
A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

Formal Modelling of
Service-Oriented Systems

José Fiadeiro
Laura Bocchi, João Abreu

Antónia Lopes

http://news.bbc.co.uk/weather/forecast/341
http://news.bbc.co.uk/weather/forecast/341

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

aims of this tutorial

to provide you with an overview of a formal
approach to service-oriented modelling that we
have been developing in the SENSORIA project

a ‘prototype’ modelling language — SRML

(part of) its semantics

methodological aspects of an engineering approach to
service-oriented systems

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

aims of this tutorial

to provide you with an overview of a formal
approach to service-oriented modelling that we
have been developing in the SENSORIA project

a ‘prototype’ modelling language — SRML

(part of) its semantics

methodological aspects of an engineering approach to
service-oriented systems

a companion paper is available from:
www.cs.le.ac.uk/people/jfiadeiro

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

aims of this tutorial

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

plan of this tutorial

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

plan of this tutorial

Setting the scene
the context — SENSORIA

what we mean by ‘service’
what we mean by ‘modelling’

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

plan of this tutorial

Setting the scene
the context — SENSORIA

what we mean by ‘service’
what we mean by ‘modelling’

Engineering service-oriented systems
why (we think that) it is not the same as for component-
based systems

social complexity

service consumers (activities) vs service providers
static vs dynamic aspects

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

plan of this tutorial

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

plan of this tutorial

SRML
Use Cases for SOC

A language and model of interactions for SOC
Orchestration

‘Provides’ and ‘Requires’ interfaces

Connectors and interaction protocols
Internal configuration policies

External configuration policies — SLA’s

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

plan of this tutorial

SRML
Use Cases for SOC

A language and model of interactions for SOC
Orchestration

‘Provides’ and ‘Requires’ interfaces

Connectors and interaction protocols
Internal configuration policies

External configuration policies — SLA’s

Semantics of service discovery and binding

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

the context

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

the context

! ! Università di Pisa !

! ! Università di Firenze

! ! Università di Bologna

! ! ISTI Pisa

! ! Telecom Italia Lab

! ! Università di Trento

! ! University of Leicester

! ! University of Edinburgh

! ! Imperial College London

! ! University College London

! ! Universidade de Lisboa

! ! ATX Software SA

! ! LMU München

! ! FAST GmbH

! ! S&N AG

! ! TU Denmark at Lyngby

! ! Warsaw University

! ! Budapest University of Technology and Economics

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

more precisely…

An IST-FET Integrated Project Sept05–Aug09

 Software Engineering for

 Service-Oriented Overlay Computers

	 The aim of SENSORIA is to develop a novel
comprehensive approach to the engineering of
software systems for service-oriented overlay
computers where foundational theories, techniques
and methods are fully integrated in a pragmatic
software engineering approach.

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

even more precisely…

An IST-FET Integrated Project Sept05–Aug09

 Software Engineering for

 Service-Oriented Overlay Computers

WP1 	 Provide support for service-oriented modelling at high
levels of abstraction, i.e. independently of the hosting
middleware and hardware platforms, and the languages
in which services are programmed.

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

even more precisely…

An IST-FET Integrated Project Sept05–Aug09

 Software Engineering for

 Service-Oriented Overlay Computers

WP1 	 Provide support for service-oriented modelling at high
levels of abstraction, i.e. independently of the hosting
middleware and hardware platforms, and the languages
in which services are programmed.

Core Calculi for Service Computing (WP2&5)

Q
u
a
lit

a
ti
v
e
 a

n
d
 Q

u
a
n
ti
ta

ti
v
e
 A

n
a
ly

si
s

(W
P
3
-4

)

R
e

-E
n

g
in

e
e

ri
n

g

L
e

g
a

c
y
 S

y
s
te

m
s

 (
W

P
6

)

Model-driven

Development

(WP7)

Model-driven

Deployment

(WP6)

Global Computer
Legacy System

Service-Oriented Modeling (WP1)

Global Computer

C
a
se

 S
tu

d
ie

s,
 D

e
m

o
n
st

ra
io

n
,
T
ra

in
in

g
,

D
is

se
m

in
a
ti
o
n
,
P
ro

je
ct

 M
a
n
a
g
.
(W

P
8
-1

2
)

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

Services?

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

Services?

A personal experience…

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

Services?

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

too many products

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

too many products

how to choose a mortgage?
how to choose the right mortgage?

how to choose the mortgage that is right for me?

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

too many products

how to choose a mortgage?
how to choose the right mortgage?

how to choose the mortgage that is right for me?

it was more than a mortgage that I needed…
which bank would I use for the monthly payments?
what about life insurance?

and protection against job loss?

and perhaps a saving scheme?

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

from products to services

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

from products to services

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

from products to services

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

from products to services

Abstracts away the identity of the component(s)
out of which the service is provided;

Provides an explicit representation of the role
under which the service was procured, and
which led to the choice of specific components;

The choice of the configuration of components
that provides the required service is performed
by experts in a more restricted domain;

Service providers have to abide to rules that
ensure certain levels of quality

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

social complexity

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

social complexity

The major source of complexity in modern
software-intensive systems is ‘social’:

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

social complexity

The major source of complexity in modern
software-intensive systems is ‘social’:

Systems are not necessarily ‘big chunks of software’…

‘software
crisis’ of the 80’s

and 90‘s

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

social complexity

The major source of complexity in modern
software-intensive systems is ‘social’:

Systems are not necessarily ‘big chunks of software’…
… but they may exhibit complex and dynamic/evolving
interactions among possibly huge numbers of parties

‘software
crisis’ of the 80’s

and 90‘s

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

social complexity

The major source of complexity in modern
software-intensive systems is ‘social’:

Systems are not necessarily ‘big chunks of software’…
… but they may exhibit complex and dynamic/evolving
interactions among possibly huge numbers of parties
The major concern is in having representations of the
‘business’ roles that parties play within a system…
… and in having the means for procuring and
interconnecting the parties required to execute a given
business process, only when they are required (not so
much in developing the parties themselves)

‘software
crisis’ of the 80’s

and 90‘s

A bank will use components
for calculating interests,
charging commissions, etc,
that it will use in different
products (savings, loans, …)

The same bank is likely to
rely on external courier
services that are procured
according to the delivery
address, speed, cost, …

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

services vs components

In CBD, software components are
“taken out of a box” and plugged
into a system (possibly with the
addition of some “glue” code) to
provide a “service” (see Broy et al,
TOSEM February 2007)

In SOC, each time a service is
invoked, a different provider may be
chosen to negotiate terms and
conditions, and then the service is
finally bound (see Elfatatry,
CACM August 2007)

CBD assumes early binding:
the “architecture” is defined
at design time.
(physiological complexity)

SOC adopts late binding:
binding is deferred to run
time, enabling the choice of
provision each time and
change in the quality of the
requirements.
(social complexity)

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

services vs components

In CBD, software components are
“taken out of a box” and plugged
into a system (possibly with the
addition of some “glue” code) to
provide a “service” (see Broy et al,
TOSEM February 2007)

In SOC, each time a service is
invoked, a different provider may be
chosen to negotiate terms and
conditions, and then the service is
finally bound (see Elfatatry,
CACM August 2007)

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

engineering SOC

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

engineering SOC

Stakeholders
service providers

do not develop ‘bespoke’ software to user’s requirements
need to offer services that correspond to ‘market’ demands

service consumers
are applications, not people
are decoupled from the providers
bind to services at run time, not design time

service brokers
manage registries
binds consumer and provider
offered as middleware in SOAs

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

engineering architecture

!

Current business configuration

(activities and their types)

Activity

A_Lau

Activity

A_Ant

Triggers

Reconfiguration

Discovery and selection
Invocation

Business

IT teams

Service

providers

Publication Application

development

Ontology
(including hierarchies
of business protocols)

!

Service repository

Configuration Management

"

"!

Activity repository

Brokers – SOA

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

modelling

!

Current business configuration

(activities and their types)

Activity

A_Lau

Activity

A_Ant

Triggers

Reconfiguration

Discovery and selection
Invocation

Business

IT teams

Service

providers

Publication Application

development

Ontology
(including hierarchies
of business protocols)

!

Service repository

Configuration Management

"

"!

Activity repository

Brokers – SOA

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

modelling

!

Current business configuration

(activities and their types)

Activity

A_Lau

Activity

A_Ant

Triggers

Reconfiguration

Discovery and selection
Invocation

Business

IT teams

Service

providers

Publication Application

development

Ontology
(including hierarchies
of business protocols)

!

