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Abstract. Reliability is a critical issue in many multi-organizational
distributed applications, be they web services, financial protocols, scien-
tific computing infrastructure, and software controlling public services
such as transport. Design by contract traditionally addresses reliability
by elaborating type signatures for sequential programs centring on asym-
metric procedural invocations. In this paper we generalise the notion of
Design by Contract to multiparty distributed applications each using one
or more complex, and possibly long-running, application-level protocols.
Our main contribution is an assertion method for distributed multiparty
interactions centring on the notion of global assertion, which specifies
constraints on a whole interaction scenario by elaborating multiparty
session types from [5,6,27]. The paper establishes the key technical re-
sults underpinning the usage of this method for specification, verification
and static and dynamic behavioural validation.
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1 Introduction

Background. Reliability is a critical issue in many multi-organizational
distributed applications such as Web Services and financial protocols.
For designing, implementing and managing these applications, it is es-
sential to have a tractable and rigorous description of how interactions
should proceed through collaboration among participants, what content
messages should carry and in what formats, and how conversation struc-
tures are to unfold as communications take place. Such descriptions can
be used as a basis of the whole range of engineering activities: high-level
modelling, design, implementation, runtime management as well as legal
and social practice including auditing and standardisation.

Unfortunately the current state of the art for the descriptions of
application-level distributed protocols is severely limited. As an exam-
ple of multi-organizational distributed applications, we consider financial
protocols. The International Organization for Standardization (ISO) is
currently working on a methodology for specifying and developing finan-
cial protocols, called universal financial industry message scheme [46]. A
typical financial protocol is used for deciding the transaction of a critical
business and economical significance. The messages for such transactions
should be sent and received following a strictly stipulated protocol struc-
ture agreed upon by all parties. It is important, both for business and
legal (say auditing) concerns, that each party properly carries out the
responsibility associated with their roles in the protocol, in the sense that
it sends a message with a valid content in a valid format at a correct
timing, responding to valid messages by others. Currently the description
of such a protocol is given only informally (except for message formats),
describing only a small subset of traces from the whole protocol struc-
ture, combining informal charts and natural language sentences. There
are three main issues in current practice:

1. It is imprecise: descriptions of protocols are unclear, ambiguous and
misleading in key aspects, and are legally unusable.

2. It is incomplete: it is not possible to describe the whole structure
and essential constraints on the protocol execution. There is a lack of
clarity on what has to de described.

3. It is informal: the description cannot be used for formal reasoning
about protocols; for checking their internal consistency; for verifying,
either by hand or by machine, the conformance of endpoint programs
against a stipulated protocol; for code generation; for testing; and for
runtime communication monitoring.



In other words, we are currently lacking a methodology which allows
precise, complete and formal description of application-level distributed
protocols suitable for all stages of software engineering; and is backed up
by a rigorous theory.

In this paper we present a logical method for specifying and verify-
ing the structures and constraints of distributed multiparty interactions,
based on the notion of Design-by-Contract (DbC). The traditional DbC
for sequential programs specifies a contract between a user and a pro-
gram as a set of pre-conditions, post-conditions and invariants over a
type signature. The aim is to improve the reliability (e.g. correctness and
robustness) of the produced software. DbC is a basis of a wide range
of software engineering practice, from high-level modelling to program
design to runtime assertion checking [28, 35, 40]. One of the key ideas un-
derlying the traditional DbC is to elaborate type signatures (of say classes
and objects) with logical formulae. Logical formulae are a general, rigor-
ous and flexible tool to describe constraints [22, 26]. Instead of just saying
“the method fooBar of an object of class ABC should be invoked with a
string and an integer, and then it will return (if ever) another string”, we
can give a more precise specification, say “if we invoke the method fooBar
of an object of class ABC with a string representing a date between 2007
and 2008 say s and an integer less than 1000, say n, then it will, if ever,
return a string which represents the date n days after s”.

A type signature describes the basic shape of how a user can interact
with a program, stipulating its key interface to other components (which
may be developed by other programmers). For this reason the type sig-
nature is a more stable part of systems design, functioning as a minimal
contract among components with a basic safety guarantee. By associating
this type signature with logical predicates, DbC enables a highly effective
framework for specifying, validating and controlling systems’ interfaces
and behaviours, usable throughout all phases of systems development. As
a modelling and programming practice, it encourages engineers to make
explicit and formal the contracts among software modules, and build soft-
ware on the basis of these contracts [23, 37].

The traditional DbC has focused on the type signatures for procedure
invocation, a fundamental building block in sequential programming. Its
analogue in distributed interactions, request-reply, is an important micro-
protocol but has a basic limitation: in practice, a typical distributed ap-
plication implements interaction scenarios that are much more complex
than a request-reply. In this paper we extend the core idea of DbC —
contract-based software development through elaboration of type signa-



tures with logical predicates — to the design and modelling of distributed
applications.

We consider distributed applications whose activity is organized into
abstraction units called sessions. Each session consists of a structured
series of message exchanges among multiple participants. Sessions can
interleave in a single application. For example, a session for an electronic
commerce can run interleaved with a session for a financial transaction
to settle its payment. Each session follows a stipulated protocol defining
how participants interact and a conversation would evolve, which tends
to be a relatively stable part of design and development of distributed
applications.

In previous work, it has been shown that the protocol structures of
distributed multiparty sessions can be specified and used as formal type
signatures [5,6,27], called multiparty session types. A session type de-
scribes the skeleton of global interaction scenarios through type construc-
tors such as sequencing, branching and recursion, offering the standard
benefit of type signature such as type error freedom. To organize a logical
specification associated with this type signature, the target of a logical
specification is not limited to a single call-return, and must describe how
constraints will accumulate as many interactions proceed in a session,
governing its future paths. For enabling the precise, complete and formal
descriptions of rich behaviours of interactional applications, we need a rig-
orous semantic foundation which supports diverse engineering concerns
such as endpoint programs conformance to a global specification, testing,
runtime assertion checking and communication monitoring. One of the
key technical elements is the formal association of logical descriptions to
the semantics of endpoint programs, and a proof system validating them.

This Work. The present work introduces an assertion method for dis-
tributed interactions centring on the notion of global assertion, which
specifies global constraints on a whole interaction scenario by elaborating,
with logical formulae, type signatures for multiparty sessions [5,27], to-
gether with basic results underpinning the usage of the assertion method
for diverse engineering concerns.

The key ideas of our framework, illustrated in Figure 1, are presented
below.

(0) A specification for a multiparty session is given as a global assertion
G, namely logical predicates annotating a protocol structure. Each
predicate acts as pre/post-conditions depending on the viewpoint of
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Fig. 1. The assertion method

each participant 4. Global assertions are informally illustrated through
an example in § 2 and formally defined in § 3.

(1) We stipulate a minimal semantic criterion, well-assertedness of G
(§ 3.3) characterising consistent specifications with respect to the tem-
poral flow of events, to avoid for instance un-satisfiable constraints.

(2) § is automatically projected onto endpoints, yielding one endpoint
assertion (T;) for each participant, specifying her/his behavioural re-
sponsibility (§ 4). Consistency is checked only once at the global level,
since the endpoint assertions are consistent by well-assertedness of
projections.

(3) Communicating processes with local monitors are modelled as 7-
calculus processes elaborated with predicates (§ 5.1). Each process
can effectively check that both incoming and outgoing interactions
satisfy the specified constrains. We can also validate processes against
an endpoint assertion at a design time, through a compositional proof
system (§5.2) and an effective validation algorithm.

(4) In a trusted environment, where all participants can be assumed
validated, we can dispense with the run-time monitoring on predicates
to ensure the correct execution of the protocol (§ 7.3).

This paper introduces a formal theory underpinning the above frame-
work and establishes its key results, presented through the following tech-
nical contributions: a validation algorithm for consistency of global asser-
tions (Proposition 4.6); semantic foundations of global assertions through

4 Global assertion may be designed from scratch or by elaborating an existing global
session type in the sense of [27].



labelled transitions (Propositions 7.5 and 7.8); a compositional proof sys-
tem for validating processes against assertions, whose larger examples are
given in Section 6 and which is sound with respect to transition-based se-
mantics (Theorem 7.10). The soundness leads to assertion-error freedom
of validated processes (Theorem 7.11) which ensures that the process will
meet its obligations with respect to the original specification assuming
that the remaining parties do so; a decidable algorithm for static vali-
dation of processes against assertions (Theorem 7.13); and properties of
the associated endpoint monitoring methods in untrusted and trusted
environments (Proposition 7.14 and Theorem 7.15). Section 8 discusses
further results and related work.

As far as we know, the present work is the first to introduce a logical
theory which enables effective runtime and compiletime assertion-based
validations for non-trivial specifications for a typed m-calculus through
the use of global type signature, built on a rigorous semantic foundation.

It has been known that specifications of communicating processes are
notably challenging, cf. [19, 34]. We believe the proposed framework offers
both clear, expressive specifications for non-trivial properties on the one
hand, and tractable validations of processes against these specifications on
the other. The main reason this has been made possible is by centring on
specifications per type signature, inheriting the idea from the traditional
DbC. The difference from the traditional DbC is that this type signature
is for communication behaviour rather than functional behaviour.

From the viewpoint of specifications, the per-session based approach
enable a specification of the properties of communication behaviours inde-
pendent from individual processes: this is important for high-level speci-
fications because an individual communicating program may change how
it will use multiple protocols to achieve its task, but the structure of
each protocol (which is determined by agreement among multiple par-
ties) would general be more stable. The approach also leads to expressive
specifications, allowing us to capture not only the structure of interactions
but also the range of message values and the conditions under which each
branch and its sub-conversation is selected.

From the viewpoint of validation, the specification-per-type-signature
approach enables algorithmic static compositional validation of processes
against their specifications even when a process contains recursion and
concurrent composition. In spite of the potential interleaving and mu-
tual interactions/interference, a validation algorithm only needs to check
reciprocity of specifications per each session, through the rely-guarantee
(assumption-commitment) framework [30] (this validation is carried out



by checking how the whole process behaviour across multiple sessions
contributes to the satisfiability of given per-session specifications, e.g. an
output in a session using a value satisfies its specification because of a
value coming from an input in another session). As a result we obtain
an algorithmic static validation for expressive behavioural specifications
in the context of the m-calculus, which may not have been known in the
extant studies.

However the very methodological choice of the present approach, that
is to have specifications on a per-session basis, also leads to its limited
applicability. One engineering situation where this choice becomes a limi-
tation is when one primarily wishes to specify the behavioural properties
of a whole process (for example when we are concerned with termination
of the whole process). Another and related occasion is when one wishes
to specify the properties of a combination of several protocols globally,
assuming they may often be used in combination. Each such scene may
as well demand a more complex specification method, allowing richer
specifications and possibly requiring more complex, and less tractable,
validation methods. The practical challenge of specifying and validat-
ing properties for communicating processes can be met only through a
well-organised array of different methods, associated with various tool
support.

Against the wide spectrum of different specification and verification
methods for typed processes, the present “per-type-signature”-based ap-
proach is intended to offer a basic stratum (which may be all that is fea-
sibly specifiable as shared behavioural contracts for public or semi-public
protocols). Having the proposed method as a stratum will help ease the
complexity when one needs to rise to the challenge of more complex spec-
ifications and validations, which corresponds to how the traditional DbC
eases a verification of the whole program property by enabling abstract
treatment of each procedural call in the program.

A further challenge is to combine and integrate different methods
catering for different concerns, for which we may need a common logical
basis (the use of Hennessy-Milner logic [19,25] in §8 may suggest such a
potential).

The full proofs of the technical results are relegated to Appendix for
readablity.



2 DBbC for Distributed Multiparty Interactions by
Pictures

Preliminaries. This section informally illustrates some of the key ideas
of global assertions, using two simple examples used throughout the present
paper.

A global assertion associates logical formulae to a type signature de-
scribed as a global session type from [27]. We call such logic formulae
interaction predicates (or often simply predicates). Each predicate defines
both what one party is obliged to guarantee and, dually, what the other
parties can rely on. More specifically:

(1) Each message in a session needs to respect a predicate over vari-
ables representing its content (e.g., “the seller will send an invoice to the
buyer where the amount of product is the amount previously specified in
the order”). The interaction predicate is an obligation for the sender and
a guarantee for the receiver.

(2) Each branch is associated to a predicate that constrains the se-
lection of that branch (e.g., “a seller must not proceed with the sale of
a product if the size of the order exceeds the size of the stock”). As in
(1) the predicate is an obligation for the selector and a guarantee for the
other participant.

(3) Each recursive process can be associated to a predicate (invariant)
that must be satisfied at each recursive call, where the invariant is both
an obligation and a guarantee for all parties.

The aim of this paper is to provide a design-time method for specifica-
tion and validation of these constraints. Below we illustrates the key idea
of this specification method, global assertions, through sequence diagrams
annotated by logical formulae.

Protocol BuyerSeller. Figure 2 specifies a multiparty session where the
participants, Buyer and Seller, exchange messages denoted by interaction
variables (e.g., o and 7). The Buyer asynchronously sends o of type Order
to Seller, then Seller performs a choice and either sends Buyer an invoice
i of type Invoice or quits the protocol (e.g., if Seller is out of stock).
The predicates, attached to interactions in a way similar to guards in
sequence diagrams (but with a different emphasis, cf. § 8), express con-
straints on the values that can be exchanged in distributed interactions
and are assigned to interaction variables. The example uses three predi-
cates. By Al the buyer guarantees that the price in the order is smaller
than 100 (e.g., the sale is forbidden for orders greater than 100) and, du-
ally, the seller is guaranteed that the order will not contain a price greater
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Fig. 2. Global assertion for the protocol BuyerSeller

than 100. By A2 the seller will select the branch ok only if the quantity
requested by the order is less than the constant MAXORDER. A3 spec-
ifies the relationship between the data previously sent in the order and
the data being sent by the seller in the invoice.

Protocol Negotiation. The global assertion in Figure 3 models a ne-
gotiation between a buyer, a seller and a bank. The protocol starts with
Buyer proposing a price BPrice to Seller. Seller has the following choices:
(1- run) to continue, (2 - end) to terminate the negotiation. In the first
case, Seller returns a price SPrice to Buyer. Then Buyer has the follow-
ing choices: (1la - buy) to buy the item. In this case, Buyer authorizes
Bank for the payment through the message pay, then Bank sends an ac-
knowledgment to Seller through the message paid. (1b - rec) to execute
another cycle of negotiation by recursively invoking Negotiation with, as
parameters, the current values of BPrice and SPrice. (1c - stop) to Buyer
terminate the negotiation.

The declaration def of the recursion defines recursion parameters (i.e.,
p-SPrice,p_BPrice) which are referred to in the recursion body. In this
example, p_S Price and p_B Price take the value that SPrice and BPrice
had in the previous instance of recursion (the one that invoked the current
one). In the first instantiation of recursion, p_SPrice and p_BPrice have
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Fig. 3. Global assertion for the protocol Negotiation

to be initialized with values (e.g., 1 and 100, respectively). Note this
allows us to compare the current interaction variables with those sent in
the previous recursion instance (this corresponds to the use of hooked
variables in assertion methods, e.g. [30]). For example, Al ensures Buyer
will increase the price in successive instances of negotiation®, while A4
and A5 ensure that the correct amount is paid. The recursion invariant
A ensures that the prices remain in the range 1...100.

Using Global Assertions. Global assertions are given a formal syn-
tax with a well-formedness constraint, so that they represent consistent
specifications (§ 3). Once specified, they can be projected onto end-point
assertions, one for each role in the session (§ 4). A process, which also
includes predicates for communication monitoring, can further be vali-

® Because of the partial correctness semantics we consider in the present work (cf. Def-
inition 7.2), A3 does not ensure eventual termination (e.g. a process may go into an
internal infinite loop).



dated against an end-point assertion through compositional proof rules.
A validated process can meet its obligations, assuming that the remaining
parties also do so. This property, which we call error-freedom, is a corol-
lary of the soundness of validation rules with respect to its formal (partial
correctness) semantics (Theorems 7.10 and 7.11 in § 7.2). In a trusted en-
vironment, where all participants can be assumed validated, there is no
need for run-time monitoring on predicates to ensure the correct execu-
tion of the protocol (Proposition E.38 in § 7.3). Finally (relative to the
decidability of the underlying logic) the proof rules induce a sound decid-
able validation algorithm against unasserted, but typed, programs which
can statically guarantee their correct interactional behaviours (Proposi-
tion 7.13 in § 7.3).

10
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Fig. 4. Syntax of Global Types with Assertions

3 Global Assertions

3.1 Syntax

Global assertions (range over by G, §', .. .) elaborate global session types in
[27] with logical formulae. The syntax is given in Figure 4. We let u, v, ...
range over variables, a,b, c, ... range over shared names, and s, s, ... range
over session channels. First-order expressions are denoted by e, e/, ... and
are built on values (ranged over by n,m, ...) which include constants (such
as numerals and booleans) and shared names. A vector of zero or more
variables (resp. basic types called sorts) is denoted by ¥ (resp. S) and we
abbreviate vy : S1,...,v, : Sy, (for a given natural number n) as o : S. A
location L specifies the participants in an interaction. A, B, ... range over
logical formulae (Definition 3.2) and, when occurring in a global assertion,
they are called interaction predicate. We write p € G if p occurs in G.

p - p': k(0:S8){A}.9 describes an interaction between a sender p
and a receiver p’ via channel k (represented as a natural number), followed
by the interactions §'. The logical variables v, called interaction variables,
bind their occurrences in A and §’, denoting potential message values.
Intuitively, p guarantees the interaction predicate A (which constrains ?)
to p/, whereas p’ relies on A; in the traditional framework of pre/post
conditions, A behaves like a precondition for p (since it is what p should
ensure before sending) while the same A behaves as a post-condition for
p’ (since it is guaranteed to p’ as a receiver).

p—p': k{{A;};: §;} es says participant p sends one of the labels to
channel k which is then received by participant p’. Each branch j takes

11



place on the condition A;, guaranteed by the sender and relied upon by
the receiver. If j is chosen, the interactions described in §; take place.

G, G represents the concurrent run of the interactions specified by G
and §'. end represents the end of a global session. We identify “G,end”
and “end, §” with G.

PNy : S1@Ly ... 0, : Sy @L,){A}.G is a recursive type with param-
eters [19], annotated with logical formulae. We assume, for each 7,j €
{1...n} st. ¢ # j, v; and 0; are pairwise disjoint and L; # L;. In
ptdEy(1 1 S1@Ly ... 7y : Sp@L,){A}.G, we annotate variables with the set
of participants that have either sent or received them (the location L;
represents such set of participants). Each ©; groups variables used by L;
and has initial values ¢€;. 9; act as binders over A and G. We assume as-
sertion variables (t,t’,...) are guarded by prefixes, i.e. the underlying
recursive types are contractive. We often omit the annotation, writing
pt(éY (0 : S){A}.G when clear from the context or irrelevant.

A recursive global assertion can be unfolded inductively to an infinite
tree, as in the equi-recursive view on recursive types [41]. Unlike recursive
types, such an unfolding includes parameter instantiation [19], making it
less tractable to check equivalence. Intuitively a recursion and its unfold-
ing denote an identical specification, but for simplicity we treat global
assertions syntactically.b

If we erase interaction variables and predicates from global assertions,
we obtain global types from [27]. The global type thus obtained from § is
written erase(9).

Definition 3.1 (Coherence). We say G is coherent if erase(9G) is coher-
ent in the sense of [27, Definition 4.2]. Hereafter, we assume all global
assertions considered to be coherent.

Coherence in [27, Definition 4.2] ensures that a global type only describes
interactions which follow linear channel usage. For example,

p—q: k(u){A}.r - q: k(v){B}.end (3.1)

does not use k linearly, since two interactions are causally unordered
(because they have two distinct senders, following Lamport’s principle
[33]: see [27, §3] for details).

Finally, we give the syntax of interaction predicates as formulae of
predicate calculus with equality [36, §2.8] (which includes equality of
shared names).

5 This does not lose generality for e.g. validation because of our treatment of the
semantics of endpoint assertions, cf. § 7.

12



Definition 3.2 (Logical Language). The grammar of logical formulae
or predicates (A, B,...) is given as:

A= ©e=e | e1>e | dler,...,en)
| A1 /\A2 | —A | E|’U(A)

where e1,.. are expressions and ¢,d’,.. range over a pre-defined set of
predicates with fixed arities and types. We let var(A) denote the set of
free variables of A, similarly for var(e).

Convention 3.3. Henceforth, we assume a fixed model for logical formu-
lae satisfying: (1) validity of each closed atomic formula including equality
and inequality is polynomially decidable; and (2) validity of closed for-
mulae is decidable.

Though different applications may need different logical languages, this
criteria or its minor variations are natural in the present engineering
context. A concrete example which fits these criteria is number theory
without multiplication, Presburger arithmetic. In practice such restricted
logic is often sufficiently expressive: for example, many practical uses of
multiplication are encodable [24], and formulae with quantifiers may be
calculated efficiently [39, 43].

Example 3.4 (Negotiation Protocol in a Global Assertion). The
following is the same negotiation protocol in the sequence diagram in § 2
with L = {Buyer, Seller}. A branch does not mention the predicate true.

Gneg = pt(10,100)(p-BPrice : Int,p_SPrice : IntaQL){A}.
Buyer — Seller: s (BPrice: Int){Al}.
Seller — Buyer: b{run : G,,,,end : end}
Grun = Seller — Buyer: b (SPrice : Int){A2}.
Buyer — Seller: s
{buy : Spuy, {A3}rec : t(BPrice, SPrice),stop : end}
Spuy = Buyer — Bank: n (pay : Int){A4}.
Bank — Seller: s (paid : Int){A5}.end

Al = BPrice > p_BPrice A2 = SPrice > BPrice

A3 = p_SPrice = SPrice A4 = pay = SPrice

A5 = pay = paid A =p_SPrice < 100 A p_BPrice = 10
Gneg has recursion parameters p_bPrice and p_sPrice denoting the prices
proposed by Buyer and Seller in the previous recursion instance and they
are 10 and 100 in the first instance. The annotation locates p_bPrice and
p_sPrice in the participants Buyer and Seller who know the actual values
(i.e., bPrice and sPrice).

13



3.2 Consistency Principles

In Example 3.4, the predicates specify constraints on communication
events following the natural temporal sequence of interactions. For exam-
ple, the final message from Bank is constrained by predicate paid = pay.
Bank can surely check the validity of the predicate since it has directly re-
ceived pay in a preceding interaction. The underlying principle is history-
sensitivity:

An interaction predicate guaranteed by a participant is defined only
on interaction variables introduced in the preceding interactions in
which the participant is involved.

There is another principle implicit in this simple interaction predicate; it
does not retrospectively add a constraint to previous messages (such as
pay should be say 100 euros): if we neglect the newly introduced variable
paid, no additional constraint is given to the preceding variables such as
pay. This locality principle says:

An interaction formula should only add constraints to the variables
1t introduces.

As discussed later, this point is related to a third principle, temporal
satisfiability, stating that a process can always find one valid forward
path at each interaction point, until it meets the session end.

Convention 3.5. From now on, we always assume the standard bound
name convention for all syntactic entities with bindings.

