
Verification of model transformations: A case
study with BPEL?

Luciano Baresi1, Karsten Ehrig2, and Reiko Heckel2

1 Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy
baresi@elet.polimi.it

2 Department of Computer Science, University of Leicester, United Kingdom
{karsten,reiko}@mcs.le.ac.uk

Abstract. Model transformations, like refinement or refactoring, have
to respect the semantics of the models transformed. In the case of be-
havioural models this semantics can be specified by transformations, too,
describing an abstract interpreter for the language. Both kinds of trans-
formations, if given in a rule-based way, can formally be described as
graph transformations.
In this paper, we present executable business processes, their operational
semantics and refactoring, as an example of this fact. Using results from
graph transformation theory about critical pairs and local confluence, we
show that our transformations preserve the semantics of processes. The
analysis is performed by means of the graph transformation tool AGG.

1 Introduction

Transformations of models are the key technology of Model-driven Development
(MDD), an approach to software development where graphical models (rather
than programs) are the focus and primary technical artefact. Model transforma-
tions can serve a variety of purposes, including the refinements of models, their
mapping to implementations, consistency management, or evolution. In many of
these examples, a semantic compatibility between the artefacts before and after
the transformation is desired.

With the semiformal nature of most visual models, and the corresponding
lack of formal semantics, this relation is often not easy to describe. And if for-
mal semantics exist for both source and target models, they are often given in
different semantic domains and using different formal techniques.

It seems that the only general solution to this problem consists in adopting
a formalism powerful enough to describe both the intended semantics and the
transformation of the models involved, and which provides techniques and tools
to demonstrate the relation between them. Since we are dealing with visual

? Work supported in part by the IST-2005-16004 Integrated Project SENSORIA: Soft-
ware Engineering for Service-Oriented Overlay Computers and by the European
Community’s Human Potential Programme under contract HPRN-CT-2002-00275,
[SegraVis].



models whose abstract syntax is often expressed by means of graphs, we are
opting for graph transformation as one such approach.

In this paper we are demonstrating the idea by means of the transformation
of executable business processes inspired by BPEL4WS, the Business Process
Execution Language for Web Services [13], and presented using the notation of
UML activity diagrams. Normally BPEL assumes a centralised approach, where
a single entity—usually called orchestrator— controls the execution flow and
coordinates the interactions with selected services. Centralised execution is easy
to describe, but not always adequate if the system is distributed by nature, for
example, in the case of inter-organisational business processes, where each party
is in charge of a particular fragment of the process.

With this motivation, Baresi et al [3, 4] use transformations to partition a
monolithic process into a coordinated set of sub-processes. However, although
the distribution is described formally by means of graph transformation rules,
no verification of its semantic correctness is given. The present paper addresses
this issue and discusses the conceptual and software tools required to

– formalise a notion of semantic compatibility between the distributed and the
original process, taking into account that not all features of one may exist
in the other;

– verify that this compatibility holds for all processes obtained through appli-
cation of the proposed transformation rules.

The first aim is achieved using typed attributed graph transformation rules
to define the operational semantics of centralised and distributed processes. To
this end, a meta model captures the abstract syntax of executable processes,
extended by information about their execution state. This meta model, formally
represented as a type graph with inheritance, is the basis of a set of operational
semantics rules. This approach allows us to specify the operational semantics and
transformations in the same formalism, thus simplifying the analysis. The seman-
tic relation is established by associating observations with operational rules, gen-
erating the labelled transition systems of processes, and applying the standard
notion of bisimilarity modulo a suitable projection of transitions onto common
labels.

The proof that the semantic relation holds for all processes obtained from
each other by application of transformation rules realising the distribution is
based on the idea of mixed confluence [8]: If transformation rules are exchange-
able with operational rules, the application of a transformation does not reduce
the operational semantics. Mixed confluence is shown by critical pair analy-
sis [9] of model transformation vs. semantic rules. This allows us to establish
a simulation relation between the given and the derived process. Since graph
transformation rules are invertible, the same technique can be used to show
bisimilarity.