Service repository

Configuration Management

"

"!

Activity repository

Brokers – SOA

Activities are
developed to meet requirements of

specific business organisations

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

modelling

!

Current business configuration

(activities and their types)

Activity

A_Lau

Activity

A_Ant

Triggers

Reconfiguration

Discovery and selection
Invocation

Business

IT teams

Service

providers

Publication Application

development

Ontology
(including hierarchies
of business protocols)

!

Service repository

Configuration Management

"

"!

Activity repository

Brokers – SOA

Activities are
developed to meet requirements of

specific business organisations

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

modelling

!

Current business configuration

(activities and their types)

Activity

A_Lau

Activity

A_Ant

Triggers

Reconfiguration

Discovery and selection
Invocation

Business

IT teams

Service

providers

Publication Application

development

Ontology
(including hierarchies
of business protocols)

!

Service repository

Configuration Management

"

"!

Activity repository

Brokers – SOA

Services are developed to be
published and discovered at run time

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

modelling

!

Current business configuration

(activities and their types)

Activity

A_Lau

Activity

A_Ant

Triggers

Reconfiguration

Discovery and selection
Invocation

Business

IT teams

Service

providers

Publication Application

development

Ontology
(including hierarchies
of business protocols)

!

Service repository

Configuration Management

"

"!

Activity repository

Brokers – SOA

Services are developed to be
published and discovered at run time

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

modelling

!

Current business configuration

(activities and their types)

Activity

A_Lau

Activity

A_Ant

Triggers

Reconfiguration

Discovery and selection
Invocation

Business

IT teams

Service

providers

Publication Application

development

Ontology
(including hierarchies
of business protocols)

!

Service repository

Configuration Management

"

"!

Activity repository

Brokers – SOA

!
"

Compatibility

Consistency

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

modelling

!

Current business configuration

(activities and their types)

Activity

A_Lau

Activity

A_Ant

Triggers

Reconfiguration

Discovery and selection
Invocation

Business

IT teams

Service

providers

Publication Application

development

Ontology
(including hierarchies
of business protocols)

!

Service repository

Configuration Management

"

"!

Activity repository

Brokers – SOA

!
"

Compatibility

Consistency

Brokers are part of the SOA
middleware and, as such, are not

modelled by system designers

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

modelling

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

modelling

different from programming
closer to the business domain (addresses the business
logic and reflects business roles)

not necessarily executable
validation and verification independent of the
implementation

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

modelling

different from programming
closer to the business domain (addresses the business
logic and reflects business roles)

not necessarily executable
validation and verification independent of the
implementation

level of abstraction
builds over the facilities offered by a SOA — brokers,
session handling and message correlation mechanisms,
…

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

modelling

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

modelling

Static aspects:
How can we account for the behaviour of services
provided by collections of interconnected parties? —
orchestration, conversation protocols (pledges,
compensations, …)

Dynamic aspects:
How can we account for the run-time aspects of service-
oriented systems that result from the SOA middleware
mechanisms of service discovery, instantiation and
binding?

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

Sensoria Reference Modelling Language

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

Sensoria Reference Modelling Language

Inspired by SCA:
set of standards proposed by BEA, IBM, IONA, Oracle, Interface
2.1, SAP, Siebel, Sysbase
Service Component Architecture (SCA) is a specification that […]
aims to simplify the creation and integration of business
applications built using a Service Oriented Architecture (SOA).

[…] relatively coarse-grained business components are exposed as
services, with well-defined interfaces and contracts. Interfaces are
expressed using technology-agnostic business terms and concepts.

SCA builds on emerging best practices of removing or abstracting
middleware programming model dependencies from business logic.

SCA allows developers to focus on writing business logic.

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

Sensoria Reference Modelling Language

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

Sensoria Reference Modelling Language

However, when it comes to ‘semantics’:

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

Sensoria Reference Modelling Language

However, when it comes to ‘semantics’:
“In this step you learn how to create an SCA module.
A module is represented by a folder in the file system with an
sca.module file at the folder root.”

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

Sensoria Reference Modelling Language

However, when it comes to ‘semantics’:
“In this step you learn how to create an SCA module.
A module is represented by a folder in the file system with an
sca.module file at the folder root.”

Although it adopts an SCA-like structure for composite services,
SRML is a modelling language with a formal semantics that offers
descriptions of business logic based on conversational interactions.

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

use cases for SOC

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

use cases for SOC
Use Case diagrams give an overview of
usage requirements for the system that
has to be built

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

use cases for SOC
Use Case diagrams give an overview of
usage requirements for the system that
has to be built

In SOC we do not build ‘systems’ but
services and activities

Each service/activity satisfies a single
usage requirement and is modelled as
one use case

The scope includes a number of use cases
which are developed by the same
company and constitute a single logic unit

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

use cases for SOC
Use Case diagrams give an overview of
usage requirements for the system that
has to be built

In SOC we do not build ‘systems’ but
services and activities

Each service/activity satisfies a single
usage requirement and is modelled as
one use case

The scope includes a number of use cases
which are developed by the same
company and constitute a single logic unit

Does not include
any middleware actor

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

actors for SOC

requester-actor

user-actor

service-actor

resource-actor

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

actors for SOC

requester-actor

user-actor

service-actor

resource-actor

Primary Actors represent entities that initiate the
use case and whose goals are fulfilled through
the successful completion of the use case

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

actors for SOC

requester-actor

user-actor

service-actor

resource-actor

Primary Actors represent entities that initiate the
use case and whose goals are fulfilled through
the successful completion of the use case

User-actors instantiate activities (people, machines, …)

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

actors for SOC

requester-actor

user-actor

service-actor

resource-actor

Primary Actors represent entities that initiate the
use case and whose goals are fulfilled through
the successful completion of the use case

User-actors instantiate activities (people, machines, …)

Requester-actors are service consumers that trigger the
discovery/instantiation of services

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

actors for SOC

requester-actor

user-actor

service-actor

resource-actor

Primary Actors represent entities that initiate the
use case and whose goals are fulfilled through
the successful completion of the use case

User-actors instantiate activities (people, machines, …)

Requester-actors are service consumers that trigger the
discovery/instantiation of services

Supporting Actors represent external entities that
need to be relied upon in order to achieve the
underlying business goal

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

actors for SOC

requester-actor

user-actor

service-actor

resource-actor

Primary Actors represent entities that initiate the
use case and whose goals are fulfilled through
the successful completion of the use case

User-actors instantiate activities (people, machines, …)

Requester-actors are service consumers that trigger the
discovery/instantiation of services

Supporting Actors represent external entities that
need to be relied upon in order to achieve the
underlying business goal

Service-actors represent functionalities to be procured on the
fly (typically, the provider varies from instance to instance)

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

actors for SOC

requester-actor

user-actor

service-actor

resource-actor

Primary Actors represent entities that initiate the
use case and whose goals are fulfilled through
the successful completion of the use case

User-actors instantiate activities (people, machines, …)

Requester-actors are service consumers that trigger the
discovery/instantiation of services

Supporting Actors represent external entities that
need to be relied upon in order to achieve the
underlying business goal

Service-actors represent functionalities to be procured on the
fly (typically, the provider varies from instance to instance)

Resource-actors are statically bound and persistent (they are
the same for all instances)

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

from use case diagrams to SRML

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

from use case diagrams to SRML

UPDATEREGISTRY
SLA_UR

RE:
Registry

MC:
Management
Coordinator

CA:
Certification
Autority

intCA

MR

MA

RM:
Registry
Manager

RM

intMC

?

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

from use case diagrams to SRML

UPDATEREGISTRY
SLA_UR

RE:
Registry

MC:
Management
Coordinator

CA:
Certification
Autority

intCA

MR

MA

RM:
Registry
Manager

RM

intMC

?

GETMORTGAGE

SLA_GM

RE:
Registry

BR:
Broker

LE:
Lender

intLE

BA:
Bank

intBA

IN:
Insurance

intIN

CC
 CR:

 Customer

BE

CL

CB

CI

intBR

?

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

SRML service modules

Service modules model (possibly composite) services that can be
published. Their discovery is triggered by a requester-actor.