Definition 3.6. Write (§) for the set of interaction variables occurring
in §. We say a participant p knows an interaction variable u € J(G) if p uses
u in an interaction of § or if w is a parameter of a recursive definition
whose location L contains p; the set of variables that p € G knows is
denoted by J(9) [ p.

We first introduce a simple compositional checker for history-sensitivity.
We use environments I defined by the grammar:

I' =g | Iu:SaL | It:S;QL,...S,QL,

which assigns to an interaction variable say wu its sort along with its lo-
cation S@L. We write I' - u@p when p € I'(u) and I' - e@p when
I' -+ uap for all u € var(e). This environment also maps types variables
t to a sequence of pairs S; @QL; to handle recursive types.
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Io:Safpp}F G Vu € var(A) not in 0,I" - u@p

S [VAL]
I'-p—-p:k(v:S){A}S
VieJ I'G; Yue UjeJ var(A;) not in 0, I - u@p [BRANCH]
I'ep—p'k {4} Gj}jes
Ir'-§ g+9
P E
g9 I' - end [Parl/[ExD]
I'e :S@L,---T'+ey:S,aL,
F,tlsl@Ll...Sn@Lnl_t<é> [REC]
I'="rt:S@L...S, el I"+§
dom(I") 2var(A) Vil t-wv;:S;QLi,e;: S;QL; [DEF]

I' = ptdéy(vy = S1@QLy, ..., v, 0 Sp@Ly){A}.G

Fig. 5. Well-formedness for Global Assertions

Well-formedness for global assertions (defined by the rules in Fig-
ure 5) disciplines the usage of assertion variables and restricts the set
of interaction variables that can be used in each assertion, following the
history sensitivity principle. The key rules are [VAL] and [BRANCH] which
require that the participant who sends/selects must know all the inter-
action variables onto which the assertion A predicates. Other rules are
straightforward. Note the rules are purely syntactic, hence the validation
of G is a linear time problem.

3.3 Well Asserted Global Assertions

On the basis of well-formedness, we introduce compositional validation
rules by which a global assertion now conforms to the remaining two
principles, locality and temporal satisfiability. Since both are about logical
satisfiability of formulae, the validation this time should include validity
checking.

To clarify the goal of the validation, consider the following global
assertion:

G =Alice — Bob: b (u: Int){u < 10}.
Bob — Alice: a (v : Int){u > v A v > 6}.end
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This global assertion is satisfiable if the predicates are considered as an
ensemble (i.e., Ju,v(u < 10 A u > v A v > 6)), but is indeed problematic
from a temporary perspective: a process faithfully following this specifi-
cation step by step can block. For example if Alice sends v = 6, which
does not violate u < 10, then Bob will not be able to find a value that
satisfies 6 > v A v > 6. The criteria here can be expanded as:

For each possible value that satisfies a predicate A, it is possible,
for each interaction predicate A’ that appear after A, to find values
satisfying A’.

For a branching point, predicates are taken disjunctively (see Def. 3.7
below). Note this criteria is equivalent to the temporal satisfiability dis-
cussed above: but it also caters for locality since the violation of locality
means that a sender can unexpectedly meet an unsatisfiable predicate, as
discussed in the example above. Below we pre-annotate each occurrence
of a type variable t with a predicate associated to the recursion that de-
fines it together with its formal parameters v, writing e.g. t 4(z). Note this
annotation is always possible if t is bound in a whole global type, i.e. if
the whole global type is closed.

Definition 3.7 (Well-asserted Global Assertions). We recursively
define a boolean function GSat(3, A) as follows:

1. G=p1 — p2: k(0: 8){A'}.G
if A > 30(A") then GSat(G, A) = GSat(5', A A A")
otherwise GSat(9, A) = false

2. G=p1 o p2: k{{A;};: Gj}jes with J = {1,...,n}

if Ao (A v...v 4,) then GSat(G, A) =

GSat(G1, AN A1) A oo A GSat(Gn, A A Ay)

otherwise GSat(9, A) = false
3. G = Gy, G, then GSat(G, A) = GSat(G1, A) A GSat(Sa, A)
4. G = ut(&)(v: S){A'}.9'

if A > A'[e/v] then GSat(G, A) = GSat(5', A A A')

otherwise GSat(G, A) = false
5. G = ta <€) then GSat(G, A) = true provided that A > A'[¢/7]
6. § = end then GSat(G, A) = true

G is well asserted if it is well-formed and GSat(G, true) = true
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Notice that GSat(9,false) = true (i.e., a global assertion is trivially sat-
isfiable if provided with a bad environment). The boolean function in-
crementally builds the conjunction of all the predicates that precedes the
current interaction predicate. In (1) we require that for all the values that
satisfy A, there exists a set of values for the interaction variables ¢ that
satisfy the current predicate A’. In (2) we require that for all the values
that satisfy A there exists at least one branch that can be chosen (i.e., the
corresponding predicate A; is true). For example, the following protocol
is well-asserted even if the first branch is unsatisfiable =3v(v > 0 A v < 0)
since the second branch is satisfiable:

G = Alice — Bob: b (v : Int){v > 0}.
Bob — Alice: a {{v < 0}1: G1,{v > 0}2: Ga}

Notice we do not specify any relationship among the assertions in a branch
(such as a XOR relationship in order to enforce a determinism in potential
paths) because we wish to allow specifications to be as vague as one
wants (as far as consistent), unlike a programming construct [26]. For the
same reason, the notion of well-assertedness does not prohibit unreachable
branches. The remaining clauses of Definition 3.7 are intuitive: in (4)
(resp. (5)), we require A to imply the satisfiability of the invariant with
the initialization parameters (resp. with the parameters assigned by the
invocation inside the recursion). Finally we observe:

e Under Convention 3.3, well-assertedness is decidable. The fixed shape
of the implications (e.g. no nested quantifiers) may suggests a poten-
tial for efficient checking [43].

e Definition 3.7 uses syntactic precedence for capturing temporal prece-
dence. As seen in (3.1) before, this is an over-approximation. Under
the coherence of § which gives a clear notion of causality among ac-
tions (cf. [27, §3]), we can optimise the calculation in Definition 3.7
by considering all and only truly causally preceding actions (by 10-
chains, [27, §3.2]), with exactly the same semantic result. For detailed
discussions on semantic characterisations of the well-formedness and
well-assertedness, as well as concrete examples of (violation of) these
conditions, see Appendix B.
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Local T == kl(0: S){A};T send
k?(0: S){A}; T receive
k@ {{A;}; : Ti}ier selection
kE&{{A;}l; : T;}ier branching
pt(ey (o : S){A}LT def

tée) recursion
end end

Fig. 6. Syntax of Endpoint Assertions

4 End-point Assertions and Projection

4.1 Syntax

In this section we present end-point assertions which specify the be-
havioural contract from the perspective of a single participant. Just as
a global assertion annotates a global session type with logical formulae,
an endpoint assertion similarly annotates a local session type [27, §4],
allowing for a wide range of specifications. The highlight is the projection
of global assertions onto end-point assertions where the projected logical
formulae capture indirect constraints for a receiver, which are essential
for the projected endpoint assertions to fully capture the original global
assertion. We leave the formal semantics of endpoint assertions to §7.

End-point assertions (ranged over by T,7’,..) specify endpoint be-
haviour of processes on a per-session basis. The grammar is given in
Figure 6. All constructs come from local session types in [27], adding
annotations on logical formulae.

kl(o: S ){A}; T specifies a sender should guarantee that values of type
S denoted by logical variables ¥ to be sent via k, should satisfy A, then
behaves as specified in T. As before, ¥ and A are called interaction vari-
ables and interaction predicate, respectively. Dually, k?( : S){A}; T says
the receiving party can rely on the arriving values, denoted by v, to satisfy
the interaction predicate A.

k@ {l;: T;}ier specifies for a selection where, for each i, the process
should guarantee A; when selecting [; via k. Dually k&{l;: T;}er describes
a branching at k where, if [; is to be chosen, it can assume A; to hold.
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pt(eX(® : S){A}.T specifies constraints for a recursive session using
parameters [19] given by © of sort S with the initial values é. The use
of parameters makes the specification highly expressive (semantically it
denotes a maximal fixed point, cf. §7).

Continuing Example 3.4 (the global assertion G¢4), the next example
illustrates the importance of projecting indirect constraints of interactions
between other participants.

Example 4.1 (Seller’s Endpoint Assertion). A seller’s specification
from G,, but without projecting indirect constraints (i.e., those associ-
ated to interactions between third parties) results in the following end-
point assertion (with A and A1,42,A3 from Example 3.4):

TnegBad = pt{10,100)(p_BPrice : Int,p_SPrice : Int){A}.
s?(BPrice : Int){A1};b@® {run : Tryn,end : end}
TrunBad = DI(SPrice : Int){A2}; s&{{true}buy : Teon s,
{A3}rec : t(BPrice, SPrice), {true}stop : end}
TeonfBad = $?(paid : Int){true}; end

In TeonfBads Seller receives paid which is constrained by predicate paid =

pay, but Seller cannot use the predicate since s/he has neither sent nor
received pay. A method by which we can automatically allows Seller
to infer a meaningful constraint using this indirect predicate is given in
Definition 4.2 below.

4.2 Projection

We now define the projection of a global assertion to end-point assertions
at each participant.

Definition 4.2 (Projection). We inductively define Proj(G, A, p) where
p occurs in G assuming p1 # p2 by:

1. Proj(py — pa2: k(0 S){A}.S',Apmj,p) =

IAGE @{A}.gpmj ifp=np1
k?(0 : S){IVeat(A A Aproj)}.Sproj  if p=Dp2
9Proj otw

with 9Pr0j = P?"O]'(gl’ An AProjvp)
and Vegr = var(Apro; )\I(G) I p-
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2. Proj(p1 — p2: k {{Ai}li: Sitier, Aproj,p) =

kEd {{A}l;: gfpmj}iel if p=p1
k&{{ﬂ‘/ext(Az AN AProj)}li: g%roj }iEI pr = P2
S broj ifp+p2, pEp1and

Vi?j € I’ 93%0]’ = ngroj
with 9§gmj = Proj(Gi, Ai A Aproj,p)
and Vgt = var(AProj)\j(g) TP
3. Proj((S1,92), Aproj,p) =
P’/’Oj(gz', Aijap) Z.fp € 91 and p ¢ 91’
i4je(L2)
end ifp¢ G1 andp ¢ Go
4. Proj(ut(&)(v : S){A}.G, Aproj, p) =
ptE (@ S"){IVewt (A)}.Proj(S, A A Aproj, P)
where ' are the restriction of v to those in 3(9) | p,
Vet s the variables not located at p, i.e. Veyr = var(A)\I(G) I p),
and €' are the restriction of € to those located at p.
5. P?"Oj (t<é>, AProja P) = t<él>
where € are all the expressions in € such that var(e}) < I(9) I p.
6. Proj(end,Apmj,p) = end

When a side condition does not hold the Proj(G, A,p) is undefined. The
projection of G onto p, written G I'p, is defined as Proj(p, G, true).

Remark 4.3. In (4) above, by well-formedness of § we have var(e}) <
J(G) I p, hence all bound names in the original global assertion are kept
bound in the resulting projection.

The assertion projection defined above is identical to the type projection
in [27] if we erase logical formulae. Below we focus on the treatment of
logical formulae, leaving other aspects to [27].

In (1) we project to either a send or receive (or a continuation). For
send, the projection of a predicate A consists of A itself. For receive, we
consider that the other participants may in general not be trusted. The
receiver, by verifying that only the current predicate is not violated, is
not able to verify that some violation did not occur during interactions
between third parties. Let us consider the following global assertion which
is well-asserted:

G = Seller — Buyer: b (price : Int){price > 10}.
Buyer — Bank: ¢ (pay : Int){pay > price}.end
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The predicate pay = price alone is not meaningful to Bank since Bank
doesn’t know the value of price. In other words, Bank cannot verify
the value of pay respects the contract only through pay > price. For
this reason, we should project, to Bank, also the predicate of the past
interactions between Buyer and Seller:

G 'Bank = c?(pay : Int){Iprice(price > 10 A pay > price)}; (4.1)

In general, we project to p all the past predicates, even if associated to
interactions in which p was not involved. 7 The existential quantifica-
tion binds the variables that the participants do not know (i.e., they are
not in J(G) [ p). The aim of projecting the past predicates in input and
branching is twofold. First, we want to enable the receiver to detect vio-
lations in interactions in which it was not involved. Second, we want to
provide each participant with the strongest set of precondition possible,
so to avoid the burden of the so-called defensive programming (e.g., in
the implementation of Bank a programmer may concentrate on the case
pay < 10).

In (2) we project a branch global assertion onto a branching, a se-
lection or the projection of the continuation, following [27]. The ways
predicates are handled follow (1).

In (3), as in [27], we require that each participant is contained in at
most a single global assertion in a parallel composition to ensure that
each global assertion is single threaded.

In (4) the projection of a recursion definition to p consists of the
recursion definition itself where we project only the recursion parameters
that are known to p. As in send and branch, the projected predicate
contains also all the predicates that have been collected in the past, even
if associated to interactions in which p was not involved. The existential
quantification binds the variables that participants do not know (i.e., they
are not in J(9) [ p).

In (5) the projection of a recursive call is the recursive call itself where
we project only the recursion parameters known to p.

4.3 Well-Asserted Endpoint Assertions

Finally we show the projection preserves the basic principles discussed
in §3.2, locality and temporal satisfiability (history-sensitivity is vacuous

" The resulting formulae become substantially more compact by taking only causally
preceding actions. The result is equivalent.
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since all actions are now about a single participant). The well-assertedness
for end-point assertion is defined inductively using the function:

LSat(T, A)

which says 7 is satisfiable under A, which is defined as follows. Apart
from the difference in the shape of syntax, the rules exactly follow those
of Definition 3.7. We use the annotation t .5y as before.

Definition 4.4 (Well Asserted End-point Assertions). We define
a boolean function LSat(T,A) recursively as follows:

1. T=k(v: S){A}; T or k(0 : S){A'}; T
if A > 30(A") then LSat(T,A) = LSat(T', A A A")
{otherwise LSat(T, A) = false
2. T=k®{A;};: Tj}jes or T =k&{{A;}; : Tj}jes withj=1,...,n
if Ao (A1 v ...v A,) then LSat(T,A) =
LSat(T1,ANA1) Ao A LSat(Ty, AN Ay)
otherwise LSat(T, A) = false
3 T = utle)(v: S){A'}.T
if Ao A'le/v]
then LSat(T,A) = LSat(T', A A A)
otherwise LSat(T, A) = false
4. T =t <€) then LSat(T,A) = A > A'le/v]
5. T =end then LSat(T,A) = true

We say T is well-asserted if LSat(T,true) = true
When LSat(T,true) holds, T is well-asserted.

Lemma 4.5. If G is well-formed then, for all predicates Ag, Ay such that
Ay D Ag and allpe §

GSat(S,AS) D LSat(S rp,Ag')

Proof. By structural induction of G. For example, in the case of recursion,
if we project ut(&)(v: S){A}.9' to p we get ut{@H ¥’ : 8){IVeur(A)}.T7.
By induction hypothesis we have Ay > Ag and by well-assertedness of G
we have Ag D A|€é/0] hence Ag entails A[é/?]. But by the standard axiom
for quantification, and writing @ to be the restriction of ¥ to V., we know
A[€/v] entails (Fw)A[€'/0'] which immediately entails (3V,,.)A[€'/D'], as
required. See Appendix C.2 for the full proof. O
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Lemma, 4.5 shows that GSat implies LSat assuming that the set of pred-
icates of the global assertion imply those of the end-point assertion (in-
tuitively, the predicates in global assertions are projected by adding ex-
istential quantifiers which make them weaker).

Corollary 4.6 (Well-assertedness of Projections). Let § be a well
asserted coherent global assertion then for each p € pid(9), if G | p is
defined then G I'p is also well-asserted.
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P ::=a[2.0](3).P | ap] (5).P session request/acceptance

| sl(e)(v){A}; P value sending
| s?(0){A}; P value reception
| s < {A}l; P label selection
| s> {{A;}i: Pi}ier label branching
| if e then P else Q conditional branch
| errH | errT error
|P|Q | 0| s:h parallel/idle/msg queue
| (va)P | (v3)P name/channel hiding
| def D in P | X{é5) recursion def/call
e x=n | eande | note .. expressions
n =a | true | false values
h==1l]n]S3 messages-in-transit
D = {{X;(0;8;) = P)}ier declaration for recursion

Fig. 7. Syntax of Asserted Processes

5 Compositional Validation of Processes

5.1 The w-Calculus with Assertions

We use the m-calculus with multiparty session initializations from [27,
§2], augmented with predicates associated to communication actions, in
correspondence with end-point assertions. A processes with predicates
is intended to model the behaviour of a concurrent end-point program
combined with a local communication monitor, which checks at runtime
whether or not each message in both directions satisfy a stipulated con-
tract.®

Asserted processes or often simply processes (P,Q,...) are given by
the grammar in Figure 7. The only differences from [27] is the addition of

8 These logical formulae can also be considered as part of the execution of a program,
supplied by a designer/programmer for e.g. debugging, cf. §8.
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a2.a] (5).P | aj2] (8).P2 | ... | an] (5).P, — [R-LINK]
Ws)(PL | Py | ... | Pyl s1:D ... | sn: Q)
sWEN©){A}; P | s:h — P[a/0] | sy:h-f (€7 A A[R/d] | true)
[R-SEND]
s?(0){A}; P | s:fi-h — P[a/0] | s:h  (A[a/0] | true) [R-RECV]
s> {{A}i: Pilier | s:l; - h— P; | s:h (jeland A; | true)

[R-BRANCH]

s<A{A};P|s:h— P|s:h-1 (A true) [R-LABEL]
if e then P else Q — P (e | true) [R-IFT]

if e then P else Q — Q (e | false) [R-IFF]

def D in C[X(é5)] — def D in Q [R-DEF]

(where (X(05) = P) e D and C[P[é¢/?]] — Q)

Fig. 8. Reduction without errors

annotations of logical formulae. @[2..n) (§).P and afp] (§).P model the be-
haviours of multicasting a request for starting a new session (a[2..n]) and
to accept a session request by others (each a[i] with 2 < i < n) through
multiparty synchronisation.” Send, receive and branching are associated
to a predicate A. Label branching associates a predicate to each branch.
Conditional, parallel composition, inaction, name hiding, recursive pro-
cess definition and recursion calls, are standard. (For simplicity we omit
delegation, see §8.) Process s:hj..h, represent messages in transit going
through a channel s in an asynchronous order-preserving message deliv-
ery as in TCP, where each h; is either a branching label or a vector of
values. The empty queue is written s: F.

Processes errH (for “error here”) and errT (for “error there”) repre-
sent the run-time detection of a violation. Intuitively, errH denotes the
violation of a predicate on which the process has an obligation (i.e. send
and selection) while errT detects a violation caused by the environment
(i.e. receive and branching).

9 Session initializations are not asserted because the current notion of contracts gives
a specification on the per-session basis.
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siay(v){A}; P — errtH (A[n/9] | false) [R-SENDERR]
s?(0){A}; P |s:fi-h—enT|s:h (A[a/0] | false)  [R-RECVERR]

s> {{A}li: Pilier | s:lj-h —enT | s:h (jel and A; | false)
[R-BRANCHERR]
s<A{A}; P > errH (A] false) [R-LABELERR]

Fig. 9. Reduction: error cases

The reduction rules with internal predicate checking are given in Fig-
ures 8 and 9, where the latter collects the rules whose internal predicate
checking result in errors due to predicate violation. We generate — by
closing it under | and v and taking terms modulo the standard structural
equality, cf. [27]. The rules in Figure 8 are identical with the reduction
rules for multiparty session types presented in [27] except the satisfac-
tion of the predicate is checked successfully at each communication action:
send, receive, selection and branching. In the rules, we write A | true (resp.
¢ | n) for a closed formula A (resp. expression €) when it evaluates to
true (resp. o). Recall that in Convention 3.3 we assume decidability of the
underlying logic. Initially [LINK] establishes a session through multiparty
synchronisation, generating queues. Note all session channels are hidden
at the initiation. The remaining rules model communications within a ses-
sion, which are mediated by the message queues, modelling the TCP-like
asynchronous order-preserving message delivery.

Example 5.1 (Seller’s Process). Continuing from Example 3.4 we
present a process which implements G4, setting Buyer, Seller, Bank to
be participants 1, 2, 3 respectively and omitting the predicates true:

Preg =1a[2,3] (5,b,n).Py | al2] (s,b,n).P | a[3] (s,b,n).Ps
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We focus on the process for Seller:

Py, =defX(p_BPrice,p_SPrice,s,b,n) = Q2
inX {10,100, s,b,n)

Q2 = s?(BPrice){A A Al};
if e then (b < run; Qrun) else (b < end;0)

Qrun = bl(SPrice){A2};
s > {buy : Qpyy, {A3}rec : Qrec,stop : 0}

Qbuy = n?(paid){Ipay(A n AL A ... A A5)};0

Qrec = X{BPrice,SPrice,s,b,n)y

P, can be validated against G4 ['Seller. Since both the selections in Q2
are annotated with predicate true, the expression e can be arbitrary. Note
the existential is applied to pay in Qpy, since Seller does not know pay.

If we get rid of all logical formulae from an asserted process P, we
obtain processes from [27]. We write the resulting process erase(P), called
the erasure of P. The following convention simplifies our subsequent tech-
nical development.

Convention 5.2 (well-typedness). Henceforth we assume, for each as-
serted process P, its erasure erase(P) is well-typed by the type discipline
in [27] (for reference the typing rules are listed in Appendix D.2.

5.2 Validation Rules

A program phrase is a process without queues or v-hiding of session chan-
nels. A program is a program phrase which is closed (i.e. without free
variables/process variables) and which is without free session channels.
Programs are processes which programmers will write, in contrast to run-
time processes (those possibly with queues and channel hiding) which rep-
resent the process of execution. In this section we present compositional
validation rules for programs and program phrases against end-point as-
sertions. The purpose is to guarantee that when a process is executed, it
will never run into assertion errors as far as incoming messages are valid.

The validation rules closely follow the typing rules in [27], lifting glob-
al/local types in [27] to global/end-point assertions. A sorting (I',1”,..) is
a finite function mapping (i) variables to sorts (¢ : S), (i) shared names
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to global assertions (a : §), and (ii7) process variables to sequences of sorts
and end-point assertions (X : (¢ : S)T; @p, ... T, @p,). When we write e.g.
0 : S, we assume domI” n {0} = &. We also use located end-point as-
sertions T @p which indicates an end-point assertion T for participant the
p- Assertion assignments specify constraints on end-point behaviour per

each session and are defined as
A == O | A5:{TAp}per

An assertion assignment maps channels for a session to endpoint asser-
tions for multiple participants, e.g. 5 : {T@p}per, though programs and
program phrases only need a singleton assignment of the form s : {T@p},
abbreviated as §: TQp.

An assertion environment (C, €', ...) records the incremental conjunc-
tion of predicates and is defined by

C == true | CAA

An assertion environment can be regarded as a predicate, but the special
font emphasises its (in effect) list-like shape.

