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We propose a formal model for distributed systems, where each participant advertises its require-
ments and obligations as behavioural contracts, and where multiparty sessions are started when a set
of contracts allows to synthesise a choreography. Our framework is based on the CO, calculus for
contract-oriented computing, and borrows concepts and results from the session type literature.

It supports sessions where the number of participants is not determined beforehand, and keeps
COy’s ability to rule out which participants are culpable if contracts are not fulfilled at runtime. We
show that we have progress and session fidelity in CO,, as a result of the honesty of participants —
i.e., their ability to always adhere to their contracts.

1 Introduction

Distributed applications are nowadays omnipresent but even for seemingly simple cases, there is still a
pressing need to make sure they do work as their designers intended. Indeed, such systems are difficult to
design, verify, implement, deploy, and maintain. Besides the intrinsic issues due to the underlying exe-
cution model (concurrency, physical distribution, etc.), applications have to be designed within a strange
paradox: they are made of components that, on the one hand, collaborate with each other and, on the
other hand, may compete for resources, or for achieving conflicting goals. This paradox is especially
relevant in inter-organisational service-oriented scenarios, where services may be deployed by different
entities: even under common policies, the implementations may reflect diverging and changing require-
ments, up to the point of departing from the agreed specifications. This issue is reflected in standards
such as [11], which includes runtime monitoring and logging to check that interactions in SOAs actually
adhere to agreed policies and service descriptions.

We propose a formal model for distributed systems where contracts drive interactions: components
advertise behavioural contracts, such contracts are used at runtime to establish multiparty agreements,
and such agreements steer the behaviour of components. Therefore, contracts are not just a specification
or a design mechanism any more, rather they become a pivotal element of the execution model.

In this work we combine two approaches: session types [9] and contract-oriented computing [5].
From the former, we adopt concepts, syntax and semantics — and in particular, the interplay between
local behaviours and choreographies (i.e., between local types and global types) as a method for speci-
fying and analysing the interactions of participants in a distributed system. However, in our framework
we do not assume that a participant will necessarily always adhere to its specification, nor that a global
description is available beforehand to validate the system.

We adopt CO, [4]], a generic contract-oriented calculus where participants advertise their require-
ments and obligations through contracts, and interact with each other once compliant contracts have
been found. Here, we tailor CO; to a multiparty model where contracts have the syntax of local types.
We say that contracts cy, .. .,c, are compliant when, roughly, they can be used to synthesise a choreog-
raphy — i.e., a global type whose projections are cy,...,c, themselves [10]. Once a set of compliant
contracts has been found, a CO, session may be established, wherein the participants who advertised
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2 Choreography Synthesis as Contract Agreement

the contracts can interact. However, in line with what may happen in real life scenarios, the runtime
behaviour of these participants may then depart from the contracts: the calculus allows to model these
situations, and reason about them.

1.1 Contributions

Our framework models multiparty contractual agreements as “tangible” objects — i.e., choreographies.
This allows us to rely on results and properties from the session type literature — in particular, the
well-formedness of a choreography ensures that contractual agreements enjoy knowledge of choice,
error/deadlock freedom, and progress. Furthermore, it allows us to easily check that some meta-level
properties are satisfied at runtime, e.g. on the number of involved participants, whether or not the session
may terminate, etc.

Our adaptation of CO, to a multiparty, choreography-based contract model preserves the properties
of the original calculus. In particular, if a system gets stuck, it is possible to identify which participants
violated their contracts.

We also discuss how the properties of a well-formed choreography are reflected in a context where
participants can misbehave. We introduce global progress and session fidelity in CO,, again inspired
by analogous concepts in theories based on session types. We show that they hold in systems where all
participants are honest (i.e., always respect their contracts in any context) — even when a participant
takes part in multiple sessions.

Synopsis. The rest of the paper is structured as follows. In the rest of this section, we introduce an
example that we use to motivate and illustrate our framework. In Section [2| we introduce a multiparty
contract model based on choreography synthesis. In Section [3| we present our version of CO, and
highlight its main features. In Section ] we define the notion of honesty, and its practical importance
in our contract-oriented scenario. In Section [5] we present our results, which link the notion of honesty
to the progress and safety of a CO, system (due to lack of space, the proofs are omitted). Finally, we
discuss related work and conclude in Section [0l

1.2 A motivating example

We introduce a simple example that we will use throughout the paper to illustrate our framework. We
use A,B,... for participant names, and a,a’,b,... for participant variables, and use the colour blue to
highlight contracts.

An on-line store A allows two buyers by and b, to make a joint purchase through a simplified protocol:
after they both request the same item, a quote is sent to by, who is then expected to either place an order
or end the session (bye); the store also promises to notify b, about whether the order was placed (ok) or
cancelled (bye). A’s behaviour is described by the following contract:

¢y = by?req;by?req; by lquote; (b ?order; by lok 4 by ?bye; by bye)

What kind of contracts would be compliant with ¢,? One answer consists in the following contracts,
advertised by buyers B and B,.

cg, = alreq;a’quote; (b’2 lok; a!order@bg 'bye; a!bye)

cp, = a'lreq; (b’1 20k; a’ 70k + b’ ?bye; a’?bye)
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Here, B; promises to send the request to the store (a), wait for the quote, and then notify the other
buyer (b}) before accepting or rejecting the store offer; symmetrically, B,’s contract sends the request to
the store (a"), and then expects to receive the same notification (either ok or bye) from both the other buyer
(b}) and the store itself. Each contract represents the local viewpoint of the participant who advertises
it: ¢, represents the local viewpoint of the store, and thus it does not (and indeed, it cannot) capture the
communications between B; and Bs.