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

SRML service modules

Component-
interfaces: describe

a distributed
orchestration

Wire-interfaces:
interaction protocols

between parties

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

SRML service modules

Provides-
interface: a

description of the
properties provided

to the requester

Component-
interfaces: describe

a distributed
orchestration

Wire-interfaces:
interaction protocols

between parties

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

SRML service modules

Provides-
interface: a

description of the
properties provided

to the requester

Uses-interfaces:
statically bound to persistent

resources

Component-
interfaces: describe

a distributed
orchestration

Wire-interfaces:
interaction protocols

between parties

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

SRML service modules

Provides-
interface: a

description of the
properties provided

to the requester

Uses-interfaces:
statically bound to persistent

resources

Component-
interfaces: describe

a distributed
orchestration Requires-

interfaces:
specify

properties
expected of
dynamically

bound
external
services

Wire-interfaces:
interaction protocols

between parties

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

SRML service modules

Provides-
interface: a

description of the
properties provided

to the requester

Uses-interfaces:
statically bound to persistent

resources

Component-
interfaces: describe

a distributed
orchestration Requires-

interfaces:
specify

properties
expected of
dynamically

bound
external
services

Wire-interfaces:
interaction protocols

between parties

Internal configuration
policies: triggers

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

SRML service modules

Provides-
interface: a

description of the
properties provided

to the requester

Uses-interfaces:
statically bound to persistent

resources

Component-
interfaces: describe

a distributed
orchestration Requires-

interfaces:
specify

properties
expected of
dynamically

bound
external
services

Wire-interfaces:
interaction protocols

between parties

External
configuration policies:

quality of service
constraints

Internal configuration
policies: triggers

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

interaction types

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

interaction types

r&s stateful, 2-way
asynchronous

The interaction is initiated by the co-party, which expects a reply.
The co-party does not block while waiting for the reply.

s&r stateful, 2-way
asynchronous

The interaction is initiated by the party and expects a reply from
its co-party. While waiting for the reply, the party does not block.

rcv one-way
asynchronous The co-party initiates the interaction and does not expect a reply.

snd one-way
asynchronous The party initiates the interaction and does not expect a reply.

ask synchronous The party synchronises with the co-party to obtain data.

rpl synchronous The party synchronises with the co-party to transmit data

tll synchronous The party requests the co-party to perform an operation and
blocks.

prf synchronous The party performs an operation and frees the co-party that
requested it.

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

interaction types

r&s stateful, 2-way
asynchronous

The interaction is initiated by the co-party, which expects a reply.
The co-party does not block while waiting for the reply.

s&r stateful, 2-way
asynchronous

The interaction is initiated by the party and expects a reply from
its co-party. While waiting for the reply, the party does not block.

rcv one-way
asynchronous The co-party initiates the interaction and does not expect a reply.

snd one-way
asynchronous The party initiates the interaction and does not expect a reply.

ask synchronous The party synchronises with the co-party to obtain data.

rpl synchronous The party synchronises with the co-party to transmit data

tll synchronous The party requests the co-party to perform an operation and
blocks.

prf synchronous The party performs an operation and frees the co-party that
requested it.

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

interaction types

r&s stateful, 2-way
asynchronous

The interaction is initiated by the co-party, which expects a reply.
The co-party does not block while waiting for the reply.

s&r stateful, 2-way
asynchronous

The interaction is initiated by the party and expects a reply from
its co-party. While waiting for the reply, the party does not block.

rcv one-way
asynchronous The co-party initiates the interaction and does not expect a reply.

snd one-way
asynchronous The party initiates the interaction and does not expect a reply.

ask synchronous The party synchronises with the co-party to obtain data.

rpl synchronous The party synchronises with the co-party to transmit data

tll synchronous The party requests the co-party to perform an operation and
blocks.

prf synchronous The party performs an operation and frees the co-party that
requested it.

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

interaction types

r&s stateful, 2-way
asynchronous

The interaction is initiated by the co-party, which expects a reply.
The co-party does not block while waiting for the reply.

s&r stateful, 2-way
asynchronous

The interaction is initiated by the party and expects a reply from
its co-party. While waiting for the reply, the party does not block.

rcv one-way
asynchronous The co-party initiates the interaction and does not expect a reply.

snd one-way
asynchronous The party initiates the interaction and does not expect a reply.

ask synchronous The party synchronises with the co-party to obtain data.

rpl synchronous The party synchronises with the co-party to transmit data

tll synchronous The party requests the co-party to perform an operation and
blocks.

prf synchronous The party performs an operation and frees the co-party that
requested it.

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

events associated with an interaction a
a: the event of initiating a

a: the reply-event of a
a: the commit-event of a
a✘: the cancel-event of a
a: the revoke-event of a

! ! !

a: the pledge associated with a — a condition that
is guaranteed to hold from the moment a positive
reply-event occurs until either the commit-event, the
cancel-event or the expiration time occurs.

a: the validity interval associated with the pledge

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

Example: Two-way interaction a from X to Y (connected by w)

Invoked Invoked

Pending

PARTY X PARTY Y
WIRE w

a computational model

Events occur in state transitions of both parties involved in the interaction

When a party publishes an event (event!), the event is transferred to the
buffer of the wire that connects the party with the co-party.

The wire delivers the event to the co-party, which stores it for processing.

The co-party can either execute the event (event?) or discard it (event¿)

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

Example: Two-way interaction a from X to Y (connected by w)

Invoked Invoked

Pending

PARTY X PARTY Y
WIRE w

a computational model

Events occur in state transitions of both parties involved in the interaction

When a party publishes an event (event!), the event is transferred to the
buffer of the wire that connects the party with the co-party.

The wire delivers the event to the co-party, which stores it for processing.

The co-party can either execute the event (event?) or discard it (event¿)

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

Example: Two-way interaction a from X to Y (connected by w)

Invoked Invoked

Pending

PARTY X PARTY Y
a

WIRE w

a computational model

Events occur in state transitions of both parties involved in the interaction

When a party publishes an event (event!), the event is transferred to the
buffer of the wire that connects the party with the co-party.

The wire delivers the event to the co-party, which stores it for processing.

The co-party can either execute the event (event?) or discard it (event¿)

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

Example: Two-way interaction a from X to Y (connected by w)

Invoked Invoked

Pending

PARTY X PARTY Y

a

WIRE w

a computational model

Events occur in state transitions of both parties involved in the interaction

When a party publishes an event (event!), the event is transferred to the
buffer of the wire that connects the party with the co-party.

The wire delivers the event to the co-party, which stores it for processing.

The co-party can either execute the event (event?) or discard it (event¿)

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

Example: Two-way interaction a from X to Y (connected by w)

Invoked Invoked

Pending

PARTY X PARTY Ya
WIRE w

a computational model

Events occur in state transitions of both parties involved in the interaction

When a party publishes an event (event!), the event is transferred to the
buffer of the wire that connects the party with the co-party.

The wire delivers the event to the co-party, which stores it for processing.

The co-party can either execute the event (event?) or discard it (event¿)

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

Example: Two-way interaction a from X to Y (connected by w)

Invoked Invoked

Pending

PARTY X PARTY Y

a

WIRE w

a computational model

Events occur in state transitions of both parties involved in the interaction

When a party publishes an event (event!), the event is transferred to the
buffer of the wire that connects the party with the co-party.

The wire delivers the event to the co-party, which stores it for processing.

The co-party can either execute the event (event?) or discard it (event¿)

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

Example: Two-way interaction a from X to Y (connected by w)

Invoked Invoked

Pending

PARTY X PARTY Y
a

WIRE w

a computational model

Events occur in state transitions of both parties involved in the interaction

When a party publishes an event (event!), the event is transferred to the
buffer of the wire that connects the party with the co-party.

The wire delivers the event to the co-party, which stores it for processing.

The co-party can either execute the event (event?) or discard it (event¿)

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

Example: Two-way interaction a from X to Y (connected by w)

Invoked Invoked

Pending

PARTY X PARTY Y

a

WIRE w

a computational model

Events occur in state transitions of both parties involved in the interaction

When a party publishes an event (event!), the event is transferred to the
buffer of the wire that connects the party with the co-party.

The wire delivers the event to the co-party, which stores it for processing.

The co-party can either execute the event (event?) or discard it (event¿)

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

Example: Two-way interaction a from X to Y (connected by w)

Invoked Invoked

Pending

PARTY X PARTY Y
WIRE w

a computational model

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

Example: Two-way interaction a from X to Y (connected by w)

Invoked Invoked

Pending

PARTY X PARTY Y
WIRE w

a computational model

The occurrence of event! and event?
may not coincide in time

!

