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Abstract. I describe the implementation of two complete decision procedures
for integer Presburger arithmetic in the HOL theorem-proving system. The first
procedure is Cooper’s algorithm, the second, the Omega Test. Between them, the
algorithms illustrate three different implementation techniques in a fully expansive
system.

1 Introduction

Integer decision procedures are vital parts of interactive theorem-proving systems.
Whether embedded in simplification routines and running automatically, or explicitly
invoked by the user, they remove a great deal of tedium from the task of proving goals.
Modern interactive systems, including ACL2 [[10], Coq [1], HOL [4/11]], Isabelle [[13],
Nuprl [8]] and PVS [[12], all implement such decision procedures.

There are essentially three procedures implemented in the systems mentioned above:
Fourier-Motzkin variable elimination (in HOL, Isabelle and Cocﬂ), SUP-INF [15] (in
Nuprl) and Shostak’s loop-residue algorithm [[16] (in PVS). In this paper, I describe
two other algorithms. The Omega Test [[14] is an extension of Fourier-Motzkin variable
elimination, which makes it complete over Z. The second procedure is Cooper’s algo-
rithm [3]], which is unlike the other algorithms in not requiring formulas to be in DNF
before it eliminates a quantifier.

Both of the algorithms I describe differ in scope from the others mentioned: they are
both complete over the domains covered by the others (universal Presburger arithmetic),
and also complete over the wider language of Presburger formulas with any alternation
of quantifiers. I will henceforth take Presburger formulas to be those generated by the
grammar given in Fig. [[l and which are also closed: all occurrences of variables are
bound by a universal or existential quantifier.

The task of the decision procedure is to prove a closed Presburger formula either
valid or invalid. If a formula has existential quantifiers outermost and is proved valid,
then it may be useful to have the procedure also return a satisfying assignment for
the existential variables. Conversely, formulas that are universal at the outermost level,
and which are proved invalid might prompt the return of a falsifying assignment. Both
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Sformula : := formula A formula | formula\ formula |
—formula | Jvar.formula | Vvar.formula |
numeral | term | term relop term
term ::=numeral | term+term | —term | numeral x term | var
relop =< | < | =1 > 1| >
var =z |y | oz...
numeral ::=0 | 1 | 2...

Fig. 1. Grammar defining Presburger formulas. Write c|e to mean that ¢, necessarily a numeral,
divides e exactly, or without remainder

algorithms proceed by quantifier elimination, eventually reducing the input formula to
an equivalent formula without quantifiers.

This paper is arranged as follows: in Section 2], I describe Cooper’s algorithm, in-
cluding a proof of correctness. In Section B] T describe the Omega Test, again proving
correctness. In Section[d}, T describe the techniques that I used to implement these proce-
dures (proofs) within HOL. In the same section, I also briefly compare the two algorithms’
performance. In Section[3], I describe extensions to the basic procedures that make them
considerably more helpful in the interactive setting.

2  Cooper’s Algorithm

The first step in Cooper’s algorithm is to normalise the input formula. Negations are
pushed inwards, so that they are only found around “divides” and equality leaves, and in
front of existential quantifiers. The relations <, > and > are rewritten to forms involving
<, and universal quantifiers are eliminated by transforming Vz P(z) into =3z. =P (x).
Note that neither normalisation to DNF nor to CNF occurs. The formula’s terms are
also normalised, with multiplications distributed over additions, coefficients gathered
and other obvious normalisations applied.

The algorithm then arbitrarily picks an innermost (existential) quantifier to eliminate.
This quantifier has scope over a formula whose tree structure has conjunctions and
disjunctions at its internal nodes. The leaves of this sub-formula are now transformed
to equivalent forms, where the quantifier’s bound variable is isolated and has a positive
coefficient. If a leaf involves the bound variable (z, say) at all, it is transformed to one
of the six following forms:

cx <e cr=e cldx +e
e < cx —(cx =e) —(cldx + e)

ey

where ¢ and d are positive integer numerals, and e is an arbitrary term not including =z,
but possibly involving other variables.

