:mortgageproposal

 s&r askProposal
  idData:usrdata

 income:moneyvalue
 partnerIncome:moneyvalue
  proposal:mortgageproposal
 s&r processLoan
  proposal:mortgageproposal
  loanData:loandatatype
 accountIncluded:bool
 insuranceRequired:bool

 s&r getInsurance
  idData:usrdata
 loanData:loaddatatype
  insuranceData:insurancedatatype
 s&r openAccount
  idData:usrdata
 loanData:loaddatatype
  accountData:accountdatatype
 s&r signOutLoan
  loanData:loandatatype
 insuranceData:insurancedatatype
 accountData:accountdatatype
  contract:loancontract
 snd confirmation
  contract:loancontract

Figure 6: Interactions supported by WF in the SRML module GetLoan

Each transition in a business role is defined by: a trigger, typically the occurrence
of an event, a guard enabling the transition, the effects over the local state and the
events that are published with the corresponding parameter assignments. An extract
of the transitions resulting from the statechart of GetLoan are presented in Figure 7.

An advantage of using the (formal) specification language of business roles over
statecharts is that it supports underspecification (logical formulas are used for specify-
ing effects and publication of events) and a refinement process that allows designers
to start with loose requirements over states and transitions and add detail as more
knowledge is gathered about the required behaviour. Another advantage is that is
provides us a formal framework to which we can map specifications in other notations
such as the ones available in workflow languages like BPEL [5]. More details and
examples can be found in [9].

ORCHESTRATION
local s:[INITIAL, WAIT_PROPOSAL, WAIT_DECISION, PROPOSAL_ACCEPTED,
 PROCESSING, READY2SIGN, SIGN, FINAL], needAccount,needInsurance:bool
transition GetClientRequest

triggeredBy getProposal
guardedBy s=INITIAL
effects s’=WAIT_PROPOSAL
sends askProposal
 ∧ askProposal.idData=getProposal.idData
 ∧ askProposal.income=getProposal.income
 ∧ askProposal.partnerIncome=getProposal.partnerIncome

transition GetLenderProposal
triggeredBy askProposal
guardedBy s= WAIT_PROPOSAL
effects s’= WAIT_DECISION
sends getProposal
 ∧ getProposal.proposal=askProposal.proposal

Figure 7: Fragment of Workflow in the SRML module GetLoan

– 14 –

6 Concluding Remarks and Further Work

We presented an approach for modelling service-oriented application based on (1)
use-case diagrams and statecharts in order to capture requirements on units of busi-
ness logic structured in terms of services and activities, and (2) the SENSORIA Re-
ference Modelling Language (SRML) to derive formal models of those services and
activities. We proposed an extension of use-case diagrams in order to identify the
relevant services and activities, and derive the structure of a SRML model for each of
them. We also proposed a customisation of statechart diagrams in order to model the
behaviour of the business processes executed by activities and services in terms of the
basic interaction primitives available in SRML.

SENSORIA is also producing a more global approach to modelling service orches-
trations in UML2 – called UML4SOA – and utilising these models for code genera-
tion (including BPEL code) [14,19]. This approach favours the use of activity dia-
grams. Our choice for statecharts reflects the way we organise the behaviour of each
module in terms of (internal and external) partners: the idea is that the behaviour of
each partner can eventually be described by one or more statecharts, and that the
behaviour of the activity/service emerges from the concurrent execution of these
statecharts. This is also the view that is supporting analysis through the use of model-
checking techniques [3,13]. This is on-going joint research between Leicester and
ISTI (Pisa).

The overall methodology that we have in mind for developing software for global
computers was also discussed and illustrated through (a much simplified version of)
the financial case study being investigated in SENSORIA, namely the aspects that
relate to a mortgage brokering service and registry activity. A novel aspect of SRML
is the separation that it provides for services in the sense of component-based devel-
opment (CBD) and service-oriented computing (SOC). This separation is reflected in
the use of different kinds of actors in the proposed extension of use-case diagrams and
different modelling primitives in SRML.

The specific formal support that is available in SRML was deliberately omitted be-
cause of lack of space but it can be found in a number of publications [e.g.
1,2,9,10,11]. This includes a computational model and associated logic through
which we can reason about the properties of provided services using model-checking
techniques [13], and also a formalism for service-level agreements [7]. However, the
integrated use of these techniques within the overall methodology is still being inves-
tigated, including the support for the classification of service descriptions within an
ontology that can support dynamic discovery. We are also investigating how the
decomposition of use-cases using <<include>>/<<extend>> relationships, usually
used to indicate potential reuse, can suggest better ways of structuring the orchestra-
tion of services and activities, as well as facilitate the checking of the properties of
SRML modules.