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

Example: Two-way interaction a from X to Y (connected by w)

Invoked Invoked

Pending

PARTY X PARTY Y
WIRE w

a computational model

The occurrence of event! and event?
may not coincide in time

!

L. Bocchi, J. Fiadeiro, S. Gilmore, J.
Abreu, M. Solanki, V. Vankayala (2009)
A Formal Model for Timing Aspects of
Service-Oriented Systems.
Submitted.

A computation state is a tuple <PND, INV, TIME, PLG> where:

PND — the set of events that are pending in each wire

INV — the set of events that are waiting (invoked) to be
processed in each component

TIME — the instant of time at which the state is observed

PLG — the set of pledges that hold in that state

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

computation states

!

A computation step is a tuple <SRC, TRG, DLV, EXC, DSC, PUB> where:

SRC, TRG — source and the target

DLV — events that are delivered

EXC — events that are executed

DSC — events that are discarded

PUB — events that are published

furthermore

PRC = EXC + DSC — events that are
processed

PNDTRG = (PNDSRC \ DLV) U PUB

INVTRG = (INVSRC \ PRC) U DLV

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

computation steps

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

the Languages of SRML

Business
Roles

Business
Protocols

Interaction
Protocols

Layer
Protocols

Interactions
+

Orchestration

Interactions
+

Behaviour

Interactions
+

Behaviour

Interactions
+

Coordination

lo
gi

cs
 o

f i
nt

er
ac

tio
ns

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

the Languages of SRML

Business
Roles

Business
Protocols

Interaction
Protocols

Layer
Protocols

Interactions
+

Orchestration

Interactions
+

Behaviour

Interactions
+

Behaviour

Interactions
+

Coordination

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

signatures

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

signatures
Each party defines a signature — the interactions in which it can be involved

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

signatures

 INTERACTIONS
 r&s getProposal
  idData:usrdata,

income: moneyvalue,
preferences:prefdata

  proposal:mortgageproposal,
  cost:moneyvalue
 r&s askProposal
  idData:usrdata,

income: moneyvalue,
  proposal:mortgageproposal,

loanData:loandata,
accountIncluded:bool,
insuranceRequired:bool

...
snd confirmation
   contract:loancontract
ask getLenders(prefdata):setids
tll regContract(loandata,loancontract)

Each party defines a signature — the interactions in which it can be involved

For example, the signature of the business role MortgageAgent is defined as follows

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

signatures

 INTERACTIONS
 r&s getProposal
  idData:usrdata,

income: moneyvalue,
preferences:prefdata

  proposal:mortgageproposal,
  cost:moneyvalue
 r&s askProposal
  idData:usrdata,

income: moneyvalue,
  proposal:mortgageproposal,

loanData:loandata,
accountIncluded:bool,
insuranceRequired:bool

...
snd confirmation
   contract:loancontract
ask getLenders(prefdata):setids
tll regContract(loandata,loancontract)

Each party defines a signature — the interactions in which it can be involved

For example, the signature of the business role MortgageAgent is defined as follows

stateful
interaction type

interaction name

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

signatures

 INTERACTIONS
 r&s getProposal
  idData:usrdata,

income: moneyvalue,
preferences:prefdata

  proposal:mortgageproposal,
  cost:moneyvalue
 r&s askProposal
  idData:usrdata,

income: moneyvalue,
  proposal:mortgageproposal,

loanData:loandata,
accountIncluded:bool,
insuranceRequired:bool

...
snd confirmation
   contract:loancontract
ask getLenders(prefdata):setids
tll regContract(loandata,loancontract)

Each party defines a signature — the interactions in which it can be involved

For example, the signature of the business role MortgageAgent is defined as follows

stateful
interaction type

interaction name

event types
parameters (names and
types) for each event type

}

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

signatures

 INTERACTIONS
 r&s getProposal
  idData:usrdata,

income: moneyvalue,
preferences:prefdata

  proposal:mortgageproposal,
  cost:moneyvalue
 r&s askProposal
  idData:usrdata,

income: moneyvalue,
  proposal:mortgageproposal,

loanData:loandata,
accountIncluded:bool,
insuranceRequired:bool

...
snd confirmation
   contract:loancontract
ask getLenders(prefdata):setids
tll regContract(loandata,loancontract)

Each party defines a signature — the interactions in which it can be involved

For example, the signature of the business role MortgageAgent is defined as follows

stateful
interaction type

interaction name

event types
parameters (names and
types) for each event type

}

synchronous
interaction type

parameters

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

orchestration

BUSINESS ROLE MortgageAgent is
 INTERACTIONS
 …
 ORCHESTRATION
 local s:[INITIAL, WAIT_PROPOSAL, WAIT_DECISION,

PROPOSAL_ACCEPTED, SIGNING, FINAL],
lenders:setids
needAccount, needInsurance:bool
insuranceData:insurancedata,
accountData:accountdata

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

business roles – local state

BUSINESS ROLE MortgageAgent is
 INTERACTIONS
 …
 ORCHESTRATION
 local s:[INITIAL, WAIT_PROPOSAL, WAIT_DECISION,

PROPOSAL_ACCEPTED, SIGNING, FINAL],
lenders:setids
needAccount, needInsurance:bool
insuranceData:insurancedata,
accountData:accountdata

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

business roles – local state

state variables are
used for storing data
that may be needed
for the orchestration

BUSINESS ROLE MortgageAgent is
 INTERACTIONS
 …
 ORCHESTRATION
 local s:[INITIAL, WAIT_PROPOSAL, WAIT_DECISION,

PROPOSAL_ACCEPTED, SIGNING, FINAL],
lenders:setids
needAccount, needInsurance:bool
insuranceData:insurancedata,
accountData:accountdata

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

business roles – local state

state variables are
used for storing data
that may be needed
for the orchestration

s is used for control flow
(i.e. for encoding an
internal state machine)

BUSINESS ROLE MortgageAgent is
 INTERACTIONS
 …
 ORCHESTRATION
 local s:[INITIAL, WAIT_PROPOSAL, WAIT_DECISION,

PROPOSAL_ACCEPTED, SIGNING, FINAL],
lenders:setids
needAccount, needInsurance:bool
insuranceData:insurancedata,
accountData:accountdata

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

business roles – local state

state variables are
used for storing data
that may be needed
for the orchestration

s is used for control flow
(i.e. for encoding an
internal state machine)

other variables may be used
for storing data received
during interactions

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

business roles: transitions
BUSINESS ROLE MortgageAgent is
 INTERACTIONS
 …
 ORCHESTRATION
 local s:[INITIAL, WAIT_PROPOSAL, WAIT_DECISION,

PROPOSAL_ACCEPTED, SIGNING, FINAL],
lenders:setids
needAccount, needInsurance:bool
insuranceData:insurancedata, accountData:accountdata

 transition GetClientRequest

 triggeredBy getProposal

 guardedBy s=INITIAL

 effects lenders’=getLenders(prefdata)

∧ ¬empty(lenders’) ⊃ s’=WAIT_PROPOSAL

∧ empty(lenders’) ⊃ s’=FINAL

 sends ¬empty(lenders’) ⊃ askProposal

∧ askProposal.idData=getProposal.idData

∧ askProposal.income=getProposal.income

∧ empty(lenders’) ⊃ getProposal

 ∧ getProposal.Reply=false

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

business roles: transitions
BUSINESS ROLE MortgageAgent is
 INTERACTIONS
 …
 ORCHESTRATION
 local s:[INITIAL, WAIT_PROPOSAL, WAIT_DECISION,

PROPOSAL_ACCEPTED, SIGNING, FINAL],
lenders:setids
needAccount, needInsurance:bool
insuranceData:insurancedata, accountData:accountdata

 transition GetClientRequest

 triggeredBy getProposal

 guardedBy s=INITIAL

 effects lenders’=getLenders(prefdata)

∧ ¬empty(lenders’) ⊃ s’=WAIT_PROPOSAL

∧ empty(lenders’) ⊃ s’=FINAL

 sends ¬empty(lenders’) ⊃ askProposal

∧ askProposal.idData=getProposal.idData

∧ askProposal.income=getProposal.income

∧ empty(lenders’) ⊃ getProposal

 ∧ getProposal.Reply=false

The orchestration is
defined by a number
of transitions

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

business roles: transitions
BUSINESS ROLE MortgageAgent is
 INTERACTIONS
 …
 ORCHESTRATION
 local s:[INITIAL, WAIT_PROPOSAL, WAIT_DECISION,

