Formal Modelling of
Service-Oriented Systems

José Fiadeiro

Anténia Lopes
Laura Bocchi, Jodo Abreu

i & UmverSIty of AFERL UNIVERSIDADE

g Lelcester L_ © DE LISBOA

>
o
S
o
c
Qo
w
o
A
o
=
Qo
I
o
Q.
o
2.
o
o
—
(]
©
Iy
(%]
®
n
M
=
o
O

http://news.bbc.co.uk/weather/forecast/341
http://news.bbc.co.uk/weather/forecast/341

aims of this tutorial

2d07590.119PEI4RIYID0gRNIAY

60.N4S®@S

aims of this tutorial

m to provide you with an overview of a formal
approach to service-oriented modelling that we
have been developing in the SENSORIA project

a ‘prototype’ modelling language — SRML
(part of) its semantics

methodological aspects of an engineering approach to
service-oriented systems

60.N4S@S2d0 790119 PERILBIYID0gNIqY

aims of this tutorial

m to provide you with an overview of a formal
approach to service-oriented modelling that we
have been developing in the SENSORIA project

a ‘prototype’ modelling language — SRML
(part of) its semantics

methodological aspects of an engineering approach to
service-oriented systems

B a companion paper is available from:

www.cs.le.ac.uk/people/jfiadeiro

60.N4S@5$2d071%90419peI{R1YDD0g7RN3IqY

plan of this tutorial

2d07590.119PEI4RIYID0gRNIAY

60.N4S®@S

plan of this tutorial

m Setting the scene
the context — SENSORIA

what we mean by ‘service’

what we mean by ‘modelling’

60.N4S@S2d0 790119 PERILBIYID0gNIqY

plan of this tutorial

m Setting the scene
the context — SENSORIA

what we mean by ‘service’

what we mean by ‘modelling’

m Engineering service-oriented systems

why (we think that] it is not the same as for component-
based systems

social complexity

service consumers (activities) vs service providers

60.N4S@S2d0 790119 PERILBIYID0gNIqY

static vs dynamic aspects

plan of this tutorial

2d07590.119PEI4RIYID0gRNIAY

60.N4S®@S

plan of this tutorial

m SRML
Use Cases for SOC

A language and model of interactions for SOC
Orchestration

‘Provides’ and ‘Requires’ interfaces
Connectors and interaction protocols

Internal configuration policies

External configuration policies — SLA’s

60.N4S@S2d0 790119 PERILBIYID0gNIqY

plan of this tutorial

m SRML
Use Cases for SOC

A language and model of interactions for SOC

Orchestration
‘Provides’ and ‘Requires’ interfaces

Connectors and interaction protocols

Internal configuration policies

External configuration policies — SLA’s

m Semantics of service discovery and binding

60.N4S@S2d0 790119 PERILBIYID0gNIqY

Abreu&Bocchi&Fiadeiro&Lopes@SFM’09

-
X
()
e
C
O
O
()
-
-

Abreu&Bocchi&Fiadg

&

[

Universidade de Lisboa
ATX Software SA

TU Denmark at Lyngby

@ Universita di Pisa
@ Universita di Firenze
5 @ Universita di Bologna
‘ @ ISTI Pisa
S Oy @ Telecom lItalia Lab
(A 4 ‘ o
' @ Universita di Trento
¢ v o .
<P > @ University of Leicester
~ - @ University of Edinburgh
LMU Miinchen _
@ Imperial College London
FAST GmbH o
@ University College London
S&N AG
Q
Q

Warsaw University

© © © © ¢ ¢

60.N4S@S2d0 790119 PERILBIYID0gNIqY

Budapest University of Technology and Economics

more precisely...

The aim of SENSORIA is to develop a novel

comprehensive approach to the engineering of
software systems for service-oriented overlay
computers where foundational theories, techniques

and methods are fully integrated in a pragmatic

60.N4S@S2d0 790119 PERILBIYID0gNIqY

software engineering approach.

even more precisely...

’A An IST-FET Integrated Project Sept05-Aug09
Z 7

Software Engineering for

Service-Oriented Overlay Computers

WP1 Provide support for service-oriented modelling at high
levels of abstraction, i.e. independently of the hosting
middleware and hardware platforms, and the languages
in which services are programmed.

60.N4S@S2d0 790119 PERILBIYID0gNIqY

>

Re-Engineering
Legacy Systems
(WP6)

Model-driven
Development
(WPT)

Model-driven
! ! Deployment
(WP6)

(" .)
=
Legacy System
. J

~H~
o —

Global Computer
9 P

~H~
o —

Global Computer

\

60.N4S@S2d0 790119 PERILBIYID0gNIqY

Abreu&Bocchi&Fiadeiro&Lopes@SFM’09

2.
N
[0

=
>
L S
O

W

Services®

A personal experience...

60.N4S@S2d0 790119 PERILBIYID0gNIqY

Services®

You’re closer than you
think to the

perfect mortgage

g2

Lowest

FFWD
your mortgage

With a Woolwich
Openplan Offset

Mortgage you could
4- 290/0 pay off your

2 Year Fixed mortgage sooner.

tracker online
Click Here . .

60.N4S@5$2d071%90419peI{R1YDD0g7RN3IqY

too many products

60.N4S@S2d0 790119 PERILBIYID0gNIqY

too many products

® how to choose a mortgage?

how to choose the right mortgage?

how to choose the mortgage that is right for me?

60.N4S@S2d0 790119 PERILBIYID0gNIqY

too many products

® how to choose a mortgage?

how to choose the right mortgage?

how to choose the mortgage that is right for me?
® it was more than a mortgage that | needed...

which bank would | use for the monthly payments?

what about life insurance?
and protection against job loss?

and perhaps a saving scheme?

60.N4S@S2d0 790119 PERILBIYID0gNIqY

from products to services

60.N4S@S2d0 790119 PERILBIYID0gNIqY

from products to services

#* HERTFORDSHIRE
- MORTGAGE SERVICES

Are you looking for a mortgage package suitable for
your own personal needs?

Welcome to the Hertfordshire Mortgage Services website. As independent
mortgaeve advisors, we aim to bring you the ideal mortgage for your own
needs. We are computer linked to all the UK's lenders, so we are able to
match you to your perfect mortgage.

We aim to provide the very best service

Whether you are a first time buyer, looking to remortgage, or thinking of
becoming a landlord we can match the right package to your individual needs.

If gou are self emplo%ed, have been declined by a lender or have county court
u i

ments we can still help you find the right mortgage for you click here to
ind out how.

60.N4S@S2d0 790119 PERILBIYID0gNIqY

from products to services

. The

- HERTFORDSHIRE Mortgage

- MORTGAGE SERVICES Code
Are you looking for a mortgage package suitable for
your own personal needs? > Al Y
Welcome to the Hertfordshire Mortgage Services website. As independent 9;9 P 55
mortgage advisors, we aim to bring you the ideal mortgage for your own W
needs. We are computer linked to all the UK's lenders, so we are able to s @
match you to your perfect mortgage. % g

o »
. . . oy st
We aim to provide the very best service &
("]

Whether you are a first time buyer, looking to remortgage, or thinking of %
becoming a landlord we can match the right package to your individual needs. g

If gou are self emplo%ed, have been declined by a lender or have county court
u i

ments we can still help you find the right mortgage for you click here to
ind out how.

60N

from products to services

= Abstracts away the identity of the component(s)
out of which the service is provided;

= Provides an explicit representation of the role
under which the service was procured, and
which led to the choice of specific components;

= The choice of the configuration of components
that provides the required service is performed
by experts in a more restrlcted domaln

judgments we still help 1 tind the ght mortgage for click to

= Service prowders have to ablde to rules that
ensure certain levels of quality

60.N4S@5$2d071%90419peI{R1YDD0g7RN3IqY

social complexity

2d07590.119PEI4RIYID0gRNIAY

60.N4S®@S

social complexity

®m The major source of complexity in modern

software-intensive systems is ‘social’:

60.N4S@S2d0 790119 PERILBIYID0gNIqY

social complexity

‘software
crisis’ of the 80’s

®m The major source of complexity in modern ,
and 90’s

software-intensive systems is ‘social’:

Systems are not necessarily ‘big chunks of software’...

60.N4S@S2d0 790119 PERILBIYID0gNIqY

social complexity

‘software
crisis’ of the 80’s

®m The major source of complexity in modern ,
and 90’s

software-intensive systems is ‘social’:

Systems are not necessarily ‘big chunks of software’...

... but they may exhibit complex and dynamic/evolving
interactions among possibly huge numbers of parties

60.N4S@S2d0 790119 PERILBIYID0gNIqY

social complexity

‘software
crisis’ of the 80’s

®m The major source of complexity in modern ,
and 90’s

software-intensive systems is ‘social’:

Systems are not necessarily ‘big chunks of software’...

... but they may exhibit complex and dynamic/evolving
interactions among possibly huge numbers of parties

The major concern is in having representations of the
‘business’ roles that parties play within a system...

... and in having the means for procuring and
interconnecting the parties required to execute a given
business process, only when they are required (not so
much in developing the parties themselves)

60.N4S@5$2d071%90419peI{R1YDD0g7RN3IqY

services vs components

® In CBD, software components are
“taken out of a box” and plugged
into a system (possibly with the

A bank will use components

for calculating interests,
addition of some “glue” code) to charging commissions, etc,

provide a “service” (see Broy et al, that it will use in different
TOSEM February 2007) products (savings, loans, ...)

B In SOC, each time a service is

invoked, a different provider may be The same bank is likely to

. rely on external courier
chosen to negotiate terms and 4

services that are procured
according to the delivery
ﬁnally bound (see E"‘Cﬂdh‘)’, address, speed, cost, ...

CACM August 2007)

conditions, and then the service is

60.N4S@5$2d071%90419peI{R1YDD0g7RN3IqY

services vs components

® In CBD, software components are
: : . the “architecture” is defined
into a system (possibly with the

o at design time.
addition of some “glue” code) to

(physiological complexity)
provide a “service” (see Broy et al,

TOSEM February 2007)

SOC adopts late binding:
binding is deferred to run

B In SOC, each time a service is

invoked, a different provider may be time, enabling the choice of
chosen to negotiate terms and provision each time and
conditions, and then the service is change in the quality of the
finally bound (see Elfatatry, requirements.

CACM August 2007) (social complexity)

60.N4S@5$2d071%90419peI{R1YDD0g7RN3IqY

engineering SOC

2d07590.119PEI4RIYID0gRNIAY

60.N4S®@S

engineering SOC

m Stakeholders

service providers

O do not develop ‘bespoke’ software to user’s requirements
O need to offer services that correspond to ‘market’ demands

service consumers

O are applications, not people
O are decoupled from the providers
O bind to services at run time, not design time

service brokers

O manage registries

O binds consumer and provider
O offered as middleware in SOAs

60.N4S@S2d0 790119 PERILBIYID0gNIqY

engineering architecture

Business Service
IT teams providers

Application Publication
development

Ontology

P) (including hierarchies
.y Activity repository of business protocols)

Mry and sele

—

Brokers - SOA

Invocation

60.N4S@S2d0 790119 PERILBIYID0gNIqY

modelling

Business Service
IT teams providers
Application Publication

development

= Ontology
X (including hierarchies
~ Activity repository of business protocols)

Invocation Discovery and sele

—

Brokers - SOA

60.N4S@S2d0 790119 PERILBIYID0gNIqY

modelling

Activities are
developed to meet requirements of
specific business organisations

Application
development

Ontology
(including hierarchies
of business protocols)

Mry and sele

'k".

Brokers - SOA

wigTA (|
Ant AT ™
Funrav ash v

oy Activity :;apository

Invocation

60.N4S@S2d0 790119 PERILBIYID0gNIqY

modelling

Business Activities are

IT tea .
developed to meet requirements of
specific business organisations

Anmnliannlian
GH:
House
Application \/_SLA GH_~_+
HOUSEBUYING e TT1T1 1

HE

intMO
intEA @ :
EM A Mo“r/'to tology
. gage . .
: g hierarchies

Estate
s rotocol
— . m —
intLA)
Discovery and sele

‘ \".