The paper is organized as follows. After introducing in Section 2 those fea-
tures of the BPEL language that are relevant to our model, Section 3 describes
the BPEL meta model and the transformation from centralised into distributed



processes. Section 4 sketches the operational semantics and Section 5 discusses
the correctness of the transformation. Section 7 concludes the paper.

2 Executable Business Processes as Activity Diagrams

BPEL4WS (Business Process Execution Language for Web Services, [13]) based
on WSDL (Web Services Description Language, [6]) is an XML-based language
designed to enable the coordination and composition —using a workflow-based
approach— of a set of Web services. BPEL defines a number of activities to
describe the interaction of the process with its partners. Activities can be basic or
structured. Basic activities define the interaction capabilities of BPEL processes:
invoke activities call operations of external services and (in their synchronous
version) wait for the response message to arrive, receive activities wait for
suitable messages (invocations), reply activities answer invocations, etc.

Structured activities can comprise both basic and other structured activities.
Examples include switch defining branches, flow allowing for parallel threads,
and pick defining branches whose selection is based on the receipt of suitable
messages.

In this paper, we consider a subset of the language, ignoring some of the con-
trol constructs and features such as asynchronous communication, fault handlers,
etc., see [13] for an in-depth presentation. We illustrate the approach by means
of the example in Fig. 1, using UML activity diagrams to visualise a process
that manages orders received from clients in cooperation between an office and
a warehouse. We assume that the Office receives the order through a receive
activity and implicitly validates it. If it is acceptable, the Warehouse invokes
shipment, otherwise the Office proceeds with a basic (local) undo operation.
The two orchestrators are distinguished by so-called swimlanes.

3 Transformations

This section demonstrates the use of transformation rules to partition a process
into a main process and a set of independent sub-processes. The presentation
starts from a simple meta-model introducing the types of nodes and edges re-
quired to represent processes. Then, we introduce a sample transformation rule.

The presentation is based on the algebraic double-pushout approach to the
transformation of typed and attributed graphs [9]. For a more compact presen-
tation of metamodel and rules we use subtyping as well as negative application
conditions.

3.1 Meta-model

The meta-model of Fig. 2, which borrows some concepts from the work proposed
in [11], only comprises elements that are used by the example in this paper.

A business process comprises Elements, which are distinguished into Nodes
and Edges, linked by means of associations source (src) and target (tar). More-
over, Nodes are further classified into



Example

<<receive>>
order

<<basic>>
undo

<<invoke>>
shipment

Warehouse Office

<<receive>>
order

<<basic>>
undo

<<invoke>>
delegate

Warehouse Office

<<receive>>
delegate

<<reply>>
delegate

monolithic process transformed sub-processes

<<invoke>>
shipment

Fig. 1. Example BPEL Processes

Edge Node
id: String

Basic
op: String

Structured

Orch
name: String
id: String

Msg
op: String
id: String

Flow
degree: Nat

Switch Pick Invoke Receive

src
tar

to/infrom

partner

request

Reply

response

Elem

corresp

current

resp

Fig. 2. Our BPEL metamodel

– Basic nodes corresponding to Invoke, Reply, and Receive activities 3.
3 In this paper, we do not consider Assign activities since the propagation of data

values is not addressed here.



– Structured nodes corresponding to the typical constructs of workflow lan-
guages, like Switch, Flow, and Pick.

Each structured activity is presented by two Structured nodes —related by
association corresponding— to identify the start and the end of the composed
activity. The same association is also used to relate the first and last nodes of a
sequence of basic action nodes.

Each Node is characterised by the Orchestrator that is responsible for it
(that shall execute it). Before starting the application of partitioning rules, the
designer must decide how to split the process by assigning the responsibilities
for the different nodes to available orchestrators.

Each Orchestrator has an element (currently) under execution, which is
rendered using association current in Fig. 2. By partner links we point to
Orchestrator intended as recipients of invoke messages. Messages (Msg) specify
their sender (from), recipient (to), whether they are already received but not
yet fully processed (in), or if they are the (response) to an earlier invocation
message.