The validation rules are given in Figure 10. By Convention 5.2 the
rules omit typing constraints irrelevant for our purpose (Appendix D.2
lists the typing rules which give these constraints). We assume global
and end-point assertions occurring in each rule are always well-asserted.
Judgements have the shape:

CGI'-P=A

which reads: “under € and I', process P is validated w.r.t. A”. The val-
idation rules validate the communication behaviour of processes as well
as elaborating processes with the predicates from endpoint assertions
(by neglecting the latter aspect, the rules can validate the behaviour of
unasserted processe against endpoint assertionss, cf. §7.3).

Rule [SEND] validates a participant p sending values € on the (the
k-th) session channel, provided that € satisfy the predicate in the current
assertion environment (€ > A[é/0] ensures the sent values satisfy the
specification) and that the continuation is valid, once v gets replaced by
¢ (notice the substitution in P affects both expressions and predicates in
it.)

Rule [RECV] validates a value reception against the continuation of
the end-point assertion in the extended assertion environment € A A. The
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Co Ale/v] CI'+ Ple/o)=A,5:T|é/v]ap

— SEND
C; '+ sple)(0){A}; P> A,5: kl(0: S){A}; Tap | |
CAAT:SHP>AG :Tap [Rov]
C; I s, 2(0){A}; P> A,5: k?(0: S){A}; Tap
GDAJ' G;FI—PDA,giij@p jel [SEL]
CI'F sp < {Aj}lj;PDA,g : k@{{Az}lZ : Ti}ie] Q@p
CAA TP >A,5:T,@p Viel (BRANCH]
C I sp > {{Ai}li: Pilier = A, 5:k&{{Ai}l; : Ti}ier @p
I'a:§ CGI'P=AG5:(G11)a1
C; [+ af2.n] (5).P > A [MeasT]
I'a:§ CI'-P=A5:(91p)ap
C I afp(5).P=A [Macc]
CGI'-Pe=A CI'-QeA A=A [Cond]
CGI'-P|Q=Ao0A
Crel’'-P=A CA—el+Q=A ¥
F

C; I+ if e then P else Q= A

A end only Cla:SHP=A
CGI'HOo=A CI'H(va)P=A

I'wv;: S LSat(Ti[é/fJ], C)a<i<n)

[INACT],[NRES]

— —— [VAR]
I, X:(0:8)T1Q@ps... T, Qp, - X{€81..5,)
>§1:T1[é/0] @pa, .., §n: Tp[€/0] @p,
;I X:(v:8)T1@p;...Tp@ps,0:S P
>$1:T1Qp1...8,: T, Qp,
CLLX:(v:5)Ti@pt...T,@p, - Q=A D]
C;T - def X(381...50) = PinQ > A
CiI'-P=A" CoC A>A (ConsEQ)]

CGI'-P=A

Fig. 10. Validation and Elaboration Rules for Program Phrases
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conjunction € A A indicates the process can rely on A for the received
values after the input.

Rules [SEL] and [BRANCH]| are understood in the same way (n is the
number of participants in G and p is one of the participants).

Rules [McasT] and [MAcc] validate session request and acceptance
for a participant by validating the continuation against the projection of
the global assertion on that participant. Notice that the assertion envi-
ronment € does not involve any interaction variable used in the assertions
of P.

Rule [CoNc] validates parallel composition. Following [27], A =< A’
denotes linear compatibility, meaning that: If we have 31 : {7, @p}per in
A and, further, 3 : {Ty @q}qes in A', then either 51 N 52 = & or, if not,
51 = 89 and I nJ = (. If this holds, the composition Ao A’ denotes the
pointwise (per-session) union of assertion assignments.

Rule [IF] validates a conditional against A if each branch is validated
against the same A, under the extended environment Cae or CA—e, as in
the corresponding rule in Hoare logic [26]. In [INACT], as in the underlying
type discipline, we demand A only contains end as end-point assertions.

Rule [VAR] validates a call for X against the substitution of the end-
point assertion associated to X with the substitution of € to the recursion
parameters, if the result of substitutions for each end-point assertion T;
is consistent using LSat from §4. Observe TJ; typically takes the form of
a recursive end-point assertion with initialization coming from the vari-
ables 0. In this case LSat checks this initialization satisfies the recursive
invariant.

In [DEF], the definition-call is validated if (1) the defined process
is validated against the given end-point assertion and (2) the predicate
associated to the process, with substitution of the recursion parameters
with €, is satisfied in the current environment. The validity of this rule
hinges on the partial correctness nature of the semantics of the judgement.

Rule [CONSEQ| uses the relation 3. This is a semantic notion we
later define in Definition 7.4, defining the natural notion of refinement: if
T 3 77, then T is more refined (more restrictive) than 7’ as a specification.
Thus D can be considered as a form of entailment, motivating the rule.
As a practical consequence, the rule has the following instance, where
T ~tree T’ indicates T and T’ are identical when we unfold all recursions
in them to infinite trees.

CI+-Pr=A, 5:7Qp T xgree T’
CGI'-P=A, 5:7Qp

(5.1)
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This instance is admissible since two recursive assertions whose tree repre-
sentations are identical have the same meaning, in terms of the transition
semantics we shall define in §7. Note also this rule allows a program to
be internally asserted with a more restrictive (stronger) predicates than
given in a given endpoint assertion.

The purpose of validation is to validate a well-typed program against
a given endpoint assertion assignment A and a sorting I" under the trivial
assertion environment true, as well as elaborating the program with in-
teraction predicates in the specification. In the rest of the paper we write
I' P A for true; I' - P> A.

Observe that, since each interaction predicate is directly copied from
endpoint assertions to processes in session prefix rules, the proof system
in effect validates unasserted processes, i.e. typed processes without elab-
oration by logical formulae, against given specifications. This aspect is
discussed in more detail in §7.3 later.

Example 5.3 (Validating Seller Process). We can check the process
Py from Example 5.1 can be validated under a : §;,¢4 from Example 3.4
in §3, using the properly projected version of G-

Closing this section, we present the following enhanced version of the stan-
dard substitution lemma for the 7-calculus. Note the lemma is vacuous
when C[n/a] is unsatisfiable.

Lemma 5.4 (Substitution). Let ;14 : S + P> A with A well-
asserted. If @ is free in P and 2 have sorts S then C|n/ul; I" -+ Pln/u] >
A[n/a] and A[n/a] is well-asserted.

Proof. By rule induction, see Appendix D.3 for details. O
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6 A Larger Example of Validation: Negotiation Protocol

In this section we illustrate a comprehensive example of a recursive three-
party negotiation protocol. In § 6.1 we present the global assertion and its
projections into the participants. § 6.2 presents the processes implement-
ing each end-point assertion. In § 6.3 we show that each of the processes
is conform to one of the end-point assertions. For readability we use, in-
stead of numbers, the mnemonics S, B, N, ChS, ChB and ChN to denote
participants (i.e., seller, buyer and bank) and their channels.

6.1 Global assertion and projections

The following global assertions models a negotiation between a seller and a
buyer (participants S and B, respectively) which possibly terminates with
a purchase which is notified to a bank (participant N).The negotiation
is modelled as a recursion where the parameter p,;q represents the value
proposed in the previous instance of negotiation and is initialized to 10
in the first instance. The buyer proposes a price p to the seller, then the
seller decides whether to sell (i.e., label ok), quit (i.e., label stop) or run
another instance of negotiation (i.e., label neg) where the current value
of p is assigned to pyq. Notice that p,g is located only in S and B since N
does not know p thus he does not know p,;q that takes the value of p in
the recursion invocation.

G = pt{10)(porq : Int @ {s,B}){pora = 10}.
B — S: chS (p: Int){p > 10}.
S — B: chB{{true}ok : end,
{true}stop : B — N: chN (c: Int){c = p}.end,
{p > poatneg : t{p)}

We present below the three end-point assertions obtained by projecting
G on the three participants S,B and N. The projection for Seller becomes:

G518 = ut{10)(pota : Int){poia = 10}.Ts1
Ts1 = chS?(p: Int){pog = 10Ap = 10}; Tso
Tso = chB@® { {true}ok : end,

{true}stop : end,

{p> pusalneg : 4p) |
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Next we consider the projection to Buyer:

G1B = ut{10)(poiq : Int){pold = 10}.731
‘IBl = ChS!(p : Int){p = 10};732
Tpos = chB&{ {poiqd = 10 Ap = 10}ok : T Bbuy
{pota = 10 Ap = 10}stop : end,
{Pola = 10Ap = 10AD > poratneg : t(p) }
TBbuy = chN(c : Int){c = p};end

Finally we list the projection to Bank.

S TN = ﬂt<>(){3pold(pold 2 10)}'TNbuy
TINBuy = chN?(c : Int){3p, potd-(Pota = 10Ap = 10ADP > poig Ac = p)};end

In these projections, the predicates associated to output or selection con-
sist of the corresponding predicate of the global assertion, for example
the predicates of Tgo and Tp1. According to the rules in the definition
of projection the predicates associated to input or branching are defined
as the logical conjunction of the corresponding predicates of the global
assertion and the previous predicates. For example, the predicate of Tg¢q
includes the the recursion invariant and the predicates of Tpo include
both the invariant and the predicate in Tpi. Notice that the existential
quantifier applies only to the interaction predicates of N since the seller
and the buyer know both p and p,4. Also in the recursion invariant of
G I'N, since the variable p,;q is not located in N, then it is bound by the
existential quantifier.

The predicates of Ty, include all the previous predicates, also those
of interactions between the seller and the buyer.

6.2 Processes

We model a negotiation protocol as a process P. P consists of the parallel
composition of three processes, one for each participant. In P, the seller
starts a session and the other participants accept the session request.
The session is modelled by the three processes Psejier, PBuyer and Ppank.
Psejier defines a recursion and invokes the first instance with p,q = 10. In
the recursion, the seller receives a proposal and, according to the condition
e decides whether to reiterate the negotiation or accept the price. Ppyyer
also defines a recursion and Ppy always increments the price proposed
by the buyer of one unit, with respect to the previous instance (i.e.,
P = poid + 1). Notice that the whereas the buyer offers, in the branching,
al the possible branches of the end-point assertions in § 6.1, the seller can
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in the conditional and selection only admit some of the offered branches.
If the seller accept the price, process Pgy sends a notification to the bank.
Ppani receives the notification.

P = afs,n] (ChS,ChB,ChN).Pseier | ag] (ChS, ChB, ChN).Pguyer |
an) (ChS,ChB,ChN).Pank

Psetier = def X (poig, ChS,ChB,ChN) = Ps1 in X{(10,ChS,ChB,ChN’
Psy = ChS?(p){poia = 10 Ap = 10}; Psy

Pgs = if (p > 10) then Pgp else Psp

Psr = ChB < {p > poa}tneg; X{p,ChS,ChB,ChN)

Psp = ChB < {true}ok;0

Puyer = def X (poia, ChS, ChB,ChN) = Ppy in X{p,ChS,ChB,ChN)
P = ChSKpo + 1)) {p > 10}
ChB > {{poia = 10 Ap = 10}ok: ChN{p)(c){c = p};0,
{poia = 10 Ap = 10}stop: 0,
{pota = 10Ap = 10 Apyig > pineg: X{p, ChS,ChB,ChN)}

Pponk = def X(ChS,ChB,ChN) = Py1 in X{ChS,ChB,ChN)
Pyi = ChN?(c){3poia, P(pola = 10Ap = 10Ac = p)}; 0
6.3 Validation
We want to validate P against
A=5:G18,5:GIB,§:GN

where § = ChS,ChB,ChN. First we apply rule [CONC] twice and decom-
pose the validation into the validation of:

1. @[2,3] (3).Pseiters
2. al2] (g)-PBuyeTa
3. a[3](5).Ppank -

6.3.1 (1) Seller process. By rule [McAST], in order to show the va-
lidity of @[2,3] (5).Pgejier we have to prove

true,I' - def X (poia,5) = Ps1 in X{10,5)=5§:GSas.

In order to proceed with the validation we have to consider the fol-
lowing points (cf. Definition 7.6 and Proposition 7.7 in § 7).
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— we say T Xyee T’ when T and T are identical as inifinite trees, when
their recursions are unfolded inductively;

— we say A ~ A’ if A and A’ only differ on the fact that A includes T
and A’ includes T’ such that T xtree T

— A~ A implies A 5 A’

— G 18 = put{10)(poid : Int){poia = 10}.Ts1 ~tree Ts1[10/Pora), hence
T, = Ts1[pt.../t] implies T4, [10/poia] D G 1S

It follows that, by rule [CONC], we have only to prove
true,T' - def X(poia,5) = Ps1 in X{10,5)=>§: T{S’l [1O/pold] @s

where T4 = Tg1[pt{10)(pora : Int){pora = 10}.Ts1/t].
By rule [DEF], where IV = T', X : (pyiq : Int)5 : Ty, @s

(1)true, T’ - Ps1 =>35:T51 @S
(2)true, T’ — X{10,3) >3 : T51[10/poia] @S
true,I' - def X (potd, 5) = Ps1 in X{10,5) > 5 : T4,[10/poia] @S

Premise (2) follows by rule [VAR| applied to X (10, §) against Tg;[10/por4]-

LSat(T[10/poia), true)
true, IV = X {10, ChS,ChB,ChN) =35 : T [10/paa] @s.

LSat(S18,true)

= LSGt(TSQ[lo/pold], A[lo/pold]) (*)
= LSat(end, A[10/poiq] Atrue) A LSat(ut..., A[10/poia] Ap > 10) (t)

= true (1)

where:
e (%) is by true © A[10/poid]-
o () is by A[10/poia] D true v p > 10.
* (1) is by:
LSat(end, A Atrue) = true,
LSat(t{py, A[10/poia) Ap > 10) = true (with A[10/pyq] Ap > 10 o p = 10).

It follows the proof for (2) where we denote predicate pyq = 10Ap = 10
by A and Ty, = chS?(p: Int){A};chB @ {{true}ok : end, {true}stop :
end, {p > 10}neg : pt...}:
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LSAT(TEH [p/potal, Arp > 10) A end only
; ~ [VaR] - [INACT]
(Aap>10)2p>10 Arp > 10,I" - X{(p, 5y > 5: T, @8 SeL] Ar—=(p>10),I" - 0 =35 : end@S (SE1]
EL EL
Anp>10,T" - ChB < {p > 10}neg; X{p,5) =35 : T52@S AA=(p>10),I"+ChB < {true}ok; 0 > 5: T52@S (1¥]
F

A, TV if (p>10) then Pgr else Pgp =5 : TgoQS
true, IV - ChS?(p){A}; Pso =5 : ChS?(p : Int){A}; Ts2@S
In the rule [VAR] we apply LSat to the unfolding of § | S where the
parameter p,q has been substituted with the actual parameter p. We
denote (p > 10) with A[p/poiq]. We simplify some predicate with a shorter
equivalent one for readability:

[Rev]

T51[p/Pota] = chS?(p : Int){A[p/poa]}; ChB®{{true}ok : end, {true}stop : end, {p > 10}neg : ut...}
and

LSat(Ts,[p/pora], Anp > 10) = (with Anp > 10 D A[p/poid])
LSat(Ts3[P/poa], Arp > 10) = (with Aap > 10 D true v p > 10)
LSat(end, AAp > 10) A LSat(Ts1[p/pota], Arp > 10) = true

since:

LSat(end, Anp > 10) = true, and

LSat(‘qu [p/pold],A/\p > 10) =

LSat(t{p), Anp > 10) = true (with Aap > 10 o p > 10).

6.3.2 (2) Buyer process. By rule [McasT|, in order to show the
validity of a[g] (ChS,ChB,ChN).Ppyyer we have to prove

true,I' - def X(poid,S) = Pp1 in X{10,5)=>5§: GBas.

Notice that T5,[10/peia] 2 G I'B. It follows that, by rule [CONC], we have
to prove

true, I' - def X(polda §) = Ppj in X<10, §> >S5 {I,Bl [10/pold] Q@B

where ‘.TIBl =Tp1 [,ut<10>(pold : Int){pold = 10}.731/1?].
By rule [DEF|, where IV =T, X : (pyq : Int)s : T3, @B
(1)true,T"  Pp1>35:Tp1 @B
(2)true, T - X{10,3) >3 : T31[10/pora] @B
true,I' - def X (pota,5) = Pp1 in X{10,3) =5 : T4, [10/pora] @B

Premise (2) follows by rule [VAR] applied to X (10, §) against the un-
folding of G I'B

LSat(T5,[10/pord], true)
true, IV - X (10, ChS,ChB,ChN) =5 : T, [10/po1a] @B.
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The proof LSat(T7,[10/poia]) = true is similar to the one for the seller
(i-e., LSat(T4[10/poia]) = true).

It follows the proof for (2) where we denote predicate pyq = 10Ap = 10
by A and T, = chS\(p: Int){p > 10};chB&{{A}ok : end,{A}stop :
end, {AAp > 10}neg : pt...}:

(WA, T - 0>35:Tp2@B
(2)A, T+ ChNKpy(c){c = p}; 0 =5 : Tp2@B
(3)AAp > 10,T" - X{p,3)=>5: Tp@B

B
true > 11 > 10 true,I' - ChB > {{A}ok: TBbuy, {A}stop: 0, {AAp > 10}neg: X{11,5)} >3 : Tp2@QB %S;:;NCH]
true, I - ChSI10 4+ 1)(p){p = 10}; P2 =35 : chS\(p : Int){p = 10}; Tp2@QB
We split then the proof in three part, one for each branch:
(1) A end c~)nly [INACT]
AT~ 0c5:end@B
(2)
A end only
[INACT]
Aop=p AT 0r=35:end@B (Swo)
A,T" = ChNKp)(c){c = p};0 =35 : chN!(c: Int){c = p};end@B
LSAT (T A > 10
(3 ( B,1 [p/Potd] . /\p~ . ) (VaR]
Anp>10,T" - X{p,5)>35:T5,@B
The proof for LSat(T%,[p/pord]) = true is similar to the one of the
seller (LSat(Tg,[p/poa]) = true).
6.3.3 (3) Bank process. Since Tnpyy D GIN, let IV =T, X : (poq :
Int)§ : TNbuy @n:
A end only
[INaCT]
3P, Pora(p = 10 Apora = 10Ac=p), I - 0>35:end@N LSAT (T Nouy, true)
— [Rev] — — [VAR]
true, I" - Pn1>35: Tnpuy QN true, IV - X{(8) =5 : Tnpuy QN Der]
true, I I def X (ChS,ChB,ChN) = Px1 in X{ChS,ChB,ChN) >3 : Tntuy ON Tnpuy D G IN {CO -
NSE!

true, T - def X(ChS,ChB,ChN) = Py; in X{ChS,ChB,ChNy=35:G INQN

where it is straightforward to derive LSat(Tnbuy, ID0; Potd(p = 10 Apoa =
10Ac = p)) = true.
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7 Soundness, Algorithmic Validation and Monitoring

7.1 Semantics of Assertions

In this section we first define the semantics of end-point assertions using
labelled transition relations, then establish several basic semantic results
underpinning the proposed method, including soundness of the validation
rules in § 5.2, assertion-error freedom and the erasure theorem. These
results offer a firm basis for the applications of the assertion method for
static and dynamic validation, discussed at the end of the section.

Convention 7.1. Throughout we assume each v-bound name is anno-
tated by a global assertion, written e.g. (va : §)P.

The labelled transition for asserted processes is the standard one ex-
cept assertions in session communications are checked. Transitions use
the following labels:

a == a|2.n](8) | ali](8) | (wva:G)sla | s?a|s<l|s>l]|T

where in (va:§)s!la names in @ should occur among @. Note when a name
is exported we annotate it with a global assertion. The rules are standard
except that The 7-action is induced by the reduction, i.e. P 5 Q iff
P — @, and are given in Appendix E.2, Figure 15, writing P = Q when
P has a one-step transition a and becomes Q).

The transition of assertions has the form

(I, AY ST, A

which reads: the specification {I', A) allows the action «, with the specifi-
cation {I'"; A"y for the continuation. Above we restrict A to a collection
of singleton assignments, i.e. of shape 5 : T@p. Figure 11 defines the la-
belled transition rules, assuming all occurring assertions are well-asserted
and equating recursive assertions with their unfoldings [19], e.g.

pt(1y(v).kl(x){z=v}; t{v+1) (7.1)
is equated with
kY (z){z=1}; ut2)(v). kN (x){x>0v}; t{v+1) (7.2)

(note this unfolding makes an output action possible). The T-action does
not change the environment and the assertion assignment.
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:G-T, 2 P 0.6. 1A 5: G 1ap) [TR-LINKOUT]
@:5-1,8 "™ 4:6. 1, A,5: Griap) [TR-LINKIN]

n:S A[a/o] L true I"=T,a:G a:§ occurina:S

(va:G) spla

(L (A,5: K (0:5){A}; Tap)) =77 (I, (A, 5:T[5/7] @p))
[TR-SEND]

n:S A[a/o] | true I"=T,a:G a:§ occur ina:S
(I (A3 k7(3 : §){A); Tap)) S5 (17, (A, 5 : T[3/7] ap))

[TR-REC]

Aj | true

s>l

(I(A,5: k@ {{A}; : Tilierap)) =’ (I, (A,5:T;@p))

[TR-SEL]

Aj | true

Sk<l'

(I (A, 5 k&{{A}; : Titier@p)y =’ (I, (A,5:Tjap))
[TR-CHOICE]

(I,A) S, A) [TR-TAU]

Fig. 11. Labelled Transition for End-point assertions

Based on these transition relations, we define two basic relations: the
satisfaction =, written

P (I A) (7.3)

which says when a process P satisfies a transition behaviour specified
by a pair of global and endpoint assertion environmens (I, A); and the
refinement D, written

A1 D A, (74)

which says A; refines Ay. The relation = is defined using a conditional
simulation which extends the standard typed (bi)simulation in 7-calculi
[42] in that, in the case of input/branching, simulation is only necessary
for the action for each “valid” value or branching label, i.e. that is type-
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correct and that does not violate the associated assertion, demanding
a validated process behaves correctly only if the environment behaves
correctly.

Definition 7.2 (Conditional Simulation). Let R be a binary relation
whose element is of the form (P, {I',A)) where P is a closed process
without errH or errT, I' a sorting and A a collection of singleton assign-
ments, both using only well-asserted global/endpoint assertions. Then R is
a conditional simulation if, for each (P,{IyA)) € R, the following holds:

— for each input (resp. branching) move P % P', (I, A) has an input
(resp. branching) move at the subject sbj(c) and, if (I, AY % (I, A"
then (P',{I", A")) € R.

— for each output/selection/T move P> P', we have {I', AY = (I'"", A")
such that (P',{I", A")) € R.

If R is a conditional simulation we write P < (I, A) for (P,{I", A)) € R.

Definition 7.3 (Satisfaction). Let P be a closed program phrase and
A an endpoint assertion assignment. If P < (I, A) then we say that P
satisfies A under I', and write I' = P = A. The satisfaction is extended
to open processes, denoted C;I" = P = A by considering all closing sub-
stitutions respecting I and C over A and P.

Thus I' = P = A says that P always sends valid messages or selection
labels and does so under valid conditions; and that P can continue to
behave well if it receives messages/labels satisfying the corresponding
interaction predicates, without ever going into error.