Brokers - SOA

60.N4S@S2d0 790119 PERILBIYID0gNIqY

modelling

Services are developed to be
published and discovered at run time

GH:
House

Application

Aunnlianlinm

tology
g hierarchies
ss protocols)

Mry and sele

'k".

Brokers - SOA

Estate
Agent

60.N4S@S2d0 790119 PERILBIYID0gNIqY

modelling

Services are developed to be
published and discovered at run time

GH:
House

Application

Aunnlianlinm

\/ SLA_GCM :
(R

CR:
Customer

Estate
Agent

Brokers - SOA

60.N4S@S2d0 790119 PERILBIYID0gNIqY

modelling

Business Service o o
IT teams providers

Compatibility
Consistency

Aunnlianl An

GH:
House GETMORTGAGE
Application
HouseBuYING
HE | intBR (|
|
intEA .
p Customer

Estate
Agent

Brokers - SOA

60.N4S@S2d0 790119 PERILBIYID0gNIqY

modelling

Business Service o
IT teams providers o

Compatibility
Consistency

\/ SLA_GCM :
(R

Brokers are part of the SOA
middleware and, as such, are not
modelled by system de5|gners

— CR:
p

Customer

==

Estate
Agent

Reglstry

Brokers - SOA

60.N4S@S2d0 790119 PERILBIYID0gNIqY

Abreu&Bocchi&Fiadeiro&Lopes@SFM’09

o
=
O
O
o
£

modelling

m different from programming
closer to the business domain (addresses the business
logic and reflects business roles)
not necessarily executable

validation and verification independent of the
implementation

60.N4S@S2d0 790119 PERILBIYID0gNIqY

modelling

m different from programming
closer to the business domain (addresses the business
logic and reflects business roles)
not necessarily executable
validation and verification independent of the
implementation

m level of abstraction

builds over the facilities offered by a SOA — brokers,
session handling and message correlation mechanisms,

60.N4S@S2d0 790119 PERILBIYID0gNIqY

Abreu&Bocchi&Fiadeiro&Lopes@SFM’09

o
=
O
O
o
£

modelling

®m Static aspects:

How can we account for the behaviour of services
provided by collections of interconnected parties? —

orchestration, conversation protocols (pledges,
compensations, ...)

® Dynamic aspects:

How can we account for the runtime aspects of service-
oriented systems that result from the SOA middleware

mechanisms of service discovery, instantiation and
binding?

60.N4S@5$2d071%90419peI{R1YDD0g7RN3IqY

Sensoria Reference Modelling Lcmguage

60.N4S@S2d0 790119 PERILBIYID0gNIqY

Sensoria Reference Modelling Language

®m Inspired by SCA:

set of standards proposed by BEA, IBM, IONA, Oracle, Interface
2.1, SAP, Siebel, Sysbase

Service Component Architecture (SCA) is a specification that [...]
aims to simplify the creation and integration of business
applications built using a Service Oriented Architecture (SOA).
[...] relatively coarse-grained business components are exposed as
services, with well-defined interfaces and contracts. Interfaces are
expressed using technology-agnostic business terms and concepts.

SCA builds on emerging best practices of removing or abstracting
middleware programming model dependencies from business logic.

SCA allows developers to focus on writing business logic.

60.N4S@5$2d071%90419peI{R1YDD0g7RN3IqY

Sensoria Reference Modelling Lcmguage

60.N4S@S2d0 790119 PERILBIYID0gNIqY

Sensoria Reference Modelling Lcmguage

®m However, when it comes to ‘semantics’:

60.N4S@S2d0 790119 PERILBIYID0gNIqY

Sensoria Reference Modelling Language

®m However, when it comes to ‘semantics’:

“In this step you learn how to create an SCA module.
A module is represented by a folder in the file system with an
sca.module file at the folder root.”

= I_é' bigbank.accountmodule
- |X] sca.module
<?xml version="1.0" encoding="ASCII"?>
<module xmlns="http://www.osoa.org/xmlns/sca/0.9"

name="bigbank.accountmodule" >

</module>

60.N4S@S2d0 790119 PERILBIYID0gNIqY

Sensoria Reference Modelling Language

®m However, when it comes to ‘semantics’:

“In this step you learn how to create an SCA module.
A module is represented by a folder in the file system with an
sca.module file at the folder root.”

== bigbank.accountmodule
%] sca.module
<?xml version="1.0" encoding="ASCII"?>
<module xmlns="http://www.osoa.org/xmlns/sca/0.9"

name="bigbank.accountmodule" >

</module>

Although it adopts an SCA-like structure for composite services,
SRML is a modelling language with a formal semantics that offers
descriptions of business logic based on conversational interactions.

60.N4S@S2d0 790119 PERILBIYID0gNIqY

use cases for SOC

7N\

Registry
Manager

Mortgage Finder

u
e
A
"

)

1 \
Customer

UpdateRegistry

Registry

GetMortgage

Certification
Authority

60.N4S@S2d0 790119 PERILBIYID0gNIqY

use cases for SOC

m Use Case diagrams give an overview of

usage requirements for the system that
has to be built Registry
Manager
Mortgage Finder / Lender
- .\.',J. - GetMortgage Bank
IA\
CUéto;ner ~ ’%

UpdateRegistry

Certification
Authority

Registry

60.N4S@S2d0 790119 PERILBIYID0gNIqY

use cases for SOC

Use Case diagrams give an overview of
usage requirements for the system that
has to be built Registry

Manager

m In SOC we do not build ‘systems’ but Worigage Finder

services and activities

GetMortgage

1 \
Customer

UpdateRegistry
Each service/activity satisfies a single
usage requirement and is modelled as
one use case

The scope includes a number of use cases
which are developed by the same
company and constitute a single logic unit Registry

Certification
Authority

60.N4S@S2d0 790119 PERILBIYID0gNIqY

use cases for SOC

Does not include

Use Case diagrams give an overview of
usage requirements for the system that
has to be built Registry

Manager

any middleware actor

m In SOC we do not build ‘systems’ but Worigage Finder

services and activities

GetMortgage

1 \
Customer

UpdateRegistry
Each service/activity satisfies a single
usage requirement and is modelled as
one use case

The scope includes a number of use cases
which are developed by the same
company and constitute a single logic unit Registry

Certification
Authority

60.N4S@5$2d071%90419peI{R1YDD0g7RN3IqY

actors for SOC

user-actor

requester-actor

service-actor

resGUFGe actor

60.N4S@S2d0 790119 PERILBIYID0gNIqY

actors for SOC

A

user-actor

requester-actor

3

service-actor

)

resoUrge-actor

®m Primary Actors represent entities that initiate the
use case and whose goals are fulfilled through
the successful completion of the use case

60.N4S@S2d0 790119 PERILBIYID0gNIqY

actors for SOC

®m Primary Actors represent entities that initiate the
% use case and whose goals are fulfilled through

the successful completion of the use case

user-actor
) User-actors instantiate activities (people, machines, ...)

requester-actor

3

service-actor

)

resoUrge-actor

60.N4S@S2d0 790119 PERILBIYID0gNIqY

actors for SOC

user-actor

requester-actor

5

service-actor

)

resoUrge-actor

®m Primary Actors represent entities that initiate the
use case and whose goals are fulfilled through
the successful completion of the use case
User-actors instantiate activities (people, machines, ...)

Requester-actors are service consumers that trigger the
discovery/instantiation of services

60.N4S@S2d0 790119 PERILBIYID0gNIqY

actors for SOC

user-actor

requester-actor

5

service-actor

)

resoUrge-actor

®m Primary Actors represent entities that initiate the
use case and whose goals are fulfilled through
the successful completion of the use case
User-actors instantiate activities (people, machines, ...)

Requester-actors are service consumers that trigger the
discovery/instantiation of services

m Supporting Actors represent external entities that

need to be relied upon in order to achieve the
underlying business goal

60.N4S@S2d0 790119 PERILBIYID0gNIqY

actors for SOC

user-actor

requester-actor

5

service-actor

)

resoUrge-actor

®m Primary Actors represent entities that initiate the
use case and whose goals are fulfilled through
the successful completion of the use case
User-actors instantiate activities (people, machines, ...)

Requester-actors are service consumers that trigger the
discovery/instantiation of services

m Supporting Actors represent external entities that

need to be relied upon in order to achieve the
underlying business goal

Service-actors represent functionalities to be procured on the
fly (typically, the provider varies from instance to instance)

60.N4S@5$2d071%90419peI{R1YDD0g7RN3IqY

actors for SOC

user-actor

requester-actor

5

service-actor

)

resoUrge-actor

®m Primary Actors represent entities that initiate the
use case and whose goals are fulfilled through
the successful completion of the use case
User-actors instantiate activities (people, machines, ...)

Requester-actors are service consumers that trigger the
discovery/instantiation of services

m Supporting Actors represent external entities that

need to be relied upon in order to achieve the
underlying business goal

Service-actors represent functionalities to be procured on the
fly (typically, the provider varies from instance to instance)

Resource-actors are statically bound and persistent (they are
the same for all instances)

60.N4S@5$2d071%90419peI{R1YDD0g7RN3IqY

from use case diagrams to SRML

1 9

Registry
Manager

,/ Lender

%

Mortgage Finder

7N
- _.,\'J_ - GetMortgage Bank
A
I\
1\
! \
Customer ~ %
UpdateRegistry
Insurance

Certification
Authority

60.N4S@S2d0 790119 PERILBIYID0gNIqY

from use case diagrams to SRML

Registry
Manager

,/ Lender

Mortgage Finder

GetMortgage

A

/ \
Customer

UpdateRegistry

Registry

L
3

Insurance

5

Certification
Authority

RM:
Registry

Manager

UPDATEREGISTRY

ntMC

intCA
A

CA:
{> Certification
Autority

RM
O
<> M
(2
MR
RE:
Registry

60.N4S@S2d0 790119 PERILBIYID0gNIqY

from use case diagrams to SRML

Registry
Manager

Mortgage Finder

I\

/ \
Customer

UpdateRegistry

Registry

GetMortgage

/ Lender *

Bank

%

Insurance

RM:
Registry

/

UPDATEREGISTRY

Manager

intMC() intCA (| o
MA <> CeArTification
utority

Q SLAUR _ [%]
rrrrrrrrnl

CA

RM
O
<
(2
MR
RE:
Registry

CjJETMORTGAGE

_%"

Certification
Authority

CR:
Customer

O

4h_SLAGM -+
TTITITIrrl

el{R1yddogyprieiqy

O

oy
e

2%

60.N4S®@S?

SRML service modules

Service modules model (possibly composite) services that can be
published. Their discovery is triggered by a requester-actor.