PROPOSAL_ACCEPTED, SIGNING, FINAL],
lenders:setids
needAccount, needInsurance:bool
insuranceData:insurancedata, accountData:accountdata

 transition GetClientRequest

 triggeredBy getProposal

 guardedBy s=INITIAL

 effects lenders’=getLenders(prefdata)

∧ ¬empty(lenders’) ⊃ s’=WAIT_PROPOSAL

∧ empty(lenders’) ⊃ s’=FINAL

 sends ¬empty(lenders’) ⊃ askProposal

∧ askProposal.idData=getProposal.idData

∧ askProposal.income=getProposal.income

∧ empty(lenders’) ⊃ getProposal

 ∧ getProposal.Reply=false

The orchestration is
defined by a number
of transitions

A trigger is either an
interaction event or a
state condition

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

business roles: transitions
BUSINESS ROLE MortgageAgent is
 INTERACTIONS
 …
 ORCHESTRATION
 local s:[INITIAL, WAIT_PROPOSAL, WAIT_DECISION,

PROPOSAL_ACCEPTED, SIGNING, FINAL],
lenders:setids
needAccount, needInsurance:bool
insuranceData:insurancedata, accountData:accountdata

 transition GetClientRequest

 triggeredBy getProposal

 guardedBy s=INITIAL

 effects lenders’=getLenders(prefdata)

∧ ¬empty(lenders’) ⊃ s’=WAIT_PROPOSAL

∧ empty(lenders’) ⊃ s’=FINAL

 sends ¬empty(lenders’) ⊃ askProposal

∧ askProposal.idData=getProposal.idData

∧ askProposal.income=getProposal.income

∧ empty(lenders’) ⊃ getProposal

 ∧ getProposal.Reply=false

The orchestration is
defined by a number
of transitions

A trigger is either an
interaction event or a
state condition

A guard identifies the states in which
the transition can take place

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

business roles: transitions
BUSINESS ROLE MortgageAgent is
 INTERACTIONS
 …
 ORCHESTRATION
 local s:[INITIAL, WAIT_PROPOSAL, WAIT_DECISION,

PROPOSAL_ACCEPTED, SIGNING, FINAL],
lenders:setids
needAccount, needInsurance:bool
insuranceData:insurancedata, accountData:accountdata

 transition GetClientRequest

 triggeredBy getProposal

 guardedBy s=INITIAL

 effects lenders’=getLenders(prefdata)

∧ ¬empty(lenders’) ⊃ s’=WAIT_PROPOSAL

∧ empty(lenders’) ⊃ s’=FINAL

 sends ¬empty(lenders’) ⊃ askProposal

∧ askProposal.idData=getProposal.idData

∧ askProposal.income=getProposal.income

∧ empty(lenders’) ⊃ getProposal

 ∧ getProposal.Reply=false

The orchestration is
defined by a number
of transitions

A trigger is either an
interaction event or a
state condition

Effects on the local
state (lenders’
denotes the value of
lenders after the
transition)

A guard identifies the states in which
the transition can take place

getLenders is a
synchronous
interaction. The
returned value
is stored in the
variable lenders

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

business roles: transitions
BUSINESS ROLE MortgageAgent is
 INTERACTIONS
 …
 ORCHESTRATION
 local s:[INITIAL, WAIT_PROPOSAL, WAIT_DECISION,

PROPOSAL_ACCEPTED, SIGNING, FINAL],
lenders:setids
needAccount, needInsurance:bool
insuranceData:insurancedata, accountData:accountdata

 transition GetClientRequest

 triggeredBy getProposal

 guardedBy s=INITIAL

 effects lenders’=getLenders(prefdata)

∧ ¬empty(lenders’) ⊃ s’=WAIT_PROPOSAL

∧ empty(lenders’) ⊃ s’=FINAL

 sends ¬empty(lenders’) ⊃ askProposal

∧ askProposal.idData=getProposal.idData

∧ askProposal.income=getProposal.income

∧ empty(lenders’) ⊃ getProposal

 ∧ getProposal.Reply=false

The orchestration is
defined by a number
of transitions

A trigger is either an
interaction event or a
state condition

Effects on the local
state (lenders’
denotes the value of
lenders after the
transition)

A guard identifies the states in which
the transition can take place

Events published
during the transitions
and values taken by
their parameters

getLenders is a
synchronous
interaction. The
returned value
is stored in the
variable lenders

Reply is a default parameter...

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

default parameters

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

default parameters
Each reply event e has two default parameters

Reply: boolean

UseBy: time

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

default parameters
Each reply event e has two default parameters

Reply: boolean

UseBy: time

If e.Reply is true, the co-party ensures the pledge a until
e.UseBy, and enables a and a✘.

!

UseBy

BUSINESS ROLE MortgageAgent is
 INTERACTIONS
 …
 ORCHESTRATION
 …
 transition TimeOutProposal

 triggeredBy now>getProposal.UseBy

 guardedBy s=WAIT_DECISION

 effects s’=FINAL

 sends askProposal✘

now is a system
function that returns
the current time

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

default parameters
Each reply event e has two default parameters

Reply: boolean

UseBy: time

If e.Reply is true, the co-party ensures the pledge a until
e.UseBy, and enables a and a✘.

!

UseBy

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9





using UML state machines

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9





using UML state machines

the language of business roles is declarative and
permits under-specification, leaving room for
stepwise refinement

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9





using UML state machines

the language of business roles is declarative and
permits under-specification, leaving room for
stepwise refinement

other notations can be used (such as UML state
machines) when the orchestration is fully specified
or one wishes to reuse existing specifications

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9





using UML state machines

the language of business roles is declarative and
permits under-specification, leaving room for
stepwise refinement

other notations can be used (such as UML state
machines) when the orchestration is fully specified
or one wishes to reuse existing specifications

UML state machines are also used when we want
to analyse behavioural properties of services
through model checkers such as UMC

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9





PROPOSAL_ACCEPTED

start

getProposal! / askProposal!

INITIAL

WAIT_PROPOSAL

WAIT_DECISION

askProposal"[¬askProposal.Reply] / getProposal"

FINAL
getProposal! / askProposal !

SIGNING
/ signOutLoan!

signOutLoan" /

confirmation!

end

T_INIT

[askProposal.needInsurance] /

getInsurance!

[askProposal.needAccount] /

openAccount!

T_1

B_INIT B_1

getInsurance"
T_FIN

B_FIN
openAccount"

[¬ askProposal.needAccount]

askProposal"[askProposal.Reply] / getProposal"

now>getProposal.UseBy / askProposal !

getProposal! / askProposal!

[¬ askProposal.needInsurance]

using UML state machines

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

other languages

business roles can also be extracted from BPEL
processes

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

other languages

business roles can also be extracted from BPEL
processes

and from StPowla workflows dynamically
reconfigured by policies

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

other languages

business roles can also be extracted from BPEL
processes

and from StPowla workflows dynamically
reconfigured by policies

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

other languages

From BPEL to SRML: a formal transformational approach
Bocchi, Hong, Lopes and Fiadeiro, WSFM 2008

StPowla: SOA, Policies and Workflows. Gorton, Montangero, Reiff-
Marganiec and Semini. Engineering Service-Oriented Applications:
Analysis, Design and Composition 2007

From StPowla processes to SRML models. Bocchi, Gorton and Reiff-
Marganiec, Formal Aspects of Computing (FASE 2008)

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

business protocols

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

business protocols

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

“In particular, a trend that is gathering momentum is that of
including, as part of the service description, not only the
service interface, but also the business protocol supported
by the service, i.e. the specification of which message ex-
change sequences are supported by the service, for
example expressed in terms of constraints on the order in
which service operations should be invoked”

G. Alonso, F. Casati, H. Kuno, V.
Machiraju (2004) Web Services.
Springer

business protocols

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

patterns

¬ e¿

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

“e is never discarded
until it is executed”

initiallyEnabled e

patterns

¬ e¿

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

“e is never discarded
until it is executed”

initiallyEnabled e

a after e

“a holds forever after e is
executed”

patterns

¬ e¿

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

“e is never discarded
until it is executed”

initiallyEnabled e

a after e

“a holds forever after e is
executed”

“e is not published before
a holds, and it is published
sometimes after a
becomes true”

a ensures e

patterns

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

patterns

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

“The event e cannot be executed
before a holds and remains
enabled after a becomes true
until it is either executed or b
becomes true (if ever)”

a enables e until b

patterns

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

“The event e cannot be executed
before a holds and remains
enabled after a becomes true
until it is either executed or b
becomes true (if ever)”

a enables e until b

“The event e cannot be executed
before a holds and remains
enabled after a becomes true
until it is executed”

a enables e

patterns

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

patterns

restrictions on that conversation or to correlate events of different interactions.
Both types of properties need to be model-checked for the provides-interface of
a module — since they depend on the correct orchestration of the components
when connected to the required services — and therefore need to be encoded
as UCTL formulas. We will first address the encoding of the patterns that are
used to specify behaviour constraints and then we will adress the encoding of
the conversational protocol that is associated with the interaction types.