Note this satisfaction is about partial correctness since if P has no
visible actions, then the satisfaction trivially holds (in fact the satisfac-
tion has a direct embedding into a partial correctness fragment of the
Hennessy-Milner logic, cf. §8).

In the validation rules, we use the refinement relation A  A’. This is
given as the point-wise extension of the relation over end-point assertions,
denoted T 3 7’. Below recursive assertions are again equated with their
unfoldings. An endpoint assertion is closed (resp. open) if it does not (resp.
it may) contain free variables.

Definition 7.4 (Refinement). A binary relation R over closed well-
asserted end-point assertions is a refinement relation if T1RT5 implies one
of the following holds:
— T = kl0:9){A1}; T, and Tp = k(v : S){As}; T} s.t. A; D Ay and
10RTho for each o = [n/0] with Ajo | true.
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— T = k2(0: ){A1};T, and Tp = k?(0 : S){A2}; T, s.t. Ay > A; and
T1oRTho for each o = [8/0] with Ayo | true.

— T1=k® {{A}} Ti}ier and To =k @ {{4}}(;:T}} jes where for each iel, we
have I[; =1;, A; > A; and T;RT; for some jeJ.

— T1=k&{{A}; Ti}ier and To=k&{{A;}}; T} jes where for each jeJ, we
have I;=1;, A;j > A; and T;RT; for some jeJ.

If T71RT5 for some refinement relation R, we say T7 is a refinement of To,
denoted T| 3 Ts. The relation D extends to open endpoint assertions in
the standard way.

If 71 D Ty, then T7 specifies a more restricted (more gentle; more well-
behaved; more generous) behaviour than Ta, in the sense that T tolerates
less outputs and selections and allows for more branches and more input
values. In other words, a simple way to refine an end-point-assertion is to
strengthen its interaction predicates for send/selection actions; and/or to
weaken those for receive/branching actions. The following says:

if P satisfies a specification which is more refined than the other
then P also satisfies this less refined specification.

Proposition 7.5 (Refinement). If I' =P > A and A D A’ then I'
P A

Proof. By constructing a suitable conditional simulation by the original
one and the refinement relation, see Appendix E.3. O

We also note:

Definition 7.6. Let T be a closed endpoint assertion. Define Tree(T) to
be the tree generated by applying the following the following unfolding:

unfold (ut(&5(@ : S){A}.T) % Tlut (@ : S){A}.T/t][¢/5]

where Tut(0: S){A}.T/t] substitutes ut(e;)(v : S){A}.T for each call
t{¢;) in T. Then we write T Xyee T’ when Tree(T) = Tree(T").

Proposition 7.7. T xyee T’ implies T 3 T'. Hence, writing A ~ A’
when A and A’ only differ in ~yee-related endpoint assertions, I' | P>A
and A~ A" imply I' E P> A" again.

Proof. Immediate since T xree 7' means T and T’ have precisely the same
transitions. ]

Note Proposition 7.7 justifies the rule in (5.1), page 30. We can further
show ~tree and 3 N 37! coincide.
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7.2 Soundness
The proof of soundness is done in the following three steps:

— (Step 1) We show that the visible transitions of a process preserve
provability.

— (Step 2) Using Step 1 we show the same for the tau-action.

— (Step 3) We establish a conditional simulation through the rule in-
duction on validation rules, using the results from the previous steps.

Step 2 demands analysis of the interplay between the T-action (reduc-
tion) and provability, and for that purpose we need validation rules for
runtime processes, which add to those in Figure 10 the validation rules of
queues on the basis of the typing technique in [5] and the following rule
for hiding session channels [5, 27]:

I'- P> A,5:{T,@p}per {Tp @p}per coherent
' wi)P=A

[CRES]

where we say {T, @p}per is coherent if for some G s.t. I = pid(G), we
have 7, © G | p for each p € I. The underlying type discipline also
demands, when hiding session channels, that there is a queue at each of
these channels. The following is proved for processes under the extended
validation using Lemma 5.4.

Proposition 7.8 (Subject Transition for Visible Actions). Let I"
Pr=A be a closed process and {I', AY % (I, A" with o # 7. Then P = P’
implies I'" - P' > A,

Proof. By case analysis, see Appendix E.5. O

For the 7-action, since a reduction at free session channels changes the
shape of linear typing as discussed in [5,27], it also affects the shape of
end-point assertions. '© We solve this problem following the method in
[5], using a non-deterministic reduction of assertion assignments, written
A — A’ which is given in Appendix E.6.

By Proposition 7.8 and by a technical lemma on reduction (which
attributes each kind of reduction at a session channel to the corresponding
visible action together with a change in the shape of a queue content),
we obtain:

10 This does not affect the statement of Theorem 7.10 since derivatives of program
phrases never have reduction at free session channels.
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Lemma 7.9 (Subject Reduction). Suppose I' - P>A and P 5 P'.
Then I' = P’ = A’ such that either A’ = A or A — A’

Proof. By Prop. 7.8 and Lemma 5.4, see Appendix E.6. O
The main result of this section follows.

Theorem 7.10 (Soundness of Validation Rules). Let P be a pro-
gram phrase. Then C;I' = P = A implies C;I" = P = A.

Proof. (outline) We let R be the set of pairs such that each has the form
(Py,{I'0, Ay)) such that C; I' - P=A, o is a ['-C respecting closing sub-
stitution, P is a runtime process, and prove R is a conditional simulation
extended to runtime processes and non-singleton assertion assignments,
using induction on the validation rules. The rules for prefixes ([SEND],
[Rcv], [SEL] [BRANCH], [MCAST], and [MACC]) results in processes with
only visible actions, for which we use Prop. 7.8 and induction hypothe-
sis. The non-trivial case for [CONC] is when the T-action takes place, for
which and for [IF], we use Lemma 7.9. [INACT] is vacuous. [NRES] uses
induction hypothesis. [VAR] is direct from the assumption. [DEF] uses the
standard syntactic approximation of a recursive process, starting from 0
(which satisfies any specification). Finally soundness [CONSEQ] is direct
from Proposition 7.5. See Appendix E.7 for the full proofs. O

As an immediate corollary we obtain the error freedom. Below we say

(I", A) allows a sequence of actions & if for some (I, A"y we have (I", A) 4
(I’ A%.

Theorem 7.11 (Error Freedom w.r.t. Arbitrary Transition). Sup-

pose I' = P=A and P % P’ such that (I', A) allows &. Then P’ contains
neither errH nor errT.

7.3 Effective Validation and Runtime Monitoring

Convention 7.12. In the rest of the present section we assume each in-
teraction predicate in a well-asserted global assertion only uses a quantifier-
free logical formula.

Effective Validation. We first discuss an algorithm for design-time (static)
validation of programs. First we observe that the validation rules in Figure
10 in effect give the compositional proof rules for typed, but unasserted,
processes. To clarity, Figure 12 takes off the elaboration of logical formulae
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from the rules for the prefixes for session communication from Figure 10
(note the remaining rules in Figure 10 do not mention logical formulae
inside a process).

Co Ale/v] CI'+ Ple/o)=A,5:T|e/v]ap

: [SEND]
C; Il spléy; P> A 5: k!0 : S){A}; Tap
CAATD:SHP>AGTap
' : A [Rev]
C; I b sp,?(0); P = A, 5: k2(0: S){A};Tap
GDAj G;F|—PI>A,§Z(.TJ‘@P JGI [SEL]
C;l s <lj; P>A5: k@ {{Ai} : Titier @p
A, T+ P, 5:7; el
Crdi,I'-P=A,5:T,0p Vie [BRANCH]

C; I+ s> {lz Pi}iej =>A,S: k&{{Al}lz : ‘Ti}ie] Q@p

Fig. 12. Validation for Unasserted Session Actions

Note however the rules do not directly induce an algorithm, due to
the shape of [DEF] (which introduces a new hypothesis when going from
the conclusion to the premise) and because [CONSEQ] is needed for equat-
ing recursive endpoint assertions and their unfolding. The following rule,
catering for a simple recursive definition (easily extensible to the full syn-
tax of process definition) mitigates the former by demanding a parallel
search and avoids the latter issue by assuming the structural correspon-
dence between session recursions and process recursions, which may often
be found in practice.

;Iv:85, X:(v:S8)Tap - Pr§ :unfold(T)ap  LSat(T,Q) T[e/7]

C; ' + def X(051..5,) = P in X{&5) > 5:T ap

Note there can be multiple candidates for T such that T[é/v] = T".

Write I -* P> A for the validation rules which dispenses with [DEF]
and [CONSEQ] while adding this rule. By reading each rule from the bot-
tom to top we obtain a decidable algorithm for validation (which de-
mands parallel/non-deterministic search for multiple candidates for re-
cursion noted above as noted above, see Appendix E.9).
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Theorem 7.13 (Effective Validation). Given I', P and A, the prov-
ability of I' =* P = A is decidable.

Proof. By the obvious recursive algorithms and decidability of validity of
the underlying logical language, see Appendix E.9. 0

Communication Monitoring. Because of e.g. internal loops between com-
munication actions, a complete algorithmic validation of programs may
not always be feasible. A flexible and modular method for ensuring dy-
namic safety of communicating programs is runtime local communica-
tion monitoring at each endpoint, formalised as reduction/transition with
predicate checking in the presented calculus (cf. Figure 8). Using this for-
malisation, we clarify potential ways the proposed assertion method may
be used for monitoring.

Firstly, a basic role of such a monitor is, in an untrusted environment,
to filter bad incoming messages and to ensure proper outgoing messages.
Recall, in our model, monitors notify violations through reduction to errH
or errT. Note also I" 4P P = A implies P has neither errH nor errT.

Proposition 7.14 (Monitoring, 1). Assume P is a closed process with-
out errT nor errH such that I' -%2° P> A, where A consists of singleton
assignments. (1) If P 5 P’ such that o is output/selection/shared ac-
tion, then I'" %122 P > A" with (I, AY 5 (I, A"y. (2) If P5 P’ such
that o is either input or branching, and if (I, Ay % (I"!, A", then P' is
without ertT and I'" -2 P'=>A'. (3) If P 5 P’ and P’ is without errH,
then I' =820 P = A" with (I', A) 5 (I, A").

Proof. All are immediate from the definition of elaboration rules. O

Above (1) says that a monitor never allows a wrong output/selection (i.e.,
where « is violating); (2) says a monitor can always detect an erroneous
input/branching.

The monitoring can also be used in a trusted environment where we
can assume all components are either elaborated or validated, as in e.g.
debugging. Write I = P (resp. I' —¥2® P resp. I' = P) when I'
P& (resp. I' -3 P> resp. I' = P> ). We write I' = P ~ Q
when I' = P, I' = @ and P and @ are strongly bisimilar by their
typed transitions. Further erase(P) (resp. eraseO(P)) denotes the result
of turning all predicates annotating communications (resp. annotating
output/selection) to be true.
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Theorem 7.15 (Monitoring, 2). Let P be a closed program and I' |-2P
P.

1. (safety assurance) P —1 Q implies Q does not contain errT.

2. (consistency) If eraseO(P) —1 Q such that Q contains errT then
P —* Q' such that Q' contains errH.

3. (monitor freedom) If I' + P then P - Q implies Q contains neither
errT nor errH.

4. (erasure, 1) If I' -+ P then P —* Q implies erase(P) —* erase(Q);
and erase(P) —»T R implies R = erase(Q) such that P -7 Q.

5. (erasure, 2) If I' = P then we have I' }= erase(P) and I' | P ~
erase(P).

Proof. See Appendix E.8. O

Above (1) says that if all participants are elaborated, a bad incoming
message never arrives, as it would generate a errH in the sending party.
(2) says that an input/branching violation can always be attributed to a
send/selection violation. (3) is an immediate corollary of Theorem 7.11,
and indicates that we can dispense with monitors if we know all partici-
pants are validated. (4) is the standard erasure, while (5) strengthens (4)
with visible behaviour.

In practice, a local communication monitor may be automatically gen-
erated from assertions as a stub code, integrating a finite state automaton
[45] with predicate checking. Such a monitor is relatively efficient if work-
ing under Convention 3.3 and assuming global assertions with quantifier-
free predicates. Because of the shape of projected formulae (Definition
4.2), monitoring output/selection is polynomial time w.r.t. the size of
a message and the predicate. Via Theorem 7.15 (1), this suggests an
efficient debugging framework through output/selection monitoring. For
input/branching, the need of existential quantifiers for indirect predicates
(cf. page 21) makes a good theoretical bound hard to obtain, though the
fixed shape of quantifications and logical simplifications before deploy-
ment may improve practical efficiency.
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8 Further Topics, Related Work and Conclusion

This work introduced an assertion method to specify behavioural con-
straints for multiparty sessions starting from global descriptions, and
presented basic technical results underpinning its practical usage. Our
aim is to generalise the merit of the widely practiced traditional DbC
to the context of distributed communications, enabling clear and precise
descriptions and their effective use for practical concerns [46,48]. In the
following we discuss related works and further technical topics.

Hennessy-Milner Logic. Hennessy-Milner Logic (HML) is an expressive
modal logic with a strong semantic characterisation [25]. HML can specify
essentially arbitrary behavioural properties of processes, and may offer a
common basis for different specification/verification methods as suggested
in the preceding works [4,19] (in fact it is not hard to see that endpoint
assertions can be embedded into the Hennessy-Milner logic [25] for the
m-calculus with parametrised fixed point operators [19] based on weak
modality [4]).

The present work introduces two technical elements that address the
key challenges for logical specifications of processes, unexplored in the
context of HML. The first is global assertions, resulting in significant con-
cision of descriptions while enjoying clarity as well as generality within
its scope (description of individual protocols). The preceding works [4, 19]
show practical specifications in HML tend to be lengthy and complex.
In fact, the direct use of HML is tantamount to reversing the proposed
specification process depicted in Figure 1 in Introduction: we start from
endpoint specifications and later try to check their mutual consistency.
This process would more than double the size of specifications a user
needs to write. It lacks clarity as to the target interaction structures, and
mutual consistency checking may not be generally effective. For tractable
specifications, recent studies and industry experiences strongly suggest
the paramount merit of global descriptions for the specifications of com-
municating processes.

The second novel element is the provision of effective methods for
some of the key engineering concerns in modelling and building commu-
nications. For endpoint communication monitoring, Proposition 7.14 and
Theorem 7.15 illustrate different ways the proposed assertion method may
be employed. Communication monitoring plays a fundamental role in dis-
tributed applications, including runtime management. No similar results
are known in the context of HML. Further Theorem 7.13 offers a basis
for statically verifying m-calculus processes with full recursion, starting
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from global assertions. This is made possible through the use of underly-
ing type structures. Because of its expressiveness, effective validation of
general m-calculus processes against general HML formulae is impossible
and the only known results are for finite state processes [19].

State and Cross-Session Assertions In the DbC for sequential languages,
a state is often treated in association with the notion of attributes (in-
stance variables) of an object. These attributes have a special status:
they are public, but the state is encapsulated. This framework is particu-
larly relevant in some domains of distributed interactions such as business
protocols, where some state is audited in conjunction with external inter-
actions. In this case, type signature should contain these variables, and a
global assertion can specify interaction predicates referring to the present
and preceding (“hooked”) state, stipulating the state change a sender (or
a selector) should honour when that action takes place, just as we have
done in the present work for stateless interaction variables.

Another use of state is when it is not declared in a global contract:
state can be entirely local to a process. Since [CONSEQ] allows local refine-
ment, using state specifications locally to a process over multiple sessions
does not contradict with the presented framework (note that our proof
rules do check the correctness of the behaviour across multiple sessions:
the main point is its specificaitons are done for individual sessions).

Correspondence Assertions. The authors of [7] combine session-types with
correspondence assertions, for checking the correspondence of “effects”
depending on some values. Critical code is annotated with begin L and
end L assertions and the type system checks that each begin is matched
by the corresponding end effect. Assertions L in the effects of [7] are
lists of values, not general formulae. It is an interesting topic to relate
how global assertions can represent the notions related to correspondence
assertions.

Integration of Types and Logics As we observed in Introduction, Design-
by-Contract integrates type signatures and logical formulae for enriched
contracts, used throughout the software engineering process. There are
other works which integrate types and logical formulae. In X10 [18] and
several dependently typed formalisms [44,49], we use formulae to flexibly
extend the specifications given by types. In X10 [18], this is based on ex-
tending types with notations for constraints (there are other novel types
such as types for distributed locations). In dependently typed functional
languages [44,49], dependent types combined with constraints on value
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range contribute to more exact safety guarantee. In these languages these
specifications are mainly used for constraint on data structures and func-
tions, not for the behaviour of communicating processes as in the present
work. Combination of these methods and the present work will be an
interesting topic for further study.

Design and Analysis of Service-Oriented Computing. DbC-like approaches
have recently been promoted in the design and analysis of SOC applica-
tions [8,15,16]. A theory of contracts for Web Services based on filters
(namely, behavioural types equipped with a preorder) is proposed in [16];
filters allow one to formally define the compatibility between a client and
a service in order to statically check that interactions successfully com-
plete. An approach similar to filters has been taken in [8]; however, the
latter work introduces the possibility of refining contracts for multiparty
protocols by means of a must-testing preorder. In our work we consider
multiparty protocols, global assertions predicate about values, and our
theory is based on the m-calculus while the theories in [16] and [8] have
been defined for CCS-based contracts.

A few works on SOC focus on compliance of client and services. Very
roughly, the idea is to define compliance in terms of deadlock-freedom.
For instance, notions of compliance based on must-testing are proposed
in [8] and [17]. In [17] (which extends the approach introduced in [16]
to multiparty protocols modelled by mobile processes) contracts are for-
malized by types of the form T7i|...|T}, used to check compliance (7; are
session types that use filters): the contract is well formed if each 7T; is
compliant with T1|...T;_1|Tj+1] ... Ty, namely the latter must-pass the
test T;. Similarly, in [1] a type system guaranteeing a progress property
of clients is defined on CaSPiS, a inspired by the 7-calculus and featuring
pipeline communications; the type system ensures that in (non-diverging)
well-typed (two parties) systems clients’ invocations do not stuck because
of inadequate interactions with the service. A limit of those approaches
wrt global assertions is that they abstract away from values and focus
only on protocols interactions.

In [2] a functional calculus (called Areq) features a “call-by-contract”
mechanism for selecting and invoking services that respect given be-
havioural requirements. Services are modelled as functions with side ef-
fects representing the access to resources and logged into histories. Code
is decorated with framings which enforce safety properties on execution
histories by means of a type and effect system which over-approximates
the actual run-time interactions. The same authors propose a methodol-
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ogy for designing and composing services [3] enforcing safety properties.
Static analysis and model checking techniques enable the verification and
monitoring of systems. A limit of the approaches in [2, 3] is that they can
only deal with finite-state systems.

Rely-Guarantee Reasoning for Processes. Several authors apply the rely-
guarantee method [29, 30] to communicating processes, starting from one
of the earliest works on the rely-guarantee method by Misra and Chandy;,
cf. [13,21, 31,32, 38, 50]. In particular, Misra and Chandy already present
a compositional proof system for their reasoning method. In these works
we can already find assertions based on the distinction of obligations and
guarantees for senders and receivers. Some of the central differences of
the proposed work from these preceding works is, apart from the use of
the m-calculus, the use of type signature for interactions as a basis of an
assertion method and the results on the effectiveness of the dynamic and
static validation methods.

In a context closer to the present work, Broy and Krueger [11] and
later Broy, Krueger and Meisinger [12] present a formal notion of in-
teraction interface based on input/output streams and predicates over
them (their stream-based model follows [9]), modelling Message Sequence
Charts (MSCs). MSCs are often used for high-level modelling for commu-
nicating systems. They define a relation (predicate) over input and output
streams, which, due to its relational nature, can express obligations and
guarantees of each participant. The use of streams can naturally model
systems whose structure is defined statically including embedded systems.
The use of the w-calculus in the present work leads to a natural accom-
modation of dynamic features in target processes, including generation of
new channels and processes. Since they directly predicate over streams,
their framework lacks a compositional proof system, which is the central
element of the present work. Aspects of realizability and computability
of predicate over streams are studied in [10].

Process Calculi with Constraints. In another vein, a number of works
combine process calculi with constraints (e.g., [47]). In [14,20] the com-
bination of process calculi and concurrent constraint programming has
been applied to model constraints that specify a Service Level Agreement
on Quality of Service parameters. Our aim is to provide a framework,
through the use of types, that ensures the satisfaction of the required
constraints through static validation or run-time monitoring.
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Sequence Diagrams. Sequence diagrams allows assertion annotations called
guards. Their standard usage follows the semantics of method invoca-
tion in sequential objects, specifying a legal state of an invoker. The
present work may offer a framework to use such diagrams for specify-
ing distributed asynchronous interactions with a formal basis.
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A Additional Notes for § 1

A.1 Motivations and Contributions: A Further Note

We summarised motivations for the introduction of the proposed frame-
work in Introduction (§ 1), as well as how the proposed approach answers
to these motivations. In more detail, we consider the following elements
are fundamental for having a sound framework of specifications and vali-
dations for application-level distributed systems.

e A specification method for assertions so that we can easily and
consistently describe what is the correct or desired form of interactions,
which should be associated with an effective consistency checking.

e A semantics of specifications (assertions) which define the rela-
tionship between a specification and the behaviour of processes, to-
gether with compositional proof rules for processes by which we
can compositionally validate whether or not a given process satisfies a
given specification; and a dynamic message monitoring which can
test communication behaviours of each process against a specification
efficiently.

e If possible, a static process validation which is justified by the proof
rules above and by which we can effectively check the correctness of
processes against specifications at a compile time.

The present framework is intended to offer potential answers to all of
these challenges (and other potential ones). A fundamental idea is to
consider only per-session (or per-type-signature) specifications of process
behaviours and their validation, inheriting the idea from the traditional
DbC.

This aspect of the proposed approach contributes to, among others,
the static validation of processes. Because of the expressiveness of the 7-
calculus, it is generally impossible to have a decidable method for validat-
ing a process against a non-trivial specification. In the proposed theory,
this last point, as well as the preceding two, is made possible through
the use of a global signature for multiparty distributed interaction: since
each specification is given by the unit of a type signature for interaction,
and a process is effectively checkable against this type signature, we can
first extract the structure of interactions for each session. A global as-
sertion (hence each endpoint assertion projected from it) annotates this
type signature, stipulating in what ways a conversation should proceed,
including:

— What values will be carried at each sending/receiving action;
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— What actions will be chosen at each branching/selection action, hence
how different actions lead to different sub-conversations with different
session structures (thus specifying potential structures a session may
have depending on accumulated constraints of interactions).

These specifications are given by elaborating each session type signature.
A key technical consequence of this specification-per-type-signature ap-
proach is the following point:

We do not have to consider the effects of interaction among pro-
cesses; we only have to demand that, at each communication point,
the process guarantees specified properties for its own actions (send
and select) as far as it can rely on specified properties for its peers’
actions (receive and branch).

There is no need for calculating the effects of interactions and interference
among processes one by one because logical specifications are given in the
unit of session type signatures and because the rely-guarantee method [30]
in each specification enables composability by simple reciprocity checking.

The use of per-session specifications also allows us to specify the prop-
erties of communication behaviours independent from individual pro-
cesses, which is important for the modelling and programming process
since a program may often interleave multiple sessions and may change
their usage over time.