: Edge

P: Receive
op=“order”
id= ID.order

: Basic
op=“undo”
id= ID.undo

P: Invoke
op=“shipment”
id= ID.shipment

S: Switch

E: Switch

WH: Orch
name=“warehouse”
id= ID.warehouse

O: Orch
name=“office”
id= ID.office

: Edge
:tar

:src

:tar
:resp

:resp

: Edge

: Edge

: Edge

: Edge

:src :src

:tar :tar

:tar :tar
:src :src

:resp

:corresp

:resp

:current

:resp

: Edge

:src

Fig. 3. The example of Fig. 1 as an instance of the metamodel of Fig. 2

The meta-model of Fig. 2 is incomplete, missing both a number of constraints
and further types, but sufficient to represent the example process in Fig. 1. The
corresponding metamodel instance is shown in Fig. 3.



3.2 The partitioning rule

The partitioning identifies parts of the original process which can be externalised
and redirects the execution flow accordingly. Consider the rule in Fig. 4 delegat-
ing the execution of a block of activities that are in the domain of a different
orchestrator. The part to be delegated is situated between 1:Node and 2:Node in
the left-hand side of the rule. The corresp edge, removed in the transformation,
represents the derived information that these two nodes are indeed connected
by a workflow. It has to be set accordingly before executing the rule.

In our example model in Fig. 3 the part to be delegated consists of a single
activity P:invoke only. In this case both 1:Node and 2:Node are mapped to
P:invoke.

The delegation subprocess is started by the first orchestrator 8:Orch via
:Invoke. The second orchestrator 3:Orch executes the process between the pair
of :Receive and :Reply nodes, activated by the new :current edge. The neg-
ative application condition NAC ensures that the subprocess to be delegated is
not already under execution by 3:Orch. Since it is invoked synchronously, the
invoking process has to wait for a reply of the executed subprocess.

MT Rule: delegate

: Invoke
op=delegate
id=getid()

6: Node

7: Node

3: Orch
8: Orch

11:resp

: Edge

: Edge

:src

:tar

:tar

:src

12:resp

: Receive
op=delegate
id=getid()

4: Edge
:src

15:tar

: Edge:tar

5: Edge
:tar

17:src

: Reply
op=delegate
id=getid()

: Edge
:src

:resp

:resp

:partner

:current

:resp

1: Node

2: Node

13:resp

14:resp

6: Node

7: Node

3: Orch 8: Orch

11:resp

12:resp

4: Edge

15:tar

5: Edge

17:src

1: Node

2: Node

13:resp

14:resp

:tar

:src

:corresp

9: Edge

10:current

9: Edge

10:current

NAC

9: Edge 3: Orch

: Node
:resp:src / :tar

Fig. 4. Transformation rule delegate



: Edge

P: Receive
op=“order”
id= ID.order

: Basic
op=“undo
id=ID.undo

D: Invoke
op=delegate
id=ID.delegate

S: Switch

E: Switch

WH: Orch
name=“warehouse”
id= ID.warehouse

O: Orch
name=“office”
id= ID.office

: Edge
:tar

:src

:tar
:resp

:resp

: Edge

: Edge

: Edge

: Edge

:src :src

:tar :tar

:tar tar
:src :src

:resp

corresp

:resp

:current

:resp

: Edge

:src

D: Receive
op=delegate
id=ID.delegate.receive

: Edge
:src

:tar

: Edge
:tar

P: Invoke
op=“shipment”
id= ID.shipment

: Edge :tar
:src

D: Reply
op=delegate
id=ID.delegate.reply

: Edge

:src

:resp

:resp

:partner

:current

:resp

Fig. 5. Resulting subprocesses

4 Operational Semantics

Graphical operational semantics has been introduced as an extension of meta
modelling (the specification of abstract syntax and/or static semantic by means
of class diagrams) to deal with the dynamic aspect of modelling languages [10].
In this section we are using the approach to model the operational semantics of
executable business processes, based on their graphical representation from their
previous section. We focus on the rules needed for explaining the behaviour of
the example (represented by the meta model instance in Fig. 1), briefly sketching
the remaining rules. Then we define observations and derive a labelled transition
system.

4.1 Operational Rules

Fig. 6 shows the operational rule for executing the 1:Invoke action, sending mes-
sage :Msg. The operation mentioned by the message is the same of the action
node i, as described by the condition op = i.op in the :Msg node. A new unique
identifier is supplied by getid(). As specified be the partner edge from the in-
voke node, the message is created by the orchestrator 3:Orch for the orchestrator
4:Orch.