4! SLA_GM s
T

GETMORTGAGE

intBR (|

CR:
2 Customer; cC

MA:
MortgageAgent

Regis.try

60.N4S@S2d0 790119 PERILBIYID0gNIqY

SRML service modules

Component-
interfaces: describe —
a distributed !' T T

orchestration

CR:
2 Customer; CC

©

LE:
Lender

MA:
MortgageAgent

Wire-interfaces:

interaction protocols
between parties

60.N4S@5$2d071%90419peI{R1YDD0g7RN3IqY

SRML service modules

Component-
interfaces: describe &SLA -
a distributed WRTTTTTIT

orchestration

“

Provides-
interface: a
description of the
properties provided
to the requester

CR:
Customer

Wire-interfaces:

interaction protocols
between parties

60.N4S@5$2d071%90419peI{R1YDD0g7RN3IqY

SRML service modules

Component-
interfaces: describe & —
a distributed T

orchestration intLE (|

Provides-
interface: a

description of the LE:
properties provided - CL— Lender
to the requester

intBA (]

A.
CB ‘ Bank
intIN (|-

o\ e

Wire-interfaces:

CR:
Customer

Uses-interfaces:
statically bound to persistent
resources

interaction protocols
between parties

60.N4S@5$2d071%90419peI{R1YDD0g7RN3IqY

SRML service modules

Component-

, interfaces: describe _
Provides- QLSLA e

a distributed T T

orchestration

interface: a
description of the
properties provided

to the requester

Requires-
interfaces:
specify
intBA (| properties
A-
CB expected of
dynamically
intIN (| bound

services

LE:
CL —<> Lender

CR:
Customer

Uses-interfaces:
statically bound to persistent
resources

Wire-interfaces:

interaction protocols
between parties

60.N4S@5$2d071%90419peI{R1YDD0g7RN3IqY

SRML service modules

Internal configuration
policies: triggers

Component-

, interfaces: describe
Provides- SLA GM

erface: a distributed e :
intertace: a Requires-

description of the orchestration ;:LE interfaces:
properties provided

specif
to the requester peetty

intBA (| properties
BA:
CB expected of

- dynamically

intIN (- bound
o> s 2\

services

MA:

CR: :
MortgageAgent

Customer CC

<

Uses-interfaces:
statically bound to persistent
resources

Wire-interfaces:

interaction protocols
between parties

60.N4S@5$2d071%90419peI{R1YDD0g7RN3IqY

SRML service modules

Internal configuration
policies: triggers

External
configuration policies:
quality of service

constraints
Component-

, interfaces: describe
Provides-

erface: a distributed e :
intertace: a Requires-

description of the orchestration (:_tLE interfaces:
properties provided

specif
to the requester peetty

17\

intBA (- properties
BA:
CB expected of

- dynamically

intIN (- bound

services

MA:

CR: :
MortgageAgent

Customer CC

<

Uses-interfaces:
statically bound to persistent
resources

Wire-interfaces:

interaction protocols
between parties

60.N4S@5$2d071%90419peI{R1YDD0g7RN3IqY

Interaction types

60.N4S@S2d0 790119 PERILBIYID0gNIqY

interaction types

stateful, 2-way

& The interaction is initiated by the co-party, which expects a reply.
asynchronous The co-party does not block while waiting for the reply.
&r stateful, 2-way The interaction is initiated by the party and expects a reply from

asynchronous

its co-party. While waiting for the reply, the party does not block.

60.N4S@S2d0 790119 PERILBIYID0gNIqY

interaction types

stateful, 2-way

The interaction is initiated by the co-party, which expects a reply.

ré&s) ”

asynchronous The co-party does not block while waiting for the reply.

stateful, 2-way The interaction is initiated by the party and expects a reply from
s&r : : o

asynchronous its co-party. While waiting for the reply, the party does not block.
rey | oneway The co-party initiates the interaction and does not expect a reply.

asynchronous

one-way " : :
snd asynchronous The party initiates the interaction and does not expect a reply.

60.N4S@S2d0 790119 PERILBIYID0gNIqY

interaction types

stateful, 2-way

The interaction is initiated by the co-party, which expects a reply.

r) "

e asynchronous The co-party does not block while waiting for the reply.

&r stateful, 2-way The interaction is initiated by the party and expects a reply from
asynchronous its co-party. While waiting for the reply, the party does not block.

rey | oneway The co-party initiates the interaction and does not expect a reply.
asynchronous

snd | eV The party initiates the interaction and does not expect a reply.
asynchronous

ask |synchronous The party synchronises with the co-party to obtain data.

rpl | synchronous The party synchronises with the co-party to transmit data

60.N4S@5$2d071%90419peI{R1YDD0g7RN3IqY

interaction types

stateful, 2-way

The interaction is initiated by the co-party, which expects a reply.

= asynchronous The co-party does not block while waiting for the reply.
stateful, 2-way The interaction is initiated by the party and expects a reply from
s&r . : o
asynchronous its co-party. While waiting for the reply, the party does not block.
rey | oneway The co-party initiates the interaction and does not expect a reply.
asynchronous
one-way " : :
snd asynchronous The party initiates the interaction and does not expect a reply.
ask |synchronous The party synchronises with the co-party to obtain data.
rpl | synchronous The party synchronises with the co-party to transmit data
Hl synchronous The party requests the co-party to perform an operation and
blocks.
3 o indimaens The party performs an operation and frees the co-party that

requested it.

60.N4S@5$2d071%90419peI{R1YDD0g7RN3IqY

events associated with an interaction a

at: the event of initiating @ a=: the pledge associated with a — a condition that
ax<: the reply-event of a is guaranteed to hold from the moment a positive

av’: the commit-event of g

ax: the cancel-event of a

reply-event occurs until either the commit-event, the
cancel-event or the expiration time occurs.

at: the revoke-event of g aé : the validity interval associated with the pledge
PartyS PartyR PartyS PartyR PartyS PartyR
A JA\ /A
> > >
>4 >< >4 t
z g
v x
------------- > e
t+é"
T
_____________ -’

60.N4S@S2d0 790119 PERILBIYID0gNIqY

a computational model

Example: Two-way interaction a from X to Y (connected by w)

nvoked) nvoked)

PARTY X PARTY Y
v WIRE w w

60.N4S@S2d0 790119 PERILBIYID0gNIqY

a computational model

Example: Two-way interaction a from X to Y (connected by w)

N P N

~_Pending

PARTY X PARTY Y
v WIRE w v

B Events occur in state transitions of both parties involved in the interaction

B When a party publishes an event (event!), the event is transferred to the
buffer of the wire that connects the party with the co-party.

B The wire delivers the event to the co-party, which stores it for processing.

B The co-party can either execute the event (event2) or discard it (events)

60.N4S@S2d0 790119 PERILBIYID0gNIqY

a computational model

Example: Two-way interaction a from X to Y (connected by w)

N P N

~_Pending
PARTY X ak PARTY Y
v WIRE w v

B Events occur in state transitions of both parties involved in the interaction

B When a party publishes an event (event!), the event is transferred to the
buffer of the wire that connects the party with the co-party.

B The wire delivers the event to the co-party, which stores it for processing.

B The co-party can either execute the event (event2) or discard it (events)

60.N4S@S2d0 790119 PERILBIYID0gNIqY

a computational model

Example: Two-way interaction a from X to Y (connected by w)

N P N

~_Pending A

PARTY X PARTY Y
v WIRE w v

B Events occur in state transitions of both parties involved in the interaction

B When a party publishes an event (event!), the event is transferred to the
buffer of the wire that connects the party with the co-party.

B The wire delivers the event to the co-party, which stores it for processing.

B The co-party can either execute the event (event2) or discard it (events)

60.N4S@S2d0 790119 PERILBIYID0gNIqY

a computational model

Example: Two-way interaction a from X to Y (connected by w)

N P N

~_Pending
ab<

PARTY X PARTY Y
v WIRE w v

B Events occur in state transitions of both parties involved in the interaction

B When a party publishes an event (event!), the event is transferred to the
buffer of the wire that connects the party with the co-party.

B The wire delivers the event to the co-party, which stores it for processing.

B The co-party can either execute the event (event2) or discard it (events)

60.N4S@S2d0 790119 PERILBIYID0gNIqY

a computational model

Example: Two-way interaction a from X to Y (connected by w)

N P N

~_Pending
ab<

PARTY X PARTY Y
v WIRE w v

B Events occur in state transitions of both parties involved in the interaction

B When a party publishes an event (event!), the event is transferred to the
buffer of the wire that connects the party with the co-party.

B The wire delivers the event to the co-party, which stores it for processing.

B The co-party can either execute the event (event2) or discard it (events)

60.N4S@S2d0 790119 PERILBIYID0gNIqY

a computational model

Example: Two-way interaction a from X to Y (connected by w)

N P N

ax
PARTY X PARTY Y
v WIRE w

B Events occur in state transitions of both parties involved in the interaction

B When a party publishes an event (event!), the event is transferred to the
buffer of the wire that connects the party with the co-party.

B The wire delivers the event to the co-party, which stores it for processing.

B The co-party can either execute the event (event2) or discard it (events)

60.N4S@S2d0 790119 PERILBIYID0gNIqY

a computational model

Example: Two-way interaction a from X to Y (connected by w)

N P N

Pending - ax

PARTY X PARTY Y
v WIRE w v

B Events occur in state transitions of both parties involved in the interaction

B When a party publishes an event (event!), the event is transferred to the
buffer of the wire that connects the party with the co-party.

B The wire delivers the event to the co-party, which stores it for processing.

B The co-party can either execute the event (event2) or discard it (events)

60.N4S@S2d0 790119 PERILBIYID0gNIqY

a computational model

Example: Two-way interaction a from X to Y (connected by w)

N P N

~_Pending

PARTY X PARTY Y
v WIRE w v

B Events occur in state transitions of both parties involved in the interaction

B When a party publishes an event (event!), the event is transferred to the
buffer of the wire that connects the party with the co-party.

B The wire delivers the event to the co-party, which stores it for processing.

B The co-party can either execute the event (event2) or discard it (events)

60.N4S@S2d0 790119 PERILBIYID0gNIqY

a computational model

Example: Two-way interaction a from X to Y (connected by w)

N .]
PARTY X PARTY Y
NS WIRE w N
PartyS PartyR

B The occurrence of event! and event?

may not coincide in time

60.N4S@S2d0 790119 PERILBIYID0gNIqY

a computational model

Example: Two-way interaction a from X to Y (connected by w)

okl) P (moked
PARTY X PARTY Y
v WIRE w v
PartyS PartyR

B The occurrence of event! and event?

may not coincide in time

F '" \\\ L. Bocchi, J. Fiadeiro, S. Gilmore, J.
Aé\\ | Abreu, M. Solanki, V. Vankayala (2009)
A Formal Model for Timing Aspects of
| » I” l Service-Oriented Systems.
| L]

o Submitted.

60.N4S@S2d0 790119 PERILBIYID0gNIqY

computation states

A computation state is a tuple <PND, INV, TIME, PLC> where:
® PND — the set of events that are pending in each wire

® [NV —the set of events that are waiting (invoked) to be
processed in each component

®m TIME — the instant of time at which the state is observed

®m PLC —the set of pledges that hold in that state

60.N4S@S2d0 790119 PERILBIYID0gNIqY

computation steps

A computation step is a tuple <SRC, TRG, DIV, EXC, DSC, PUB> where:
®m SRC, TRG — source and the target

DIV — events that are delivered

EXC — events that are executed

[|
[]
®m DSC — events that are discarded
[|

PUB — events that are published

furthermore

® PRC = EXC + DSC — events that are
processed

m PND'G = (PNDSRC\ DIV) U PUB
m INVTRG = (INVSRC\ PRC) U DIV

60.N4S@S2d0 790119 PERILBIYID0gNIqY

the Languages of SRML

vV _SLA_GM :
Trrrrrnd

Business | Business Interaction :
Roles Protocols | Protocols | Protocols :
Interactions Interactions Interactions Interactions F::
+ + - + %

Orchestration Behaviour Behaviour Coordination

the Languages of SRML

/__SLA_GM :
Trrrrrnd

Business Business Interaction
Roles Protocols | Protocols § Protocols
Interactions Interactions Interactions Interactions
+ + + +

wn
M
=
o
O

Orchestration Behaviour Behaviour Coordination

Abreu&Bocchi&Fiadeiro&Lopes@SFM’09

N
)
-
-
e

signa

signatures

B Each party defines a signature — the interactions in which it can be involved

60.N4S@S2d0 790119 PERILBIYID0gNIqY

signatures

B Each party defines a signature — the interactions in which it can be involved
B For example, the signature of the business role MortgageAgent is defined as follows

INTERACTIONS
r&s getProposal
/A idDbata:usrdata,
income: moneyvalue,
preferences:prefdata
< proposal:mortgageproposal,
cost:moneyvalue
r&s askProposal
/A idData:usrdata,
income: moneyvalue,
< proposal:mortgageproposal,
loanData:loandata,
accountIncluded:bool,
insuranceRequired:bool

snd confirmation
£ contract:loancontract
ask getLenders(prefdata):setids
tll regContract(loandata,loancontract)