An agreement among ¢y, cg, and cg, may be found by replacing the participant variables in each
contract with actual names, e.g. with substitutions {4/a,a’'}, {Bi/b;,b; } and {B2/b,,b,}. Such an agreement
is based on the existence of the following choreography (i.e., global type), which can be synthesised
similarly to what is done in [10]:

Gu, = Bi—A:req;By—rA:req;A—Bj:quote;
(B —By:0k;B; —A:order;A—By:ok + Bj—By:bye;B;—A:bye;A— By:bye)

The ability to synthesise Gag,p, guarantees that the global type is well-formed and projectable back to
the initial contracts cy, cp, and cg, (with the substitutions above); this, in turn, guarantees progress and
safety [10] of the contractual agreement.

However, in a realistic scenario, the existence of a contractual agreement among participants does
not guarantee that progress and safety will also hold at runtime: in fact, a participant may advertise a
contract promising some behaviour, and then fail to respect it — either maliciously or accidentally. Such
failure may then cascade on other participants, e.g. if they remain stuck waiting for a promised message
that is never sent.

This sort of situations can be modelled using the CO; calculus. A CO; system for the store-and-two-
customers example may be implemented as follows:

S = (x,y,z)(Aftelly Ly ca.fuse.Py] | Biftellylycp, .Ps,] | Baftellyd: cs, . Ps,))

Here, participant A advertises its contract ¢, to itself via the primitive telly |, ¢y, where x is used as a
session handle for interacting with other participants. B; and B, advertise their respective contracts to A
with a similar invocation.

In this example, A also plays the role of contract broker: once all contracts have been advertised,
the fuse prefix can establish a new session, based on the fact that the global agreement Gpg g, can be
synthesised from c,, cp, and cg,. This new session is shared among participants A, By and B;.

At this point, the execution of the system (i.e., the reduction of processes Py, Ps, and Pg,) is not
required to respect the contracts. In fact, we will see that when the contracts are violated, the calculus
allows for culpable participants to be always ruled out. Furthermore, we will discuss honesty, i.e. the
guarantee that a participant will always fulfil its advertised contracts — even in contexts where other
participants fail to fulfil theirs. When such a guarantee holds, the contractual progress and safety are also
reflected in the runtime behaviour of the CO, system.

Other possible agreements. Our contract model allows for other scenarios. For instance, a participant
Bi» may impersonate both customers, and promise to always accept the store offer, by advertising the
following contract:

cp,, = 2'lreq;a"Ireq;a"” 2quote; a” lorder; 2" 20k

where the request to the store (a’) is sent twice (i.e., once for each impersonated customer). In this case,
if we combine ¢, and cp,, with substitutions {4/a"}, {Bi2/b; b, }, we can find an agreement by synthesising
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the following global type:
Gas,, = Bia—A:req;Bia—A:req;A—Bis:quote;Bip— A:order;A—Bjp:ok
Similarly to the previous case, this scenario may be modelled with the following CO; system:

S, = (x,w)(A[teIIALXcA.fuse.PA] | Blz[teIIAichu.PBlz])

where the fuse prefix can now create a session involving A and By».
The participants in the CO, systems S| and S, may also be combined, so to obtain:

S, = (x,y,z,w)(A[teIIAix ca - fuse. Py]
‘ B [teIIA \Ly CB, -PBI] | BZ[te”A\Lz CB, ‘PBZ]
‘ Blz[te”A dw (B, 'PBIZ] )

In this case, after all contracts have been advertised to A, either a session corresponding to Gag,s,, Or to
Gag,, may take place, thus involving a different number of participants depending on which contracts are
fused. In this case, it makes sense to consider whether one of the agreements should take precedence
over the other, and which criteria should drive this choice.

2 A Choreography-Based Contract Model

We introduce a contract model based on concepts and results from the session types literature. Individual
contracts are expressed using the syntax of local session type; while contractual compliance is based on
global types synthesis: a set of contracts is compliant if it is possible to synthesise a choreography from
it, as described in [10]. For simplicity, we adopt syntax and semantics in the style of [6, [8]: we use
participant names (instead of channels) for message exchange — i.e., we consider systems with just one
channel between each pair of participants.

Syntax & Semantics. Let PP and P be disjoint sets of, respectively, participant names (ranged over by
A,B,...) and participant variables (ranged over by a,b,...). Let o,3 range over PUP. The syntax of
contracts below is parametrised wrt sorts (ranged over by e) which abstract data types (either simple or
complex). We use the colour blue for single contracts, and green for systems of contracts.

T,T'

c,c

T | Ac) | (4B):p | O

Dicroaleisci | Lieraieiei | ux.c |

A contract ¢ may be be either: (i) an internal choice &, with the intuitive semantics that after sending the
message €; to participant o;, behaviour ¢; take places; (ii) an external choice Y, saying that if a message
of sort e; is received by «;, then behaviour ¢; takes place; or (iif) a recursive behaviour. We assume that
Vi# jel.(w,e;) # (o,€;) in internal and external choices. We write fv(c) for the free participant
variables in c.

A system of contract 7 may be either: (i) a parallel composition of systems 7" | 7”; or (ii) a named
contract A(c), saying that participant A promises to behave according to c; (iii) a queue (AB) : p of mes-
sages from A to B. In a system 7', we assume that there is at most one queue per pair of participants, (i.e.,
one channel per direction), and that participant names are pairwise distinct.
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We consider systems of contracts as processes whose semantics is given by the following main re-
duction rules (see App. [A]for the omitted ones):

A—B:e

A(Ble;co®cy) | (AB):p|T ——— Alco) | (AB):p-e|T
A(B?;co+c1) | (BA):e-p|T AcBe, Alco) | (BA):p | T
The first rule says that, after an internal choice, participant A puts a message e on its queue for participant
B. The second rule says that A’s external choice can receive a message of the right sort from an input
queue BA. We write 7' A=Be 77 when either T 222% 77 or 7 2225 77, and Q(T) for the parallel

composition of the empty queues connecting all pairs of participants in 7.