Semantic Rule: invoke

5:tar 1: Invoke
op=i.op

3: Orch

2: Edge

7:current

5:tar 1: Invoke
op=i.op

3: Orch

2: Edge

7:current

4: Orch

6:partner

4: Orch

6:partner

:Msg
op=i.op
id=getid()

:from :to

:request

Fig. 6. Operational rule invoke

Fig. 7 shows the rule by which orchestrator 3:Orch executes the 1:Receive
action, accepting a message 4:Msg with the operation name r.op of 1:Receive.
The current edge, previously pointing to the Edge before the next action Node
is advanced from 2:Edge to 5:Edge.

Semantic Rule: receive

7:tar 1: Receive
op=r.op

3: Orch 4: Msg
op=r.op

5: Edge

:to

2: Edge

:current
6:src

7:tar 1: Receive
op=r.op

3: Orch

5: Edge

:in

2: Edge

:current

6:src

4: Msg
op=r.op

8:resp 8:resp

Fig. 7. Operational rule receive

Fig. 8 shows the rule by which orchestrator 3:Orch is replying to message
4:Msg with the new message :Msg which is sent to the invoking orchestrator
10:Orch.

Fig. 9 shows the rule by which orchestrator 5:Orch is handling the response
of orchestrator 6:Orch by deleting the request and response messages and ad-
vancing the :current edge.

The rule switch in Fig. 10 represent an example of how the semantics of
control structures are described. The rule implements both the split operation,
moving the :current edge to one of several branches outgoing from the 1:Switch
node, and the joining of several alternative branches. Notice that split is non-
deterministic because, due to the lack of data types in our model, we do not
specify any guards. In practice we can expect that switches are deterministic.



Semantic Rule: reply

7:tar 1: Reply
op=r.op

3: Orch 4: Msg
op=r.op

5: Edge

8:in

2: Edge

:current

6:src 7:tar 1: Reply
op=r.op

3: Orch

5: Edge

8:in

2: Edge

:current

6:src

4: Msg
op=r.op

10: Orch
9:from

10: Orch
9:from

: Msg
op=r.op
id=getid()

:to:response
:from

Fig. 8. Operational rule replySemantic Rule: response
1: Invoke
op=r.op

5: Orch

3: Edge
2:src

1: Invoke
op=r.op

5: Orch

3: Edge

:from

:current

2:src

: Msg
op=r.op

6: Orch

6: Orch
:in

: Msg
op=r.op

:from
:response

:to

:request
4:partner

4:partner

7:tar2: Edge

7:current 7:tar2: Edge

Fig. 9. Operational rule response

Semantic Rule: switch

7:tar 1: Switch 5: Edge2: Edge

:current

6:src
7:tar 1: Switch 5: Edge2: Edge

:current

6:src

4: Orch

8:resp

4: Orch

8:resp

Fig. 10. Operational rule switch

The rule partner in Fig. 11 selects a partner orchestrator in a non-deterministic
way. This is an under-specification of a potentially complex protocol for selecting
services. Like the non-deterministic switch rule this will lead to extra transitions,
which do not conflict with our aim of demonstrating the preservation of the op-
erational semantics.



Semantic Rule: partner

1: Invoke 1: Invoke

2: Orch 2: Orch

:partner

NAC1

1: Invoke

: Orch

:partner

NAC2

1: Invoke

2: Orch

:partner

Fig. 11. Operational rule partner

Finally the rule reinit in Fig. 12 sets the :current edge from the end to
the beginning after a subprocess has completed its execution to allow a new
execution in another context.Semantic Rule: reinit

6:tar 1: Node 5: Edge2: Edge

:current

6:tar 1: Node 5: Edge2: Edge

:current

3: Orch

4:resp

3: Orch

4:resp

:src : Node2: Edge :tar : Node5: Edge

NAC1 NAC2

Fig. 12. Operational rule reinit

Additional operational rules considered in the complete version of the model
include