3.1 Behaviour constraints

In order to specify behaviour constraints SRML relies on a set of pre-defined pat-
terns of behaviour that are encoded by abbreviations of UCTL formulas. These
patterns capture how the events of different interactions are typically correlated
in service-oriented architectures. The following table presents the abbreviations
that encode three of the most commonly used patterns (a complete list will be
presented in [1]), for an event e:

initiallyEnabled e A[true{¬e¿}W{e?}true].
a enables e


AG[a]¬EF < e¿ > true


 ∧


A[true{¬e?}W{a}true




a ensures e

AG[a]AF [e!]true


 ∧


A[true{¬e!}W{a}true]




The abbreviation ”initiallyEnabled e” states that the event e will never be
discarded (until it is actually executed) — this abbreviation is typically used to
define the first interaction to take place during a session with a service. For in-
stance Customer (shown in figure ??), the interface provided by TravelBooking,
defines that the event login! is ready to be executed (as soon as TravelBooking is
instantiated) by declaring the property ”initiallyEnabled login!”. The abbrevia-
tion ”a enables e” states that after b happens the event e will not be discarded
and also that before b it will never be executed. In Customer the property ”lo-
ginB! ∧ login.Reply enables bookTrip!?” means that after the login is accepted
(but not before) the service will be ready to execute a request to book a trip.
Finally the abbreviation ”a ensures e” states that after a happens the event e
will for certain be published, but not before. This abbreviation is exemplified by
the property ”bookTrip!? ensures refund!!”, in Customer, that states that after
a request to revoke a booking is executed (but not before), a refund will be sent.

3.2 The two-party interaction pattern

In the interaction declaration of a business protocol, two-way interactions are
typed by s&r (send and receive) or r&s (receive and send) to define that the
service being specified engages in the interaction as the requester or as the sup-
plier, respectively. Each of these two roles, requester and supplier, has a set of
properties associated with it — the conversational protocol that is associated
with two-way interactions, and that is illustrated in Fig. 2, is characterized by

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

patterns

patterns have a translation in temporal logic
(UCTL) so that they can be model-checked

A model-checking approach for service-component architectures.
Abreu, Mazzanti, Fiadeiro, Gnesi. FMOODS 2009

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

a business protocol
BUSINESS PROTOCOL Customer is
 INTERACTIONS
 r&s getProposal
  idData:usrdata,

income: moneyvalue,
preferences:prefdata

  proposal:mortgageproposal,
  cost:moneyvalue
 snd confirmation
   contract:loancontract
 SLA VARIABLES

CHARGE:[0..100]
 BEHAVIOURS

initiallyEnabled getProposal?
getProposal.cost ≤750*(CHARGE/100+1) after getProposal! ∧ getProposal.Reply

getProposal? ensures confirmation!

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

a business protocol
BUSINESS PROTOCOL Customer is
 INTERACTIONS
 r&s getProposal
  idData:usrdata,

income: moneyvalue,
preferences:prefdata

  proposal:mortgageproposal,
  cost:moneyvalue
 snd confirmation
   contract:loancontract
 SLA VARIABLES

CHARGE:[0..100]
 BEHAVIOURS

initiallyEnabled getProposal?
getProposal.cost ≤750*(CHARGE/100+1) after getProposal! ∧ getProposal.Reply

getProposal? ensures confirmation!

A request for getProposal is enabled
when the service is activated

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

a business protocol
BUSINESS PROTOCOL Customer is
 INTERACTIONS
 r&s getProposal
  idData:usrdata,

income: moneyvalue,
preferences:prefdata

  proposal:mortgageproposal,
  cost:moneyvalue
 snd confirmation
   contract:loancontract
 SLA VARIABLES

CHARGE:[0..100]
 BEHAVIOURS

initiallyEnabled getProposal?
getProposal.cost ≤750*(CHARGE/100+1) after getProposal! ∧ getProposal.Reply

getProposal? ensures confirmation!

A request for getProposal is enabled
when the service is activated

 The service brokerage has a base
price that can be subject to an extra
charge, subject to negotiation.

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

a business protocol
BUSINESS PROTOCOL Customer is
 INTERACTIONS
 r&s getProposal
  idData:usrdata,

income: moneyvalue,
preferences:prefdata

  proposal:mortgageproposal,
  cost:moneyvalue
 snd confirmation
   contract:loancontract
 SLA VARIABLES

CHARGE:[0..100]
 BEHAVIOURS

initiallyEnabled getProposal?
getProposal.cost ≤750*(CHARGE/100+1) after getProposal! ∧ getProposal.Reply

getProposal? ensures confirmation!

A request for getProposal is enabled
when the service is activated

 The service brokerage has a base
price that can be subject to an extra
charge, subject to negotiation.

A confirmation carrying the loan
contract will be issued upon receipt
of the commit to getProposal

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

layer protocols

LAYER PROTOCOL Registry is
 INTERACTIONS

rpl getLenders(prefdata):setids
prf registerContract(loanData,loanContract)

BEHAVIOUR

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

layer protocols

LAYER PROTOCOL Registry is
 INTERACTIONS

rpl getLenders(prefdata):setids
prf registerContract(loanData,loanContract)

BEHAVIOUR

Layer Protocols involve persistent
components, typically through
synchronous blocking interactions

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

layer protocols

LAYER PROTOCOL Registry is
 INTERACTIONS

rpl getLenders(prefdata):setids
prf registerContract(loanData,loanContract)

BEHAVIOUR

The registry can be queried about the
registered lenders that meet given users
preferences

Layer Protocols involve persistent
components, typically through
synchronous blocking interactions

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

layer protocols

LAYER PROTOCOL Registry is
 INTERACTIONS

rpl getLenders(prefdata):setids
prf registerContract(loanData,loanContract)

BEHAVIOUR

The registry can be queried about the
registered lenders that meet given users
preferences

The registry is able to register new
contracts

Layer Protocols involve persistent
components, typically through
synchronous blocking interactions

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

layer protocols

LAYER PROTOCOL Registry is
 INTERACTIONS

rpl getLenders(prefdata):setids
prf registerContract(loanData,loanContract)

BEHAVIOUR

The registry can be queried about the
registered lenders that meet given users
preferences

The registry is able to register new
contracts The properties of synchronous

interactions are typically in the style
of pre/post-condition specifications

Layer Protocols involve persistent
components, typically through
synchronous blocking interactions

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

interaction protocols

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

interaction protocols

Wires are typed with (binary) connectors

Interaction protocols describe how the
interactions between two parties (ROLE A
and ROLE B) are coordinated

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

interaction protocols

INTERACTION PROTOCOL Straight.I(d1,d2)O(d3) is
 ROLE A
 s&r S1

    i1:d1,i2:d2
   o1:d3
 ROLE B

 r&s R1
  i1:d1,i2:d2
  o1:d3
 COORDINATION

S1 ≡ R1
S1.i1 = R1.i1
S1.i2 = R1.i2
S1.o1 = R1.o1

Wires are typed with (binary) connectors

Interaction protocols describe how the
interactions between two parties (ROLE A
and ROLE B) are coordinated

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

interaction protocols

INTERACTION PROTOCOL Straight.I(d1,d2)O(d3) is
 ROLE A
 s&r S1

    i1:d1,i2:d2
   o1:d3
 ROLE B

 r&s R1
  i1:d1,i2:d2
  o1:d3
 COORDINATION

S1 ≡ R1
S1.i1 = R1.i1
S1.i2 = R1.i2
S1.o1 = R1.o1

Wires are typed with (binary) connectors

Interaction protocols describe how the
interactions between two parties (ROLE A
and ROLE B) are coordinated

The interaction protocol Straight
defines simple transmission of events
between the corresponding parties