One technical underpinning of the proposed framework as a specifica-
tion method is the introduction of recursive invariants (in both global
and endpoint assertions), discussed in §8. As discussed there, the aim of
a recursive invariant is to facilitate a consistent specification of recursive
behaviours, especially when different instances of the same recursion/loop
may change their values and branching behaviours. Such state changing
repetition (recursion) of interactions can be easily specified once we have
a recursive invariant. We observe:

1. Syntactically it enables the simple validation algorithm for consis-
tency of global assertions (well-assertedness, Definition 3.7, page 16).
Without such algorithmic checking, we even are not sure whether a
given specification stipulates the behaviour we do demand or not.

2. Semantically its meaning is taken extensionally: the general proof/-
validation rules (Figure 10) do not mention recursive invariants but
use them through the induced semantic constraints on interactions,
i.e. what communication behaviours they impose, by taking recursive
assertions up to their unfolding (through [CONSEQ)).
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As discussed in §8 in the main sections, the proposed framework easily
extends to specifications involving states: in such contexts, the use of
recursive invariants can specify invariants to hold between e.g. communi-
cated values and its local state.

A.2 Limitations of the Proposed Approach

A limitation of the proposed framework comes from its deliberate choice
to limit the specification of properties of processes to individual sessions.
We can link multiple predicates inside an asserted process — for example,
we may specify a value which a process sends in one session will be the
double of a value it receives in another interleaving session. However a
global assertion itself is still limited to the unit of a session.

A consequence of this design choice is that this framework is not about
specifying the whole of a program behaviour: rather the specification is
limited to the program’s behaviour with respect to each protocol it would
use. Limited to this specification, it allows not only efficient monitoring
but also decidable process validation (decidable relative to the decidabil-
ity of the underlying logic). Thus this choice has merits, but in some
situations, it leads to limitations.

One engineering situation where this choice may turn out to be a limi-
tation is when one primarily wishes to specify and validate the properties
of a process or processes across sessions (for example when one is con-
cerned with termination of the whole process). The second and related
scene is when one wishes to assert for, and validate for, a combination
of several sessions globally, observing some protocols may often be used
in combination. The need for such a combination indeed arises in our
exploration of existing business protocols.

In this way a more complex situation naturally demands a more com-
plex method, leading to full functional specifications and validations of a
communicating program. In this spectrum of different specification and
verification methods, the present “per-type-signature”’-based method is
intended to offer a basic stratum which is often all that is feasibly speci-
fiable as shared behavioural contracts for public or semi-public protocols.
Having the proposed method as a stratum will also help ease the com-
plexity when one needs to rise to the challenge of more complex and
wholesome specifications and validations (which corresponds to how the
traditional DbC eases a verification of the whole program property by
enabling abstract treatment of each procedural call in the program).

A further challenge is to combine and integrate different methods
catering for different concerns, for which we may need a common logical
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basis (the use of Hennessy-Milner logic in §8 may suggest such a poten-
tial). Another question which the present inquiry starts to pose is how
we may combine types and assertions for specifications and validations of
properties of communicating processes. In the present work assertions are
directly given on the basis of types. Here types offer fundamental hooks
where assertions can be associated and which enables efficient validations.
Further ramifications and consequences of this approach as well as others
are worth exploring in both theory and practice.
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B Appendix for § 3

B.1 Further Examples

History Sensitivity Principle (HSP) We present some motivating exam-
ples for the consistency principles, introduced in § 3.2. We start from
history sensitivity. As interactions take place, processes concretize val-
ues specified in assertions and accumulate constraints constraining future
paths. At each point when a sender sends a value or a selection label, a
local monitor may check whether or not the assertion is satisfied; in turn a
receiver may also check if e.g. the received value is within the range spec-
ified in the contract. The temporal flow plays a fundamental role, since
the validation of the interaction predicate on the coming interaction will
use values determined (instantiated) in the preceding interactions.

When one sends a message, or chooses one of the potential selection ac-
tions, the constraint on its values or on the chosen label should be checked
effectively and efficiently. For this purpose, the formula (the interaction
predicate) should only use interaction variables which are already deter-
mined by the preceding interactions at that local site, in addition to the
interaction variable newly introduced in that interaction predicate.

The history-sensitivity principle (HSP) stipulates precisely this condi-
tion, saying that an interaction predicate can only contain those variables
which its sender previously experienced. Consider:

p—q: (v:int){v = 1}.
q—r:(w:int){w > 2}.
r—-p:(u:int){u=w+5}.
por: (@ int){v =v+u+3}.
end

does respect HSP, because:

— In the first interaction, p is the active party. Since there is no previous
interactions, it can only use v, its newly introduced variable.

— In the second interaction, q is an active party: the use of v (beside w
which is newly introduced) is justified hence q does indeed know the
value of v in the first interaction. The third interaction is similar.

— In the final interaction, p is an active party, which knows the values
of v and u: hence, besides v’, we can use these variables to specify the
interaction predicate.

As an example violating HSP, consider the following three-party interac-

tion:
p—r:(v:int){v>=3}.
q—or: (w:int){w = v+ 3}.end
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It looks the assertion looks all right, but in fact not quite, as far as we
follow the interpretation of the underlying type specification: here the
two interactions, one from p and the other from q should be considered as
unorderd: there is no temporal preceding between them. In that case it is
absurd for q to try to check its sending value denoted by w by the value
which has been sent somewhere remote asynchronously (it may not have
taken place yet).

The following situation also violates the HSP and is indeed undesirable
for the purpose of monitoring;:

p—q: (v:int){v > 3}.
q—or:(w:int){w > v+ 3}
r—s:(u:int){u >v+w}.end

In the third line, the interaction predicate specifies for both v and w:
but the value of v cannot be known to r given the value passing for r
took place between p and q, without involving r. Thus, for deciding the
validity of the predicate, even if the sender decides on the value of u, it
cannot check if it is valid or not for sure (note all that the sender can
do in this situation is to search for a value of w satisfying the predicate,
but not only this is relatively costly but also satisfiability does not mean
u is a right value, since, in this example, w can be as big as can be so
that whether the given w is right or not can never be known until we can
determine the value of w).

Thus it is necessary for an interaction predicate whose sender is say
p to use only variables introduded before in those interactions directly
involving p.

Locality Principle (LP) Consider the following example:

p—q: (v:int){v > 3}.
q—r:(w:int){v=w+ w}.end

Suppose in the first interaction, p sent 5 which satisfies the predicate
v = 3. Then in the next step, we find q cannot choose any w satisfying
the predicate v = w+ w with v now standing for 5 since the assertion im-
plies v should be even. The second interaction predicate introduces a new
constraint on v after its value is determined. Thus this global assertion
violates the temporal flow. The locality principle says that each interac-
tion predicate should give a constraint locally focusing on the variables
introduced at the time, specifying constraints towards future.
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B.2 Semantic Characterisation of Consistency Principles

Introduction In §3.2 in the main sections, we informally introduced three
consistency principles for global assertions, namely history-sensitivity,
locality and temporal satisfiability. The calculation of well-assertedness
through the algorithm GSat given in Definition 3.7 together with the
well-formedness condition in Figure 5 can guarantee, intuitively speak-
ing:

— History-sensitivity since well-formedness allows only the directly “known”
variables occur in each predicate.

— Locality since well-assertedness demands each interaction predicate to
be entailed by the preceding interactions except for the newly intro-
duced variables, if any.

— Temporal satisfiability since well-assertedness demands that at each in-
teraction point, its predicate (disjunction of the predicates for branch-
ing) is satisfiable: that is, the active party can always find one way
forward.!!

This appendix formalises this intuition, showing that the syntactic well-
assertedness condition combined with well-formedness coincide with a
semantic characterisation of these principles. For this purpose we first
reformulate well-assertedness in terms of causal precedence rather than
syntactic precedence.

Remark B.1. The technical development in this appendix is indepen-
dent from the technical results in the main sections.

Causal Precedence for GSat The calculation of well-assertedness (the
algorithm GSat) presented in § 3 is defined based on the syntactic prece-
dence between interactions. Considering syntactic precedence is an over-
approximation as it relates interactions that may not be causally related
(later we show that it nevertheless gives the semantically equivalent con-
dition, albeit needing to deal with less compact formulae). As an example,
consider the following global assertion:

def p— p': s (v: Int){v = 10}.

g q—q': t(z: Int){z = 20}.end

In G above, the second interaction is not causally dependent on the first
one (notice that the predicates are defined on disjoint sets of variables).

11 For the family of interaction predicates for branching, since we do not have inter-

action variables in this case, the temporal satisfiability means one of the branch
options should become true when interactions reach that point.
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Hence it is meaningless (and demands more space) to take into consider-
ation the first predicate (v > 10) when we validate the well-assertedness
of the second (z = 20). Rather it suffices to check true o 3z.z > 20,
which indeed trivially holds. In this way the calculation of GSat can be
simplified by considering only causally preceding actions. Later we use
this more accurate (but equivalent) calculation when we consider it in
correspondence to locality and temporal satisfiability.

To formalise this observation, we define the causal order among inter-
actions (IO-chains in the sense of [27, §3]). We first define the notion of
unfolding of recursive assertions.

Convention B.2 (bound name/variable convention). Hereafter we
always assume the standard bound name convention, i.e. all names/vari-
ables introduced in binders are pairwise distinct and disjoint from free
names,/variables.

In the rest of this section we use the shortcut © : S@f to denote
U1 :51Qf, .., 0, S, Q.

Definition B.3 (unfolding). Given § dof pted( : Sat){A}., write
G'[(9)G/t] for the result of replacing each occurrence of the form t{¢;)
in §' with G[é/0], with an appropriate renaming of bound interaction
variables. Then we define:

unfold(G) ' §'[(5)G/t]
which we call the one-time unfolding of G or simply the unfolding of G.
Example B.4 (unfolding). Given
G (2 (v: Sar){v > 1}.
p—q:{li:tlv+1)la:t{v+3),13:end}

assuming L = {p,q} and considering all interaction predicates for lj 23
are true. Then we have

unfold(G) = p — q: {l1 : §},l2 : G5, 13 : end}
where we set:
Gl = ut(3)(v: Sav){v = 1}.
p—q:{li:t{v+1)1ls:t{v+3)I3:end}

G4 = pt(5y(v: Sav){v = 1}.
p—q:{li:t{v+1)ls:t{v+3),I3:end}
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Note the unfolding involves instantiation (substitution) of variables. Also
note that the condition v > 1 is never used in an instantiation: this is
because the role of recursive invariants is to facilitate consistent speci-
fications and their validations for consistency. For example, even if v is
instantiated with 0, if one of [; were predicated with v > 0, this specifi-
cation is indeed consistent (under all principles we shall stipulate soon).
However by having v > 1 and by demanding this condition for each in-
stantiation, we automatically know this branch, in any later instantiation
of this recursion, is satisfiable.

By unfolding recursions (if any) in § inductively, we can regard G as a
finite or infinite tree (it is finite whenever it does not contain a recursion:
if it is infinite then it may not be regular), called the tree unfolding of G,
for which we still stipulate Convention B.2. Note the tree unfolding of G
can be finite if § does not contain any recursion.

Convention B.5.

— We often consider a global assertion say G as its tree unfolding seen as

an inverted tree, unless otherwise specified. We let I,1’,... range over
interactions in such G, i.e. nodes which denote either value sending or
branching.

— Given 9, we write (0)A to denote an interaction predicate introduc-
ing interaction variables ¥ (written simply A if it introduces none).
Further we often let the notation (9)A or A stand for its occurrence
in G, as far as no confusion arises.

— Given an interaction I in G, we say the sender of I including the
participant which chooses a branch, and receiver of I including the
participant one of whose branches is chosen.

The following causal precedence is the same as the existence of an 10-
chain in [27].

Definition B.6 (precedence and causal precedence). Below we fix
G seen as the tree unfolding and only consider interactions in G.

1. An interaction I positionally precedes another I’ if I occurs above I’
seeing G as an inverted tree. Similarly we say a recursion positionally
precedes 1.

2. An interaction I directly causally precedes another I’ if T positionally
precedes I’ in the above sense and, moreover, the sender of I’ occurs
as either a sender or a receiver of I. In this case we also say there is
a direct causal chain from I to I'.

63



3. An interaction I causally precedes another I’ if there is a sequence of
direct causal chains from I to I’.

Using these conventions and definitions we refine Definition 3.6 (which
defines the set of variables a participant is involved in G as a whole) so
that we can talk about whether or not a participant at some interaction
point knows about some variable. Below note G, by Convention B.5 (1), is
regarded as the tree unfolding of its syntactic representation, which does
not include a recursion.

Definition B.7 (“knows”, support). Below we fix an interaction I in
9, whose sender is p.

1. We say p at I directly knows (0)A (seeing (0)A as an occurrence) if
(0)A is associated with another interaction I’ which directly causally
precedes I.

2. We say p at I indirectly knows (v)A if the same condition as above
(1) except we replace “directly causally precedes” with “causally pre-
cedes”.

3. The support of A, Sup(A), is the minimum set of variables whose
existential closure on A makes it either equivalent to true or false.

Remark B.8 (knows, support).

— (directly /indirectly knows, 1) Intuitively, if a participant at some in-
teraction indirectly knows a predicate (v)A, then its action may as
well be (directly or indirectly) affected by the value instantiating that
variable, since even if the participant has not participated in that
interaction, the value may have influenced a sequence of subsequent
actions (and instantiation of other variables) leading to the interaction
concerned.

— (directly/indirectly knows, 2) The “directly know” relation corresponds
to the existence of a (possibly non-minimal) OO-edge or a (possibly
non-minimal) IO-edge in [27, § 3.3]; while “indirectly know” corre-
sponds to the notion of I0-chain [27, § 3.3].

— (support) As an example of support, if A is given as “c =x Ay =17
then Sup(A) = {y}, where x is neglected because it does not affect the
validity.

We now define the consistency criteria semantically, using the causal de-
pendency and the support set. Below observe the set of predicates which
p directly or indirectly knows at some I is always finite, even if the tree
unfolding gives an infinite tree.
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Definition B.9. Fix G and an interaction I occurring in G such that the
sender of I is p and the associated predicate of I is (0)A (when I is a value
sending) or is {Ax};, (when I is a branching). In the latter case we set

AL V1, Ar and @ to be the empty string. Assume the set of predicates
which p at I directly knows is {(@;)B;};, similarly the set of predicates
which p at I indirectly knows is {(2;)C}};. We then say

1. (history sensitivity, HSP) I respects history-sensitivity principle (HSP)
if Sup(4) < (| H{ai}i) v {o}.

2. (locality, LP) I respects locality principle (LP)if (/\; Cj) = 30.A.

3. (temporal satisfiability, TSP) (0) A respects temporal satisfiability prin-
ciple (TSP) if whenever a valuation o satisfies (/\; C;), Ao is satisfi-
able.

If (1) (resp. (2), resp. (3)) holds for each interaction occurring in G then
G respects HSP (resp. LP, resp. TSP).

Above HSP says that, at each interaction, variables that matter in the
associated predicate(s) should be introduced in those interactions directly
known to the sender. LP says that, at each interaction, the associated
predicate(s) should only introduces a constraint on its newly introduced
variables. TSP says that, at each interaction, the associated predicate(s)
should become satisfiable once all preceding predicates get satisfied, i.e.
a sender can always find a way forward, either choosing a value or a
selection a label under a valid condition.

While LP and TSP are differently oriented, they are logically equiva-
lent.

Proposition B.10. G respects LP if and only if it respects TSP.
Proof. By the standard definition of satisfiability. O

Intuitively, Proposition B.10 is because if one does not introduce a new
constraint to the existing variables then one also preserves the potential
that the newly introduced variable can be satisfiable (in particular, for
branching, LP says that one of the options should become true, which is
also what TSP demands).

By Proposition B.10 we hereafter only consider LP without loss of
generality. We further note:

Lemma B.11. Fiz G respecting HSP. Suppose further, in G, (4)B is
above (0)A and the participant for the interaction for (0)A does not indi-
rectly know the interaction for (u)B. Then no variable from w4 occurs in

Sup(A).
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Proof. Direct from the definition of “indirectly knows”. O

The consistency principles in Definition B.9 are given for the tree unfold-
ing. Since global assertions in fact use invariants to enable finite syntax to
capture properties of recurring interactions, we relativise these principles
under the use of invariant.

Below and henceforth we often omit types annotating variables in a
recursion for brevity.

Convention B.12. For simplicity but without loss of generality we hence-
forth assume that, in each ut{(e)(v : S@L){A}.9', the free interaction vari-
ables in §' are a subset of {0}.

Note that this convention does not lose generality since we can always
expand the binding (0 above) to cover all variables, while instantiate
them with the original free ones. Further observe that, under Convention
B.12, the rule for GSat of recursion (Definition 3.7)

if Ao A'[e/v] then GSat(G, A) = GSat(9', A")
otherwise GSat(G, A) = false

Thus we only have to check (1) the invariant is true for this (initial)
instantiation and that the body is validated under this invariant. Notice
that: (a) free variables can be used inside a recursion in effect by passing
them as recursion parameters and (b) in that case we can also pass the
constraint on these variables as part of the invariant by including the
constraint on them.

Definition B.13. Fix G seen as a syntax (without unfolding) and fix any
node in §. If the node occurs inside an immediately enclosing recursion,
say pt(ey(v: Sat){A}.9, then its enclosing context is §', its enclosing
predicate is A, and its enclosing variables are ¥ located at L. If the node
is not enclosed by any recursion, then its enclosing context is the whole
G, its enclosing predicate is true, and its enclosing variables are empty.

Definition B.14 (well-enclosed assertion). We say G is well-encloseof
if the following conditions holds for each recursive assertion say pt{é)(v : S@t){A}.§’
occurring in G seen as a syntax:

1. Each variable in e; if any is introduced by an interaction involving L;
or an enclosing variable located at L;.
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2. Let C be the conjunction of (a) the predicates in its enclosing context
that have introduced variables in é and (b) the enclosing predicate.
Then C should entail A[é/7].

3. If say t{¢’) occurs in §’, then (a) each variable in €}, if any, should be
located at L; and (b) A[é'/v] should be entailed by the conjunction
of A and the predicates preceding this t{¢") which introduce variables
in €.

These conditions together stipulate the consistent usage of recursive in-
variants. In the second condition (b), note 3é(A) entails 30(A), which, like
HSP. Thus (b) prevents this newly introduced invariant from imposing a
further constraint on existing variables.

We now define HSP and LP which incorporate the notion of recursive
invariants.

Definition B.15 (HSP and LP under Invariant). Suppose G is well-
enclosed. Then we say, regarding G as a finite syntax:

1. G satisfies HSP under invariant if each interaction predicate (0)A in
an interaction I whose sender is p satisfies:

Sup(4) € ({a} v {o})

where {@} is the union of variables introduced for interactions involv-
ing p preceding I in the enclosing context of I, and the enclosing
variables located at p.

2. G satisfies LP under invariant if, for each interaction I, its associated
predicate (0)A (given as in Definition B.9), occurring in G seen as a
finite syntax, satisfies:

C1 A Cy 2 30(A)

where (' is the conjunction of all predicates which indirectly causally
precedes I in the enclosing context and C is the enclosing predicate.

Proposition B.16. Let G be well-enclosed below.

1. If G satisfies HSP under invariant then G satisfies HSP.
2. If G satisfies HSP under invariant and satisfies LP under invariant

then G satisfies LP (hence TSP).

Proof. For (1), consider G satisfies HSP under invariant and fix I its
associated predicate A. Consider A[é/?] in the one-time unfolding of G,

67



whose substitution is by instantiation. Since G is well-enclosed, Sup(A) is
always within 9. By the given condition, all variables in A belong to those
originating in p. Since the corresponding condition for locations holds for
variables in each e;, the substitution does not change the locations. The
same reasoning holds after an arbitrary unfolding.

For (2) fix I and (0)A and again consider A’ = Ao with

o ¥ ¢/ (B.1)

in the one-time unfolding of G, with @ being the enclosing variables. Note
¥ are still freshly introduced in A’. Now we show 3v(A’) is entailed by
the preceding predicates causally indirectly preceding Io. Let B be the
enclosing predicate (before the unfolding) and Cj be the conjunction of
the indirectly causally preceding predicates in the enclosing context (again
before the unfolding). We know, by LP under invariant:

B A Cy o 30(A) (B.2)
By substitution we obtain
(Bo A Coo) o F0(Ao) (B.3)

Now let C' be the conjunction of the indirectly causally preceding predi-
cates (after the unfolding). Then we have

C > Cyo (B.4)

because the same indirectly causally preceding predicates are chosen. Note
also € does not contain any variable from @. By (1) above, this means the
free variables in Ao except © come from the directly causally preceding
predicates (after the unfolding). We let @y be these variables. All these
variables occur in Bo: let the remaining variables in Bo to be wq. Since
C includes all predicates which introduced ¥y, by being well-enclosed we
obtain:

C > Jwy(Bo) (B.5)

By (B.3) and noting wg do not occur in Ao we know
(Jwo(Bo A Cyo)) > F0(Ao) (B.6)
Combined with (B.4) we obtain:
C > 30(Ao) (B.7)
as required. The case when we apply the n-times unfolding is by exactly

the same argument using the third condition in Definition B.14. O
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Theorem B.17 (semantic characterisation of well-assertedness).

1. If G is well-enclosed and well-formed then G respects HSP under in-
variant. Conversely, if G is well-enclosed and respects HSP under in-
variant, then there exists §' such that G =9 and §' is well-formed.

2. Let G be well-formed. If G is further well-asserted then G is well-
enclosed and moreover respects LP and TSP. Conversely, if G is well-
enclosed and respects LP and TSP, then there exists §' such that
S=G and § such that ' =G and G is well-asserted.

Proof. (outline) Below we fix I occurring in § whose sender is p and
whose predicate is (0) A with ¥ possibly empty, given following Definition
B.9. We argue focusing on I.

For (1), if G is well-formed, then the syntactic support (free variables)
of A comes from those introduced in interactions p is involved, or from
the enclosing variables located at p. Since they are both in the semantic
support of A as given in Defintion B.15 (1) we are done. Conversely, we
can always existentially close spurious variables in A to make its semantic
support and syntactic support coincide.

For (2), the calculation of GSat uses all syntactically preceding pred-
icates within the enclosing context, say C, together with the enclosing
predicate, say B (see the rule under Convention B.12). Let their conjunc-
tion be C. Further, following Defintion B.15 (2), let Cj is the conjunction
of all predicates which indirectly causally precedes I in the enclosing con-
text. Now let us write Cpy for the conjunction of all predicates which
directly causally precedes I in the enclosing context. Let @ be the free
variables in C' which are neither in A nor in B (i.e. those which are in-
troduced by the preceding predicates unrelated to A). Then by Lemma
B.11 and by noting that the constraints on the variables in A from the
preceding predicates solely come from those which have introduced them
(i.e. the predicates which constitute C'), we know 3w (C) = Fw(Cy) = Cop.
Thus

as required. O
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Remark B.18. The proof of Theorem B.17 shows that GSat can be
optimised so that the entailment at each step can be calculated solely
in terms of those predicates which have introduced free variables of the
interaction predicate under validation.