– flow (fork and sync): the creating and synchronisation of concurrent flows of
control;

– pick (split and join): like guarded/external choice in process calculi, where
the incoming message determines which of a number of alternative paths is
chosen;

– init and final: dealing with the start and termination of processes;

4.2 Labels and Transition System

Observations on rules define the labels of the transition system representing the
operational semantics of processes. They contain the name of the rule and list



the id attributes of some key elements. For example, inv(i.id, m.id) refers to
the application of the rule invoke and observes the identity of the invoke action
i executed and the message m created. Similarly, the remaining labels include

– rec(r.id, m.id) performing receive action r on message m;
– reply(r.id, m1.id, m2.id) replying to m1 with m2;
– resp(i.id, m2.id) receiving response message m2 for invocation i;

Control flow rules like switch represent internal steps and are uniformly labelled
with the silent action τ .

In transformations, formal parameters from the rules are replaced by iden-
tities of the actual nodes in the graphs representing system states. Given a

transformation G
p(o)
=⇒ H with, for example rule p = invoke (see Fig. 6) and

match o, the label inv(i.id, m.id) produces the observation inv(o(i).id,
o(m).id) using the values of the id attributes for the images of nodes i and m
under occurrence o.

Given a graph transformation system G = (TG, P ) with start graph G0,
we derive a labelled transition system LTS(G, G0) = (S, L,→) with all graphs
reachable from G0 by applications of rules as states S, observations on rules as
labels L, and transformations as transitions.

The set O of observations excluding τ is potentially infinite. Those that can
actually be produced by a transformation system G from a given graph G are
limited to such expressions rule(params) where params is a list of id attribute
values that already occur in G. We call this the alphabet alph(G) of graph G.

5 Verification

Based on the definitions in the previous section we are now able to define a
relation of semantic compatibility between processes. The idea is to require weak
bisimilarity after hiding all labels that are not in the intersection of the alphabets
of the two processes. On a labelled transition system, the operation of hiding
replaces all occurrences of a given label by a silent action τ .

Definition 1 (semantic compatibility). Given a graph transformation sys-
tem GOP = 〈TG, OP 〉 (specifying operational semantics), two graphs G1 and G2

(representing processes) are semantically compatible if they are weakly bisimilar
after hiding all labels not in alph(G1) ∩ alph(G2).

In our case O1, the set of observations produced by a centralised process, will
be a subset of O2, the observations of the distributed process. This is because of
the additional communication actions required to coordinate the different local
processes. The following theorem establishes a condition for semantic compati-
bility. For a regular expression r, by s

r−→ t we denote a sequence of transitions
s

l1−→ · · · ln−→ t such that l1 . . . ln is in the language described by r.



Theorem 1 (semantic compatibility of transformations). Assume graph
transformation systems GOP = 〈TG, OP 〉 (operational semantics) and GT =
〈TG, T 〉 (model transformations) such that for all operational steps P1

l−→ Q1

and transformation steps P1 =⇒ P2

1. l ∈ alph(P2) implies that there exist P2
τ∗lτ∗−→ Q2 and Q1 =⇒ Q2;

2. l 6∈ alph(P2) implies that there exist P2
τ∗−→ Q2 and Q1 =⇒ Q2;

and the same is true for the inverse of GT , obtained by reversing all productions.

P1
//

��

Q1

��
P2

// Q2

Then, whenever there exists a transformation G1 =⇒ G2 in GT , typed graphs
G1 and G2 are semantically compatible.

Proof. Recall that a weak bisimulation is a relation R on states such that
P1 R P2 implies

1. P1
l−→ Q1 implies P2

τ∗lτ∗−→ Q2 and Q1 R Q2

2. P1
τ−→ Q1 implies P2

τ∗−→ Q2 and Q1 R Q2

while the same is true for the inverse R−1. The relation R on TG-typed graphs
is defined by G1 R G2 iff G1 =⇒ G2. It is easy to see that this satisfies the
properties 1 and 2 above.

The inverse transformation system produces the inverse of the transformation
relation R, thus making the above true for the symmetric closure of the relation.