– 15 –

Acknowledgments

We would like to thank our colleagues in the SENSORIA project for many useful
discussions on the topics covered in this paper, especially Reiko Heckel for his in-
sights and suggestions on use cases. We are also indebted to Colin Gilmore from Box
Tree Mortgage Solutions (Leicester) for taking us through the mortgage business.

References

 1. J. Abreu, J. Fiadeiro (2008) A coordination model for service-oriented interactions. In: D
Lea, G. Zavattaro (eds) Coordination Languages and Models. LNCS, vol 5052. Springer,
Berlin Heidelberg New York, pp 1–16

 2. J. Abreu, L. Bocchi, J. L. Fiadeiro, A. Lopes (2007) Specifying and composing interaction
protocols for service-oriented system modelling. In: J. Derrick, J. Vain (eds) Formal
Methods for Networked and Distributed Systems. LNCS, vol 4574. Springer, Berlin Hei-
delberg New York, pp 358–373

 3. M. ter Beek, A. Fantechi, S. Gnesi, F. Mazzanti (2008) An action/state-based model
checking approach for the analysis of communication protocols for Service-Oriented Ap-
plications. In: S. Leue, P. Merino (eds) Formal Methods for Industrial Critical Systems,
LNCS, vol 4916. Springer, Berlin Heidelberg New York, pp 133–148

 4. S. Bistarelli, U. Montanari, F. Rossi (1997) Semiring-based constraint satisfaction and
optimization. Journal of the ACM 44(2): 201–236

 5. L. Bocchi, Y. Hong, A. Lopes, J. Fiadeiro (2008) From BPEL to SRML: a formal trans-
formational approach. In: M. Dumas, R. Heckel (eds) Web Services and Formal Methods.
LNCS, vol 4937. Springer, Berlin Heidelberg New York, pp 92–107

 6. M. Broy, I. Krüger, M. Meisinger (2007) A formal model of services. ACM TOSEM 16(1):
1–40

 7. M. Buscemi, U. Montanari (2007) CC-Pi: A constraint-based language for specifying
service level agreements. In: R. De Nicola (ed) ESOP’07. LNCS, vol 4421. Springer, Ber-
lin Heidelberg New York, pp 18–32

 8. A. Elfatatry (2007) Dealing with change: components versus services. Communications of
the ACM 50(8): 35–39

 9. J. L. Fiadeiro, A. Lopes, L. Bocchi (2006) A formal approach to service-oriented architec-
ture. In: M. Bravetti, M. Nunez, G. Zavattaro (eds) Web Services and Formal Methods.
LNCS, vol 4184. Springer, Berlin Heidelberg New York, pp 193–213

10. J. L. Fiadeiro, A. Lopes, L. Bocchi (2007) Algebraic semantics of service component
modules. In: J. L. Fiadeiro, P. Y. Schobbens (eds) Algebraic Development Techniques.
LNCS, vol 4409. Springer, Berlin Heidelberg New York, pp 37–55

11. J. L. Fiadeiro, A. Lopes, L. Bocchi (2008) Semantics of Service-Oriented System Configu-
ration. Submitted. (Available from www.cs.le.ac.uk/jfiadeiro)

12. Global Computing Initiative, http://cordis.europa.eu/ist/fet/gc.htm
13. S. Gnesi, F. Mazzanti (2004) On the fly model checking of communicating UML state

machines. In ACIS International Conference on Software Engineering Research, Man-
agement and Applications, pp 331–338

– 16 –

14. P. Mayer, N. Koch, A. Schröder (2008) A Model-Driven Approach to Service Orchestra-
tion. In: Proceedings of IEEE International Conference on Services Computing (SCC
2008). IEEE Press, in print

15. K. Pahl (2007) An ontology for software component matching. International Journal on
Software Tools and Technology Transfer 9: 169–178

16. J. Rao, X. Su (2004) A survey of automated web service composition methods. In: J.
Cardoso, A. Sheth (eds) Semantic Web Services and Web Process Composition. LNCS, vol
3387. Springer, Berlin Heidelberg New York, pp 43–54

17. SENSORIA consortium (2007) White paper available at http://www.sensoria-
ist.eu/files/whitePaper.pdf

18. M. Shaw, D. Garlan (1996) Software Architecture: Perspectives on an Emerging Disci-
pline. Prentice Hall, London

19. M. Wirsing, A. Clark, A. Gilmore, M. Hölzl, A. Knapp, N. Koch, A. Schröder (2006)
Semantic-based development of service-oriented systems. In: E. Najn et al. (eds) Formal
Methods for Networked and Distributed Systems. LNCS, vol 4229. Springer, Berlin Hei-
delberg New York, pp 24–45