The algorithm next finds the least common multiple (I say) of all of x’s coefficients.
Every leaf formula is then multiplied through by an appropriate constant so that every
leaf has an occurrence of [z. The formula can then be transformed by appeal to the
theorem

Jz. P(lz) = Jz. P(z) Al|x

ensuring that every occurrence of x implicitly has coefficient one.
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The final phase now depends on the generation of two sets of expressions, A and B,
based on the leaf expressions in the formula. Table[d] specifies how each leaf generates
possible members for each set. For example, a leaf of the form x < e puts e into the
A-set, and does not affect the B-set. Leaves involving the divisibility relation, or which
do not include the variable z, do not generate members for either set.

Leaf form A-set B-set

x<e e

e<x e
r=e e+le+"1
“(x=e€) e e

Table 1. Generation of A and B sets

The algorithm creates two variants on the predicate P underneath the quantifier,
P_, and P, ... These new predicates can be understood as versions of the original
where the parameter « has been made arbitrarily small (negative) or arbitrarily large,
respectively. Therefore, all leaves with x free and which involve < and = are replaced
with either true or false. For example, if x is made arbitrarily small, then x < e will
be true, e < x will be false, z = e will be false, and —(x = e) will be true. Leaves
involving divisibility will be unchanged. Finally, let 4 be the least common multiple of
all the ¢ occurring in leaves of the form c|z + e and —(c|z + e).

The algorithm then eliminates the existential quantifier by using one of the two
equivalences given in the following theorem. In order to reduce the amount of blow-up
in term size, the first equivalence is chosen if the B-set is smaller than the A-set, and the
second otherwise. If the sizes of the sets are equal, the set which has fewer occurrences
of free variables is chosen.

Theorem 1 (Cooper, 1972). Let P(x) be a formula constructed of conjunctions and
disjunctions of integer relations. Those relations involving x are of the form x < e,
e<z,x=exF#e cl/(x+e)or(c(x+e)). Then,

5 s
dv. P(z) = \/P—oo(j) \ \/ \/ P(b+j)

j=1beB
and

é S
Jx. P(z) = \/P+oo(j) \ \/ P(a+ "j)
j=1 j=la€cA

These equivalences are the heart of Cooper’s algorithm. They are sufficiently similar that
I will describe the proof of just the first. The equivalence is of the form L = D; V Do,
so I prove it by showing Dy = L, Dy = L,and L A =Dy = Ds:

— The first obligation requires a proof of

6
\/P_Oo(j) = 3z P(z)
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This result relies on two further lemmas. The first,
Jy.Ve.z <y = (P(z) = P_x(2)) (2)

states that P and P_, coincide once their arguments are small enough. There is a
witness for y; the minimum of all the expressions that occur on the other side of a
< or an = from the bound variable in the original formula.

The second lemma is

VaVe. P_oo(x) = P_oo(z + ¢0) 3)

which states that the truth value of P_ ., is unaffected by the addition of any number
of multiples of §. Recall that the only leaves in P_, involving the bound variable x
x4 eor —(c|z + e). As ¢ is the Le.m. of all the ¢’s in the formula,
the truth of these leaves will be unaffected by the addition of multiples of § to x.
The proof of the overall result follows because, from the existence of a witness
satisfying P_ ., one can produce another, smaller than the y of (2), and thereby find
a witness satisfying PR

— The second obligation is

5
\/\/ (b+j) = Tz P(x)
j=1beB

This implication follows immediately because the antecedent provides a witness
that satisfies P.

— Finally, the most complicated case is

6
(3z. P(x \/\/Pb+y) = \/ P(y) (4)
j=1

j=1beB

It is sufficient to prove that

\/\/ (b+7) | = Va. P(x) = P(x —9)

j=1beB

This is sufficient because the assumption Jx. P(z) from @) provides a witness
for which P is true. The new result then provides an infinite sequence of smaller
witnesses, each ¢ smaller than the previous. In particular, there will be one that will
be smaller than the y below which P(z) = P_..(z) (see (2) above). Then, because
Va . P_o(x) = P_oo(z+¢d) (see (), there will be another witness for P_, that
will be between 1 and ¢ H as required.

% This is using another theorem about Z, that Vd. d # 0 = Yz y. 3e.y + cd < .

3 Using another lemma about Z: Vd.0 < d = Vz.3c.0 < x + c¢d < d.



Complete Integer Decision Procedures as Derived Rules in HOL 75

My proof is actually of the stronger statement

5
VP Q) A/ /\ ~Qb+j)APx) = P(z—5) (5)

j=1beB

so that an induction on the structure of P is possible. The result needed is obtained
by picking () to be P in the above.