Notice that Theorem 1 is based on a notion of local confluence, restricted
by assumptions on the labels of derived transitions. Such a property, called
mixed confluence in [8], can be verified statically by critical pair analysis and
search: First we check if all pairs consisting of a model transformation rule
and a semantic rule are parallel independent, i.e. there are no critical pairs
between them. If this fails, we have to demonstrate confluence for all critical
pairs, searching for compatible transformation sequences with the right labels
that lead to a common successor state.

For our case study, this means that we have to analyse the critical pairs
between delegate and the operational semantic rules: Critical pair analysis is
supported by the attributed graph grammar tool environment AGG [22, 23].
Critical pairs formalise the idea of a minimal example of a conflicting situation.
From the set of all overlapping graphs the objects and links are extracted which
cause conflicts or dependencies.

Fig. 13 shows the critical pair analysis in AGG where the model transforma-
tion rule delegate is indeed independent of all operational semantics rules (last
row). The opposite is not true since we have critical pairs in the last column



Critical Pair Analysis

Fig. 13. Critical Pair Analysis in AGG

Critical Pair with 10:delegate

Fig. 14. Critical Pair between invoke and delegate

which are all caused by a delete-use-conflict between 10:current in delegate
and the semantic rules.

According to [17] two direct graph transformations G
(p1,m1)=⇒ H1 and G

(p2,m2)=⇒
H2 are in delete-use-conflict (resp. use-delete-conflict) if rule p1 (resp. p2) deletes
part of the graph G, which is used by rule p2 (resp. p2) in the second (resp. first)
direct transformation. Fig. 14 shows one of these critical pairs between invoke



and delegate. (Note that the critical pairs between operational semantics rules,
or of rule delegate with itself, are not relevant for mixed confluence.)

Intuitively, the problem is that rule delegate carries an application condition
to check that the subprocess to be separated from the main one is not currently
active. Therefore it is obvious that this should be in conflict with semantic
rules advancing the control flow of the process, thus potentially entering the
subprocess.

The solution to this problem consists in providing additional transformation
rules to deal with the delegation in the case that the subprocess is indeed active.
But for its application condition, this rule coincides with delegate, with the
additional effect that a request message would be created to represent the fact
that the (then delegated) subprocess has been invoked from the main one by a
message, rather than just by advancing the control flow.

Such an extension of the transformation system to deal with non-confluent
cases can be seen as a variant of Knuth-Bendix completion for non-confluent
critical pairs in term rewriting. With this extension, the resulting system enjoys
the mixed-confluence property.

As a result we obtain mixed confluence, consequently, the compatibility of
distributed process with the centralised ones they have been obtained from using
rule delegate.

6 Related work

The problem of workflow partitioning has been studied in the field of business
process design for some ten years. It still offers interesting issues to study because
of mobile information systems and web services, and the novel problems that
come with them. In [15], the authors present a comparison among the different
approaches to workflow distribution.

Cross-Flow [12] aims at providing high-level support to workflows in dynami-
cally-created virtual organisations. High-level support is obtained by abstracting
services and offering advanced cooperation support. Virtual organisations are
created dynamically by contract-based match-making between service providers
and consumers. Agent Enhanced Workflows [16] adopt the interesting approach,
inspired by agent-oriented systems, of building execution plans from predefined
goals. Event-based Workflow Process Management [7] use an event-based in-
frastructure and support modelling constructs for addressing the timing issues of
process management. The main feature of ADEPT [20] is the possibility of mod-
ifying workflow instances at run-time. MENTOR [19] provides an autonomous
workflow engine. In this approach the workflow management system is based on
a client-server architecture. The workflow itself is orchestrated by appropriately
configured servers, while the applications that invoke workflow activities are exe-
cuted on the client sites. The METEOR (Managing End to End OpeRations) [2]
system leverages Java, CORBA, and Web technologies to provide support for the
development of enterprise applications that require workflow management and
application integration. It enables the development of complex workflow appli-



cations which involve legacy information systems and that have geographically
distributed and heterogeneous hardware and software environments, spanning
multiple organisations. It also provides support for dynamic workflow processes,
error and exception handling, recovery, and QoS management. Exotica [18] is
characterised by the possibility of disconnected operations. It does not permit
complete decentralisation because it maintains a central unit and all operations
obey a client/server paradigm. WISE [1] exploits the Web for its engine and
offers an embedded fault handler. WAWM [21] focuses on the problems related
to the workflow management in wide area networks. Mobile [14] is developed to
support inter-organisational workflows and is strongly based on modularity. This
characteristic alleviates change management and also allows users to customise
and extend aspects individually.