Example 2.1 From the example in Section[I.2] consider the instantiated contracts of the store A and its
customer Byp. We illustrate the initial system, and how it progresses:

Tano = Alea{¥2"}{Bi/oi0}) | Bia(cp, {#/a"} {Bi2/bi,bx}) | (ABy2):[| | (B12A):|]
= A(Bip?req;Bia?req;...) | Bio(Alreq;Alreq;...) | (AB12):[] | (B124):]]

w A(Bio?req;Bia?req;...) | Bio(Alreq;...) | (AB12):[] | (B12A):req

ACBiared, ) (Byy?reqs;...) | Bio(Alreq;...) | (AB12):[] | (Bi2A):]

Choreography Synthesis as Compliance. We briefly introduce the compliance relation that tells
whether some contracts can be combined to describe a correct interaction. We reuse the main results
from [[10]]: a set of contracts is compliant if it can be assigned a choreography, i.e. a global type.

For simplicity, we use only a subset of the global types in [10] (we conjecture that extending this
would not pose any difficulties). The main difference is that, in the style of [6, [§]], we replace channels
with participant names.

The syntax of global types is as follows:

G == A—=Bie;G | G+G | GIG | uxG | x| 0

where the first production means that a participant A sends a message of sort e to B, then interactions in G
take place; G + G’ means that either interactions in G, or in G’ take place; G | G’ means that interactions
in G and G’ are executed concurrently; the rest of the productions are for recursive interactions, and end.

Similarly to [10], we use judgements of the form I' = 7" » G, where I" is an environment to keep
track of recursion variables, 7" is a system of contracts, and G is the global type assigned to 7. We say
that a system of contracts 7" has global type G, if one can infer the judgement o = 7 » G from the rules
in App. [B](simplified from [10]). The main properties that we are interested in — and that are guaranteed
by the synthesis — is that the inferred global type is well-formed and projectable back to the original
contracts. Essentially, this means that each local type must be single-threaded, and that knowledge of
choice is preserved — i.e., each choice is made by exactly one participant, and all the others are either
made aware of the choice, or they have the same behaviour whatever choice is made. Whenever a global
type satisfies these properties, we have that the system of contracts is error/deadlock free.

Example 2.2 Building up on the example from Section[I.2} we combine the contract of store A with those
of customers By and By, and we obtain the system:

Tapp, = Alea{®B/oi}{B/e2}) | Bilcs, {#/a} {B/vs}) | Balcn, {¥/a'} {B1/bi})
= A(B47?req;By?req; By !quote; (B; 2order; By lok +B; ?bye; By !bye))
| Bi(Alreq;A?quote; (By!ok; Alorder @By !bye; Albye))
| Bo(Alreq; (B1?0k; A?0k + B4 ?bye; A?bye))
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which can be assigned the following global type:

Gigs, = Bi—A:req;By—A:req;A—Bj:quote;
(B —By:0k;B;—A:order;A—By:ok + Bj—»By:bye;B; —A:bye;A— By:bye)

that is to say that o= T yg 5, ®» Gag,s, holds. Instead, if we combine the store A with B1, we have

Tas, = Alea{Bo/oip}) | Biz(e, {#/a"})
= A(By27?req;Bi2?req; Bio!quote; (Bio2order; Biolok +Byo?bye; By Ibye))
| Bio(Alreq;Alreq; A?quote; Alorder; A?0k)

Gas,, = Bia—A:ireq;Bio—A:req;A—Bio:quote;Bio—A:order;A— Bjp:ok

and, again, the judgement o= T g, » Gap,, holds.

3 A Multiparty Version of CO,

We introduce a version of the CO; calculus (for Contract-Oriented COmputing) [4]] adapted to multiparty
contracts and sessions. Let S and S be disjoint sets of, respectively, session names (ranged over by
s,s',...) and session variables (ranged over by x,y,z...). Letu,v,... range over SU S.

Syntax & Semantics. The syntax of CO; is given by the following productions:

Processes P = Yupi.-P, | PP | @3)P | X(@3) | 0
Prefixes p =7 ‘ tell g4y c ‘ fuse | dole

Latent contracts K ::= |, Asaysc ‘ K| K

Systems S u= A[P] | AK] | s[T] | SIS | @3)S | 0

CO, features CCS-style processes, equipped with branching Y (not to be confused with the choice op-
erator used in contracts), parallel composition |, restrictions of session and participant variables, and
named process invocation. The prefixes are for internal action (), contract advertisement (tell]), session
creation upon contractual agreement (fuse), and execution of contractual actions (do). A latent contract
of the form |, A says c represents the promise of participant A to fulfil ¢ by executing do-actions on a
session variable u. CO, systems may be parallel compositions of processes A[P] (where A is the partici-
pant executing P), latent contracts A[K| (where A is the participant to which the contracts in K have been
advertised), and established sessions s[7'] (where s is a session name, and 7" is a system of contracts as in
Section [2)).
We give the main reduction rules for the semantics of CO; (see App.|C|for the rest of the rules):

[CO,-TerL] Aftellg )y c.P+P' | Q] — A[P| Q] | B[lxAsays ]