There are two inductive steps to the proof, one for formulas constructed by conjunc-
tion and one for disjunction. Both are straight-forward: if (&) holds for P, and P,
then it holds for Az. Py () A Po(z) as well as for Az. Py(z) V Pa(x).

There are seven leaf cases to consider, one for each of the forms in (IJ) and one for
the case when the formula P does not mention x at all. The latter is trivially true.
The other cases are as follows:

e r<e=z—46<e
Follows immediately (0 > 0 as it is the l.c.m. of positive arguments).

ee<r=>e<xr—9
Seeking a contradiction, assume —(e < x — §), i.e., x < e + . So, for some
j € 1.5,z = e+ j. The top-level assumption in (@) is Q(z), so Q(e + j). But
e is also part of the formula’s B-set, so, by assumption, /\;’L1 -Q(e+ 7).

e (zx=e¢)=(z—0d=¢)
e + ~1is in the B-set, so derive a contradiction by noting that both Q(e), and
Nj—1 ~Q((e + 1) + ) (pick j = 1),

e 7(z=¢)=(z—0=c¢)
Assume the opposite, so that x = e + ¢. Thus Q(e + §). But e is in the B-set,
so =Q(e + ¢) (picking j = §), another contradiction.

e c|r+e = c|x—d+e. By construction of 4, ¢|d, so the result follows immediately.
Similarly for the =(c|x + e) case.

d

3 The Omega Test

The heart of the Omega Test operates on formulas of the form
Jx. Cy ANCaN...ANCy,

where each C; is of the form t; < ¢ and involves x. The procedure’s initial normali-
sation must therefore convert input formulas to disjunctive normal form, move boolean
negations and existential quantifiers inward and eliminate universal quantifiers. The <,
> and > relations are easily converted to < formulas. Sub-formulas = # y are converted
tox+ 1<y V y+1 <z The test’s treatment of equality and divisibility relations is
slightly more involved (see [l14] for details), but is straightforward to implement.
Given a normalised formula (as above) sort the C; into two sets, the lower bounds
that are of the form a < ax with « positive, and the upper bounds that are of the form
Bx < b. If either set is empty, then immediately return true. Otherwise, if all of the
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coefficients of x in either set are equal to one (i.e., if all of the a; are one, or all of the
0B; are one), what Pugh refers to as exact shadow elimination can be performed. The
original formula is equivalent to

/\aiﬁj < aib; (6)
4,3
where i indexes lower bound constraints, and j the upper bounds. The formula (@) is

also known as the real shadow because the equivalence is true, regardless of coefficients,
when variables range over R. The exact shadow result relies on the simpler equivalence

(Fz.a<ax APz <b)=af < ab

when one of « or 3 is 1. The implication from left to right is easy to see. From right
to left, with o = 1, take x to be a; with 8 = 1, take x to be b. This result extends to
the cross-product of many upper and lower bounds by two successive inductions on the
respective sets.

If an exact shadow elimination is not possible, the relevant theorem for quantifier
elimination is considerably more complicated.

Theorem 2 (Pugh, 1992). Let L(x) be a conjunction of lower bounds on x, indexed by
i, of the form a; < «;x, with «; positive. Similarly, let U(x) be a set of upper bounds
on x, indexed by j, of the form 3;x < b;, with 3; positive. Let m be the maximum of all
the Bjs. Then

(Fz. L(2) NU(2)) = (Nij(ai = 1)(B; — 1) < aibj — aif3;)

\Y
ma;—a;—m

V:Vieo ™ J Jz. (ajz = a; + k) A L(z) ANU(x)

Following Pugh, the first disjunct of the RHS above is called the dark shadow, and
the other disjuncts are called splinters. Note that as stated, each splinter has as many
quantifiers as before. Nonetheless, the extra equality constraint means that the variable
and its quantifier can be eliminated by the normalisation techniques already mentioned,
so the theorem does represent a quantifier elimination result. This theorem reduces to
exact shadow elimination if all of the «; or all the j3; are equal to 1.