C Appendix for § 4

C.1 Examples of Projection

Consider the following well-formed and well-asserted global assertion for
a three-party protocol:

Gitp = Alice — Bob: b (v : Int){v < 7}.
Bob — Carol: ¢ (u : Int){u < v A u < 10}.
Carol — Alice: a (z: Int){z <u A z > 0}.end

The projection on Carol is

Gep [Carol = c?(u: Int){Fv(v < 7T Au<v Au<10)};
al(u: Int){z <u A z> 0};end

G¢p | Carol is calculated straightforwardly from the rules in Defini-
tion 4.2. The projection on Carol of the first interaction is defined as
the projection of the continuation of G;p, called recursively by keeping
the predicate v < 7 in the collection. When projecting continuation (i.e.,
the second interaction of G;p) which is an input for Carol, we merge the
predicate v < 7 to the predicate associated to the incoming interaction
u < v Au < 10, adding the existential quantifier for v since v is not
known to Carol. By projecting the predicates of third parties into Carol,
we provide her with a stronger set of assumptions. For example, by con-
sidering predicate © < v A u < 10 and predicate v < 7, Carol can infer
u < 6. In this way, Carol can to detect, at run-time, that a messages is
surely a violation of the global assertion (i.e., Alice may send a value
that violate v < 7 and Bob may fail to check the violation). Despite not
knowing which value has been given to v, Carol will know that a violation
surely occurred if, for example, she receives y = 8. We do not project the
assumption v < 7 in the interaction where Carol is the sender. In this
case, it is enough for Carol to satisfy the current predicate z < u A z > 0
for the protocol to run correctly. Notice that, since Carol has an obli-
gation on the predicate for the outgoing message she must know all the
variables involved (by well-formedness of G;p).
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C.2 Proof of Lemma 4.5 (Projection Preserves
Well-Assertedness)

Corollary 4.6 follows immediately from Lemma C.1.

Lemma C.1. Let G be a well-formed global assertion then, for all predi-
cates Ag, Ay such that Ax D Ag and all p € pig(9),

GSat(§G, Ag) o LSat(§p, Ay)

Proof. The proof is by induction on the projection rules, proceeding by
case analysis on G.

If G = p; — pa: k (#: S){A}.G then we have two cases.
Case p = p1./
By Definition 4.2,  I'p = k!(¢ : S){A}; T". From Ag > Ag (by hypothesis)
and Ag D 30(A) (by well-assertedness of §) it follows

Ag 5 35(A). (C.1)

By (C.1) and 4.4, LSat(§G ' p, Ay) = LSat(T, Ay A A). The lemma holds
for this case by induction on GSat(9', Ag A A) and LSat(T, Ay A A) since
Ag‘ ANAD Ag A A.

Case p = py./

Then (by 4.2) G | p = k?(0: S){IViwt(Ag A A)};T’. From A O Ag
(by hypothesis) and Ag o 30(A4) (by well-formedness of G) it follows
Ag > 39(A) which is equivalent to

Ag‘ o Ag‘ A HQNJ(A) (02)

Since the consequence of C.2 implies 3V,z:(Agy A F0(A)) and vy ... v, ¢
var(Ag),
Ag‘ ) Hﬁ(awmt(Ag‘ A A)) (03)

By (C.3) and 4.4, LSat(§G I p, Ay) = LSat(T, Ay A A). The lemma holds
for this case by induction on GSat(9', Ag A A) and LSat(T’, Ag A A) since
Af:r ANAD Ag A A.

Branching. If § = p1 — pa: k {{A;}l;: 9;}es then again we have two
cases.
Case p = py./ By Definition 4.2, §p = k® {{4;}{; : Tj}jes. From
Ag D Ag (by hypothesis) and Ag 5 A1 v ... v A, (by well-formedness of
g) it follows

As DAl v...v A, (C.4)
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By (C.4) and 4.4, LSat(G I'p, Ag) = AjesLSat(T;, Az A Aj). The property
holds by induction on GSat(G;, Ag A A;) and LSat(T;, Ay A Aj) for all
j€J,since Ay A A; D Ag A Aj.

Case p = pp./ By Definition 4.2, § [ p = k&{{3Vear(Ag A Aj)}; -
Tj}jes. From Ay D Ag (by hypothesis) and Ag 2 Ay v ... v A, (by
well-formedness of §) it follows Ay > Ay v ... v A, which is equivalent
to

Ag‘D (Ag‘/\Al) V...V (Ag‘/\An) (C5)

By weakening the consequence of C.5 (since for all j € J, (Ag A 4;) D
AVert(Ag A Aj)) we obtain

Ag 2 Wage (A1) U ... U IV (Ap). (C.6)

By (C.6) and 4.4, LSat(G |'p, Ay) = NjesLSat(T;, Ag A A;). The property
holds by induction on GSat(G;, Ag A A;) and LSat(T;, Ay A Aj) for all
jeJ,since Ay A Aj D Ag A Aj.

Recursion. If G = ut(&)(0 : S){A}.9' then
Gp = ut(@@ : 8 {FVers(A)}.T.

From Ag > Ag (by hypothesis) and Ag > A[€/?] (by well-formedness of
§) we reason, writing @ for ¥ minus o':

Ag D Ag
o Ale/v]
> (3w)A[e /1]
- (H%xt)A[é//’Dl]

as required.

Type Variable. If § = t4(5(€), then the projection is tB(§/)<é’> where
B = (IVeyt) A, with Ve from the enclosing recursion. Suppose Ag O Ag.
By the well-formedness of G, we have Ag D A[é/7]. By the rasoning as in
the case of recursion we know A[é/] entails (IVe,)A[€'/D'], as required.

Composition. If § = G1, Ga, the projection is either G; or Gs, hence the
result is immediate by induction hypothesis.

End. Immediate. O
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[2.0] (3).P

alp) (5).P
sKe)(0){A}; P
$2(5){A}; P

s < {A}; P

s> {{A:}i: Pitier
if e then P else Q
PlQ | O
(va)P

def D in P | X{€3)
errH | errT

s:h

(vs)P

session request
session acceptance
value sending
value reception
label selection
label branching
conditional branch
parallel / idle
name hiding
recursion def/call
error

msg queue

channel hiding

Fig. 13. Syntax of Asserted Processes

D Appendix for § 5

D.1 Programs and Program Phrases

This section gives a precise grammar of programs, program phrases and
runtime processes. This distinction follows [27, Def 4.4] and distinguish,
through syntactic shapes, those processes which programmers may write,
hence without queues nor session hiding (program phrases), complete pro-
grams which programmers may write, hence without free variables nor
free session channels (programs) and processes which include all processes
which may include the runtime elements such as queues and session hiding
(processes or, emphasising the possible presence of these runtime elements
runtime processes). Note queues and session hiding are generated when
session initiation takes place (Rule [R-LINK] in Figure 8, page 8). When
programs are written, they cannot have started session initiation (link-
ing), which is a runtime phenomenon. When they are put to execution,
session initiation will take place and runtime entities such as queues and
session hiding are generated.

For convenience, Figure 13 presents a re-ordered version of the pro-
ductions for asserted processes (for the grammar for expressions, values,
messages, process variable declarations, see Figure 7). We remind that the
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binders of names are v and session request /acceptance prefixes, input and
output prefixes bind variables in their continuations and recursive defi-
nitions bind process variables. We can now formally introduce the three
syntactic categories.

Definition D.1 (programs, program phrases and runtime pro-
cesses).

1. A program phrase is a process derived using any rules in Figure 13
except the last three productions.

2. A program is a closed (i.e., with no free (process) variables or session
channels) program phrase.

3. A runtime process or often simply a process is simply a process gen-
erated from any rules in Figure 13.

In other words, syntactically correct programs are (the parallel composi-
tion of possibly recursive) processes

— with no queues or errors,

— where session names occur on in the scope of session request/accep-
tance prefixes, and

— where only shared names may occur free.

The remaining productions of processes are used only at run-time. In
fact, the reduction semantics (Figure 8) of asserted processes guarantees
that in programs (i) a synchronisation on the session request/accept ac-
tions is executed, so that (i7) session names are restricted and (ii) the
corresponding queues for communication among participants are created.
Note also, error processes are generated at run-time (Figure 9) when some
assertions are violated.

An important technical remark for the proofs of our results is that not
only programs but also their transition derivatives do not allow queues at
free session channels, hence input and output transitions may only happen
on restricted channels. This justifies the definition of labelled transition
for end-point assertions in § 7.1 ([TR-TAU] in Figure 11).

D.2 Full Typing Rules

For reference, this Appendix presents all of the typing rules for processes,
from [27], with minor changes to make the correspondence with the pre-
sented validation rules (Figure 10) exact. We use the grammar of (global
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I - e; =>bool

I ejor eq: bool
[NAME], [BooL], [OR]

I'a:S+a:S I | true,false: bool

Vil +e;:S; '~ Ple/v)|=A,s5:Tap

L - - [SEND]
L+ sple)(0){A}; P> A, 8: kIS); T ap
E,U:SI—P>4,5:T@;~> [Rov]
I+ sp?(0){A; P> A5 kNSy; Tap
I'-P>As:Tjap jel (S
El—SkQ{Aj}lj;P>é,§:k(—B{liIﬂ}ie[@p
I'-P>A3Tap Viel Braxc
L' sp > {{Ai}li: Pilier > A, 5:k&{l; : Ti}ier @p
I'a:G I'+Pr=AS:(Gl1)ar |5 =max(sid(G))
L+ af2.n(5).P=>A [MoasT]
I'a:G I'+Pr=AS5:(Glp)ap |5 =max(sid(G))
L'+ afp)(3).P=A [Macc]
I'P>A I'FQeA A=A
LFP|Q=>AocA [Conal
I' - e>bool i

I'—ifethen Pelse Q=A

A end only I'a:GHPr=A
I'—0=A '+ (va)P=A

[INACT],[NRES]

I'é:Sa<i<n)

_ — [VAR]
I X:ST@p,...T,Qp, X<631..8n>
>51:11Qpy,..,5,: 1y Qp,
. X:ST\@p;... TyGpa,o:S - P
>s1: 11 Qp; . ..S;L:Tn@pn
[, X:STi@p1... Thap, - Q= A (D

I def X(051...5,)=Pin@Q > A

Fig. 14. Full Typing Rules
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and local) types from [27], which we reproduce below.

Global G := p—p': k(U).G/ values
| p—p':k{lj: Gj}jes branching
| G,G parallel
| wt.G recursive
| t variable
| end end

Sort S = bool | ... | {(G)

Value U == §

Local T == kIUxT send
| k27U, T receive
| k®{li: Ti}ier selection
| k&{l;: Ti}ier branching
| wt.T recursive
| t variable
| end end

Note the difference of fonts used for global and local types from those
used for global and endpoint assertions. Global types (G, G’,...) underlie
global assertions (G,9',...), while local types (T,7”,...) underlie end-
point assertions (T,77,...). Located types are of the form T @p. We use
two typing environments (to differentiate from assertion environments/as-
signments we underline the symbols):

1. I' assigns variables to value types and names to sorts, as well as process
variables to the vector of value types combined with a vector of located

types.
2. A assigns each vector § of session channels to located types.

The typing rules are given in Figure 14. In the figure, sid(G) (resp. pid(9))
stands for the set of session channel numbers (resp. participant numbers)
in G.

The typing rules still use asserted processes, but logical formulae are
given arbitrarily without any constraint. When predicate annotations
from processes are erased, these rules are essentially identical with the
typing rules for [27], excepting:

1. The rules for delegations in [27] are missing; and
2. In [VAR] and [DEF], process variables are assigned located types (with
participant numbers) rather than unlocated ones as in [27].
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The use of located types in the presented system is not essential: we use
located endpoint assertions for facilitating algorithmic validation. Dele-
gations can be easily incorporated (cf. §8).

D.3 Proof of Lemma 5.4 (Substitution Lemma)

Below we reproduce the statement of Lemma 5.4 (Substitution Lemma)
and present its proofs.

Lemma D.2 (Substitution). Let C; I : S+ P A with A well-
asserted. If @ is free in P and 2 have sorts S then C|n/ul; I' -+ Pln/u] >
A[n/a] and A[n/a] is well-asserted.

Proof. The proof is by rule induction on validation rules. We proceed by
case analysis.
— If P = s;1{é)(v){A}; P’ then by [SEND]
Co A[é/t] ©I,u:S8+ P'e/i]=A 5 Tap
CiIu: S spleN0){A); P A, 5: kNv: S){A}; Tap

(€ o A[é/v]) implies (€ o A[é/?])[n/u] which is equivalent to:
Cln/u] o Alé/v][n/a]. (D.1)
By inductive hypothesis
Cla/a); I' + P'[e/v][n/u] = Ala/a], 5: T[n/u] @p. (D.2)
By applying [SEND| with premises D.1 and D.2 we obtain

Cla/al; I' - sple[n/a])(0){ Ala/a]}; P'[5/a]=
Ala/a), 5 : k@ : S){A[a/a]}; T[a/d] @p.

The substituted end-point assertion is well-asserted since C[n/u] >

3v(A)[n/a]. This follows from € > 39(A) which holds by well-assertedness

of the (unsubstituted) end-point assertion.
— If P = 5,7(0){A}; P then by [RECV]

CAATG:S+P A5 Tap
C:lu: S s;7(0){A); P> A, 5: k(0 : S){A}; Tap
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By inductive hypothesis
(C A A)n/al; I + P'|n/a) = Aln/al, 5: T|n/u] @p. (D.3)
By applying D.3 as a premise for [RECV] we obtain

Cla/a); I — sk?(f}){A’[ﬁ/a]}; P'[a/a]>
Ala/a], 5: k?(0: S){A[a/a]}; T[a/a] ap

where the substituted end-point assertion is well-asserted since C[n/a] o
30(A)[n/a.

If P = s, < {A;}l;; Pj then by [SEL]

CDA; @;F,a:gl—ljj>A,§:Tj@p jel
C;Iii: Sk s < {A;}j; Py A5 k® {{Ai}li - Ti}ies @p

By inductive hypothesis
Cla/al; I' = Pj|n/a] = Aln/al, 5: T|n/a] @p. (D.4)
(C > Aj) implies (C 2 Aj)[n/al], i.e.
Cln/a] o Aj[n/a). (D.5)
By applying D.4 and D.5 as a premise for [SEL] we obtain

Cln/a); I' = s < {A;[n/al}ly; Pj[n/u]=
Ala/al, 5+ k@ {Ai[a/a]}; : Ti[8/d)}ier @p

where the substituted end-point assertion is well-asserted since C[a/ua] o
(A1 v ... Ap)[n/a]. This follows from € © A; v ... v A, which holds
by well-assertedness of the (unsubstituted) end-point assertion.

The case for [BRANCH] is similar to the case of [RECV].

If P =if e then @ else R then by [IF]

Cresli:SHFQe=A CA—e;la:SHR=A
;I wu:S+if ethen Q else R=A

By inductive hypothesis

(C ne)[n/a]; I' + Q[n/u] = A[n/a] and

(€ A —e)[a/i]; I - R[a/i] = Ala/i] (D.6)
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By applying D.6 as a premise for [IF] we obtain
Cln/ul; I' - if e[n/a] then Q[a/u] else R[n/u] = A[n/a]

where the substituted end-point assertion is well-asserted by inductive
hypothesis.

— If P =a[2.0)(8).P’ by [MCAST]

Ii:Sr+a:§ CLa:S+PsASG(S1M1)a1
C:I,a: 8 aea(3).P > A

By inductive hypothesis
Cla/a); I' + P'[a/u] = Ala/a],5: (G 11) @1[n/al. (D.7)

Also I' + a: §[n/a] (trivially since § does not have free variables). By
applying D.7 as a premise for [MCAST| we obtain

I' - @2 (3).P'[f/d] = AR/

where the substituted end-point assertion is well-asserted by inductive
hypothesis.

— The case for [MAcC] is similar to the case for [MCAST].

— If P = X(&531..5,) by [VAR]

C o Ale/v]
C:la: S, X:(0:8)T@pi.. Ty @puA  X(E51..5,)
>A,51:T1[é/0] @py, .., §p: Tp[€/0] @pa
Since € o A[é/0] then also C[n/u] o A[é/v][n/a]. By applying it as a
premise of [VAR] we obtain

Cla/al; I, X : (52 §)T1 @pr ... T Gpad = X(E[R/i]51..5,)
I>A[fl/’L~L], 51:71 [é/f}] @Qp1..Sn: (.Tn[é/@] Qp,

Where A[n/a] is well-asserted (since it is end only).

The remaining cases for [CONC] and [DEF] are straightforward. O
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E Appendix for § 7

E.1 On Unfoldings of Recursive Assertions

This section illustrates the notion unfolding in recursive endpoint asser-
tions. A key idea follows [19]:

Remark E.1. In the labelled transitions for assertions (Figure 11) and
in the refinement relation (Definition 7.4), both given in § 7.1, page 40),
recursive endpoint assertions are taken up to their unfoldings (this point
was not explicitly noted in an earlier version).

Definition E.2 (unfolding). Write J'[(0)T/t] for the result of replac-
ing each occurrence of the form t(¢;) in I’ with T[é;/0], with an ap-
propriate renaming of bound interaction variables. Then we define, with

TE put(@)(I){A}LT,
unfold(T) % ¢'[(4)T /t]
which we call the unfolding of 7T.

Throughout the proofs from now on, especially when we consider the
labelled transition of endpoint assertions, we consider recursive assertions
up to their unfoldings, which, among others, enable visible transitions. For
example, given

T (2w ) vz 11k@ {l1 : tv + 1), 15 : end}

assuming L = {p,q} and considering all interaction predicates for lj 23
are true, we have

unfold(T) = k@ {l; : Ty end}
where we set:

T = ut(3)(v : S){v = 1}.
E®{l; :t{v+1),ls : end}

which allows the assertion to have a visible transition.
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af2.n (§).P 2—n>](§) P [LINKOUT]
151 (8

5).p; 15 p P [LINKIN]
selay(0){A}; P 25 Pla/s]  (Ala/o] | true) [SEND]
seBY(0){A}; P % errH  (A[a/0] | false) [SENDERR]
se?(0){A}; P 5" Pla/o]  (A[a/0] | true) [RECV]
sk ?2(0){A}); P 5 en T (A[a/9] | false) [RECVERR]
se <{AJ; PSP (A true) [LABEL]
se < {A}; PS5 errH (A | false) [LABELERR]
sk A Plier "5 P (A | true) jer [BRANCH]
si > (A Plier "57 en T (A; | false) jer [BRANCHERR]
P|Q 5 P'|Q (when P55 P') [PAR]
(va)P 5 (va)P' (when P % P’ and a ¢ fna) [NRES]
(v3)P 5 (V3P (when P55 P') [CRES]
(wa)P Y P (when P50 P and a e {a)) [BOUT]
P5Q (when P— Q) [TAU]

def D in C[X(&3)] = def D in Q
(when (X{95)=P) e D and C[P[¢/7]] > Q) [DEF]
P5Q (when PP 35 Q,P=P and Q=0Q") [STR]

Fig. 15. Labelled Transition for Processes

E.2
E.3

Labelled Transition Relation for Processes

Proof of Proposition 7.5 (Refinement)

This appendix proves Proposition 7.5 (relationship between the refine-
ment relation and the satisfaction), after a lemma.

We first reproduce the definition of refinement (Definition 7.4) for
convenience.
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Definition E.3. An endpoint assertion is closed (resp. open) if it does
not (resp. it may) contain free variables.

Definition E.4 (Refinement). A binary relation R over closed well-
asserted end-point assertions, taken up to the unfolding of recursive as-
sertions is a refinement relation if T1RTy implies one of the following
holds:

— T = kl(0: 9){A1};T, and Tp = k(v : §){As}; T} s.t. A; D Ay and
T1oRTho for each o = [8/0] with Ao | true.

— T = k2(0: $){A1}; T, and Ty = k?(0: S){A2}; Th s.t. Ay D Ay and

T1oRTho for each o = [7/0] with Ayo | true.

T1=k @ {{4} Ti}icr and To =k @ {{A}}; :Tj} jes where for each iel, we

have ; =1;, A; > A; and T;RT; for some jeJ.

T1 =k&{{ A} Ti}icr and To = k&{{A4;}}; : T} jes where for each jeJ, we

have [; =1;, A; D A; and T;RT; for some jeJ.

If T1RT5 for some refinement relation R, we say T7 is a refinement of To,
denoted T1 D T,. The relation 3 extends to open endpoint assertions in
the standard way.

Note we are taking recursive assertions up to the unfolding (cf. Appendix
E.1) in the definition above.
The following notion already appeared in §7.2 (after Theorem 7.11).

Definition E.5. (I', A) allows a when {I', AY 5 (I"!, A" for some {I"", A).

If there exists an « such that (I, A) allows « then we say that (I, A)
is capable to move at the subject sbj(a).

Lemma E.6. Assume A D A'. If (I, A) is capable of moving at the
subject sbj(a) then (I', A") is also capable to move at the subject sbj(a).

Remark. The end-point assertions in A and in A’ are well-asserted by
definition of refinement (Definition 7.4). Notice anyway that it is sufficient
that only the end-point assertions in A’ are well-asserted for this lemma
to hold.

Proof. The proof is straightforward from the definition refinement (Def-
inition 7.4). Notice that, up to the unfoldings of recursive assertions, an
end-point assertion may differ from its refinement only in (a) the pred-
icates in case of input/output/selection/branching and (b) the sets of
possible labels/branches in case of selection/branching. By Definition 7.4,
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if a refinement T; consists of an input/output/selection/branching with
subject k then also the refined process T consists of an input/output/s-
election/branching, respectively, with subject k& (for input and branching
we use well-assertedness). This property holds recursively for their re-
spective continuations. ]

Lemma E.7. Assume A D A’ below.

1. If{I', A 5 (I, Ay) such that « being a value output, selection or the
T-action, then (I, A"y 5 (I, ALY such that A1 D A} again.

2. If{I", AY 5 (I}, Ay) such that a being an input or branching, and if
(I, A" allows o, then (I, A"y % (I, A} such that A1 D A} again.