K2T i = dom(0) 3 = dom(m) ran(c) = {s} s fresh
(ii,3) (A[fuse.P+P" | Q] | AK] | S) — (s)(A[P|Q]om | [T |Q(T)] | Som)

[CO,-FUSE]

P 1T Aldoge. PP | Q] — s[T'] | AIP| Q]
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[CO,-TeLL] allows a participant A to advertise a contract c to B; as a result, a new latent contract is created,
recording the fact that it was promised by A. [CO,-Fusk] establishes a new session: the latent contracts
held in A[K] are combined, and their participant variables substituted, in order to find an agreement, i.e. a
T which satisfies the relation K >§ 7' (see Definition [3.2]below). Provided an agreement is found, fresh
session variable s and participants names are shared among the parties, via substitutions ¢ and 7. Rule
[CO,-Do] allows A to perform an input/output action e towards B on session s, provided that 7" permits it.

When needed, we label CO, system transitions: S P, ¢ means that S reduces to ' through a prefix
p fired by participant A.

Example 3.1 Consider the CO; system:
S = A[dogint+dogbool] | s[A(Blint) |B(A?int) | (AB):[] | (BA):[|]] | B[dojint]

Here, the CO; process of participant A can perform an action towards B on session s, with either a
message of sort int or bool. However, A’s contract in s only specifies that A should send a message of
sort int to B: therefore, according to rule [CO,-Dol, only the first branch of A may be chosen, and the
system reduces as follows.

S % A[0] | s[A(0) | B(A?int) | (AB):int[(BA):[]] | B[dojint]
S A0 | sla) |BO) | (aB): [ (BA):]] | B[O

A main difference between our adaptation of CO, an the original presentation comes from the way
we specify session establishment. Session agreement in CO; is based on the relation defined below.

Definition 3.2 (K >3 7) Let K = ‘iel Ly, Ai says ci, such thatVi# j€l:A;#Aj, andlett: P — P and
G: S — S be two substitutions mapping participant variables to names, and session variables to names,
respectively. Also, let T = |iQ1Ai (ci)m. We define:

dom(c) = Ui/ {xi} A dom(m) = Ui, fv(c:)
KT <= A
Viel Vaefv(c).n(a)#A A 3IG.oFTw» G

Intuitively, a system of contracts 7" is constructed from a set of latent contracts K, using a substitution
7 that maps all the participant variables in K to the participant names in K itself. If it is possible to
synthesise a global type G out of 7', then the relation holds, and a contractual agreement exists. The first
two conditions, on ¢ and 7, guarantee that all the session and participant variables are indeed instantiated.
The third condition ensures that within a contract c¢;, belonging to A;, no free participant variable in c; is
substituted by 4; itself. Note that due to the condition imposed on K, each participant may have at most
one contract per session.

Example 3.3 We now illustrate how Definition works. Consider the following CO; system, with A,
By, By from Section[I.2] and T sz 5, from Example[2.2}
S = (x,y,z)(Altellylx ca.fuse.Py] | Biftellylycs, .Ps,] | Baftelly: cs, . Ps,])
———  (x,5,2) (Alfuse.Py] | A[lxAsayscy|lyBisayscs, |l.Basayscs,) | Bi[Ps,] | Ba2[Ps,])
A: fuse

——= (5)S] = (s)(A[PJom | s[Tup5, | Q(Taps,)] | Bi[PsJon | Ba[Ps,]om)

where 6 = {s/xyz} and © = {A/a.a’,Bi/b;.b},B2/by b, }
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The initial system S| is the one considered in Section where all the participants are ready to
advertise their respective contracts to the store A, by using a tellp)-primitive. This has the effect of
creating corresponding latent contracts within A. Once all the latent contracts are in a same location,
they may be fused. In this case, given 6 and T as above, Definition[3.2)is indeed applicable: the domains
of © and ™ comply with its premises, and we already saw that a system consisting of c, cg, and cg, may
be assigned a global type. Hence, a new session s is created, based on the system of contracts T \gz,,
plus the queues connecting all pairs of participants. The session variables of the latent contracts being
fused (i.e., x for participant A, y for By, and z for By) are all substituted with the fresh session name s
in the processes Py, Pg, and Pg,, via ©. Similarly for participant variables which are substituted with
participant names, via T.

The CO, semantic rules are to be considered up-to a standard structural congruence relation = (cf.
App.[C): we just point out that A[K] | A[K'] = A[K | K'] allows to select a compliant subset from a group
of latent contracts, before performing a fuse — thus adding flexibility to the synthesis of choreographies.

Example 3.4 Consider the system:
...B[fuse.P| Q] | B[lxAjsaysalint ||, A saysa'?int ||, Az says b?bool] ...

The fuse prefix cannot be fired: no contract matches As’s, and thus the three latent contracts cannot be
assigned a global type. However, by rearranging the system with congruence =, we have:

...Blfuse.P | Q] | B[liAisaysalint ||, A, saysa'?int] | B[l. Az saysb?bool]...

It is now possible to synthesise a global type Ay — A5 :int, and a session may be created for Ay and A;.
A3’s latent contract may be fused later on.

Dynamicity and Flexibility of Session Establishment. We discuss a few examples illustrating the
flexibility exhibited by our definition of contract agreement, together with the semantics of CO,.

Both participants names and variables may appear in contracts. A may want to sell an item to a
specific participant B, via any shipping company that provides a package tracking system. A’s contract is:

Blprice; B?ack;a!request; a?tracking;B!tracking

saying that the seller A must send a price to the buyer B; once B has acknowledged, A must send a shipping
request to a shipper a — who must send back a tracking number, which is then forwarded to B. This
contract may be fused only if B takes part in the session, while the role of shipper a may be played by
any participant.