The theorem is of the form LHS = Dy V Do, with Dy the dark shadow and D5 the
splinters. I prove the result by proving D1 = LHS, Dy = LHS and LHS A—~D1 = Da:

- /\i,j(ai — 1)([% - 1) S Otibj - a,ﬂj = dz. L(x) A U(I)
Show the result for one pair of upper and lower bound. L.e., that

(a—1DF-1<ab—af = Fr.a<axrAfBx<b

Two inductions, on the set of lower bounds and then the upper bounds, give the
complete result.
To prove the base case, assume the opposite. Then

—Jdz. af < afzxr < ab
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Le., there is no multiple of a3 between a3 and ab. The other assumption implies
af3 < abas a and [ are both positive and non-zero. Take ¢ to be the greatest multiple
of a3 less then a3. Then

afi<af < ab<af(i+1)

Because 0 < a3(i+1)—ab,conclude 1 < B(i+1)—b,andthus < a5(i+1)—ab.
Similarly, 5 < a8 —afi. Infera+ 3 < aff+aff — ab, or (re-arranging), ab—af <
af —a—0 + 1, which contradicts the first assumption.

—\/\/,E0 JElx( =a; +k)ANLx)ANU(z) = 3Fz. Lx)ANU(z)
Trivial, as each splinter disjunct on the left provides an x that will satisfy the weaker
requirement on the right.

- (2. L(z) AU () A=(A; (i = 165 = 1) < auby — aifj) =

ViVico © V3o (asz = g+ K) A L(@) AU)
Let x be the witness to the first assumption. The second assumption means that there
exist o, 3, a and b such that

ab—af<af—-p—a @)

These values occur in constraints from L and U, so Sz < band a < ax. Multiplying
the former through by « gives a8z < ab, so in conjunction with (@)

afz <aftaB-B-a
= fBlar —a)<af—-0F—«
=ar—a SL%J

All of the 3 coefficients are < m, so

=

There is now enough information to pick the appropriate disjunct from the RHS.
The «; is « and k is ax — a.

O

Even when exact shadow elimination is not possible, it is still worth checking the real
shadow of a formula if all of its variables are bound by existential quantifiers. The latter
condition means that performing all of the real shadow eliminations will result in a
ground formula. If this formula is false, then so too is the original formula. Thus [14]
describes the algorithm for the purely existential case in three stages:

1. Check the real shadow. If it is unsatisfiable, so is the original. If it is satisfiable and
the shadow is exact, then the original formula is satisfiable.

2. Check the dark shadow. If it is satisfiable, so is the original.

3. Check the splinters.
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4 Implementations in HOL

HOL is a theorem-proving system in the tradition of LCF [5]]. Theorems are implemented
as an abstract data type in the language SML, exploiting that language’s strong typing
system, which guarantees that a type’s abstraction barrier can not be subverted. The
implementation of the type of theorems provides functions, known as the primitive rules
of inference, for manipulating and creating theorem values. Strong typing then ensures
that all such values must ultimately be constructed using just these rules. Rich suites of
tools for proving theorems are built on top of this logical kernel, but all proofs are fully
expanded to sequences of primitive inferences. No tool or derived rule has the ability to
simply assert a theorem; proofs must be providedH

The implementations of Cooper’s algorithm and the Omega Test in HOL illustrate
three different techniques for realising decision procedures in a fully expansive setting.
Before examining each technique’s use in the implementation of the two decision pro-
cedures, I will describe each in general terms, as well as giving examples of their use in
other applications.

Theorem instance re-proof: This, the simplest but also most naive technique, plays

out the central proof of a decision procedure’s core theorem(s) for every problem
instance. This approach is used by the implementation of Cooper’s algorithm.
For a contrived example, consider a proof procedure to turn a theorem of the form
F P = @ = R into a theorem of the form - P A Q = R. The ML code
implementing this transformation would involve calls to the inference rules given
as labels in this inference tree:

ASSUME i Q ~ R UNDISCH
———————— ASSUME PrQEPAQ CONJ1 PrR=R UNDISCH
PAQFPAQ PAQFP PQFR
m CONJ2 PA Q7Q FR PROVE_HYP
PA Q FR PROVE_HYP
FPAQ= R DI

This procedure will run in constant time in terms of number of primitive inferences
(nine in this case), but is clearly awkward and inefficient. It is as well that all proof
programming in HOL doesn’t have to drop to this level. The pro forma theorem
approach described below is much more appropriate here: prove the equivalence

F(P=Q=R)=(PANQ=R)

once and then instantiate this theorem as and when necessary.