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

interaction protocols

INTERACTION PROTOCOL Straight.I(d1,d2)O(d3) is
 ROLE A
 s&r S1

    i1:d1,i2:d2
   o1:d3
 ROLE B

 r&s R1
  i1:d1,i2:d2
  o1:d3
 COORDINATION

S1 ≡ R1
S1.i1 = R1.i1
S1.i2 = R1.i2
S1.o1 = R1.o1

Wires are typed with (binary) connectors

Interaction protocols describe how the
interactions between two parties (ROLE A
and ROLE B) are coordinated

To allow reuse, we parametrise
Straight with the types of the
interaction parameters

The interaction protocol Straight
defines simple transmission of events
between the corresponding parties

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

the formal domains

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

the formal domains

SIGN

BROL BUSP IGLULAYP

SPEC

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

the formal domains

SIGN

BROL BUSP IGLULAYP

SPECan entailment system

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

modules as graphs

A service module M consists of:

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

modules as graphs

A service module M consists of:

A labelled graph:

Nodes are classified as:
components(M), labelled with business roles

uses(M), labelled with layer protocols

requires(M), labelled with business protocols

{provides(M)}, labelled with a business protocol

Edges (wires) are labelled with connectors
(interaction glue and attachments)

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

modules as graphs

Body

A service module M consists of:

A labelled graph:

Nodes are classified as:
components(M), labelled with business roles

uses(M), labelled with layer protocols

requires(M), labelled with business protocols

{provides(M)}, labelled with a business protocol

Edges (wires) are labelled with connectors
(interaction glue and attachments)

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

modules as graphs

Body

A service module M consists of:

A labelled graph:

Nodes are classified as:
components(M), labelled with business roles

uses(M), labelled with layer protocols

requires(M), labelled with business protocols

{provides(M)}, labelled with a business protocol

Edges (wires) are labelled with connectors
(interaction glue and attachments)

An internal configuration policy

An external configuration policy

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

modules as graphs

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

expanding the wires

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

expanding the wires
interaction

protocols are
‘structured’
co-spans

Structured co-spans: an algebra of interaction protocols. Fiadeiro
and Schmitt. LNCS 4624 (CALCO 2007)

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

expanding the wires

for wires involving the provides interface

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

expanding the wires

for wires involving the provides interfacethere is no
concrete customer

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

expanding the wires

for wires involving the provides interfacethe spec of the provides-interface
(properties offered by the service) is

in the language of ⊕roleBPi

for wires involving the requires interface

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

expanding the wires

for wires involving the requires interface

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

expanding the wires

the spec of the requires-interface
(properties required of the external service)

is in the language of ⊕roleBPi

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

expanding the modules

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

expanding the modules

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

correctness property

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

correctness property

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

correctness property

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

correctness property

colimit of a
‘structured’ diagram

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

correctness property

the properties
offered by the service are in the

language of roleBP0

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

correctness property

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

configuration policies

Configuration policies model the dynamic aspects of services

Internal configuration policies — concern service instantiation:

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

configuration policies

Configuration policies model the dynamic aspects of services

Internal configuration policies — concern service instantiation:
the initialisation/termination of the components that instantiate
business roles

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

configuration policies

MA: MortgageAgent
intBR init: S=INITIAL

intBR term: S=FINAL

Configuration policies model the dynamic aspects of services

Internal configuration policies — concern service instantiation:
the initialisation/termination of the components that instantiate
business roles

the triggering of the discovery of required services A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

configuration policies

LE: Lender
intLE trigger: getproposal ?

BA: Bank
intBA trigger: default

IN: Insurance
intIN trigger: default



MA: MortgageAgent
intBR init: S=INITIAL

intBR term: S=FINAL

Configuration policies model the dynamic aspects of services

Internal configuration policies — concern service instantiation:
the initialisation/termination of the components that instantiate
business roles

the triggering of the discovery of required services

External configuration policies — concern service discovery
and selection (service-level agreements)

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

configuration policies

LE: Lender
intLE trigger: getproposal ?

BA: Bank
intBA trigger: default

IN: Insurance
intIN trigger: default



MA: MortgageAgent
intBR init: S=INITIAL

intBR term: S=FINAL

Configuration policies model the dynamic aspects of services

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

SLAs

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

SLAs

In SRML we adopt a c-semiring-based approach to constraint satisfaction
and optimisation that can express classical, fuzzy, weighted,..., constraint
satisfaction problems

S.Bistarelli, U. Montanari, F. Rossi (1997)
Semiring-based constraint satisfaction and
optimization.
Journal of the ACM (JACM) 44(2): 201-236

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

SLAs

In SRML we adopt a c-semiring-based approach to constraint satisfaction
and optimisation that can express classical, fuzzy, weighted,..., constraint
satisfaction problems

S.Bistarelli, U. Montanari, F. Rossi (1997)
Semiring-based constraint satisfaction and
optimization.
Journal of the ACM (JACM) 44(2): 201-236

A c-semiring is an algebraic structure <A,+,×,0,1> where:

A is a set of values such that {0,1}∈A

+ is a binary operation on A that is commutative,
associative, idempotent and with unit element 0

× is another binary operation on A that is commutative, associative with
unit element 1 and absorbing element 0

× distributes over +

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

SLAs

In SRML we adopt a c-semiring-based approach to constraint satisfaction
and optimisation that can express classical, fuzzy, weighted,..., constraint
satisfaction problems

A c-semiring is an algebraic structure <A,+,×,0,1> where:

A is a set of values such that {0,1}∈A

+ is a binary operation on A that is commutative,
associative, idempotent and with unit element 0

× is another binary operation on A that is commutative, associative with
unit element 1 and absorbing element 0

× distributes over +

A is the domain of the degree of satisfaction
<{0,1},∨,∧,0,1> for yes/no
<[0,1],max,min,0,1> for intermediate degrees

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

SLAs

In SRML we adopt a c-semiring-based approach to constraint satisfaction
and optimisation that can express classical, fuzzy, weighted,..., constraint
satisfaction problems

A c-semiring is an algebraic structure <A,+,×,0,1> where:

A is a set of values such that {0,1}∈A

+ is a binary operation on A that is commutative,
associative, idempotent and with unit element 0

× is another binary operation on A that is commutative, associative with
unit element 1 and absorbing element 0

× distributes over +

A is the domain of the degree of satisfaction
<{0,1},∨,∧,0,1> for yes/no
<[0,1],max,min,0,1> for intermediate degrees

+ is a comparison primitive
a<b ⇔ a+b=b

(b is better than a)

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

SLAs

In SRML we adopt a c-semiring-based approach to constraint satisfaction
and optimisation that can express classical, fuzzy, weighted,..., constraint
satisfaction problems

A c-semiring is an algebraic structure <A,+,×,0,1> where:

A is a set of values such that {0,1}∈A

+ is a binary operation on A that is commutative,
associative, idempotent and with unit element 0

× is another binary operation on A that is commutative, associative with
unit element 1 and absorbing element 0

× distributes over +

A is the domain of the degree of satisfaction
<{0,1},∨,∧,0,1> for yes/no
<[0,1],max,min,0,1> for intermediate degrees

+ is a comparison primitive
a<b ⇔ a+b=b

(b is better than a)

× is a composition primitive

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

SLAs
A constraint system is a triple < S, D, V > where

S is a C-semiring

D is a finite set (domain of possible elements taken by the variables)

V is a totally ordered set (of variables)

A constraint is a pair < def, con > where
con ⊆ V is called the type of the constraint

def : D|con| → A is the value (mapping) of the constraint

<a1,a2,..,a|con|>

degree of satisfaction

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

SLA variables

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

SLA variables

standard configuration variables include
external interfaces

availability, responseTime
ServiceId — service identifiers (e.g., URI’s).

for wires
wire.Delay — the maximum delivery delay for events sent over
wire

for interactions
interaction for every interaction of type r&s — the length of
time the pledge is valid after interaction is issued

EXTERNAL POLICY

 <[0..1],max,min,0,1>

  SLA VARIABLES
 MA.CHARGE, MA.getProposal,

 LE.ServiceID,

 LE.requestMortgage
   

CONSTRAINTS

 C1: {c:MA.CHARGE, t:MA.getProposal}

  

 C2: {s:LE.ServiceId}

   
   

C3: {t1:MA.getProposal,t2:LE.requestMortgage}

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

an example

!

1 if t " 10 #c

1 + 2 # c $ 0.2 # t if 10 # c < t " 5 + 10 # c

0 otherwise

%

&
'

(
'

!

!