Proof. The proof is by induction on the structure of A. We assume A
(resp. A) to have the structure Ag;ge, Apey (resp. AL, Afref) where A,y
has the form 5 : T @p and assume the transition is from this A,.;. We do
not consider [TR-LINKOUT] and [TR-LINKIN] since they just add the
same new element to the assertion assignment. For the same reason, in
the proofs below for value input and value outout, we do not consider the
cases of new name import and export, since they only add to I" the same
new elements. Below in each case we use D over endpoint assertions as
the refinement relation justifying the original refinement (note D is the

largest refinement relation).
(1) If A = Agige, 5 : k@ : §){A1}; T @p then
<F7 A> Sﬁ!)ﬁ <F, Aside, 5 T’ @P> (El)

by [TR-SEND]. By hypothesis we have A 3 A’ so by Definition 7.4 we
can set

A =AL 5 kN D:8){A}; T @p (E.2)
with Agige D AL, T2 T” and A1 D As. Since A; D Ay then
Aq[n/0] | true D A[n/7] | true. (E.3)

It follows that also the following transition is possible:

(DAY P (D AL 5 T ap). (E.4)

side>

The lemma hold by induction for this case since Agige,5: T @p D AL, .5
T @ p-
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(2) If A=A, S: k‘7( ){Al} T’ @p then

(T, A "5 (T, Agige, 5 - T @p) (E.5)
by [TR-REC|. Assume further we have
(I, A" allows s 1. (E.6)

As before, by hypothesis and by Definition 7.4 we can set:
A= AL, 5: k(0 8){}Ag; T @p (E.7)

such that Agge D AL, ., 7' 2 T” and Ay o A;. By (E.6), however, we also
have As[n/0] | true. It follows that the following transition is possible:

(DAY (D AL 5 T @p) (E.8)
The statement hold since Agjge, 5 : T @p) D AL, ,5: T" @p.
(3) IfA= Asidmg k® {{Ah}l : 711'}1‘6[ @p then
(T, AY ™55 (1, Agige, 5 - T1; @p) (E.9)
by [TR-SEL]. By hypothesis and by Definition 7.4, we can set
A= Ao 5 k@ {{Au} : Tiities @p (E.10)

with Agige D ASZde, and there exists ¢ € J such that I; = [;, A;; D Aoj
and T1; D Ty;. It follows that also the following transition is possible:

Sk<l

(LAY "S5 AL, 5 2 Toj @p). (E.11)
The lemma hold since Agge, 5 : T1;@p D A’

side>

S: TQJ' Q@p.

side’
(4) If A= Ag4,5: k&{{Ah}l : Tli}iel @p then

Sk>l

I, A) =7 (I, Agige, 5 : T1j @p). (E.12)
Assume further we have
(I, A"y allows sy, > 1. (E.13)
By hypothesis and by Definition 7.4, we can set
A=Al 5 k&{{A1i}; : Tii}ics @p (E.14)

with Agige D AL .- By (E.13) we know j € J and Ayj | true. It follows
that also the following transition is possible:

sides S

Sk>l

(I, A" 57 (D AL, § 2 Toj @p). (E.15)
The lemma hold since Agge, 5 : T1;@p D A’

sides

S r.ng Q@p.

side’
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(5) The case of [TR-TAU] is immediate since there is no change in asser-
tion environments. O

We now prove Proposition 7.5. We reproduce the statement below.

Proposition E.8 (Refinement). If ' = P> A and A 3 A’ then
I'ePcsA.

Proof. The proof is by induction on the transitions of P. We proceed by
case analysis.

1 If P % P’ by output/selection /T move, since I' = P>A then (I, A) %
(I'; A1). By Lemma E.7, (I, A"y 5 (I, A}) where A; 3 AY.

2 If P % P’ by input/branching, since I' = P = A then (I', A) has the
capability of a move at the subject sbj(a). By Lemma E.6 also (I, A")
has the capability of a move at the subject sbj(a). We have two possible
cases:

— A’ cannot move (because its predicate is more restrictive) but still
I' & P> A’ since (I', A") is capable of an input/branching step at the
subject sbj(a),

— A, A 5 (I, AL, Tn this case also (I, AY % (I', Ay) since the re-
finement is less restrictive that the refined end-point assertion in in-
put/branching moves. By Lemma E.7, Ay D A]. The predicate holds
by induction.

O]

E.4 Validation Rules of Runtime Processes (definition)

Message Assertions For treating the 7-action (which is identical with
reduction), we introduce the validation rules for runtime processes (for
the formal definition of runtime processes, see Appendix D.1, page 73).
For this purpose we adapt the framework of typing for runtime processes
in [5], using message assertions (corresponding to message types in [5]),
which abstract messages in queues. These message assertions are only
needed for asserting for processes whose free session channels can have
queues, thus inducing reductions: they are not needed for asserting for
transition derivatives of programs, cf. Appendix D.1.
We first extend endpoint assertions as follows.

M = kW& | kel | M; W
T o= | M| M;T
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CHIKN D : S){A}; T] — 5: H[kKa); T[a/0]] (A[a/0] | true)
: j’([k}@ {{Az}ll‘Tl ieI] — S: j’([k}@ l]’; T]] (jEI, A]’ itrue)
cH[kNn); T@p, k?(0){A}; T'Qq] — §: H[TQp, T'[2/7]Qq]
(A[n/o] | true)

(eI, Aj ] true)

Ay, Ay > AL Ay (A - A)

VARY VAR]

VAR

Fig. 16. Reduction Rules for Assertion Assignments

We call M a message assertion, which is simply a sequence of a sending
action with a conrete value and a selection action with a concrete label.
Using this extended set of endpoint assertions, we further extend several
notions. First we use a context H| - | given by the grammar:

HL-1 == [-T1H[- ], Tp@p | Tp@p, H[ -]
Next we extend o as:
(A1, 8: oAy = Aoy
(A1, 5: 3 [M@p|)o(Asg, 5: Ha[TpQp]) =
(A1, 3: 3 [M'@p])o(Ag, 5: Ha[T,@p])
(M*‘J’sz’*T}’))
In the second rule we add a prefix of a message assertion to an endpoint

assertion from the head of a queue. In the rule we used the commutative
and associative operator * as follows. Below (J is the empty sequence.

(KN a); M) =T = M= EklKn); T

(k®L,M)*T = M+kdl;T
Reduction of Message Assertions We can now define the rules for asserted
reduction for assertion assignments which plays a key role in the proof of

Subject Reduction, given in Figure Figure 16. The rules come from [5],
elaborated with assertion checking.
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1. The first rule non-deterministically instantiates an assertion for send-
ing under the predicate A to the corresponding message assertion with
carried values satisfying A.

2. The second rule non-deterministically instantiates an assertion for se-
lection under the predicates {A;}ier to a specific label (message asser-
tion) [; when A; (with j € I) evaluates to true.

3. The third rules depict how a sending message assertion interacts with
its dual, the assertion for receiving.

4. The fourth rules depict how a selection message assertion interacts
with the assertion for branching.

5. The fifth and the sixth rules close the reduction under contexts.

Some comments on the use of non-deterministic instantiation of values
and labels in the first and second rules follow.

Remark E.9 (non-deterministic instantiation). The motivation for
having the non-deterministic instantiation rules for the assertions for
sending and selection is to enable the assertion reduction to follow the
process reduction: an assertion assignment has more reductions than the
corresponding process, which serves the purpose since we only demand
that the assertion can follow the process in reduction. This idea comes
from [5]: athe involved non-determinism is particularly natural in the
present context since each assertions (say an assertion for sending) de-
scribes many, possibly infinite, instances of distinct process behaviours.

Validation for Queues and Session Hiding We list the validation rules for
queues and channel hiding in Figure 17, where [NRES| in Figure 17 gen-
eralises that of [NRESs] in Figure 10 (since if a ¢ fnA then the hiding can
be erased by the equality above) hence replacing the original version. The
remaining rules from Figure 10 are used as they are except we are now us-
ing the extended sets of processes and assertion assignments (accordingly
[CoNC] now uses the extended o defined above). Since message assertions
do not involve interaction predicates, these rules are a direct analogue of
the typing rules for runtime processes in [5, 27| except message assertions
now mention values.

Convention E.10. Henceforth we write C;I" -+ P = A for a runtime
process P when it is derived by combining the rules of Figure 10 excepting
[NRES] and those of Figure 17.

Note that, following [5, 27], the validation of the composability of multiple
processes is relegated to the session hiding rule [CRES] rather than to
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I'- s =5:{@ap}p
I'ts,:h > A, 5:H[Tap]

Qui]

- [QVAL]
I'sp:h-n > AS§: A §:H[EKn); TQp]
I'sp:h > A §:H[Tap] Qs
I'bsi:h-l = A,3: A 5:H[k @ l; TQp]
I'-Pe>A,5:{T,@p}per {Tp @p}per coherent (CREs]

' w§P=A

Fig. 17. Validation Rules for Runtime Processes

the parallel composition rule [CoNc]. By the shape of these rules we
immediately observe:

Proposition E.11. Suppose I' = P> A. Then P contains no error.

E.5 Proof of Proposition 7.8 (Subject Transition for Visible
Actions)

In this subsection we list the proofs for Proposition 7.8. The proof hinges
on two lemmas: Substitution Lemma (Lemma 5.4, whose statement and
proof are given in Appendix D.3, page 77); and Evaluation Lemma, whose
statement and proofs are given below. Then we shall prove Proposition
7.8.

Convention E.12 (shape of processes).

1. In this subsection, unless otherwise stated, P, @, ... range over run-
time (i.e. general) processes (cf. Appendix D.1) and validation and
other judgements are considered for runtime processes (cf. Conven-
tion E.10).

2. Further whenever the definitions, statements etc. mention the tran-
sition or reduction of processes, we implicitly assume these processes
are closed (remember reduction and transition are only defined over
closed processes).
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Lemma E.13 (Evaluation). If C;I' - P(e) = A(€) and € | & then we
have C; I' -~ P[n/é] = A[n/é].

Proof. The proof is by rule induction on the validation rules (Figures
10 and 17). We proceed by case analysis. Recall that by decidability of
underlying logic (Convention 3.3), we write A[é/0] | true when a closed
formula A[é/7] evaluates to true. Note that if we further have € | a then
we have A[n/7] | true.

— If P(€) = sx1&)(0){A}; P’ then
P(n) = sgl{ny(0){A}; P,
Ae) = A5 kl(0: S){A}; Tap,
with and @ S A[é/0]. Notice that @ > A[&/7] is equivalent to
€ > A[a/7]. (E.16)
By inductive hypothesis
C; I+ P'[a/e] = A'la/e], 5: T|n/é] @p. (E.17)

By applying (E.16) and (E.17) to the validation rule [SEND] the lemma
holds for this case.

— If P(é) = X{(€51..5,) (since P(é) is well-formed against A by hy-
pothesis) then P(n) = X{28;..5,). Since € D A[é/?] is equivalent to
C o Al|n/v] then P(n) is well-formed against A[n/0] by rule [VAR].

— P(e) = if e then Q else R the property holds by induction since Cae |
true is equivalent to € A n | true.

— IfP(e) = sk!<é’>(6){A}; P, P(é) = X{é'5,..5,), P(e) = if ¢’ then Q else R,
multicast session request, session acceptance, value reception, label
selection, label branching, parallel composition, inaction, hiding, re-
cursion, message queue or error the property holds straightforwardly
by induction.

This exhausts all cases. O

We now prove Proposition 7.8 in §7, the subject transition for visible
transitions. We reproduce the statement in the following.

Proposition E.14 (Subject Transition for Visible Transitions). If
I'-PoA, PSP, and (I, A 5 (I, A" where a # T, then we have
I P A,
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Proof. The proof is by rule induction on the validation rules in Figures
10 and 17, showing a stronger result which adds to the statement:

If P35 P and I' - P> A with o being an output, a selection, or
an action at a shared channel (accept and request), then (I', A)
allows a.

In the following proof we refer to both the transition rules for asserted
processes in Figure 15 and the transition rules for end-point assertions in
Figure 11. Assume we have:

1. I' - P > A (which stands for true; I' - P = A)

2. P35 P and

3. ([, AY ST, A,

We proceed by the case analysis depending on the last rule used for
deriving this judgement. By Convention E.12 (2), we assume all processes
concerned are closed. Further below notice € in the conclusion of each rule
should be true by our assumption.

Rule [SEND]: In this case, we derive C;I" -+ P > A with:

C = true (E.18)
P = scl@(@{A}Q (E.19)
A=Ay, §: kl(0:5){A}; Tap. (E.20)
By the first premise of [SEND] and (E.18) we have:
true o A[é/0] (E.21)

Since P is closed, we can set € | n. By (E.21) we infer:
A[n/v] | true. (E.22)

It follows that P can move only by [SEND] (i.e., not [SENDERR]), hence,
setting o = sg!n:

P S Qump ¥ P (E.23)
Now A can move by [TR-SEND]:
(I AY 5 (T (Ao, 3: T[a/o] @p)) (E.24)

By the second premise of [SEND]| in Figure 10, we have

true; I' - Q[é/0] = Ay, §: T[é/v] @p (E.25)
By Lemma E.13 (Evaluation Lemma), (E.25) immediately gives:

true; I' - Q[n/0] = Ao, 5: T[n/0] @p (E.26)

as required.
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Rule [Rcv]: In this case the conclusion is C;I" - P = A with, as well as
C = true as before:

P = s, 2(5){A}:Q (E.27)
A=Ay, 5 k?(v:S){A};Tap (E.28)
By the shape of P we can set a = 53,70 for which we have, by [TR-REC]:
A[n/v] | true (E.29)
(LAY S (T -a:G, Ag,5: T[a/v] ap) (E.30)
Thus P can move only by [RECV] (not by [RECVERR]), obtaining:
P 5 Q[a/v] (E.31)
Now the premise of [RcV] in Figure 10 says:
truenA; I'- Q> Ap,5: Tap (E.32)
By Lemma 5.4 (Substitution Lemma) we obtain
true A A[a/0]; I, 9: S - Q[a/0] & Ao, 5: T[a/0] @p (E.33)
By (E.29) and by [CONSEQ] we obtain
true; I',9: S - Q[0/9] & Ao, 5: T[A/0] @p (E.34)

as required.

Rule [SEL]: We can set C; " = P = A such that, as well as C = true:
P =sp < {Aj};; P (E.35)
A=A0,5: k®{{Ai}l; : T;}ier Qp (E.36)
By the premise of the rule we have:

true D A; (E.37)

hence A; | true, therefore P can move only by [LABEL] (i.e., not [LABELERR]).

Thus we set o = s;! < [; and we have
PS5 P (E.38)
The following assertion transition is also possible by [TR-SELECT]:
(I, Ay 5 (I, Ao, 5: Tj@p). (E.39)
By the second premise of [LABEL| in Figure 10 we get
true; I' = Py > Ap,5: Tj@p (E.40)

as required.
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Rule [BRANCH]: In this case we have true; I' - P = A such that

P=s;> {{Al}lz Pi}ie[ (E41)
A=Ay, S5: k&{{Al}ll : Ti}iel Qp (E42)

By the shape of P we can set « = s; < [; for which we have, by
[TR-CHOICE]:

Aj | true (E.43)
(I,Ay S (I'-a:§, Ap,s: Tjap) (E.44)

Thus P can move only by [BRANCH] (not by [BRANCHERR]), obtaining:
PP (E.45)
Now the premise of [BRANCH] in Figure 10 says:
truenA; s I' = Py A, 5: Tj@p (E.46)
By (E.43) and [CONSEQ] we obtain:
true; I',9: S - Q[0/9] & Ao, 5: T[A/0] @p (E.47)
as required.

Rule [McAST]: In this case we have true; ' - P> A such that, combining
with the premises of the rule:

P =a2.0](5).Q (E.48)
I'ta:§ (E.49)
true; ' Q> A,5:(911)at (E.50)

By the shape of P we can set o = @]2..n](5) and
a0 (8).Q > Q (E.51)
By (E.49) the following transition is possible using [TR-LINKOUT]:
(IyAy 5 (I,A5:(51) a1 (E.52)
as required.

Rule [MAcc]: Similar to the case [MCAST| above.
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Rule [PAR] Immediate, since the visible transition for P|Q is reducible
to the same action by either P or (), and because the resulting assertion
environments (one result of the visible transition) can again be composed,
because linear compatibility only depends on channel names and partici-
pant names.

Rules [NRES], [CRES] and [BOUT]|: In each case, direct from the induc-
tion hypothesis.

Rule [CONSEQ]: Suppose the conclusion is true; I' +— P = A which is
derived from

true; I' = P > Ay (E.53)
Agd A (E.54)

Now first suppose the concerned visible action « is neither a receive action
nor a branching. Now suppose

P3P (E.55)
(DAY ST, A (E.56)

By induction hypothesis and by (E.53), (E.56) gives us:
(1. Do) S (I, %) (E.57)
for some Af, for which we have, by induction hypothesis
true; I - P' = Aj (E.58)
Since the assertion transition is deterministic and by Lemma E.7 we know:
0D A (E.59)
By (E.59) and (E.58) we can use [CONSEQ] to reach
true; I = P> A’ (E.60)

as required. This exhausts all cases. ]
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E.6 Proof of Lemma 7.9 (Subject Reduction)

T-action (1): Refinement and Message Assertions We extend 3 to mes-
sage assertions as follows, again taking recursive assertions up to their
unfolding. The following is Definition 7.4 except for the last four clauses
which are about message assertions.

Definition E.15 (Refinement for Message Assertions). A binary
relation R over closed end-point assertions is a refinement relation if
T1RT5 implies one of the four conditions in Definition 7.4 or one of the
following conditions holds.

— Ty = K& T, and To = kI T such that T, RTY,.

— T = k@®L; T, and To = k@ 1;; T} such that TR,

— T1 = kNa); T and Ty = k!( : S){A}; T3 such that A[a/?] | true and
TIRTL[n/0] again

- T =k®1;7T and Ty = k@ { {Ai}li : T} }ier with (j € I) such that
Aj | true and T'RT.

If T1RT5 for some refinement relation R, then, as before, we say J7 is a
refinement of Ty, denoted T D Ts.

Assertion assignments used for refinements now include non-singleton as-
signments (i.e. § may be assigned more than two endpoint assertions
for different participants): in spite of this, the non-trivial refinement of
endpoint assertions is only applied to singleton assignments 2, as made
explicit in the following.

Definition E.16 (refinement on extended assertion assignments).
We define A 3 A’ where A and A’ may possibly contain non-singleton
assertions as follows:

ADA
5:Ta@p 3 5:Tap (T57)
A1, A2 D AllaAl2 (AZ@AIwZZva)

We say A refines A’ if A3 A

We also define transitions involving message assertions. In particu-
lar, a non-singleton assignment — where we have two or more endpoint
assertions with compensating channels for a single session — may have

12 This restriction is not essential but is natural from a semantic viewpoint and enables
a cleaner technical development.

94



a transition which represents a reduction at a free session channel. For
conceptual clarity and technical convenience, we add the following new
action for this transition.

a = . | Teree

7(8) says that a reduction of assertions as we have defined has taken place
at a free session channel (we do not need to mention a specific channel).
Such a transition can be non-deterministic (i.e. can have more than one
derivatives for a single transition starting from the same source).

The transition rules which involve message assertions, both visible
ones and invisible ones, are given in Figure 18. We observe:

1. The first two rules for visible transitions, [TR-M-SEND] and [TR-M-SEL],

are straightforward. These transitions are defined only over singleton
assertions, just as in Figure 11 (page 39). Thus they are never induced
at say § when have more than 1 endpoint assertions assigned to s.

2. Rule [TR-TAU-SEND] uses the T¢ree-action label. “H non-trivial” says
that this rule is applied only when we have more than one assertions
under 5. The rule corresponds to the first reduction rule in Figure 16.

3. Rule [TR-TAU-SELECT] is similar. The rule corresponds to the second
reduction rule in Figure 16.

4. Rule [TR-TAU-VAL] is for interaction, corresponding to the third re-
duction rule in Figure 16.

5. Rule [TR-TAU-BRA] corresponds to the third reduction rule in Figure
16.

Accordingly we also use the T¢ree-actions for processes, by dividing the
rule [TAU] in Figure 15, presented in Figure 19. The rules simply divide
the reduction into two cases, depending on whether it is at a free session
channel or othersise.

These two silent transitions are consistent with those in Figure 15
since program phrases and their derivatives never have reduction at free
session channels: thus 7 is used for the universal cases, while T¢yee is only
used when session channels are not yet hidden. '

Proposition E.17 (extended transitions).

13 For both assertions and processes, we can merge this Teree-transition and the 7-
action and can still establish all the main technical results, with no essential change
in arguments. The purpose of using this action is for conceptual clarity, so that
the 7-transition continues to denote the (assertion-wise) deterministic transition
while incorporating the silent action at free session channels (which no derivative of
program phrases has but is needed to analyse its behaviour).
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(D,(A,5: kR, Tap)) 52 (I, (A, 5:Tap))

[TR-M-SEND]

[TR-M-SEL]
Sk.>lj

(I,(A,5:k@l;Tap)) —
A[n/v] | true
5: H[END - S){A}; T] =5 5: H[kN&); T[a/0]]
Ajltrue jel
5 H[k® {{Ali: Tier] ™° 5: H[kD 1j;T)
Aln/o] | true

§: H[kKR); TaQp, k?(0){A}; T'Qq] ™5° §: H[T@p, T'[7/]Qq]
[TR-TAU-VAL]

(I',(A,5:Tap))

[TR-TAU-SEND]

[TR-TAU-SEL]

Ajltrue jel

S: j‘f[k‘ @ lj; ‘.T@p, k‘&{{Az}lz Zi]ii}ie[@q] Tf—rge S: j‘f[‘.T@p, ‘.Tl@q]
[TR-TAU-BRA]

Fig. 18. Labelled Transition for Message Assertions

1. (coincidence with reduction, 1) (I", A) "5° (I", A") iff A — A'.

2. (coincidence with reduction, 2) P — Q iff P 5 Q or P ™5° Q.

3. (determinism of non-Teree-actions) Suppose (I, AY 5 (I, A" such
that o # Teree. Then (I, Ay =5 (I A" implies I'" = I'" and A’ =
A",

Proof. (1) is by definition. (2) is also direct from the definitions. For
example (I, AY 5 (I, A" implies I" = I and A’ = A, similarly for
others. O

By (1) above, we can safely identify a T¢ree-action from (I, A) and a
reduction from A.

Using these extended transition relations, we generalise our results
in Appendix E.3. Recall below that we still use only singleton assertion
assignments for visible transitions, as discussed in (1) above. The T¢ree
transition takes place only when there is a non-singleton assignment.
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P — P’ at a shared name or a hidden session channel
PSP

[TAU]

7 .
P — P’ at a free session channel
P P

[TAUFSC]

Fig. 19. Refined 7-Transitions (replacing [TAU] in Fig. 15)

Definition E.18 (extended conditional simulation and satisfac-
tion). We extend the notion of the conditional simulation in Definition
7.2 as follows:

1. R in the definition now relates P which can be a (closed) runtime
process without errH or errT; and (I', A)) where I" is an environment
and A may include non-singleton assignments.

2. In (2), we include the case of Teree.

Using this extended conditional simulation, the satisfaction relation I" =
Pr=>A with P a runtime process and A containing possibly non-singleton
assignments, is defined by precisely the same clauses as in Definition 7.3
(§7.1, page 40).

Proposition E.19 (extended assertion transition and refinement).

1. The same statement as given in Lemma E.7 holds for assertion as-
signments with message assertions, adding the clause:
If (T, A ™52 (T, Ay then (I A" ™52 (I, A or (I, AT 8758
(I, AY) such that Ay D A again.
2. The same statement as given in Proposition E.8 holds for assertion
assignments extended with message assertions.

Remark. In (1) above, we only have to find one appropriate A} which
corresponds to Ay, due to the non-determinism, cf. Proposition E.17 (3).
Further notice A’ may need two Teree-actions for catching up with the
reduction of A, since A can have already instantiated a send/select as-
sertion which may still be abstract in A’ (see the proofs below).