Theorem instance re-proof is not always so obviously inappropriate. It is particularly
useful when it is impossible or difficult to express the generalised theorem in HOL’s
logic. For example, in a suitable logic about polytypic functions, the following might
be true

map f o map g = map(f o g)

* HOL does not have actual “proof objects”. At most, a proof can be regarded a sequence of calls
to the kernel’s API; only the theorem it creates has any lasting existence.
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where map was a polytypic function that mapped functions over the values in
appropriate container types, without disturbing the structure of the container. HOL’s
logic can not give a type to or define such a map. Nevertheless, given suitable
definitions of the types and their map functions, it is not difficult to write a proof
procedure that automatically proves the instances (over lists and trees, for example)
of the more general “theorem”.

Using pro forma theorems: As has already been suggested, this approach involves
proving suitably general theorems embodying the core of the decision procedure
(often direct equivalences between formulas). These theorems can then be instanti-
ated with specific problems, quickly implementing one or more steps of the decision
procedure. The “symbolic” implementation of the Omega Test (described below)
uses this technique.

One problem with this technique arises when the theorem in question relates its
LHS to some new formula on the right that is a function of the actual form of the
LHS. Theorems [l and Rldemonstrate this problem: Cooper’s theorem requires the
construction of the new P_, and P, ., formulas; Pugh’s theorem requires the gen-
eration of the pair-wise product of a formula’s upper and lower-bound constraints.
The example of the propositional rewrite above (P = Q = R) = (PAQ = R))
doesn’t have this problem because the equivalence doesn’t require any action on the
formulas instantiated for P, @ and R.
If, for example, P is a predicate on Z, with HOL type int -> bool, itis difficult to
directly define a function to calculate P_OOE] Instead, Harrison’s “shadow syntax”
approach can be used [6]]: a concrete type is used to implement a syntax for the
formula, and an interpretation function relates this new syntax back to the original
domain. Thus, in his implementation of Kreisel and Krivine’s quantifier elimination
algorithm for the elementary first order theory of R, Harrison uses a constant poly
with defining equation

poly x [1 =0

poly x (h::t) =h + x * poly x t
In this way, a polynomial on variable x can be reduced to poly x followed by a
list of the coefficients of the powers of x. Similarly, conjunctions and disjunctions
of relations on polynomials are represented as lists of polynomials, interpreted by
appropriate functions. Harrison proves the theorems that form the basis for the algo-
rithm, with those theorems’ manipulations of the syntax of the formulas represented
by manipulations of the various lists that make up the shadow syntax.
One further advantage of the use of pro forma theorems is that they can provide an
elegant packaging of an algorithm’s fundamentals as data (the theorems themselves),
rather than as the code necessary in the re-proof technique above.

External proof discovery: This technique is appropriate in applications where a deci-
sion procedure does most of its work finding a proof, and where the proof itself,
however construed, is relatively small. The core idea is to do proof discovery outside

3 One issue is that the size of the domain is uncountable, but the desired function only operates
over the countable subset corresponding to syntactically expressible formulas.

® A note on HOL syntax: [] is the empty list; h: : t is the list consisting of element h “cons”-ed
onto the list t.
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of the logical kernel, so that the kernel’s general-purpose machinery can be replaced
with special-purpose code tuned to the particular application. It is only when the
proof is found that the kernel becomes involved; it executes the proof itself and
confirms that the special-purpose code was correct]]

This technique is clearly applicable in deciding first order logic. There, proofs are
typically very short in comparison to the work done in exploring all of the possible
paths to a negated goal’s refutation. This approach is exemplified by Hurd’s linking
of HOL to the Gandalf resolution prover [7]. There the external tool is external not
just to the logical kernel, but to HOL itself. On proving a goal, Gandalf provides
a log of the successful resolution and modulation steps required, and Hurd’s HOL
code then interprets this proof-log “back into” the logical kernel.

Another example of the technique is Boulton’s implementation of his procedure for
universal Presburger arithmetic on N [2]. On this domain, Fourier-Motzkin variable
elimination can be seen as a refutation procedure. Boulton translates the negated
goal into a special data structure representing the set of known constraints. When
new consequences are inferred, each is accompanied by a closure that, when run,
would prove that consequence@ If false is inferred, then just those inferences leading
to that conclusion need to be replayed in the logical kernel. This implementation
inspired the “no alternating quantifiers” part of the Omega Test.