1 if s " BR .lenders

0 otherwise

$
%

!

1 if t2 > t1+ CC.Delay + CL.Delay

0 otherwise

"

$

!

EXTERNAL POLICY

 <[0..1],max,min,0,1>

  SLA VARIABLES
 MA.CHARGE, MA.getProposal,

 LE.ServiceID,

 LE.requestMortgage
   

CONSTRAINTS

 C1: {c:MA.CHARGE, t:MA.getProposal}

  

 C2: {s:LE.ServiceId}

   
   

C3: {t1:MA.getProposal,t2:LE.requestMortgage}

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

an example

the greater the CHARGE applied to
the base price of the brokerage
service, the longer the interval
during which the proposal is valid

!

1 if t " 10 #c

1 + 2 # c $ 0.2 # t if 10 # c < t " 5 + 10 # c

0 otherwise

%

&
'

(
'

!

!

1 if s " BR .lenders

0 otherwise

$
%

!

1 if t2 > t1+ CC.Delay + CL.Delay

0 otherwise

"

$

!

EXTERNAL POLICY

 <[0..1],max,min,0,1>

  SLA VARIABLES
 MA.CHARGE, MA.getProposal,

 LE.ServiceID,

 LE.requestMortgage
   

CONSTRAINTS

 C1: {c:MA.CHARGE, t:MA.getProposal}

  

 C2: {s:LE.ServiceId}

   
   

C3: {t1:MA.getProposal,t2:LE.requestMortgage}

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

an example

the greater the CHARGE applied to
the base price of the brokerage
service, the longer the interval
during which the proposal is valid

the selected lender
must belong to the
set BR.lenders

!

1 if t " 10 #c

1 + 2 # c $ 0.2 # t if 10 # c < t " 5 + 10 # c

0 otherwise

%

&
'

(
'

!

!

1 if s " BR .lenders

0 otherwise

$
%

!

1 if t2 > t1+ CC.Delay + CL.Delay

0 otherwise

"

$

!

EXTERNAL POLICY

 <[0..1],max,min,0,1>

  SLA VARIABLES
 MA.CHARGE, MA.getProposal,

 LE.ServiceID,

 LE.requestMortgage
   

CONSTRAINTS

 C1: {c:MA.CHARGE, t:MA.getProposal}

  

 C2: {s:LE.ServiceId}

   
   

C3: {t1:MA.getProposal,t2:LE.requestMortgage}

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

an example

the validity of the
loan proposal
offered by the
lender must be
greater than the
sum of the
validity offered
to the customer
and the delays
of the wires

the greater the CHARGE applied to
the base price of the brokerage
service, the longer the interval
during which the proposal is valid

the selected lender
must belong to the
set BR.lenders

!

1 if t " 10 #c

1 + 2 # c $ 0.2 # t if 10 # c < t " 5 + 10 # c

0 otherwise

%

&
'

(
'

!

!

1 if s " BR .lenders

0 otherwise

$
%

!

1 if t2 > t1+ CC.Delay + CL.Delay

0 otherwise

"

$

!

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

recalling…

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

recalling…

Static aspects:
How can we account for the behaviour of services
provided by collections of interconnected parties? —
orchestration, conversation protocols (pledges,
compensations, …)

Dynamic aspects:
How can we account for the run-time aspects of service-
oriented systems that result from the SOA middleware
mechanisms of service discovery, instantiation and
binding?

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

the dynamic aspect of services

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

the dynamic aspect of services

Services add a ‘business‘ layer of abstraction over
a component infrastructure in sense that they
structure the evolution of software applications
seen as systems of interconnected components

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

the dynamic aspect of services

Services add a ‘business‘ layer of abstraction over
a component infrastructure in sense that they
structure the evolution of software applications
seen as systems of interconnected components

From structured programming to ‘structured interactions’

Services address the ‘social’ complexity of software-
intensive systems

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

states as configurations

A configuration F consists of:

A simple graph whose nodes are components,
and edges are wires.

A labelling function that assigns a state to every node and
edge

states are as discussed earlier on...

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

an example

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

an example

component

wire (connector)

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

an example

component

wire (connector)

Although we use the same icons,
these are instances,
not specifications

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

configurations are typed

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

configurations are typed

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

activity modules

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

activity modules

serves-
interface

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

modules as graphs

An activity module M consists of:

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

modules as graphs

An activity module M consists of:

A labelled graph:

Nodes are classified as:
components(M), labelled with business roles

uses(M), labelled with layer protocols

requires(M), labelled with business protocols

{serves(M)}, labelled with a layer protocol

Edges (wires) are labelled with connectors
(interaction glue and attachments)

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

modules as graphs

An activity module M consists of:

A labelled graph:

Nodes are classified as:
components(M), labelled with business roles

uses(M), labelled with layer protocols

requires(M), labelled with business protocols

{serves(M)}, labelled with a layer protocol

Edges (wires) are labelled with connectors
(interaction glue and attachments)

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

modules as graphs

reflect
different
dynamics

An activity module M consists of:

A labelled graph:

Nodes are classified as:
components(M), labelled with business roles

uses(M), labelled with layer protocols

requires(M), labelled with business protocols

{serves(M)}, labelled with a layer protocol

Edges (wires) are labelled with connectors
(interaction glue and attachments)

An internal configuration policy

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

modules as graphs

reflect
different
dynamics

An activity module M consists of:

A labelled graph:

Nodes are classified as:
components(M), labelled with business roles

uses(M), labelled with layer protocols

requires(M), labelled with business protocols

{serves(M)}, labelled with a layer protocol

Edges (wires) are labelled with connectors
(interaction glue and attachments)

An internal configuration policy

An external configuration policy

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

modules as graphs

reflect
different
dynamics

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

business configurations

A business configuration consists of:

A set of activity names (chosen from a domain)

A state configuration F

A mapping B that assigns a module B(a) to every activity
a – the workflow performed by a in F

For every activity a, a homomorphism B(a) of graphs
between the body of B(a) and F

This homomorphism makes configurations reflective

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

the state transitions

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

the state transitions

while they execute, certain
components may trigger the
discovery of external services

trigger

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

discovery and selection

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

discovery and selection

satisfaction of
requirements

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

instantiation and binding

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

instantiation and binding

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

instantiation and binding

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

instantiation and binding

component-interfaces
bind to new instances

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

instantiation and binding

uses-interfaces
bind to existing

components
component-interfaces
bind to new instances

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

instantiation and binding

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

instantiation and binding

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

instantiation and binding

the activity has a
new type…

…and a new
configuration

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

semantics of matching and selection

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

semantics of matching and selection

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

matching the wires

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

matching the wires

a morphism of
structured co-spans

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

matching the wires

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

matching the specifications

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

matching the specifications

the spec of R (properties
required by the activity) is in the

language of roleBP

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

matching the specifications

the spec of PR (properties
offered by the service) is in the

language of ⊕roleBPi

the spec of R (properties
required by the activity) is in the

language of roleBP

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

matching the specifications

the spec of PR (properties
offered by the service) is in the

language of ⊕roleBPi

the spec of R (properties
required by the activity) is in the

language of roleBP

specification
morphism

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

algebraic semantics of matching

matching, ranking and selection involve:
finding services whose constraint systems are compatible with that of the
activity and lead to a consistent combination of constraints

maximising the degree of satisfaction of the combined set of constraints

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

algebraic semantics of matching

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

algebraic semantics of composition

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

algebraic semantics of composition

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

algebraic semantics of composition

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

algebraic semantics of composition

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

what else?

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

what else?

Qualitative analysis
Doubly-labelled transition systems and temporal logic

Model-checking using UMC

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

what else?

Qualitative analysis
Doubly-labelled transition systems and temporal logic

Model-checking using UMC

Analysis of timing properties using PEPA

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

what else?

Qualitative analysis
Doubly-labelled transition systems and temporal logic

Model-checking using UMC

Analysis of timing properties using PEPA

A number of case studies
Travel booking

Procurement
Automotive

Telco

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

future work

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

future work

Back to SCA…

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

future work

Back to SCA…

SRML4People
Team automata
Deontic logic

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

future work

Back to SCA…

SRML4People
Team automata
Deontic logic

Run-time verification and monitoring

A
b
reu

&
B
o
cch

i&
Fiad

eiro
&

Lo
p
es@

SFM
’0

9

future work

Back to SCA…

SRML4People
Team automata
Deontic logic

Run-time verification and monitoring

Requirements and coreography