It is also possible for different contracts to refer to common participant variables, thus making links
between them. Consider:

... Aftellpl«(b!request) ... X(Z,b)]... where X(Z,b) :=(y,b")tellal,(b"!quote;...bladdress)... X (Z,b)

Here, A advertises two contracts: the first one (b!request) is used by A to find a shipping company, and the
second (b’!quote;...bladdress) to sell items. Whenever the first one is fused, variable b is instantiated
to a participant name, say B, which is also substituted in the second. This means that whenever a new
selling session starts, B will also be involved as the receiver of the address message.
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Possible Extensions. The participants firing fuse-primitives are playing the role of brokers in our
framework. Depending on their implementation, they may also have some obligations in the contracts
they fuse, or they may want to enforce some general policy — therefore they may have additional re-
quirements before agreeing to start a session. Several variations of the fuse primitive are possible thanks
to the fact that we base contract agreements on objects representing the overall choreography. We intro-
duce fuse[n], a version of fuse that only fuses sessions where there are at least n participants; fuser, which
has the additional constraint that no recursive behaviour is allowed in the synthesised choreography (i.e.
therefore ensuring that the session will eventually terminate), and fuseg, which only creates sessions
when the synthesised choreography never terminates (i.e. it only consists of recursive behaviours).
The three extensions may be defined directly via small modifications of Definition 3.2}

* fuse[n]: we add the condition |P(G)| > n, where P(G) is the set of participants in G;
* fuser: we add the condition that there should not be any recursion variable ) in G;
* fuseg: we add the condition that 0 does not appear in G.

This kind of properties must be checked for at the global level because it cannot always be decided by
looking at the individual contracts. For instance, a participant might exhibit a recursive behaviour in one
of the branches of an external choice, while the participant it interacts with may always choose a branch
that is not recursive. Note that none of these variations actually affect the results that follow, since the
original fuse primitive is also blocking. The variations only restrict some of its applications. Further
variations of fuse are sketched in Section[6] as future work.

4 The Problem of Honesty

In this section, we discuss and define the notion of honesty [4], i.e. the ability of a participant to always
fulfil its contracts, in any context. Broadly speaking, in our contract-oriented setting, honesty is the
counterpart of well-typedness in a session type setting: the static proof that a participant always honours
its contracts provides guarantees about its runtime behaviour.

As seen in Example each do prefix within the process of a participant, say A[P], is driven by the
contract that A promised to abide by. In a sense, CO; is culpability-driven, according to Definition
below: when a participant is culpable, it has the duty of making the session progress according to its
contract.

Definition 4.1 (Culpability) Ler S be a CO; system with a session s, i.e. S = (i,3) (A[P] | s[T] | S1) | Sa.
We say that A is culpable in S when there exist B and e such that T A=bBe,

A culpable participant can overcome its status by firing its do prefixes, according to [CO,-Do], until
someone else becomes culpable or the session terminates. Hence, as long as a participant A does not
enable a do-prefix matching a contractual action, the session state will keep A’s culpability.

When a participant A is always able to fulfil its contractual actions (i.e., overcome its culpability),
no matter what other participants do, then it is said to be honest (cf. Definition 4.8)). This is a desirable
property in a distributed contract-oriented scenario: a participant may be stuck in a culpable condition
both due to “simple” bugs (cf. Example [.7)), and to the unexpected (or malicious) behaviour of other
participants (cf. Example[5.6). Therefore, before deploying a service, its developers might want to ensure
that it will always exculpate itself.

Formally, as in [[1]], we base the definition of honesty on the relationship between the ready sets of
a contract, and those of a CO, process. We call the former contract ready sets, and the latter process
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ready sets. The concept of contract ready sets is similar to [7, |4, [1]], where only bilateral contracts are
considered. Here, we adapt it to suit our multiparty contract model.

Definition 4.2 (Contract Ready Sets) The ready sets of a contract ¢, written CRS(c), are:

CRS(¢) if c=ux.c
CRS(c) = {{(Ane))} i€} if c=Dc Aileisci and 1# 2
{{(Bi,e) [iel}} if c=YiesAs%eici

Intuitively, when a participant A is bound to a contract c, the ready sets of ¢ tell which interactions A must
be able to perform towards other participants. Each interaction has the form of a pair, consisting of a
participant name and a message sort. The interactions offered by an external choice are all available at
once, while those offered by an internal choice are mutually exclusive.

Example 4.3 Consider the system of contracts T yg,s, from Example — and in particular, the stipu-
lated contracts therein, with substitution © = {A/a,a',Bi/b, b}, B2/by.b} } from Example '

s = o = Bj?req;By?req;B;!quote; (Byorder; By lok + By ?bye; By !bye)
s, = c¢gTm = Alreq;A?2quote;(Bylok;Alorder @B, !bye;Albye)
¢z, = c¢p,m = Alreq;(B;?0k;A%k+B;?bye;A?bye)

We have CRS(¢y) = {{(B1,req) } }: in other words, at this point of the contract, an interaction is expected
between A and By (since A is waiting for req), while no interaction is expected between A and By.