60.N4S@S2d0 790119 PERILBIYID0gNIqY

signatures

B Each party defines a signature — the interactions in which it can be involved
B For example, the signature of the business role MortgageAgent is defined as follows

r&s getProposal=> Interaction name

/A idDbata:usrdata,
income: moneyvalue,

interaction type Ll

preferences:prefdata

< proposal:mortgageproposal,
cost:moneyvalue

r&s askProposal

/A idData:usrdata,
income: moneyvalue,

< proposal:mortgageproposal,
loanData:loandata,
accountIncluded:bool,
insuranceRequired:bool

snd confirmation
£ contract:loancontract
ask getLenders(prefdata):setids
tll regContract(loandata,loancontract)

60.N4S@S2d0 790119 PERILBIYID0gNIqY

signatures

B Each party defines a signature — the interactions in which it can be involved

M For example, the signature of the business role MortgageAgent is defined as follows

r&s getProposal=> Interaction name

/A idDbata:usrdata,
A(”" income: moneyvalue,
preferences:prefdata
\ >< proposal:mortgageproposal parameters (names and
cost :moneyvalue types) for each event type
r&s askProposal
/A idData:usrdata,
income: moneyvalue,
< proposal:mortgageproposal,
loanData:loandata,
accountIncluded:bool,

interaction type Ll

insuranceRequired:bool

snd confirmation
£ contract:loancontract
ask getLenders(prefdata):setids
tll regContract(loandata,loancontract)

60.N4S@5$2d071%90419peI{R1YDD0g7RN3IqY

signatures

B Each party defines a signature — the interactions in which it can be involved

M For example, the signature of the business role MortgageAgent is defined as follows

stotef!
r&s getproposal_-) Interaction name

Interaction t)’F’e £ idData:usrdata,

A(”" income: moneyvalue,
preferences:prefdata
\ >< proposal:mortgageproposal parameters (names and
cost:moneyvalue types) for each event type
r&s askProposal
/A idData:usrdata,
income: moneyvalue,
< proposal:mortgageproposal,
loanData:loandata,
accountIncluded:bool,

insuranceRequired:bool

snd confirmation parameters
£ contract: loancontr)t/

synchronousl‘f—-aSk getLenders (prefdata :setidsﬁ/,/’)'
hﬂeracﬁontype tll regContract(loandata,loancontract)

60.N4S@5$2d071%90419peI{R1YDD0g7RN3IqY

orchestration

<<requires>> <<component>>
CR MA

! getProposals: !

SLA_GM B
(ANEEEEE

\Y

! 1 askProposal< <<service>> |
| | LE
| ! askProposal’< N
1___getProposal><) !
| : |
alt ' i i
‘ getProposalX) |
' ! askProposalX ,E
| : |
------- B] A —————
' : |
[now>g'etProposal.UseBy] : askProposalX !
| ! ~
______________________ e . |
' |
getProposaly’ | :
’; askProposalv’ '
1 -

par [nee.dAccount]
! openAccount&
I
'

" openAccount><
I

Llacadaa
A
8
>§-
v

1

I

I

H getinsurance <<service>> '
i IN

i getinsurance><

|

|

U

[needInsurance)

P p——
T
I
I
I
I
I
I
I
I
I
T
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

>
o
=
(o)
o
Qo
oo
o
(@)
(@)
=
Qo
I
Q
Q.
(1)
=
o
o
—
[}
ke,
()
wn
®
2]
T
=
o
O

- J
! 1
: 1
I
i signOutLoan\

P -

L signOutLoan< :

|

confirmation & : :
' |

L 1

business roles - local state

BUSINESS ROLE MortgageAgent is
INTERACTIONS

ORCHESTRATION
local s:[INITIAL, WAIT PROPOSAL, WAIT DECISION,
PROPOSAL ACCEPTED, SIGNING, FINAL],
lenders:setids
needAccount, needInsurance:bool
insuranceData:insurancedata,
accountData:accountdata

60.N4S@S2d0 790119 PERILBIYID0gNIqY

business roles - local state

BUSINESS ROLE MortgageAgent is

INTERACTIONS
ORCHESTRATION
local s:[INITIAL, WAIT PROPOSAL, WAIT DECISION,
state variables are PROPOSAL ACCEPTED, SIGNING, FINAL],

. lenders:setids
used for storing data

needAccount, needInsurance:bool
fhatrnay'be needed insuranceData:insurancedata,

for fhe OrChesh"Clﬁon accountData:accountdata

60.N4S@S2d0 790119 PERILBIYID0gNIqY

business roles - local state

BUSINESS ROLE MortgageAgent is

INTERACTIONS
ORCHESTRATION
local s:[INITIAL, WAIT PROPOSAL, WAIT DECISION,
state variables are PROPOSAL ACCEPTED, SIGNING, FINAL],

. lenders:setids
used for storing data

needAccount, needInsurance:bool
fhatrnay'be needed insuranceData:insurancedata,

forthecncheanﬁon accountData:accountdata

s is used for control flow

(i.e. for encoding an

internal state machine)

60.N4S@5$2d071%90419peI{R1YDD0g7RN3IqY

business roles - local state

BUSINESS ROLE MortgageAgent is

INTERACTIONS
ORCHESTRATION
local s:[INITIAL, WAIT PROPOSAL, WAIT DECISION,
state variables are PROPOSAL ACCEPTED, SIGNING, FINAL],

. lenders:setids
used for storing data

needAccount, needInsurance:bool
fhatrnay'be needed insuranceData:insurancedata,

forthecncheanﬁon accountData:accountdata

s is used for control flow

lie. f di other variables may be used
i.e. for encoding an

for storing data received

internal state machine)

during interactions

60.N4S@5$2d071%90419peI{R1YDD0g7RN3IqY

business roles: transitions

BUSINESS ROLE MortgageAgent is
INTERACTIONS

ORCHESTRATION
local s:[INITIAL, WAIT PROPOSAL, WAIT DECISION,
PROPOSAL ACCEPTED, SIGNING, FINAL],
lenders:setids
needAccount, needInsurance:bool
insuranceData:insurancedata, accountData:accountdata
transition GetClientRequest
triggeredBy getProposal&
guardedBy s=INITIAL
effects lenders’=getLenders(prefdata)
A Tempty(lenders’) DO s’'=WAIT PROPOSAL
A empty(lenders’) DO s’'=FINAL
sends —empty(lenders’) D askProposal&
A askProposal.idData=getProposal.idData
A askProposal.income=getProposal.income
A empty(lenders’) D getProposall<
A getProposal.Reply=false

60.N4S@S2d0 790119 PERILBIYID0gNIqY

business roles: transitions

BUSINESS ROLE MortgageAgent is

The orchestration is INTERACTIONS
definec by alnumber ORCHESTRATION
of transitions local s:[INITIAL, WAIT PROPOSAL, WAIT DECISION,

PROPOSAL ACCEPTED, SIGNING, FINAL],
lenders:setids
needAccount, needInsurance:bool
insuranceData:insurancedata, accountData:accountdata
transition GetClientRequest
triggeredBy getProposal&
guardedBy s=INITIAL
effects lenders’=getLenders(prefdata)
A Tempty(lenders’) DO s’'=WAIT PROPOSAL
A empty(lenders’) DO s’'=FINAL
sends —empty(lenders’) D askProposal&
A askProposal.idData=getProposal.idData
A askProposal.income=getProposal.income
A empty(lenders’) D getProposall<
A getProposal.Reply=false

60.N4S@S2d0 790119 PERILBIYID0gNIqY

business roles: transitions

BUSINESS ROLE MortgageAgent is

The orchestration is INTERACTIONS
definec by alnumber ORCHESTRATION
of transitions local s:[INITIAL, WAIT PROPOSAL, WAIT DECISION,

PROPOSAL ACCEPTED, SIGNING, FINAL],
lenders:setids
needAccount, needInsurance:bool
interaction event or a insuranceData:insurancedata, accountData:accountdata
state condition

A trigger is either an

transition GetClientRequest
triggeredBy getProposal&
guardedBy s=INITIAL
effects lenders’=getLenders(prefdata)
A Tempty(lenders’) DO s’'=WAIT PROPOSAL
A empty(lenders’) DO s’'=FINAL
sends —empty(lenders’) D askProposal&
A askProposal.idData=getProposal.idData
A askProposal.income=getProposal.income
A empty(lenders’) D getProposall<
A getProposal.Reply=false

60.N4S@5$2d071%90419peI{R1YDD0g7RN3IqY

business roles: transitions

BUSINESS ROLE MortgageAgent is

The orchestration is INTERACTIONS
defined by a number ORCHESTRATION
of transitions local s:[INITIAL, WAIT PROPOSAL, WAIT_DECISION,

PROPOSAL ACCEPTED, SIGNING, FINAL],
lenders:setids
i i needAccount, needInsurance:bool
Iinteraction event or a insuranceData:insurancedata, accountData:accountdata
state condition

A trigger is either an

transition GetClientRequest

, A guard identifies the states in which
triggeredBy getProposal&

guardedBy s=INITIAL
effects lenders’=getLenders(prefdata)
A Tempty(lenders’) DO s’'=WAIT PROPOSAL
A empty(lenders’) DO s’'=FINAL

the transition can take place

sends —empty(lenders’) D askProposal&
A askProposal.idData=getProposal.idData
A askProposal.income=getProposal.income
A empty(lenders’) D getProposall<
A getProposal.Reply=false

60.N4S@5$2d071%90419peI{R1YDD0g7RN3IqY

business roles: transitions

BUSINESS ROLE MortgageAgent is
The orchestration is INTERACTIONS

defined by a number
of transitions

ORCHESTRATION
local s:[INITIAL, WAIT PROPOSAL, WAIT DECISION,

PROPOSAL ACCEPTED, SIGNING, FINAL],
lenders:setids
needAccount, needInsurance:bool
insuranceData:insurancedata, accountData:accountdata

A trigger is either an
interaction event or a

state condition transition GetClientRequest
, 4 A guard identifies the states in which
triggeredBy getProposal& h . ke ol
Effects on the local guardedBy s=INITIAL the transition can take place
state Uenders' effects lenders’=getLenders(prefdata)
Jeraes e vl of A "empty(lenders’) D s’=WAIT PROPOSAL geﬂ-enders is a
lenders after the A empty(lenders’) DO s’'=FINAL synchronous
sends —empty(lenders’) D askProposall interaction. The

transition)

A askProposal.idData=getProposal.idData [FFRHTEres RV TS

A askProposal.income=getProposal.income is stored in the

A empty(lenders’) D getProposall<

variable lenders

A getProposal.Reply=false

60.N4S@5$2d071%90419peI{R1YDD0g7RN3IqY

business roles: transitions

BUSINESS ROLE MortgageAgent is
The orchestration is INTERACTIONS

defined by a number

ORCHESTRATION
local s:[INITIAL, WAIT PROPOSAL, WAIT DECISION,

PROPOSAL ACCEPTED, SIGNING, FINAL],
lenders:setids
needAccount, needInsurance:bool
insuranceData:insurancedata, accountData:accountdata

of transitions

A trigger is either an
interaction event or a

state condition transition GetClientRequest
, 4 A guard identifies the states in which
triggeredBy getProposal& tho t + take ol
ransifion n
Effects on the local guardedBy s=INITIAL € fransifion cdn faxe piace

state Uenders' effects lenders’=getLenders(prefdata)
Jeraes e vl of A "empty(lenders’) D s’=WAIT PROPOSAL geﬂ-enders is a

A empty(lenders’) D s’=FINAL synchronous
sends —empty(lenders’) D askProposall interaction. The
A askProposal.idData=getProposal.idData

lenders after the

transition)
returned value

A askProposal.income=getProposal.income is stored in the

Events published A empty(lenders’) D getProposall<

variable lenders

during the transitions A getProposal.Reply=false

and values taken by)
their parameters Reply is a default parameter...