The analysis of presented models suggests two different and dual approaches
to the problem of workflow coordination. The first approach supports the in-
tegration of autonomous and preexisting workflows and it aims mainly at the
coordination of different and independent actors. The second approach supports
the decomposition of single workflows to support their autonomous execution by
means of different engines. Cross-Flow, Agent Enhanced Workflow, Event-based
Workflow process Management, Adept, WISE and WAWM belong to the first
approach; Mentor, Exotica and Mobile belong to the second one.

The systems described offer three different solutions for the definition of
partitioning and allocation rules. The first solution proposes specific definition
languages (Cross-Flow, Agent enhanced workflow, Mentor, Exotica). The sec-
ond approach proposes the extension of workflow languages with distribution
rules (Cross-Flow, ADEPT, WISE, WAWM, Mobile). The third approach does
not consider the language for distribution rules (Event-based, Workflow Process
Management). Cross-Flow belongs to more than one class because the distribu-
tion rules are split into several definition parts.

Our delegation model supports disconnected components like Exotica, the
independence of workflow engines like MENTOR, and the possibility of modify-
ing the workflow instance at run-time like ADEPT. Moreover, we argue that the
mobile environment needs a language strongly oriented to the automatic execu-
tion like BPEL, but we do not forget the need for lightness that is a mandatory
feature if the system runs on portable devices in ad-hoc networks. As far as the
definition of rules is concerned, our approach defines partitioning rules, but does
not define allocation rules. It defers them to the specific business process and
application domain.

Many of the cited approaches do not consider web services as available in-
struments for decentralising business processes. An exception is made by [5],
which presents an approach very similar to ours. The authors use BPEL as
workflow model and use the term Composite Web Service to refer to a standard
workflow. However, they focus on the problem of assigning workflow portions
to specific orchestrators to minimise the traffic among nodes, but they do not
provide any specific information about the partitioning rules and/or any proof of
their validity. They introduce the concepts of Control Flow Graph and Program



Dependence Graph without providing how they refer to BPEL constructs and
activities.

7 Conclusion

Reporting on an application of the mixed confluence method to show semantic
correctness of a transformation from centralised to distributed BPEL processes,
the motivation of this paper was two-fold. First, the correctness of the trans-
formation is a practical problem which arose independently and whose solution
is potentially relevant to the acceptance of the idea of distributed processes for
web services. Second, the problem represents an interesting case for the method
of mixed confluence, whose feasibility was validated in the process.

It turns out that, specifying the operational semantics required a non-trivial
refinement (and we like to believe improvement) of the meta model over the
originally proposed one, which was only used to describe the transformation.
Also, the importance of efficient tool support became evident, in particular with
respect to the scalability to non-trivial examples.

As future work we intend to consider more transformations consisting of
several steps as part of a transaction, which will allow us to consider more
complex transformation scenarios.

References

1. G. Alonso, U. Fiedler, C. Hagen, A. Lazcano, H. Schuldt, and N. Weiler. WISE:
Business to business e-commerce. In RIDE, pages 132–139, 1999.

2. K. Anyanwu, A. Sheth, J. Cardoso, J. Miller, and K. Kochut. Healthcare enter-
prise process development and integration. Journal of Research and Practice in
Information Technology, 35(2), 2003.

3. L. Baresi, A. Maurino, and S. Modafferi. Workflow partitioning in mobile infor-
mation systems. In Kluwer, editor, In Proc. of IFIP TC8 Working Conference
on Mobile Information Systems, volume 158 of IFIP International Federation for
Information Processing, 2004.

4. Luciano Baresi, Andrea Maurino, and Stefano Modafferi. Partitioning rules for
bpel processes. Technical report, Politecnico di Milano, 2006. In preparation.