Let us now equip T g 5, with one queue between each pair of participants, and let it perform the
request exchange between By and A, with the transitions:

) B;—A:req A<Bj:req

Tap;p, | Q(T 8,8, Thpis, | Q(Tas,)

We have that ¢y in T'yg g, is now reduced to:
¢y = By?req; By !quote; (By ?order; B, ok + By ?bye; By |bye)

and thus we have CRS(¢y) = {{(Ba,req)}}, i.e. A is now waiting for a request from By.
If we let the system reduce further, ¢’ reaches its external choice:

¢éa"" = By 7order; B;!ok 4 B ?bye; B, !bye

Now, the ready sets become CRS(¢}") = {{(By,order), (By,bye)}}, i.e. A must handle both answers from
By. Instead, when cg, reduces to its internal choice, we have:

CE, " = Bylok; Alorder ® B, !bye; Albye
Thus, its ready sets become CRS(cg,”) = {{(B2,0k)},{(B2,bye)}}, i.e. Bj is free to choose either branch.

Example [4.3] shows that, when a contract ¢ of a principal A evolves within a system 7', its ready sets
change. Now we need to define the counterpart of contract ready sets for CO, processes, i.e. the process
ready sets. Again, we adapt the definition from [1]] to our multiparty contract model.
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Definition 4.4 (Process Ready Set) For all CO; systems S, all participants A,B and sessions u, we de-
fine the set of pairs.ﬂ

PRS,(S) = {(B,e) | 3¥,3,P,P,Q,5 . S=(¥,3) (A[doge.P+P | Q] |So) |S1 A ugv}

Intuitively, Definition [4.4] says that the process ready set of A over a session u in a system S contains
the interactions that A is immediately able to perform with other participants through its do“ prefixes.
Just as in contract ready sets, the interactions are represented by participant/sort pairs.

Next, we want to characterise a weaker notion of the process ready set, so it only takes into account
the first actions on a specific session that a participant is ready do make.

: dog
Definition 4.5 (Weak Process Ready Set) We write S 7 dod), & iff:

(EIp.SB:—p>S/) Y (HC,p.SC:—p>S/) Y (Hp.SA:—p>S' A Ve.p#do"e) where C # A
We then define the set of pairs WPRSA(S) as:

WPRSA(S) = {(B,e) | 3575 2R 0,

*S' A (B,e) € PRS (S’)}

In Definition 4.5 we are not interested in the actions that do not relate to the session u. Thus, we
allow the system to evolve either by (i) letting any other participant other than A do an action, or (ii)
letting A act on a different session than u, or (iii) do internal actions.

We now introduce the final ingredient for honesty — that is, the notion of readiness of a participant.

Definition 4.6 (Readiness) We say that A is ready in S iff, whenever S = (ﬁ,‘B)S 1 | Sz for some ii,b and
Sy =s[A(c) | ---] | So, the following holds:

3X € CRS(c). ((B,e) € X = (B,e) € WPRS}(S1))

Definition [4.6] says that a participant A is ready in a system S whenever its process ready sets for
a session s will eventually contain all the participant/sort pairs of one of the contract ready sets of A’s
contract in s. When a participant A is “ready”, then, for any of its contracts ¢, the CO, process of A is
(eventually) able to fulfil at least the interactions in ¢’s prefix.

Example 4.7 We have seen that, after reduction, and fusion of the latent contracts of S\ (in Example[3.3))
we obtain the following system

()81 = (s)(AlPron] | s[Tus;z,

Q(T4s,5,)] | Bi[Ps,om] | Ba[Ps,0m])

where the substitutions 6 and ® are also from Example 3.3 Let us define the three processes (after
application of the substitutions):

Pyon = do}, req.do}, req.dog quote. (doy, order.doj ok + doj bye.do}, bye)
Pgon = 7t.dojreq.do, quote.doj order
Pg,0on = dojreq. (doj ok.dojok + doj bye.doj bye)

I'The side contition “u ¢ ¥ of Deﬁnition deals with cases like Sy = (s) (A[dogint]) and S = Sp | s[A(Blint) |...]|...:
without the side condition, PRSA(Sy) = {{(B,int)}} — hence, by Def. A would result to be ready in S.
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Thus, we have:

PRS}(S]) = {(Bi,req)} = WPRS(S))
PRS®:(S]) = @ # {(A,req)} = WPRSE(S))
PRSE:(S!) = {(A,req)} = WPRSE(S))

Note that the T prefix in Py, prevents By from interacting immediately with A on session s, although it is
“weakly ready” to do it. Hence, considering that the weak process ready sets of each participant in S
match their respective contract ready sets in T g5, (Example according to Definition we have
that participants A, By and B, are all ready in (s)S).

Definition 4.8 (Honesty) We say that A[P] is honest iff, for all S with no latent/stipulated contracts of A
nor Al---], and for all S’ such that A[P] | S —* S, Ais ready in S'.

A process A[P] is said to be honest when, for all contexts and reductions that A[P] may be engaged
in, A is persistently ready. In other words, there is a continuous correspondence between the interactions
exposed in the contract ready sets, and the process ready sets of the possible reductions of any system
involving A[P]. The definition rules out contexts with latent/stipulated contracts of A — otherwise, A
could be made trivially dishonest, e.g. by inserting a latent contract |, A says ¢ that A cannot fulfil.