4.1 Implementing Cooper’s Algorithm

The implementation of Cooper’s algorithm uses the theorem instance re-proof technique.
Though it uses some pre-proved theorems (the various lemmas about Z mentioned in
the course of the proof, for example), the bulk of the proof is replayed for every proof
instance. The calculation of the RHS of Theorem [ particularly the predicate P_ .
(or P, depending on the choice of equivalence), can be done extra-logically, but the
required properties of the new formulas on the right must still be proved.

Although the presented proof involves an induction over the structure of the general
formula P, the implementation only ever proves a concrete instance (P is given as an
input), so there is no induction. Instead, the procedure for proving the instance is written
recursively. The procedure starts with the theorem P(z) F P(x). If the conclusion is
of the form P; (z) A Pa(x), the procedure makes recursive calls on P(z) - P;(x) and
P(z) F Py(z) to prove P(z) F Py (z — ¢) and P(x) - Pa(x — 0) (assuming the B-set
is being used). It is easy to then combine these theorems to generate

P(z)F Pi(z — 6) A Po(xz —9)

Disjunctions are handled similarly. At the top-level the required implication is generated
by discharging the assumption. The use of P(z) as an unchanging assumption throughout
the recursion models the use of the predicate () in the earlier proof of Theorem [l

I also implemented a version of the algorithm using a pro forma theorem. This
required the proof in HOL of the general statement of the theorem. The shadow syntax
was defined in the logic as a free algebra, with constructors such as Conjn, Disjn and

7 This technique can also be seen as certificate checking; see [0, §6] for an extended discussion.
8 The use of closures in this case is a specific instance of Boulton’s general idea of lazy theorems.
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xLT. This type provided concrete syntax for predicates over integers. The function for
evaluating shadow syntax was eval_form, taking a formula in this concrete form and a
value to evaluate with respect to it. Thus, eval_form can be seen as an implementation
of the action of applying a predicate to an argument. Its definition was

eval_form (Conjn f1 £2) x = eval_form f1 x A eval_form f2 x
eval_form (Disjn f1 f2) x = eval_form f1 x V eval_form f2 x
eval_form (Negn f) x = —eval_form f x

eval_form (UnrelatedBool b) x = b

eval_form (xLT i) x = x < i

eval_form (LTx i) x = i < x

eval_form (xEQ i) x (x = 1)

eval_form (xDivided il i2) x = il int_divides x + i2

The final theorem proved in HOL was of the form
(side conditions) = ((3x. eval_form f x) = ...)

This “shadow syntax” implementation of the core part of the algorithm, coded as a
complete replacement for the theorem instance re-proof component, performed slightly
worse than the original (though only on a small regression test-suite, see below). With
the pro forma approach, the final step of instantiating the core theorem is constant
time, but this must be preceded by an O(n) translation of the formula into its shadow
syntax, and a similar translation back out afterwards. Both approaches should thus have
the same asymptotic complexity, and determining which to use in practice requires
experimentation.

The HOL implementation also includes most of Cooper’s other suggested im-
provements to his algorithm, including those designed to prevent or ameliorate the
“J-expansion”. Though it seems impossible to prevent the introduction of new disjunc-
tions over elements of the A or B-sets, one can delay having to expand the disjunctions
over the j € 1...¢ until all of the quantifiers have been eliminated. If the final formula
then includes divisibility constraints on the variables 7, then the range of these constraints
can be reduced, resulting in fewer disjuncts to check.

4.2 Implementing the Omega Test

The implementation of the Omega Test consists of two loosely coupled components.
One uses external proof discovery, and finds refutations or satisfying assignments for
existential goals. The other, “symbolic” sub-system uses pro forma theorems to perform
quantifier elimination on formulas with alternating quantifiers, and also on existential
formulas that produce “splinters”.

After an input formula is normalised, it is passed to the appropriate sub-system. Both
can result in the other being called. If an existential goal is not exact, is not refuted by its
real shadow, and has no satisfying assignment found in its dark shadow, then it is passed
to the symbolic sub-system, which will eliminate one quantifier. When the symbolic
sub-system eliminates a quantifier, the resulting formula may be purely universal or
existential. If so, it is passed to the external proof discovery sub-system.
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The external proof discovery sub-system is inspired by Boulton’s existing code for
Nin HOL. There are two interesting differences between that implementation and mine.
Where his code uses closures to represent possible proofs, I use an explicit, concrete ML
data structure. Its declaration is

datatype ’a derivation =
ASM of ’a
| REAL_COMBIN of int * ’a derivation * ’a derivation
| GCD_CHECK of ’a derivation
| DIRECT_CONTR of ’a derivation * ’a derivation