5. G.B. Chafle, S. Chandra, V. Mann, and M.G. Nanda. Decentralized orchestration
of composite web services. In In Proc. of the Int. World Wide Web conference on
Alternate track papers & posters, pages 134–143, New York, NY, USA, 2004. ACM
Press.

6. Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weerawarana.
Web Services Description Language (WSDL) version 1.1. W3C, March 2001.
http://www.w3.org/TR/wsdl.

7. J. Eder and E. Panagos. Towards distributed workflow process management. In
In proc. of Workshop on cross-Organizational Workflow Management and Coordi-
nation, San Francisco, USA, 1999.

8. H. Ehrig and K. Ehrig. Overview of Formal Concepts for Model Transforma-
tions based on Typed Attributed Graph Transformation. In Proc. International
Workshop on Graph and Model Transformation (GraMoT’05), Electronic Notes



in Theoretical Computer Science volume 152, Tallinn, Estonia, September 2005.
Elsevier Science.

9. H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic Graph
Transformation. EATCS Monographs in Theoretical Computer Science. Springer,
2006.

10. G. Engels, R. Heckel, and St. Sauer. Dynamic meta modeling: A graphical ap-
proach to operational semantics. In Proc. OOPSLA’99 Workshop on Rigorous
Modeling and Analysis with the UML: Challenges and Limitations, Denver, CO,
USA, November 2 1999.

11. T. Gardner and al. Draft UML 1.4 profile for automated business processes with
a mapping to the BPEL 1.0. IBM alphaWorks, 2003.

12. P. Grefen, K. Aberer, Y. Hoffner, and H. Ludwig. Crossflow: Cross-organizational
workflow management in dynamic virtual enterprises. International Journal of
Computer Systems Science & Engineering, 15(5):277–290, 2000.

13. IBM, BEA Systems, Microsoft, SAP AG, Siebel Systems. Business
Process Execution Language for Web Services version 1.1, May 2003.
http://www.ibm.com/developerworks/library/ws-bpel/.

14. S. Jablonski and C. Bussler. Workflow Management: Modeling Concepts, Archi-
tecture and Implementation. International Thomson, 1996.

15. S. Jablonski, R. Schamburger, C. Hahn, S. Horn, R. Lay, J. Neeb, and M. Schlundt.
A comprehensive investigation of distribution in the context of workflow manage-
ment. In In proc. of International Conference on Parallel and Distributed Systems
ICPADS, Kyongju City, Korea, 2001.

16. D. Judge, B. Odgers, J. Shepherdson, and Z. Cui. Agent enhanced workflow. BT
Technical Journal, (16), 1998.

17. Leen Lambers, Hartmut Ehrig, and Fernando Orejas. Conflict Detection for Graph
Transformation with Negative Application Conditions. In A. Corradini et al.
(Eds.): Proceedings of the Third International Conference on Graph Transforma-
tion (ICGT 2006), volume 4178 of Lecture Notes in Computer Science, pages 61–76.
Springer-Verlag, 2006.

18. C. Mohan, G. Alonso, R. Gunthor, and M. Kamath. Exotica: A research perspec-
tive of workflow management systems. Data Engineering Bulletin, 18(1):19–26,
1995.

19. P. Muth, D. Wodtke, J. Weisenfels, A. Kotz Dittrich, and G. Weikum. From
centralized workflow specification to distributed workflow execution. Journal of
Intelligent Information Systems, 10(2):159–184, 1998.

20. M. Reichert and P. Dadam. Adeptflex − supporting dynamic changes of workflows
without losing control. Journal of Intelligent Information Systems, 10(2):93–129,
1998.

21. G. Riempp. Wide Area Workflow Management. Springer, London, UK, 1998.
22. G. Taentzer. AGG: A Graph Transformation Environment for Modeling and Val-

idation of So ftware. In J. Pfaltz, M. Nagl, and B. Boehlen, editors, Application
of Graph Transformations with Industrial Relevance (AGTIVE’03), volume 3062
of Lecture Notes in Computer Science, pages 446 – 456. Springer, 2004.

23. Technical University of Berlin, Department of Computer Science. AGG Version
1.4.1 - http://tfs.cs.tu-berlin.de/agg, 2006.