Example 4.9 Consider the process Bi[telly |, cg, . Pg,] of system Sy, as defined in Examples and
We show that this process is not honest. In fact, S can reduce as S; —* (s)S} = (s)S{, where:

(s)S] = (s)(A[dof31 order . doj, ok + do} bye.do}, bye]
| s[ A(By?order;B;lok+ By ?bye;B,!bye)
| By (Balok;Alorder @By!bye; Albye) | Bs(Bj?0k;A%0k+ By ?bye; A?bye)
| (ABy):[] | (B1A):[] | (AB2):[]| (B2A):[] | (B1B2):[] | (3231)3“]
| Bi[dojorder] | B;[dog ok.dojok + doj bye.doibye})

At this point, we see that there is a problem in the implementation of By : it does not notify the other buyer
before making an order. In fact, By’s process is trying to perform doj order, but its contract requires that
dog, ok is performed first (or dog, bye, if the quote is rejected). This is reflected by the mismatch between
By ’s process ready set in S, and its contract ready sets, in session s:

PRSE(S7) {{(A,order)}}
CRS(By!ok;Alorder @By !bye;Albye) = {{(Bz,0k)},{(B2,bye)}}

In terms of the above definitions, there exists a system S| — containing By [telly dycs, . Py, | — that reduces
to a (s)S| where By is not ready (Definition[4.6). Therefore, Bi[telly |y cg, . Pg,] is not honest. In fact, B,
is culpable in (s)SY, according to Definition 4. 1|

As in [[1]], the definition of honesty subsumes a fair scheduler, eventually allowing participants to fire
persistently (weakly) enabled do actions.

Honesty is not decidable in general [4]], but for a bilateral contract model it has been approximated
either via an abstract semantics [4] or a type discipline [1]] for CO,. Considering that our systems of
multiparty contracts form a (strict) subset of the local and global types considered in [8], for which each
configuration is reachable by a 1-buffer execution, we believe that these approximations may be easily
adapted to our setting.
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5 Results

We now give the main properties our framework guarantees. We ensure that two basic features of CO,
hold in our multiparty adaptation: the state of a session always allows to establish who is responsible
for making the system progress (Theorem [5.1) and honest participants can always exculpate themselves
(Theorem [5.3). We then formalize a link between the honesty of participants, and two key properties
borrowed from the session types literature: Theorem [5.4]introduces session fidelity in CO,; and Theo-
rem [5.5]introduces a notion of progress in CO,, based on the progress of the contractual agreement (and
hence, on the progress of the underlying choreography).

Theorem 5.1 (Unambiguous culpability) Given a CO; system S, if S contains a session s[T'| such that
T # 0, then there exists at least one culpable participant.

Theorem says that in an active session, there is always at least one participant A[P] who leads the next
interaction. Thus, if a corresponding doge prefix is not in P, S may get stuck, and A is culpable.

Example 5.2 Consider the system S| in Example and the system of contracts in its session s:

T, = A(Bs?order;B,!ok+ B;?bye;B,!bye)
| By (Balok;Alorder @B,y !bye; Albye) | B,(Bj?0k;A?0k + By ?bye; A?bye)

| (ABy):[] | (BsA):[] | (AB2):[] [ (B2A):[] | (BsB2):[] | (B2B1):|]
B|’:,Bziok B]‘:,Bzibye . . . .
We have T, ———— and T, ————. Hence, B is responsible for the next interaction, and culpable
for SY being stuck.

Theorem 5.3 (Exculpation) Given a CO; system Sy with a honest participant A[P], whenever Sy —*
S = (4,3) (s[T] | S1) | S2 and A is culpable in S, there exist B and e such that:
R- . . B
T A=Be and g AT —>A' do, e
Theorem [5.3| follows from the definition of honesty, and formalises the idea that honest participants

can always overcome their culpability, simply by firing their contractual do actions (possibly after some
internal actions).

Theorem 5.4 (Fidelity) For all S with only honest participants s.t. S —* S' = (i,3) (A[P] | s[T] | So) | S1,
(8" =5 %) = (T ﬂ)) (where —* is any reduction not involving session s).

Theorem [5.4] essentially says that each (honest) participant will strictly adhere to its contracts, once they
have been fused in a session. It follows directly from the semantics of CO; (that forbid non-contractual
do prefixes to be fired) and from the definition of honesty.

Theorem [5.5] below introduces the notion of global progress, which is slightly different from the
contractual progress. In fact, progress in CO; is only meaningful after a session has been established,
and thus a culpable participant exists. A system stuck without sessions may not progress because a set
of compliant contracts cannot be found, or a fuse prefix is not enabled. In both cases, no participant may
be deemed culpable, and thus responsible for the next move. However, the system may progress again if
other (honest) participants joins it, allowing a session to be established.

Theorem 5.5 (Global Progress) Given a CO; system Sy with only honest participants, whenever Sy —*
S=(4,3)(s[T] | S1) | S where T #£ 0, then S —.
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Theorem [5.3] follows from the definition of honesty (i.e. participants are always ready to fulfil their
contracts), the fact that contract compliance guarantees contractual progress [10], Theorem [5.3] and the
semantics of CO; (in particular, rule [CO,-Do]). This result also holds for systems where a process takes
part in multiple sessions: the honesty of all participants guarantees that all sessions will be completed.

Example 5.6 We now give a simple example on a system with multiple sessions. We show how a seem-
ingly honest process (B) could be deemed culpable due to the unexpected behaviour of other participants,
and how honest participants guarantee progress of the whole system. Consider:

S = (x,y,z,w)( Aftelly | (Blint) .fuse.fuse] | Btellyl, (A%int).telly], (Clbool).do} int.dog booll
| Cltelly L, (B?bool) . doy bool] )

After all four contracts have been advertised to A and fused, the system reduces to:

S"=(s1,52)(A[0] | B[doy'int.dog bool] | C[dog bool]
| s1[A(B%int) | B(Alint) | (AB):[] | (BA):[]] | s2[B(C!bool) | C(B?bool) | (BC):[] | (CB):[]] )

Even if both sessions sy and s, enjoy contractual progress, S’ is stuck: A does not perform the promised
action, thus remaining culpable in sy; B is stuck waiting for A in sy, thus remaining culpable in SZ-EI
Indeed, neither A nor B are ready in S', and thus their implementations in S are not honest. Hence,
global progress is not guaranteed.