A derivation represents the proof of a formula
0<civ1+...+cpv, +c

where the v; are the existentially bound variables. The four constructors in the type
correspond to making an assumption, combining a lower and upper bound at variable
1, reducing a constraint because all of its variable coefficients have a common divisor,
and finding a direct contradiction, where one constraint is of the form 0 < X + ¢, the
otheris 0 < ~X + d and where ~¢ £ d. (X can be the sum of any number of ¢;v; pairs,
allowing a refutation to be found before all variables are eliminated.)

In practice, the polymorphic ’a parameter of the derivation type is instantiated
to term, the type of HOL terms. Nonetheless, the implementation of the external proof
discovery analysis doesn’t require any connection with the HOL kernel and has been
used independently by others. This is in contrast with Boulton’s code, which is tied to the
HOL kernel because its closures are of pending calls to the kernel’s rules of inference.

More significantly, Boulton’s code only finds refutations. (An implementation of
SUP-INF is used separately to find witnesses for existential goals.) This is because a
goal is not necessarily satisfiable if its real shadow does not refute it. On the other
hand, the Omega Test implementation can find satisfying assignments when it reduces
an exact or dark shadow to a formula of just one variable. Such a formula has at most
two constraints, a lower and upper bound. A coefficient thatisn’t 1 or ~1 can be divided
out, and one of 0 < cz + ¢; and 0 < cx + co will imply the other, because ¢ and ¢
are constants[ If the constraints aren’t contradictory, then either bound will satisfy the
formula. Recursively unwinding the computation of the shadow, satisfying assignments
can be found for other variables. The original goal can then be proved as a HOL theorem
using the provided witnesses.

The “symbolic” sub-system is based on constants evallower and evalupper,
which are used to interpret lists of pairs of numbers as lower and upper-bound con-
straints on a provided value. The defining equations for evallower are

evallower x [] = T
evallower x ((c,1b)::cs) = 1b <= &c * x A evallower x cs

? Following [14], my implementation uses a hash-table to efficiently eliminate redundant con-
straints.
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(The first number of each pair is a natural number, ensuring that the bound really is a
lower-bound, so the & function is used to inject from N to Z. The evalupper function
is defined similarly.)

The theorem representing exact shadow elimination is simple to state:

EVERY fst_nzero uppers A EVERY fst_nzero lowers =
EVERY fstl uppers V EVERY fstl lowers =

((dx. evalupper x uppers A evallower x lowers) =
real_shadow uppers lowers)

The side-conditions require that the coefficients are all non-zero, and that either all of
the upper or lower coefficients are equal to 1. The real_shadow function constructs the
new set of constraints. It is characterised thus:

real_shadow uppers lowers =
Ve d 1b ub.
MEM (c,ub) uppers A MEM (d,1b) lowers =
&c * 1b <= &d * ub

Finally, the HOL theorem corresponding to Theorem 2k

EVERY fst_nzero uppers A EVERY fst_nzero lowers A

EVERY (Ap. FST p <= m) uppers =

((dx. evalupper x uppers A evallower x lowers) =
dark_shadow uppers lowers V dJx. splinter x m uppers lowers)

This restatement of the theorem uses the fact that the variable m need not be the maximum
of the upper bound coefficients, but needs only be at least as big as them all. The
implementation always instantiates m to be the maximum, but it’s simpler not to have to
compute the maximum in the logic.

4.3 Comparing the Algorithms

I have not performed extensive performance analyses of the implementations of the
algorithms. Both were developed and tested against the same regression test-suite, which,
now that the algorithms’ implementations are complete, contains 152 problems. Though
a small collection of mainly small problems, it is a plausible test of the algorithms over
one of the domains where they’re most likely to be applied: interactive proof of goals
that are usually valid. Another similar domain is the use of these algorithms as part of
simplification. There, though the Presburger goals are more likely to be invalid, they are
still usually small parts of larger goals.