60.N4S@5$2d071%90419peI{R1YDD0g7RN3IqY

default parameters

2d07590.119PEI4RIYID0gRNIAY

60.N4S®@S

default parameters

® Each reply event el< has two default parameters
© Reply: boolean
© UseBy: time

60.N4S@S2d0 790119 PERILBIYID0gNIqY

default parameters

® Each reply event el< has two default parameters
Reply: boolean
UseBy: time

® If e.Reply is true, the co-party ensures the pledge az until
e.UseBy, and enables av" and ax.

PartyS PartyR
JA\
>
D4 t
L
> g

60.N4S@S2d0 790119 PERILBIYID0gNIqY

default parameters

® Each reply event el< has two default parameters
Reply: boolean
UseBy: time

® If e.Reply is true, the co-party ensures the pledge az until
e.UseBy, and enables av" and ax.

PartyS PartyR
Q BUSINESS ROLE MortgageAgent is
> INTERACTIONS now is a system
function that returns
ORCHESTRATION)
X t the current time

transition TimeOutPpe#bosal

> g triggeredBy now>getProposal.UseBy
guardedBy s=WAIT DECISION

) +é effects s’'=FINAL
UseBy sends askProposalX

60.N4S@5$2d071%90419peI{R1YDD0g7RN3IqY

using UML state machines

60.N4S@S2d0 790119 PERILBIYID0gNIqY

using UML state machines

m the language of business roles is declarative and
permits under-specification, leaving room for
stepwise refinement

60.N4S@S2d0 790119 PERILBIYID0gNIqY

using UML state machines

m the language of business roles is declarative and
permits under-specification, leaving room for
stepwise refinement

®m other notations can be used (such as UML state
machines) when the orchestration is fully specified

or one wishes to reuse existing specifications

60.N4S@S2d0 790119 PERILBIYID0gNIqY

using UML state machines

m the language of business roles is declarative and
permits under-specification, leaving room for
stepwise refinement

®m other notations can be used (such as UML state
machines) when the orchestration is fully specified

or one wishes to reuse existing specifications

m UML state machines are also used when we want
to analyse behavioural properties of services
through model checkers such as UMC

60.N4S@5$2d071%90419peI{R1YDD0g7RN3IqY

using UML state machines

start

INITIAL

getProposal2 / askProposal&

- < end
askProposall<[-askProposal.Reply] / getProposall<
WAIT_PROPOSAL P [P Pyl /g P

askProposal><[askProposal.Reply] / getProposall<

()
WAIT_DECISION now>getProposal.UseBy / askProposal X FINAL
getProposalX / askProposal X
getProposalv / askProposalv’
f PROPOSAL_ACCEPTED A N —
signOutLoan
[askProposal.needInsurance] / cgnfirmation Q
getinsurance& / \ getinsurancel<
T_INIT | T} TFIN |>@
[- askProposal.needInsurance] /s o J
___ signOutLoan SIGNING

[askProposal.needAccount] /
B_INIT openAccount& { B 1 \openAccountB B_FIN @

[- askProposal.needAccount]

60.N4S@S2d0 790119 PERILBIYID0gNIqY

other languages

2d07590.119PEI4RIYID0gRNIAY

60.N4S®@S

other languages

®m business roles can also be extracted from BPEL
processes

60.N4S@S2d0 790119 PERILBIYID0gNIqY

other languages

®m business roles can also be extracted from BPEL
processes

®m and from StPowla workflows dynamically

reconfigured by policies

60.N4S@S2d0 790119 PERILBIYID0gNIqY

other languages

®m business roles can also be extracted from BPEL
processes

®m and from StPowla workflows dynamically

reconfigured by policies

lll" \\
} -_”h

AN

From BPEL to SRML: a formal transformational approach
Bocchi, Hong, Lopes and Fiadeiro, WSFM 2008

StPowla: SOA, Policies and Workflows. Gorton, Montangero, Reiff-
Marganiec and Semini. Engineering Service-Oriented Applications:
Analysis, Design and Composition 2007

From StPowla processes to SRML models. Bocchi, Gorton and Reiff-
Marganiec, Formal Aspects of Computing (FASE 2008)

60.N4S@S2d0 790119 PERILBIYID0gNIqY

business protocols

intBR (|}

CR: MA:
2 Customer§ cc MortgageAgent

RE:
Registry

60.N4S@S2d0 790119 PERILBIYID0gNIqY

business protocols

intBR (|)

CR: MA:
: Customer i| cc MortgageAgent

RE:
Registry

60.N4S@S2d0 790119 PERILBIYID0gNIqY

business protocols

GETMORTGAGE

intLE [
LE:
— CL — Lender
intBR (I) =
CR: MA: L BA:
Customer cc MortgageAgent ’
RE

Registry

G. Alonso, F. Casati, H. Kuno, V.
Machiraju (2004) Web Services.
| Springer

@ “In particular, a trend that is gathering momentum is that of
including, as part of the service description, not only the
service interface, but also the business protocol supported
by the service, i.e. the specification of which message ex-
change sequences are supported by the service, for

example expressed in terms of constraints on the order in

60.N4S@5$2d071%90419peI{R1YDD0g7RN3IqY

which service operations should be invoked”

Abreu&Bocchi&Fiadeiro&Lopes@SFM’09

N
c
—
O
-
O
Q.

patterns

initiallyEnabled e

“e is never discarded
until it is executed”

60.N4S@S2d0 790119 PERILBIYID0gNIqY

patterns

initiallyEnabled e

“e is never discarded
until it is executed”

a dfter e

“a holds forever after e is
executed”

- e e e e e e e e = e = e = - = e = = = = = = - = - - = e = = e = — — — —

60.N4S@S2d0 790119 PERILBIYID0gNIqY

patterns

initiallyEnabled e

“e is never discarded P

until it is executed”

a after e
a aftere | a .
“a holds forever after e is ' ;' =
executed”
&

a ensures e g
a ensures e el g
“e is not published before . : > 3
a holds, and it is published olr a el ;f
sometimes afftera | "TTTTTooooooooooooooooooooooooooooooooooo *> 5
becomes true” :3;

Abreu&Bocchi&Fiadeiro&Lopes@SFM’09

N
c
—
O
-
O
Q.

patterns

a enables e until b

a enables e until b

-e? neq -e?

----------------- jmmmmmmmmm e e
“The event e cannot be executed a L >
before a holds and remains Le? neg A b

———————————————————— T =
enabled after a becomes true I R -
until it is either executed or b e pm a

o w o mmmmmm e e e e e e — e ——————— - -

becomes true (if ever) _ ——)

60.N4S@S2d0 790119 PERILBIYID0gNIqY

patterns

a enables e until b

a enables e until b

-e? neq -e?
----------------- T it
“The event e cannot be executed : L D>
a
before a holds and remains Le? neg A b
———————————————————— e
enabled after a becomes true _ S
until it is either executed or b e rm a
o w o mmmmmm e e e e e e — e ——————— - -
becomes true (if ever) N -
&
[¢]
a enables e §;
a enables e
-e? aeq =
ll ____________________ l ______________________ > ?;n.
The event e cannot be executed | ! > g
before a holds and remains a %
—e? Ama
enabled after a becomes true | -2l > (‘%
until it is executed” ' > z
(@]
O

Abreu&Bocchi&Fiadeiro&Lopes@SFM’09

N
c
—
O
-
O
Q.

patterns

m patterns have a translation in temporal logic
(UCTL) so that they can be model-checked

initiallyEnabled e|Altrueg—.;Wientrue).

a enables e

.
\AG’[a]ﬂEF < ej > true) A (A[true{ﬁe?}W{a}true]

a €ensures €

\
\ AGla|AF[e!]true] A [Altrueg_ .y Wi true]

A model-checking approach for service-component architectures.
Abreu, Mazzanti, Fiadeiro, Gnesi. FMOODS 2009

60.W4S@sadoTpoliapelymIydd0gNiqy

a business protocol

BUSINESS PROTOCOL Customer is
INTERACTIONS
r&s getProposal
£ idData:usrdata,
income: moneyvalue,
preferences:prefdata
<l proposal:mortgageproposal,
cost:moneyvalue
snd confirmation

a contract:loancontract
SLA VARIABLES

CHARGE: [0..100]
BEHAVIOURS

initiallyEnabled getProposalfl?
getProposal.cost =750* (CHARGE/100+1) after getProposall<! A getProposal.Reply
getProposalV/? ensures confirmation&!

60.N4S@S2d0 790119 PERILBIYID0gNIqY

a business protocol

BUSINESS PROTOCOL Customer is
INTERACTIONS
r&s getProposal
£ idData:usrdata,
income: moneyvalue,
preferences:prefdata
<] proposal:mortgageproposal,
cost:moneyvalue
snd confirmation

a contract:loancontract
SLA VARIABLES

CHARGE: [0..100] when the service is activated
BEHAVIOURS

initiallyEnabled getProposal&l?
getProposal.cost =750* (CHARGE/100+1) after getProposall<l! A getProposal.Reply
getProposalV/? ensures confirmation&!

A request for getProposal is enabled

60.N4S@S2d0 790119 PERILBIYID0gNIqY

a business protocol

BUSINESS PROTOCOL Customer is
INTERACTIONS
r&s getProposal
£ idData:usrdata,
income: moneyvalue,
preferences:prefdata
<] proposal:mortgageproposal,
cost:moneyvalue
snd confirmation
£ contract:loancontract
SLA VARIABLES
CHARGE: [0..100] when the service is activated
BEHAVIOURS
initiallyEnabled getProposal&l?
getProposal.cost =750* (CHARGE/100+1) after getProposall<l! A getProposal.Reply

getProposalV/? ensures confirmation&!

A request for getProposal is enabled

The service brokerage has a base

price that can be subject to an extra

charge, subject to negotiation.

60.N4S@5$2d071%90419peI{R1YDD0g7RN3IqY

a business protocol

BUSINESS PROTOCOL Customer is
INTERACTIONS
r&s getProposal
£ idData:usrdata,
income: moneyvalue,
preferences:prefdata
<] proposal:mortgageproposal,
cost:moneyvalue
snd confirmation
£ contract:loancontract
SLA VARIABLES
CHARGE: [0..100] when the service is activated
BEHAVIOURS
initiallyEnabled getProposal&l?
getProposal.cost =750* (CHARGE/100+1) after getProposall<l! A getProposal.Reply

getProposalV/? ensures confirmation&!

A request for getProposal is enabled

The service brokerage has a base
A confirmation carrying the loan price that can be subject to an extra

contract will be issued upon receipt charge, subject to negotiation.

of the commit to getProposal

60.N4S@5$2d071%90419peI{R1YDD0g7RN3IqY

layer protocols

GETMORTGAGE
intBR
CR: MA: ¢
Custor:ner cc MortgageAgent
2
BE
RE:

Registry

LAYER PROTOCOL Registry is
INTERACTIONS
rpl getLenders(prefdata):setids

prf registerContract(loanData,loanContract)
BEHAVIOUR

60.N4S@S2d0 790119 PERILBIYID0gNIqY

layer protocols

\/__SLA GM :

B Layer Protocols involve persistent
components, typically through

synchronous blocking interactions

RE:
Registry

LAYER PROTOCOL Registry is
INTERACTIONS
rpl getLenders(prefdata):setids

prf registerContract(loanData,loanContract)
BEHAVIOUR

60.N4S@S2d0 790119 PERILBIYID0gNIqY

layer protocols

GETMORTGAGE

. Layer Protocols involve persistent
Customer

components, typically through

synchronous blocking interactions

Regis-try

The registry can be queried about the

LAYER PROTOCOL Reqistry is registered lenders that meet given users
INTERACTIONS preferences
rpl getLenders(prefdata):setids

prf registerContract(loanData,loanContract)
BEHAVIOUR

60.N4S@5$2d071%90419peI{R1YDD0g7RN3IqY

layer protocols

GETMORTGAGE

. Layer Protocols involve persistent

intBR (|

1, S
MA:
o
2

BE

Registry

CR:

Customer cc

components, typically through

synchronous blocking interactions

The registry can be queried about the

LAYER PROTOCOL Registry is registered lenders that meet given users

INTERACTIONS preferences
rpl getLenders(prefdata):setids

prf registerContract(loanData,loanContract)
BEHAVIOUR

The registry is able to register new

contracts

60.N4S@5$2d071%90419peI{R1YDD0g7RN3IqY

layer protocols

SLA_GM 2
Trrrrrrrni

intLE (1

GETMORTGAGE

. Layer Protocols involve persistent

intBR (|

MA:
o
2

BE ¢l

/ RE: 2
: Registry /

LAYER PROTOCOL Registry is

INTERACTIONS preferences
rpl getLenders(prefdata):setids

prf registerContract(loanData,loanContract)
BEHAVIOUR

CR:

Customer cc

components, typically through
synchronous blocking interactions

The registry can be queried about the

registered lenders that meet given users

The registry is able to register new

The properties of synchronous contracts

interactions are typically in the style

of pre/post-condition specifications

60.N4S@5$2d071%90419peI{R1YDD0g7RN3IqY

interaction protocols

GETMORTGAGE

intBR

<
CR: MA:
Customer cc MortgageAgent
2
BE
RE:
Registry

60.N4S@S2d0 790119 PERILBIYID0gNIqY

interaction protocols

GETMORTGAGE
® Wires are typed with (binary) connectors

intBR ’7

MA:
MortgageAger

CR:
Custome|

® Interaction protocols describe how the

interactions between two parties (ROLE A
and ROLE B) are coordinated

BE

RE:
Registry

Insurance

60.N4S@S2d0 790119 PERILBIYID0gNIqY

interaction protocols

\/__SLA GM :
TTTrrorord

GETMORTGAGE

® Wires are typed with (binary) connectors

Lender

intBR ’7

MA:
MortgageAger

CR:
Custome|

® Interaction protocols describe how the

interactions between two parties (ROLE A
and ROLE B) are coordinated

BE

RE:
Registry

INTERACTION PROTOCOL Straight.I(d,,d,)0(d,) is

Insurance

ROLE A
S&r S,
£ i:d;,i,:d, §
>4 o,:d, 5
ROLE B g
r&s R, %
£ ij:d;,i,:d, s
>4 o,:d,)
COORDINATION é,
S, =R, 'g
S,.i, = R,.1i, %
S,.i, = R,.1i, %
S,.0, = R;.0, E—
O

interaction protocols

SLA_GM s
Trrrrrrrni

GETMORTGAGE

LE:
Lender

® Wires are typed with (binary) connectors

intBR Q)i

MA:
MortgageAger

® Interaction protocols describe how the

IN:
Insurance

interactions between two parties (ROLE A
and ROLE B) are coordinated

RE: j

: Registry ’

INTERACTION PROTOCOL Straight.I(d,,d,)0(d,) is

ROLE A
S&r S,
£ i:d;,i,:d, %
>4 o,:d, £
ROLE B g
r&s R, 5.
Qo
£ ij:d,i,:d, =
>4 o,:d, &
COORDINATION The interaction protocol Straight &
15 ™ . .. 3
S,-1, = Ry.1, defines simple transmission of events :
S,.i, = R;.1i, . . %,
5.0, = R,.0. between the corresponding parties ;

interaction protocols

GETMORTGAGE

SLA_GM :
Trrrrrrrni

LE:
Lender

® Wires are typed with (binary) connectors

intBR 07
MA:
MortgageAger

® Interaction protocols describe how the

IN:
Insurance

interactions between two parties (ROLE A
and ROLE B) are coordinated

RE: j

: Registry ,

INTERACTION PROTOCOL Straight.I(d,,d,)0(d,) is

ROLE A

s&r S .
4 g To allow reuse, we parametrise >
ij:d;,1i,:4, 3
>0 o,:d, Straight with the types of the £
ROLE B 9 4 S
. . 2
rss R, Interaction parameters 8
Qo
£ ij:d,i,:d, s
>4 o,:d, 5
COORDINATION The interaction protocol Straight &
1= & . .. =
S,-1, = R4, defines simple transmission of events 2
S,.1i, = R,.1 . . %)
5.0 = R..o. between the corresponding parties 2
O

the formal domains

60.N4S@S2d0 790119 PERILBIYID0gNIqY

the formal domains

60.N4S@S2d0 790119 PERILBIYID0gNIqY

the formal domains

GETMORTGAGE

60.N4S@S2d0 790119 PERILBIYID0gNIqY

modules as graphs

intBR (|)
CR: MA:
E Customer ; cc MortgageAgent

BE

Registry

60.N4S@S2d0 790119 PERILBIYID0gNIqY

modules as graphs

GETMORTGAGE

A service module M consists of:

intBR X
CR: MA:
E Customer§ cc MortgageAgent
2
BE
/ RE:)

Registry

60.N4S@S2d0 790119 PERILBIYID0gNIqY

modules as graphs

GETMORTGAGE

A service module M consists of:

®m A labelled graph:

BE

Registry

Nodes are classified as:

o components(M), labelled with business roles
o uses(M), labelled with layer protocols
o requires(M), labelled with business protocols

o {provides(M)}, labelled with a business protocol

Edges (wires) are labelled with connectors
(interaction glue and attachments)

60.N4S@S2d0 790119 PERILBIYID0gNIqY

modules as graphs

GETMORTGAGE

A service module M consists of:

intBR

: wa X
® A labelled graph: CC
Nodes are classified as: /_gg_)

Registry

labelled with business roles
Body with layer protocols

lled with business protocols

o {provides(M)}, labelled with a business protocol
Edges (wires) are labelled with connectors
(interaction glue and attachments)

60.N4S@S2d0 790119 PERILBIYID0gNIqY

modules as graphs

GETMORTGAGE

A service module M consists of:

®m A labelled graph:

BE

Registry

Nodes are classified as:

labelled with business roles

Body

with layer protocols
lled with business protocols

o {provides(M)}, labelled with a business protocol

Edges (wires) are labelled with connectors
(interaction glue and attachments)

® An internal configuration policy

60.N4S@S2d0 790119 PERILBIYID0gNIqY

® An external configuration policy

expanding the wires

n: e. m:
labely,(n) Ua,P,Hp labely,(m)

60.N4S@S2d0 790119 PERILBIYID0gNIqY

expanding the wires

interaction
protocols are
‘structured’
n: e: co-spans
labely;(n) Ua,P,Hp
roleA p roleB p

AT

sign(label,(n)) sign(glue)

Fign(label,,(m))

and Schmitt. LNCS 4624 (CALCO 2007)

Structured co-spans: an algebra of interaction protocols. Fiadeiro

60.N4S@S2d0 790119 PERILBIYID0gNIqY

expanding the wires

m for wires involving the provides interface

g
=

P,
e

roled,, | <— roleAy roleB, —p roleB, | sign(labely(m;)) &
I ' ; :
- \ / 0 3
I ' ; |]
I . . 5
MOH 7y B, : D .
: : glueP 1 i : 5
| : :
| : ' | <
'role AP,,: 4_”_ roleA P, . roleB p, = |roleB Pn: sign(label,(m)) .8—"
_____ I * s=—— S
n N .4 %
JI'A" an ”mn ‘é
gluep, 3

expanding the wires

there is no es interface

concrete customer

(8

;
S

_____)7 e~
roleA, E <= roleAp, 10leBp el .rOIeBP,: sign(label,(m,)) %
I ! £
| | \ / " | go
| I | ! g
| . el A
ECH A, B, BECH S
: : gluePI i : 5
| | Q.
| ' , l ®
:mleAP,,E 4_”_ roleAP’l . roleBPn — roleB n: sign(label,(m)) ,8_"
_____ . — P |] | o
4 N 4 g
A B, Hmy 2
gluep, 2

expanding the wires

® for wires inY the spec of the provides-interface

e
(properties offered by the service) is
in the language of @roleB,
: AR
en _u
P,
_____ |] - _____‘ A
roleA, | <@—— roleAp roleBp —pp roleB), | sign(label,(m,;)) %
. i i | 5
| | | | 3
| . ol a
ECH A, l B, BECH S
s s, -
| I " | %.
\roleAp, ; 4—”— "OleApn . "OleBpn — roleB : sign(label,(m) =
_____ n . LY | _g
8 A v :
A, B, Homy z
gluep, 2

expanding the wires

m for wires involving the requires interface

—
[_?

e
sign(label,(m,)) ~— roleAp roleBp, :roleBPIE z
: @ 5
glue E : G
| !)
I ' 3
sign(label,(m,)) <— roleAp, : roleB —_ ! mleBPnE z
\ / %
2
glueP 3

expanding the wires

the spec of the requires-interface erface
(properties required of the external service)
is in the language of @roleB,

I N - - -
sign(label,(m,)) 1 roleA roleB — 'roleB, 1' >
I o
H
glue E : G
| !)
I ' 3
sign(label,(m,)) <— roleAp, : roleB —_ ! r01f€ _ni z
\ / %
=

glue P,

expanding the modules

60.N4S@S2d0 790119 PERILBIYID0gNIqY

expanding the modules

60.N4S@sadopoliag

correctness property

roleA

roleB

o/ N\

spec
BR_CI

roleB p

spec
glue P,

roleA

7 fl wél Y\

spec
LPI

spec

glue P,

spec
BP_RI

60.N4S@S2d0 790119 PERILBIYID0gNIqY

correctness property

roleA roleB

M i | ISI;AIN: [@
/ \ / \ o P
spec spec spec
BR CI glue 3 BP_RI

V
roleB P,
T
B >
spec é
lue &
4 g P 1 3
A Ji %
roleA %
Py §;
®
spec =z
LPI 3

correctness property

K roleA P, roleB P, N = Q—&A—M-—@

/ /
I nBl I .
/ I pd
/ spec | é
I I &
| gluep, | @
| T I I 8
\ A I >
\ | “
\ | g_
v roleA p |)
AN 1 | éo
AN N | g
N al \ S
\ | a
~ ®
AN spec / 2
AN / =
-~ LPI - 3

correctness property

K roleAPZ roleBI,,2 \ = &E

/
\
/
/ V wz JV\bZ‘ \\ PR:
// \ BP_P
\

colimit of a
‘structured’ diagram

60.N4S@S2d0 790119 PERILBIYID0gNIqY

correctness property

i!! SLA_M
(R

- ~
- ~

the properties
offered by the service are in the
language of roleBs,

60.N4S@S2d0 790119 PERILBIYID0gNIqY

correctness property

& SLA_M
Frrrrrunriun

- » specB(M) I— specP(M)

60.N4S@S2d0 790119 PERILBIYID0gNIqY

configuration policies

Configuration policies model the dynamic aspects of services

60.N4S@S2d0 790119 PERILBIYID0gNIqY

configuration policies

Configuration policies model the dynamic aspects of services

® Internal configuration policies — concern service instantiation:

60.N4S@S2d0 790119 PERILBIYID0gNIqY

configuration policies

Configuration policies model the dynamic aspects of services

® Internal configuration policies — concern service instantiation:

the initialisation/termination of the components that instantiate
business roles

MA: MortgageAgent
intBRinit: S=INITIAL

intBR(!)term: S=FINAL

60.N4S@S2d0 790119 PERILBIYID0gNIqY

configuration policies

Configuration policies model the dynamic aspects of services

® Internal configuration policies — concern service instantiation:

the initialisation/termination of the components that instantiate
business roles

MA: MortgageAgent
intBRinit: S=INITIAL

intBR(!)term: S=FINAL

the triggering of the discovery of required services

LE: Lender

intLE trigger: getproposal £?
BA: Bank

intBA trigger: default
IN: Insurance

intIN trigger: default

60.N4S@S2d0 790119 PERILBIYID0gNIqY

configuration policies

Configuration policies model the dynamic aspects of services

® Internal configuration policies — concern service instantiation:

the initialisation/termination of the components that instantiate
business roles

MA: MortgageAgent
intBR()init: S=INITIAL

intBR @ term: S=FINAL

the triggering of the discovery of required services

LE: Lender

intLEQI)trigger: getproposal £?
BA: Bank

intBAQI}trigger: default
IN: Insurance

intINQI}trigger: default

® External configuration policies — concern service discovery
and selection (service-level agreements)

60.N4S@S2d0 790119 PERILBIYID0gNIqY

Abreu&Bocchi&Fiadeiro&Lopes@SFM’09

In SRML we adopt a c-semiring-based approach to constraint satisfaction

and optimisation that can express classical, fuzzy, weighted,..., constraint
satisfaction problems

||| \\\ S.Bistarelli, U. Montanari, F. Rossi (1997)
Semiring-based constraint satisfaction and
I” 1 optimization.