Let us now consider the following variant of S, where all participants are honest:

S=(x,y,z,w) (A[(telly x (Blint) . dogint) | fuse | fuse]
| Bftelly Jy (A%nt).telly | (C!bool). (doj int.dof bool +T. (doj int | do§ bool) ) |
| Cltellydw (B?bool) . doy, bool] )

In this case, A will respect its contractual duties, while B will be ready to fulfil its contracts on both
sessions — even if one is not activated, or remains stuck (here, T represents an internal action, e.g. a
timeout: if the first doj int cannot reduce, B falls back to running the sessions in parallel). The honesty
of all participants in S guarantees that, once a session is active, it will reach its completion.

6 Conclusions

CO» has been introduced in [2]], and in [4] it has been instantiated to a theory of bilateral contracts
inspired by [7]. Other variations are possible (e.g., with contracts based on logic formulae or event
structures), since the core calculus abstracts from the contract model in use [3]]. In this work, we explored
the interplay between CO, and a contract model that fulfilled two basic requirements: (i) it supports
multiparty agreements, and (ii) it provides an explicit description of the choreography that embodies
each agreement. To the best of our knowledge, no other contract modelprovides the latter — and this
prompted us towards the well-established results coming from the session types setting.

The seminal top-down approach of multiparty session types has been first described in [9]]. In sum-
mary, the framework works as follows: designers specify a choreography (i.e. a global type), which is
then projected onto local behaviours (i.e. local types), which in turn are used to typecheck processes. Our
multiparty contract model uses these results “bottom up”, i.e. by synthesising a global type from local

2In this case, B is deemed culpable in s, because its implementation did not expect A to misbehave.
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contracts, as in [10]. We built our framework upon a simple version of session types, and yet it turns out
to be quite flexible.

We plan to extend our work so to offer even more flexibility. For example, by introducing a parame-
terised fuse primitive which, when more than one possible agreement is available (as in our introductory
example), will form a session according to different criteria, e.g. by choosing the agreement involving
the most (or least) number of participants. These criteria may be based on a semantic characterization of
global types, e.g. as the one in [6]. We also plan to study the possibility for a participant to be involved in
a session under multiple contracts — e.g. when a bank advertises two different services, and a customer
publishes a contract which uses both of them (and possibly others) in a well-formed choreography.

Another research direction is the concept of “group honesty”. In fact, the current definition of hon-
esty is quite strict: it basically verifies each participant in isolation, thus providing a sufficient (but not
necessary) condition for progress. Consider, for example, a CO; system like:

S = (x,y)(A[telly |« (Blint@Blbool) . fuse.dogint] | Bltelly .y (A%int+A?bool).dojint])

B is dishonest, since it is not ready for the bool branch of its contract. However, system S has progress:
when B establishes a session with A, the latter will never take the bool branch; hence, B will not remain
culpable. This kind of “group honesty” may be used to validate (sub-)systems of participants developed
by the same organization: it would ensure that they never “cheat each other”, and are collectively honest
when deployed in any context. Furthermore, the group honesty of all participants in a system S may turn
out to be a necessary condition for the global progress of S.
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A Semantics of Local Types

Below are the rest of the semantic rules for local types / contracts (extending the ones on page . A
ranges over the labels A — B : e and A < B : e, where the former means that a message of sort e is sent
by participant A to B, and the latter means that a message of sort e is received by A from B.

ux.c = c{¥/uxc} commutative monoidal laws for | and 0

W57 = T T, AT T, Th=T\ 5T =7, = T,57,

We define 0 =D, aileiici =Y cqai’eici

B Synthesising a global type

CHAl)|[B()|TwG TY oFTw» G oFT' » G
i [ A(Ble;c) |B(A%;c') | T » A—B:e; G [ CHT|T"» G| G
CHAl)|Tw G THA) [ Tw»G  TY CHB)|T» G TY
52 +
) TFalcad) [T G+G TRl ) Te g
u 1 <ij<k.(Ale) [Aj(e;)T T-(Anxa) ity (AXe) i X Asler) | oo [ Aler) » G
u
A (uxy.cr) | ..o | Ac(uXp.ck) » ux.G
- V1 <i<k.T(Ai,x;) =% [ ]TIET/ LT » G VneP(T). T(n)=0
X
TFAX) | .. Al by 0 TF7»gG TFT w0

We define the ready set of a system as follows:

{A<B;|i € IYUR(T") if T =A(Y;c/Bi%i5¢i) | T
{A—Bi|i € I}UR(T") if T = A(@;cBileisci) | T
{A—B}UR(T") ifT=(AB):e-p|T’

1%} if7=0

R(T) =

We overload R(_) on behaviours as expected, and define 7] <= JA—B:A—B€cR(T)AB«A€
R(7'); we write 7 J/if 7] does not hold.

C Semantics of CO,
Below is the rest of the semantic rules for CO, (extending the ones on page|[6).
[CO,-Tau] A[T.P+P | Q] — A[P]| Q]
X (id,38):=P (Z,¢) (A [P{V/ﬁ} {B/a} | Q] |S) — 8
o) (a[x@B o] 1s) = 8

[CO;,-DEF]
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Structural congruence for CO, (Z,Z’,Z" range over processes, systems, or latent contracts)

,b)(¥,2)A[P] Aj0]=0

AK] | AK' = AK | K']
Z| =7z (z|zh|z'=z|(Z'|Z"
Z|(4,3)Z' = 4,3)(Z2|Z) ifunfoav(Z) =3aNfav(Z) = @
G3)FEZ=GHEDZ  (@3)F5)Z = @7,35)2
(4,3
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