The figures, based on one run of each algorithm over the suite, reveal that the Omega
Test is 22% faster over the whole test-suite (on a dual processor 1.6GHz Athlon machine,
Omega did the 152 problems in 54.7s, Cooper’s algorithm in 66.8s). Omega solved the
problem with the biggest absolute time difference in 5.4s, and Cooper’s algorithm in
9.0s, so this one problem accounts for roughly a third of the difference between them.
Cooper’s algorithm is faster on 59 of the problems (on 16, the algorithms take equally
long). Cooper’s algorithm’s best performance, in terms of absolute time elapsed, is a
problem where it takes 4.2s, and the Omega Test takes 5.8s.
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These figures can only be used to indicate that one implementation of the Omega
Test seems a little quicker than one implementation of Cooper’s algorithm, and that there
are input problems for each where one is slower than the other. The implementation of
the Omega Test has the advantage that it can work outside the logic when solving purely
existential goals. Conversely, Cooper’s algorithm need not convert to DNF. It is simple
to construct problems to favour one or other of these strengths.

Experiments to compare the algorithms more rigorously would need careful con-
struction. In recent work, Jani¢i¢, Green and Bundy compared implementations of
Cooper’s algorithm and Hodes’s method applied to universal natural number Presburger
goals [9]. The tests used for this work were generated randomly, and suggested that
Cooper’s algorithm could perform as well as Hodes’s method.

5 Extensions

After implementing the basic algorithms, it is possible to extend their “reach” by applying
a variety of pre-processing steps to their input formulas. Here are descriptions of some
of these:

Generalisation. Where a formula contains free variables, or other terms involving sym-
bols outside Presburger arithmetic, attempt to prove the goal where these terms are
replaced with a universally quantified variable. This enhancement is trivial, but
makes a big difference to usability in an interactive setting. When the goal is as
likely to be unsatisfiable as valid, such as when the procedure is embedded in a
simplifier, it also makes sense to negate the input formula, generalise and then try
to prove the resulting goal.

Natural numbers. Closed formulas where quantified variables range over N can be
easily converted to equivalent formulas whose quantified variables range over Z.
This makes the one procedure universal for both domains, and their mixture. The
equations used for the quantifiers are

(3z:N. P(&x)) = (3x:Z.0<z A P(x))
(Vo :N. P(&x)) = Vo :Z.0 <z = P(x))

where & is the function which injects from N into Z. Conversion of predicates so
that they range over Z instead of N is done using equations such as

n<ym =&n <y &m
&(n +ny m) = &n +7 &m

Dealing with natural numbers also requires a separate phase of generalisation. For
example, the valid formula 0 < n*m withn, m € Nmustbe turnedintoVp : N. 0 <
pandthento Vi : Z. 0 < i = 0 < ¢. Omitting this first phase of generalisation will
result in first, the non-Presburger Vi 5 : Z. 0 < i x 7, and then Vk : Z. 0 < k, both
of which are invalid.

Expansion of constants. It is a trivial matter to expand many useful constants that will
likely appear in goals, replacing occurrences with their definitions or appropriate
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characterising theorems. For example, predicates such as ODD, the unique existence
quantifier (3!) and functions such as max can all be treated directly.

It is even possible to get a treatment of integer division (as long as the divisor is a
non-zero constant) by observing that

P(z/d)y=Fqr.(x=qd+r)AN(0<r<dvd<r<0)AP(q

The same technique also provides a treatment of modulus.

6 Conclusions

I have presented detailed proofs of the correctness of two complete decision procedures
for full Presburger integer arithmetic. On this foundation, I described how these proce-
dures (and in some sense, these proofs) have been implemented in the HOL theorem-
proving system. The implementations further demonstrate three important techniques
with which complicated algorithms can be realised in a fully expansive setting.

As a demonstration of what is possible, this work supports the call in [9] for imple-
mentors of theorem-proving systems to provide complete methods. In particular, because
the Omega Test will prove all of those universal goals that incomplete implementations
of Fourier-Motzkin variable elimination prove, using the same approach, there seems
little reason not to extend these implementations to also prove the other universal goals,
and to then also cope with alternating quantifiers.

The sketchy testing I have performed seems to indicate that “one can never have
too many decision procedures”. If one encounters a goal that is not handled well by
one algorithm, it is useful to have another weapon in one’s armoury. This holds for
interactive tool use, where the user makes the selection, and also for automatic systems
that combine algorithms, perhaps by running them in parallel.

Availability. All of the source code (and the test-suite) for the implementations is part
of the standard HOL distribution, available from SourceForge, at
http://hol.sourceforge.net!
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