Journal of the ACM (JACM) 44(2): 201-236

60.N4S@S2d0 790119 PERILBIYID0gNIqY

®m In SRML we adopt a c-semiring-based approach to constraint satisfaction

and optimisation that can express classical, fuzzy, weighted,..., constraint
satisfaction problems

j‘ ;-""'\' \\\ S.Bistarelli, U. Montanari, F. Rossi (1997)
S| Semiring-based constraint satisfaction and

. I” 1 optimization.
ool Journal of the ACM (JACM) 44(2): 201-236

m A csemiring is an algebraic structure <A,+,%,0,1> where:

A is a set of values such that {0,1}cA

+ is a binary operation on A that is commutative,
associative, idempotent and with unit element O

% is another binary operation on A that is commutative, associative with
unit element 1 and absorbing element O

% distributes over +

60.N4S@S2d0 790119 PERILBIYID0gNIqY

®m In SRML we adopt a c-semiring-based approach to constraint satisfaction

and optimisation that can express classical, fuzzy, weighted,..., constraint

satisfaction problems
A is the domain of the degree of satisfaction

<{0,1},v,A,0,1> for yes/no

<[0,1],max,min,0,1> for intermediate degrees

m A csemiring is an algebraic structure <A,+,%,0,1> where:

A is a set of values such that {0,1}cA

+ is a binary operation on A that is commutative,
associative, idempotent and with unit element O

% is another binary operation on A that is commutative, associative with
unit element 1 and absorbing element O

% distributes over +

60.N4S@5$2d071%90419peI{R1YDD0g7RN3IqY

®m In SRML we adopt a c-semiring-based approach to constraint satisfaction

and optimisation that can express classical, fuzzy, weighted,..., constraint

satisfaction problems
A is the domain of the degree of satisfaction

<{0,1},v,A,0,1> for yes/no

<[0,1],max,min,0,1> for intermediate degrees

m A csemiring is an algebraic structure <A,+,%,0,1> where:

A is a set of values such that {0,1}cA . : e
+ Is a comparison primitive

+ is a binary operation on A that is commutative, R Riskis
associative, idempotent and with unit element 0 [N TR UL Re)

% is another binary operation on A that is commutative, associative with
unit element 1 and absorbing element O

% distributes over +

60.N4S@5$2d071%90419peI{R1YDD0g7RN3IqY

®m In SRML we adopt a c-semiring-based approach to constraint satisfaction
and optimisation that can express classical, fuzzy, weighted,..., constraint

satisfaction problems
A is the domain of the degree of satisfaction

<{0,1},v,A,0,1> for yes/no

<[0,1],max,min,0,1> for intermediate degrees

m A csemiring is an algebraic structure <A,+,%,0,1> where:

A is a set of values such that {0,1}cA . : e
+ Is a comparison primitive
+ is a binary operation on A that is commutative, R Riskis

associative, idempotent and with unit element 0 [N TR UL Re)

% is another binary operation on A that is commutative, associative with

unit element 1 and absorbing element O
X is a composition primitive

% distributes over +

60.N4S@5$2d071%90419peI{R1YDD0g7RN3IqY

®m A constraint system is a triple < S, D, V > where

S is a C-semiring
D is a finite set (domain of possible elements taken by the variables)

V is a totally ordered set (of variables)

®m A constraint is a pair < def, con > where
con ¢ V is called the type of the constraint

def : D|con| — A is the value (mapping) of the constraint

|

degree of satisfaction

60.N4S@S2d0 790119 PERILBIYID0gNIqY

Abreu&Bocchi&Fiadeiro&Lopes@SFM’09

N
@
0

O
g

O

>
<
—
7

SLA variables

m standard configuration variables include

external interfaces

O availability, responseTime
O Serviceld — service identifiers (e.g., URI's).

for wires

O wire.Delay — the maximum delivery delay for events sent over
wire

for interactions

O interactioné for every interaction of type r&s — the length of
time the pledge is valid after interactionr< is issued

60.N4S@S2d0 790119 PERILBIYID0gNIqY

an example

EXTERNAL POLICY
<[0..1],max,min,0,1>

SLA VARIABLES
MA.CHARGE, MA.getProposalé’,
LE.ServicelD,
LE.requestMortgageé™
CONSTRAINTS

Ci: {c:MA.CHARGE, t:MA.getProposalé }

-
1 if t<10=c

31+2%¢c-02x%¢t if 10xc< t=5+10=%xc¢
L0 otherwise

C2: {s:LE.ServiceId}

r

]l if s € BR1enders

0 otherwise
Cs: {ti:MA.getProposalé”,t;:LE.requestMortgageé }

1 if t2>tl+CC.Delay + CL.Delay

0 otherwise

60.N4S@S2d0 790119 PERILBIYID0gNIqY

an example

EXTERNAL POLICY
<[0..1],max,min,0,1>

SLA VARIABLES the greater the CHARGE applied to

MA.CHARGE, MA.getProposalé™, the bcse price OF the brokerage
LE.ServicelD,

service, the longer the interval

LE.requestMortgageé”)) : .
CONSTRAINTS during which the proposal is valid

Ci: {Cc:MA.CHARGE, t:MA.getProposalé }

-
1 if t<10 =c
31+2%¢c-02%¢t if 10xc< t=5+10=c¢
L0 otherwise

Cz: {s:LE.ServiceId}

r

]l if s € BR1enders

0 otherwise

C3: {ti:MA.getProposalé ,t.:LE.requestMortgageé }

1 if t2>tl+CC.Delay + CL.Delay

0 otherwise

60.N4S@5$2d071%90419peI{R1YDD0g7RN3IqY

an example

EXTERNAL POLICY
<[0..1],max,min,0,1>

SLA VARIABLES the greater the CHARGE applied to

MA.CHARGE, MA.getProposalé™, the bcse price OF the brokerage
LE.ServicelD,

service, the longer the interval
LE.requestMortgageé”

CONSTRAINTS during which the proposal is valid

Ci: {Cc:MA.CHARGE, t:MA.getProposalé }

-
1 if t<10 =c
21+2x%x¢c-02=x¢t if 10xc< t=5+10=xc¢

L0 otherwise

Ca: {s:LE.ServiceId} the selected lender
1 if s € BR.1enders

must belong to the
set BR.lenders

0 otherwise

C3: {ti:MA.getProposalé ,t.:LE.requestMortgageé }

1 if t2>tl+CC.Delay + CL.Delay

0 otherwise

60.N4S@5$2d071%90419peI{R1YDD0g7RN3IqY

an example

EXTERNAL POLICY
<[0..1],max,min,0,1>

SLA VARIABLES the greater the CHARGE applied to

MA.CHARGE, MA.getProposalé™, the bcse price OF the brokerage
LE.ServicelD,

service, the longer the interval
LE.requestMortgageé”

CONSTRAINTS during which the proposal is valid

the leidif)' of the Ci: {C:MA.CHARGE, t:MA.getProposalé }
loan proposal
offered by the <

lender must be

-
1 if t<10 =c
1+2%x¢c-02=*¢t if 10xc< t=5+10=xc¢

L0 otherwise

greater than the C:: {s:LE.ServiceId) the selected lender
sum of fhe 1l if s € BR.1enders

must belong to the
validity offered 0 otherwise set BR.lenders

to the customer C3: {ti:MA.getProposalé ,t.:LE.requestMortgageé }

and the delays > 1l if t2> tl+CC.Delay + CL.Delay
of the wires

0 otherwise

60.N4S@5$2d071%90419peI{R1YDD0g7RN3IqY

Abreu&Bocchi&Fiadeiro&Lopes@SFM’09

o)
.n
(@
O
[
—

recalling...

®m Static aspects:

How can we account for the behaviour of services
provided by collections of interconnected parties? —

orchestration, conversation protocols (pledges,
compensations, ...)

® Dynamic aspects:

How can we account for the runtime aspects of service-
oriented systems that result from the SOA middleware

mechanisms of service discovery, instantiation and
binding?

60.N4S@5$2d071%90419peI{R1YDD0g7RN3IqY

the dynamic aspect of services

2d07590.119PEI4RIYID0gRNIAY

60.N4S®@S

the dynamic aspect of services

m Services add a ‘business’ layer of abstraction over
a component infrastructure in sense that they
structure the evolution of software applications
seen as systems of interconnected components

60.N4S@S2d0 790119 PERILBIYID0gNIqY

the dynamic aspect of services

m Services add a ‘business’ layer of abstraction over
a component infrastructure in sense that they
structure the evolution of software applications
seen as systems of interconnected components

From structured programming to ‘structured interactions’

Services address the ‘social’ complexity of software-
intensive systems

60.N4S@S2d0 790119 PERILBIYID0gNIqY

states as configurations

A configuration 7 consists of:

® A simple graph whose nodes are components,

and edges are wires.

®m A labelling function that assigns a state to every node and
edge

states are as discussed earlier on...

60.N4S@S2d0 790119 PERILBIYID0gNIqY

an example

BEA

\4
BobEstAG

BobEstateUl '

MyRegistry

AliceRegUlI t AMR
ARM /(
AliceManag

60.N4S@S2d0 790119 PERILBIYID0gNIqY

an example

BobEstateUl

BobEstAG

component

wire (connector)

AliceRegUI

ARM /(

AliceManag

60.N4S@S2d0 790119 PERILBIYID0gNIqY

an example

BobEstateUI

Although we use the same icons,
- these are instances,
| not specifications

BobEstAG

component

wire (connector)

AliceRegUI

ARM /(

AliceManag

60.N4S@S2d0 790119 PERILBIYID0gNIqY

configurations are typed

BEA

\4
BobEstAG
AliceRegUlI t AMR
ARM /(
{ AliceManag l

60.N4S@S2d0 790119 PERILBIYID0gNIqY

configurations are typed

gilli I = = = = = o

[| 1 GH:
i i House
BobEstateUl Application
1 i HOUSEBUYING
| iy Sy SEn SEm SEm EEm 0
i
i
BEA i
| :
I | i Estate
. \4 i
BobEstAG I
i
' i
4

G E EEEE=E B

MyRegistry

AliceRegUI

ARM /(

AliceManag

>

=

)
60.N4S@S2d0 790119 PERILBIYID0gNIqY

activity modules

2d07590.119PEI4RIYID0gRNIAY

60.N4S®@S

activity modules

serves-
interface

GH:
House
Application

HOUSEBUYING

intEA (|

EA:
Estate
Agent

60.N4S@S2d0 790119 PERILBIYID0gNIqY

modules as graphs

2d07590.119PEI4RIYID0gRNIAY

60.N4S®@S

modules as graphs

An activity module M consists of:

60.N4S@S2d0 790119 PERILBIYID0gNIqY

modules as graphs

An activity module M consists of:

® A labelled graph:

Nodes are classified as:
o components(M), labelled with business roles
o uses(M), labelled with layer protocols
o requires(M), labelled with business protocols

o {serves(M)}, labelled with a layer protocol

Edges (wires) are labelled with connectors
(interaction glue and attachments)

60.N4S@S2d0 790119 PERILBIYID0gNIqY

modules as graphs

An activity module M consists of:
® A labelled graph:

Nodes are classified as:
o components(M), labelled with business roles

o uses(M), labelled with layer protocols

o requires(M), labelled with business protocols
reflect
different
dynamics

o {serves(M)}, labelled with a layer protocol

Edges (wires) are labelled with connectors
(interaction glue and attachments)

60.N4S@S2d0 790119 PERILBIYID0gNIqY

modules as graphs

An activity module M consists of:

® A labelled graph:

Nodes are classified as:
o components(M), labelled with business roles

o uses(M), labelled with layer protocols

o requires(M), labelled with business protocols
reflect
different
dynamics

o {serves(M)}, labelled with a layer protocol

Edges (wires) are labelled with connectors
(interaction glue and attachments)

® An internal configuration policy

60.N4S@S2d0 790119 PERILBIYID0gNIqY

modules as graphs

GH:
House
Application

HouseBuyina (A / TrTTTTTaT

An activity module M consists of:

® A labelled graph:

Nodes are classified as:

o components(M), labelled with business roles

o uses(M), labelled with layer protocols

o requires(M), labelled with business protocols
reflect
different
dynamics

o {serves(M)}, labelled with a layer protocol

Edges (wires) are labelled with connectors
(interaction glue and attachments)

= An internal configuration policy

60.N4S@S2d0 790119 PERILBIYID0gNIqY

® An external configuration policy

business configurations

A business configuration consists of:
®m A set of activity names (chosen from a domain)

m A state configuration 7

m A mapping 93 that assigns a module 98(a) to every activity
a - the workflow performed by a in &7

m For every activity a, a homomorphism 98(a) of graphs
between the body of 93(a) and 7

This homomorphism makes configurations reflective

60.N4S@S2d0 790119 PERILBIYID0gNIqY

the state transitions

gilli I = = = = = o

, 1 / GH:
House
: BobEstateUl l Application
I 1 HOUSEBUYING
| Sy Sin SEn SEm BEm EEE 0§
|
|
: BEA |
| | !
. \4 0
. BobEstAG I
|
' ’

G E EEEE=E B

MyRegistry

AliceRegUI

ARM /(

AliceManag

>

=

)
60.N4S@S2d0 790119 PERILBIYID0gNIqY

the state transitions

gilli I = = = = = o

[| 1 / GH:
H

: BobEstateUl l App(I)i(l';J:gon
| i HOUSEBUYING
| “in Sia "in Sin SEm EEE B HE

|
| intEA (| MO:
I BEA i EM A (> Mortgage
I | i Estate
I |
. BobEstAG I

|
| =

GO Em E = == |'I"I g g er

while they execute, certain
components may trigger the
aicertodiscovery of*external services

_d AliceManag

60.N4S@S2d0 790119 PERILBIYID0gNIqY

discovery and selection

Compatibility

Consistency

GH:
/ House GFTidoRTaseF
: Application
HOUSEBUYING
HE
intEA () CR:
Customer cC

Estate
Agent

intBR (|

MA:
MortgageAgent

BE

RE:

Registry

60.N4S@S2d0 790119 PERILBIYID0gNIqY

discovery and selection

Compatibility
Consistency

GH:
House

Application

GETMORTGAGE

Estate
Agent

RE:
Registry

satisfaction of

requirements

60.N4S@S2d0 790119 PERILBIYID0gNIqY

instantiation and binding

BobEstateUl '

BEA

\4
BobEstAG

MyRegistry

AliceRegUlI t AMR
ARM /(
AliceManag

60.N4S@S2d0 790119 PERILBIYID0gNIqY

instantiation and binding

\V/_SLA_GM B

rrrrrrnd

GH: GETMORTGAGE

House

BobEstateUIl — sovicaion | r
e A intBR
intMO (|
intEA i MO: 2 CR: ; cc
EM Mortgage Customer

AliceManag

BEA Y
BobEstAG
>
=
=
MyRegistry 8
:
N .
AliceRegUlI AMR 3
ARM A 5
32
5
=
3

instantiation and binding

|SI|J|\ |G|N: TT o
BobEstateUl o e ([——
Application \V/ SIAGH _[= Lender
HOUSEBUYING S TIrrrrrrrt
intBR T

: o intMO (1 0 -
O MO: CR: cc :

. EM > Mortgage Customer S

BEA
BE
O
RE:

\4
BobEstAG BAM BobMortBR

BCR

MyRegistry

AliceRegUlI t AMR
ARM /(
AliceManag

60.N4S@S2d0 790119 PERILBIYID0gNIqY

instantiation and binding

:
BobEstateUl o ’
HousEBUYIG Application
BEA
BobEstAG BAM < > BobMortBR

BCR

component-interfaces

bind to new instances
MyRegistry

AliceRegUlI

ARM /(

AliceManag

>

=

o)
60.N4S@S2d0 790119 PERILBIYID0gNIqY

instantiation and binding

SLA_GM :
TTTTTrTd

GETMORTGAGE

BobEstateUI

GH:
House
Application

HouseBuvina (A~ / iirinoT

BEA

|
WV

BobEStAG BAM < > BobMortBR

uses-interfaces
bind to existing
components

BCR

component-interfaces

bind to new instances
MyRegistry

AliceRegUlI

ARM /(

AliceManag

>

=

o)
60.N4S@S2d0 790119 PERILBIYID0gNIqY

instantiation and binding

BEA

\4
BobEstAG BAM
AliceRegUlI
ARM

BobEstateUI '

HOUSEBUYING

intEA

GH:
House
Application

2

HE

\V/__SLA GH *

intMO (|
MO:
{> Mortgage

intLA (1

BobMortBR

BCR

MyRegistry

AliceManag

2 CR: ;
Customer cc

=
rrrrrred
GETMORTGAGE intLE
LE:
Lender
intBR

BE

O

RE:
Registry

60.N4S@S2d0 790119 PERILBIYID0gNIqY

instantiation and binding

BobEstateUI '

BEA

\4
BobEstAG BAM BobMortBR

BCR intEA (|

1k O
EA:
EstateAgent <
{2

SLAGM _ |#)
rrrrrrnd

GETMORTGAGE intLE 3

GH:
House
Application

LE:
Lender

HOUSEBUYING

intBR (|)

CR: MA:
2 Customer? cc MortgageAgent

GH:
House
Application

HOUSEBUYINGMORTGAGE

MyRegistry

AliceRegUI AMR Regisy
ARM pa
AliceManag

60.N4S@S2d0 790119 PERILBIYID0gNIqY

instantiation and binding

o Il BEH = =H = = = = = = = = ‘
’ 1
i BobEstateUl 3
i
I : ...and a new
i BEA : configuration
i
v :
\% I
! BobEStAG BAM BobMortBR I
I I HGH:
I I HOUSEBUYINGMORTGAGE Application
i \ mi . .
i BCR | intEA (|
i >
: &
i ! 5
0 MyRegistry f 8
$ b 2
- m OEm O m E E E m = e e i =
N RE: &
AliceRegUlI AMR Registry 5
ARM A 3
?
AliceManag the activity has a %
new type... 3

semantics of matching and selection

GH:
House

Application

Estate
Agent

Compatibility
Consistency

GETMORTGAGE
intBR (.|
CR: cc MA:
Customer MortgageAgent

BE

RE:
Registry

60.N4S@S2d0 790119 PERILBIYID0gNIqY

semantics of matching and selection

Compatibility
Consistency

GH:
/ House GETMORTGAGE

Application

intEA (|) : ; Ao oA X
MortgageAgent

Estate
Agent

RE:
Registry

60.N4S@S2d0 790119 PERILBIYID0gNIqY

R: PR: : 0
B EeTs ==

60.N4S@S2d0 790119 PERILBIYID0gNIqY

R: PR: —
R
N

a morphism of
structured co-spans

60.N4S@S2d0 790119 PERILBIYID0gNIqY

Abreu&Bocchi&Fiadeiro&Lopes@SFM’09

Y
O
=

matching the w

matching the specifications

K
‘Xa
> _‘;Q_"'
=
o 3
60.W4S@SsadoTpoliapel{R1ydd0g9naiqy

matching the specifications

the spec of R (properties
required by the activity) is in the
language of roleB;

60.N4S@S2d0 790119 PERILBIYID0gNIqY

matching the specifications

the spec of PR (properties
offered by the service) is in the
language of @roleB;,

the spec of R (properties
required by the activity) is in the
language of roleB;

K
‘Xﬁ
o
=
()
w
60.INdS@sadooulapel41ydd0g9naiqy

matching the specifications

the spec of PR (properties
offered by the service) is in the
language of @roleB,,

the spec of R (properties
required by the activity) is in the
language of roleB:

/4

specification
morphism

60.N4S@S2d0 790119 PERILBIYID0gNIqY

algebraic semantics of matching

GH:
House

Application

Estate
Agent

Compatibility
Consistency

GETMORTGAGE
intBR (.|
CR: cc MA:
Customer MortgageAgent

BE

RE:
Registry

60.N4S@S2d0 790119 PERILBIYID0gNIqY

algebraic semantics of matching

Compatibility

Consistency

GETMORTGAGE

GH:
House

Application

I intBR (|

MA:

|
r CR: :
P cC MortgageAgent

Customer

EA:
Estate
Agent

BE

RE:

\/ SLA GM "%

LE:
Lender

Registry

® matching, ranking and selection involve:

finding services whose constraint systems are compatible with that of the

activity and lead to a consistent combination of constraints

maximising the degree of satisfaction of the combined set of constraints

60.N4S@S2d0 790119 PERILBIYID0gNIqY

C
0
Q"

(7]

O

(OB

=

O

O
| & E.

o

(7]
9
—

-

O

=

()

(7]
O

O

-
e

()
o

O

@
<>

PR:
BP_P

—
o

Abreu&Bocchi&Fiadeiro&Lopes@SFM’09

i A i T =
I A
1 R
Y ﬁv S
19 = N)
1 ~— B- - -\ Nﬂlllﬂlln
~ g
I P LR P
) Q!
I X =
o ® 0 |

algebraic semantics of composition

60.N4S@S2d0 790119 PERILBIYID0gNIqY

algebraic semantics of composition

Compatibility

Consistency

GH:
/ House GETMORTGAGE
: Application
HOUSEBUYING TTTrrrTd
HE intMo (T | intBR (|
in A
intEA qp I > CR: MA:
P Customer cC MortgageAgent

Esta'.te
Agent
BE

RE:

Registry

60.N4S@S2d0 790119 PERILBIYID0gNIqY

algebraic semantics of composition

GH:
House
Application

Compatibility

Consistency

GETMORTGAGE

_| intBR >
» CR: MA:
p Customer} cc MorlgageAgenl
2
BE
&
RE:
Registry

/ GH:
House

Application

\/ SLA_HBM _ |#]

rrrrrrrnd

intLA (]

BE

/

N
RE:

Registry

60.N4S@S2d0 790119 PERILBIYID0gNIqY

Abreu&Bocchi&Fiadeiro&Lopes@SFM’09

what else?

® Qualitative analysis

Doubly-labelled transition systems and temporal logic
Model-checking using UMC

60.N4S@S2d0 790119 PERILBIYID0gNIqY

what else?

® Qualitative analysis

Doubly-labelled transition systems and temporal logic
Model-checking using UMC

®m Analysis of timing properties using PEPA

60.N4S@S2d0 790119 PERILBIYID0gNIqY

what else?

® Qualitative analysis

Doubly-labelled transition systems and temporal logic
Model-checking using UMC

®m Analysis of timing properties using PEPA

®m A number of case studies

Travel booking
Procurement
Automotive

Telco

60.N4S@S2d0 790119 PERILBIYID0gNIqY

Abreu&Bocchi&Fiadeiro&Lopes@SFM’09

-
| -
3
O
-
-
e
-
Gl

m Back to SCA...

60.N4S@S2d0 790119 PERILBIYID0gNIqY

m Back to SCA...
m SRML4People

~ Team automata

~ Deontic logic

60.N4S@S2d0 790119 PERILBIYID0gNIqY

m Back to SCA...
m SRML4People

Team automata

Deontic logic

®m Runtime verification and monitoring

60.N4S@S2d0 790119 PERILBIYID0gNIqY

m Back to SCA...
m SRML4People

Team automata

Deontic logic

®m Runtime verification and monitoring

m Requirements and coreography

60.N4S@S2d0 790119 PERILBIYID0gNIqY