Proof. For (1), the proof is identical to the proof of Lemma E.7 except
the pairs introduced in Definition E.15. The case for identical pairs is
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immediate. For the remaining two cases, we treat the case of send. The
case of selection is by the same argument. First we consider the case of a
visible action. Using the same notations as in the proof of Lemma E.7:

A= Agige, S : ]{3!<I~l>;71 Q@p (E.61)
A= AL 5 k(D : S){A}; T)@p (E.62)

such that Agqe @ A%, T1 D T1 and A[n/?] | true. Now consider the

side?
following labelled transition:

<F7 A> Si!)ﬁ <F7 Asidea §:7 @P> (E63)
By A[n/?7] | true we can derive:

i -
(I A 5T, Ay, 5 T4 @p). (E.64)
as required. Next we consider the T¢ree-action. Suppose

(I, A) ™52 (I, Ay (E.65)

First assume in (E.65) that this action is induced by the reduction from

§5: H[E\ (v : S){A};T] (E.66)
in A to its instantiation
§: H[kWnay; T[n/v] @p| (E.67)
in A; such that
Aln/?] | true. (E.68)

Then A’ will have the corresponding reduction from
§: H[E(v: S){A'}; 7] (E.69)

in A, because, by the definition of refinement, we have A > A’, hence by
(E.68) we obtain A'[n/] | true too, so that we obtain the corresponding
instantiation:

5 H[kWaY; T'[5/] @p] (E.70)

for which we have, by definition,

kIR T[R/0] D k&Y T'[3/7] (E.71)
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as required. On the other hand if the transition in (E.65) is induced by
the following redex in A

§: H[kKn); ToQp, k7(0){As}; TpQq] (E.72)
and, under A[n/?] | true, this has the reduction into:
5: H[T,Qp, T,@Q[n/0]Qq] (E.73)

First assume the corresponding assertions in A’ have the isomorphic
shape:

5: H[kI(n); T)@p, k?(0){A}}; T, Qq] (E.74)
such that
T2 T (E.75)
AL o Ay (E.76)
Tp[m/0] D Ti[m/0]  (if Aj[m/o] | true) (E.77)

Thus (E.74) can have the corresponding reduction, hence (I', A") can have
the corresponding Teree-action, and the result is again in the closure, as
required. Second when the corresponding assertions in A’ do not have the
isomorphic shape, we can set:

§: H[E\v : S){AL}; T2 @p, k?(0){A}}; Th@Qq] (E.78)
such that
A, o Al [n/7] (E.79)
To[n/0] D Ty[m/0]  (if Au[m/0] | true) (E.80)
Ty m/0]|T;[m/0]  (if Ay[m/0] | true) (E.82)
By (E.79) we know (E.83) has the reduction into:
5+ K[y T4 (/7] Op, K2(5){A}}; Tyaq] (E.53)
We further use (E.81) to obtain the reduction from (E.83) into:
5 : H[T,[m/0]Qp, T,Q[1/0]Qq] (E.84)
as required. O
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Corollary E.20 (Assertion Reduction and Coherence). If A is co-
herent and A — A’ or equivalently (I, AY ™5° (I', A", then A’ is again
coherent.

Proof. We only consider the two cases for the send message assertion.
The cases for the select message assertions are treated in the same way.
We start from a simpler case. Consider the following redex:

5: H[k!(D: S){A}; Tap, ] (E.85)
For this being coherent, there is some G such that
kl(0:9){A; TG p (E.86)

similarly for other endpoint assertions under 5. Now consider we have a
reduction from (E.85) by the first rule in Figure 16 into:

5 : H[kIEY; T[a/0]ap, ] (E.87)

where we have

A[n/v] | true (E.88)
By (E.86) and (E.88) and because D is transitive we obtain:

KB TT3/3] 5 G I (E.89)

as required. For the other case, the reduction involves a pair. Assume A
has a redex
5 H[EKD)T,, k7(0){Ap}; Tp] (E.90)

As before, by coherence we can set:

kI T D G 1p (E.91)
k?(0){Ap};Tb 2 G 1q (E.92)

Note we can safely assume G has the shape (up to permutation of utterly
unordered actions):

G=p—gq:(:5){A}.9 (E.93)
hence we can assume:

Sip=k\(7:9){A}; (S Ip) (E.94)

S1a=k2(0){A}; (5 19) (E.95)
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such that, by Definition E.15, A" 5 A, and A’[2/?] | true and hence

Ta D §'Ipla/7] (E.96)
§'Maln/o] > Ty[n/7] (E.97)

Now consider the reduction from (E.90) into:
5 H[Tq, Tp[n/o]] (E.98)
By (E.96) and (E.97) we obtain

T. D 9[n/0] lp (E.99)
To[8/7] 3 §[8/5] 1q (E.100)

Since for each r ¢ {p,q}, and because by HSP the variables in ¢ only
occur in assertions/actions involving either p of q, we know:

$la/o]tr = Glr (E.101)
hence as required. ]
We shall also use the following result later.

Lemma E.21. Suppose C;I" - P|Q = A is derived. Then there is always
a derivation with the same conclusion and with the same or lesser length
than the original derivation such that the last rule applied is [CONC/.
Similarly for the remaining syntactic shapes.

Proof. By the shape of the validation rules, the last rules applied to derive
this judgement can only be the application of [CoNc] followed by zero or
more [CONSEQ]. However since D is only applied point-wise, and this does
not affect the composability by o (which is based on linear compatibil-
ity), we can first apply the same refinement point-wise then finally apply
[CONC], to obtain exactly the same final conclusion. The same reasoning
holds for other rules. O

T-action (2): Key Lemmas The current definition of 7-action as well as
Ttree-action is not based on compatible visible actions but is defined from
reduction. The following lemma shows that, in spite of this, the 7/7¢ree-
action is indeed derivable from complementary visible actions except for
initiation and conditionals). Let C[ ] denote a reduction context.

Lemma E.22. If P — P’ then one of the following cases hold:
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~

. P = C[if e then Q1 else Q2] such that P' = C[Q1] (if e | true) or
P'=C[Q2] (if e | false).

2. P =C[P|..|P.] such that P, “P 3P Pl ang B, U Pl for 2 < i <

n, with P' = C[(vs)(P{|..|P})].

3. P =C[Qls:h] such that Q B Q and P' = ClQ'|s:h -1i].
4. P=C[Q|s:h -] such that Q " and P' = C[Q'|s:h].
5. P = C[Q|s:h] such that Q it Q' and Q' = C[Q'|s:h-1].
6. P=C[Q|s:h-1] such that Q'S Q' and P’ = C[Q'|s:1].
Proof. Immediate from the corresponding reduction rules. O

By Lemma E.22 we can reduce the reasoning on each communication-
induced reduction to the corresponding visible action combined with the
accompanying transformation of a queue. The difference cases are anal-
ysed below.

Lemma E.23. Assume below all transitions are typed under the implicit
typing.

1. IfPa[zn—ib]@ P and I' + P=A such that I'(a) = G then I' + P'=A, 5 :
Sty).

2. IfPa[ﬂ@ P and I' - P> A such that I'(a) = G then I' - P'=A,§:
(Sp)- ) i

3. IfP5S P and '~ Pls:h>A then I' — (P'|s:h-1) > A’ such that
A— AL

4. PSP and I+ Pls:hA then I' - P'|s:h -1 > A’ such that
A— AL

s7h 7 = 7

5. If P> P and I' - Pls:h-a>A then I' -+ P'|s: h> A" such that
A— AL

6. If P55 P and I - Pls:h-l>A then I' = P'|s: h = A’ such that
A— AL

Further in the cases of (3..6) above, A and A’ only differ in the assign-
ment at § such that s € {§}.

Remark. In the third clause above, we do not include the case of bound
outputs since we do not need them in Lemma E.22 (due to the use of
contexts).
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Proof. (1) and (2) are immediate. Below we show the cases (3) and (5)
since (4) (resp. (6)) is an easy version of (3) (resp. (5)). For (3), suppose
we have

' Pls:h>A (E.102)

By Lemma E.21, we safely assume the last rule applied is [CoNC]. Thus
we can assume, for some Ag and Aj:

I'P > A (E.103)
I'Fs:h > A (E.104)
AO o) Al =A (E105)
Now consider the transition -
PSP (E.106)

By (E.103) we observe Ay has the shape, with s = sy;:
Ao = 5:H[k!(e){A}; TQp], Ago (E.107)

for some p; and that P’ can be typed by Aj, such that:
0 = 8: H[T[8/7]], Aoo (E.108)

Now the assertion A; for the queue has the shape, omitting the vacuous
“end”:
Ay = 5: H[M@p] (E.109)

hence the addition of the values to this queue, s: h - A, must have the
endpoint assertion:
Al = 5: H[kNn); M@p] (E.110)

Setting A" = Afj o A}, we know:
I' - Pls:h-a = A (E.111)

By (E.108) and (E.110) and the type composition o and the type reduction
—, we obtain

6OA,1 = §}C[k"<ﬁ>, T[ﬁ/’[}]], Aoo, Al
<~ A(]’Al

That is we have A — A’ and the only change is at the type assignment
at s, as required.
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For (3), suppose we have
I'~Pls:h-i>A (E.112)

Again by Lemma E.21, we safely assume the last rule applied is [CONC].
Thus we can assume, for some Ag and Aj:

I'-P = A (E.113)
I's:h-a > 4 (E.114)
AO o Al =A (E115)
Now consider the transition
P p (E.116)

As before, we can infer, from (E.113) and (E.116) the shape of Ay as
follows, with s = s;.:

for some p; and that P’ can be typed by Aj given as
0 = 8: H[T[8/7]], Ao (E.118)

Now the assertion A; for the queue has the shape (again omitting “end”-
only assertions):

Ay = §: H[kKn); M@p] (E.119)
which, if we take off the values (hence for the queue s:lNz), we obtain:
Al = 5: H[M@p] (E.120)

Note this is symmetric to the case (1) above. As before, setting A’ =
Afy o A}, we know: 3
I' - Pls:h = A (E.121)

By (E.118) and (E.120) and the type composition o and the type reduction
—, we obtain

00 4] = 5:H[T[n/0]], Ao, A1
<« A07Al

That is we have A — A’, and the only change from A to A’ is at the
type assignment at s, as required. ]
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T-action (2): Subject Reduction We now establish Lemma FE.24, the sub-
ject reduction.

Lemma E.24 (Subject Reduction). Suppose I' - P> A and P —
P'. Then I' - P' = A’ such that either A" = A or A - A’

We prove a stronger statement. Below we use the refined 7-transition
rules in Figure 19.

Lemma E.25. Suppose I' — P = A.

1. If P 5 P’ by Figure 19 then I' - P' > A again.
2. If P™2° P! by Figure 19 then I' = P' = A such that A — A'.

Remark. Via Proposition E.17, Lemma E.25 above entails Lemma E.24.

Proof. Assume
true; Iy - P>Ay and P 5 P (E.122)

Each of the six cases in Lemmas E.22 are possible, which we inspect one
by one. Below let C[ - ] is an appropriate reduction context.

1. Conditional. By Lemmas E.22 (1) assume P = C[R] where
R = if e then @ else Q2 (E.123)

such that if e | true then P’ = Q1. Since C[ - ] is a reduction context we
know R is closed. Therefore we can safely set:

true; I' = Re> A (E.124)
By Lemma E.21 we can assume R is inferred by [IF] of Figure 10. Hence
we have
truene; ' Q1 >A (E.125)
By [CONSEQ] we get
true; I' = Q1> A (E.126)

as required. Dually for the case of e | false.
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2. Link. By Lemmas E.22 (2) we set P = C[R] where
R=P..|P, (E.127)

with their initialization actions compensating each other, as given in Lem-
mas E.22 (2), i.e.

p, )@ pr (E.128)
PO pr 0 <i<n) (E.129)

As before, we can safely set:
true; ' R A (E.130)

By Lemma E.21 we can assume R is inferred by [IF] of Figure 10 by
consecutive applications of [CONC]|, hence we safely assume:

true; I' = P, > A; (E.131)

such that A o..0 A, = A. By Lemma E.23 (1) and (2), we have, with
I'(a) =G,
true; I' = Pl > A;,5: (G 1i)Qi (E.132)

Hence
true; I' = Pi|..|Py = A,5: {(G11)Qi}i<i<n (E.133)

Since {(G4)Qi}1<i<n is obviously coherent, we have
true; I' = (v3)(Py|..|Py) = A (E.134)
as required.

3. Send. By Lemmas E.22 (3) we set

P =[Q|s:h] (E.135)
with
QB (E.136)
As above we can safely set
true; I' - Q|s:h > A (E.137)

By Lemmas E.23 (3), (E.136) and (E.137), we infer:

true; I - Q'|s:h - A (E.138)
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such that A — A’ where the only change is at § which contains s. Since
P reduces to P’ by 7-transition rather than T¢ree-transition, by Figure
19, we know that this § in R are hidden in P. Assume therefore, without
loss of generality:

P =C'[(v3)(Qls:h|R)] (E.139)
I - Qls:h|R > A (E.140)
A’ coherent andA; = Ao Agy (E.141)

By Lemma E.20 and noting A; — A’ o Ag; we know A; = A’ o Ag; is
also coherent, hence as required.

4. Receive. By Lemmas E.22 (4) we set

P =C[Qls:h-1] (E.142)
with
QN (E.143)
As above we can safely set
true; I' - Q|s:h-fi- A (E.144)

As before, by Lemmas E.23 (4), (E.143) and (E.144), we get:
true; I' - Q'|s:h > A’ (E.145)

such that A — A’ where the only change is at 5§ which contains s. Again
by Figure 19, we can set, without loss of generality:

P =C'[(v3)(Qls:h|R)] (E.146)
I - Q|s:h|R=> A (E.147)
A’ coherent andA; = Ao Ay (E.148)

As before, by Lemma E.20 and noting A; — A’ o Ap; we know Ay =
Ao App is also coherent, hence done.

5. Select. The argument exactly follows Case 3.Send above using Lem-
mas E.22 (5) and Lemmas E.23 (5) instead of Lemmas E.22 (3) and
Lemmas E.23 (3), respectively.
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6. Branch. The argument exactly follows Case 4.Receive above except
using Lemmas E.22 (6) and Lemmas E.23 (6) instead of Lemmas E.22
(4) and Lemmas E.23 (4), respectively.

Finally the T¢reo-reduction,

true; Iy - P>Ay and P ™= P’ (E.149)

rather than (E.122), precisely follow the same reasoning as given in the
cases of 8..6 above, excepting we do not have to hide §. ]

E.7 Proof of Theorem 7.10 (Soundness)

We prove Theorem 7.10. We first define the standard notion of closing
substitutions adapted to the present context, which include different kinds
of variables. Below recall a process is open if it contains zero or more free
variables and/or free process variables.

Definition E.26 (Closure of P). Let P be an open process and C; I"
P = A. The closure of P by substitution o, or simply the closure of P,
denoted P,, is the process obtained by applying to P the substitution o
such that:

— for each free interaction variable declared in I, ¢ instantiate it into a
value that satisfy I" and € (i.e., it has the correct type and does not
violate the assertion environment), and

— for each process variable X s.t. I'(X) = (@ : S)T, the substitution &
instantiates X into a parametrised process P(03) (so that each call
X(&5) is instantiated into P(é3)), such that we have C, I, : S |
P(03) >3, : T1 @ps...5, : Tp, @p,.

Remark. Note that, in the last clause above, we use the satisfaction =
when considering substitutions for process variables, cf. [4].

Definition E.27 (Closure or A). The closure of A, which we denote
by A,, is the asserted local type obtained by applying the substitution o
for free interaction/process variables in A.

Definition E.28 (Closure or I'). The closure of I', denoted I, is
obtained by removing from I" all the variables substituted by o.

The soundness proof relies on basic properties of the proof system for
validation in Figures 10 and 17.
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Lemma E.29. Suppose say C;I' — S = A is derived and, in its deriva-
tion, Co; Iy  So = Ag is used, hence Sy occurs in S. Suppose Cg; [y —
Sy=>Ao where S{y and Sy have the identical typing. Then we can replace the
occurrence of Sy by SY, with the result written S', such that C;I" - S’ =>A
is derivable.

Proof. By noting that, in each step of derivation, the only thing that
matters is the assertion environment, the assertion assignment, and the
assertion context, in addition to the typing. O

Lemma E.30 (postponement of [DEF]). Suppose I' - P = A is de-
rived. Then there is a derivation tree of the same or less length such that
there are no applications of [DEF] (c¢f. Figure 10) except at the end of the
derivation.

Proof. The premise of [DEF]| for @ (the main process) reads:

CLX:(v:5)T1@pt...T,@p. Q= A (E.150)

Note the only condition it demands is the assumption contains

X:(’D:S)Tl @pt... T, @p, (E.151)

and the only effect of the application of [DEF] is we lose this assump-
tion. Since no other rules use this assumption, by Lemma E.29, we can
always permute an application of any rule with [DEF]| to obtain the same
conclusion. O

Definition E.31. We say C;I" - P = A is well-initiated if A contains
only singleton assignments and, moreover, P has no queue at a free session
channel.

Lemma E.32. The second premise of [DEF] is well-initiated if and only
if its conclusion is well-initiated.

Proof. Because the assertion assignment (A) does not change and the
process (Q) does not change except adding the new definition. ]

We now prove Theorem 7.10, whose statement is reproduced below.

Theorem E.33 (Soundeness for Open Processes).
Let P be a program phrase. Then C;I' = P == A implies C;I" = P = A.
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Proof. Let R be the relation collection all the pairs of the form:
(Po,{Ts, As)) (E.152)

such that ;1" — P> A with P being a sub-term of a multi-step —>-
derivative of a program phrase and A an assertion assignment possibly
containing non-singleton assignments, and o being its closing substitu-
tion. We show R is a conditional simulation (in the extended sense defined
in Definition 7.2), by rule induction on the validation rules. Assume

I PeA (E.153)

is derived and o is a closing substitution conforming to € and I". We carry
out case analysis depending on the last rule used.

Case [SEND]. By [SENDR] in Figure 10, we can set
P = s, ey(0){A}; P (E.154)
where C; I' - P = A such that
A=A 5:k(0:S){A}; Tap. (E.155)
By the definition of closure
Py = 510 (@) As}: P (E.156)

where €, | .. Process P, can only move because of rule [SEND] (Figure 15)
with label is si!n. Since A[n/v] | true by [SEND] and A[n/7] > A,[n/?],

e D) { Aoy PL 5 P (B.157)
It follows that )
Ay =AL 5 kl(v: S){A,};T,@p. (E.158)

By [TR-SEND] in Figure 11, since A,[n/9] | true,
(DAL G K)o 2 8){Ag); Ty @py (1 AL 5 : T, @p), (E.159)
It follows by induction,

(P (VAL 5:T,ap)) € R. (E.160)
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Case [Rcv]. By [Rov] in Figure 10, and setting P = s37(0){A}; P’, we
have
CGI'-P=A (E.161)

with A = A",5: k?(0: S){A}; T@p. Let P, = 5,7(9){A,}; P.. It follows
that )
Ay =AL 5: k20 : S){As}; T, @p. (E.162)

Process P, can only move because of rule [RcV] in Figure 15 with label
si!n. By definition of conditional simulation, we only consider the case in
which A, is able to move (i.e., n: S and A,[n/?] | true). In such case, by
[Rcv] in Figure 15,

sk?(9){As}; PL 25 P (E.163)

and by [TR-REC] in Figure 11,
(DAL G k20 S){Ag); To@p) 555 (M AL 5 Tyoap).  (E.164)

It follows by induction

(PL I, A,,5:Ty@p)) € R. (E.165)
Case [SEL]. Let P = s, < {A;};; P;. By [SEL] in Figure 10,

C I s, < {A;}; P> A (E.166)
with A = A" 5: k@ {{A;}l; : Ti}ier@p and j € I. Tt follows A, = AL/ 5:
k@ {{Ais}li : Tio}icr @p. We have P, = s < {Ajs}l;; Pjo Process P, can

only move because of rule [LABEL] in Figure 15 with label s; < [; and,
since A; | true by well formedness of P and A; D Aj, then

Sk<lj

Sk < {Aja}lj; Pje =" Pj,. (E.167)
By [TR-SEL] in Figure 11, since A; | true

Sk<l‘

<F, A,U, S k® {{Alg}ll : ‘.Tig}ie] @p> =’ <F, A:ﬂ S: (Ijg @p>. (E168)

By induction,
(Pjo, (I, AL, 5 : Tjr@p)) € R. (E.169)
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Case [BRANCH]. We can set P = sp > {{A;}l;: Pi}ier then P, = s, >
{{Aig}i: Pig}ier-
By [BRANCH] in Figure 10,

C; I+ s> {{Ai}li: Plier>A (E.170)

with A = AI, S: k‘&{{Al}lZ : Ti}ie[ @p. It follows A, = A;, S: k&{{Aw}lZ : (-Tio}iel Q@p.
Process P, can only move because of rule [ BRANCH] with label s;, > [;.

By definition of conditional simulation we only consider the case in which

(I, As) is able to perform a branching move with label s, > [;, that is

when Aj, | true. Assuming Aj, | true, by [BRANCH] in Figure 15:

Sk>lj

S < {Ajg}lj; Pjg - Pjg, (E.171)
and by [TR-CHOICE] in Figure 11:

(T AL 5 k& {Aio}li : Tiohicr @p) =3 (VAL 5 Tjpap).  (E.172)

By induction,
(Pjo, (I, AL, 5:Tj5 @py) € R. (E.173)

Case [MCAST]. In this case P = @[2.n) (§).P’ and we can set:
'+ af2.q] (5).P = A. (E.174)

Let P, = @[2.n] (8).P.. Process P, can only move because of rule [LINKOUT)]
in Figure 15:

2.0 (3).P, PO pr (E.175)

By [TR-LINKOUT]| in Figure 11,
(0 A S (r AL G (511, @p). (E.176)

By induction hypothesis we have
(PL AT, A5,5:(G11)s@ps)) € R. (E.177)

Case [MAcc]. This case is essentially identical to the case [MCAST] above.

Case [CoNc]. The cases of independent actions are direct from the in-
duction hypothesis. If the reduction takes place by interaction, then we
use Lemma E.25.
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Case [IF]. With P = if e then P else @ then by Definition E.26:
P, = if e, then Q, else R, (E.178)

By [IF] in Figure 10, such that

CGI'-P=A (E.179)
Cresl'FQR=A (E.180)
We note P, = if e, then @, else R,. Process P, can move because of

either [IFT] or [IFF] (Figure 15) with label is 7. Let us consider the case
in which the transition happens by rule [IFT] (the case with [IFF] is
symmetric):

if e, then Q, else R, - Q, with é, | true. (E.181)
By induction, since e, | true and moreover e, does not have free variables.
(Qs,{I',Ay)) € R. (E.182)

as required.

Case [INACT|. We can set P = 0 the property holds since there are no
transitions.

Case [NRES]. Immediate from induction hypothesis.
Case [VAR]. We can set
P = X(&, 81, 5) (E.183)

with
IXx)=(:97. (E.184)

Then by well formedness of P, € > A[ée/?] | true. P, is a process such
that

Co, [y = Py[e/0] = AL, 51:T1o @p1, .., 3n: Tno @py. (E.185)

Notice that
A;,g’l:‘flg@pl,..,§n:‘.Tng@pn = A, (E.186)

where A, is the closure of the asserted local type of P. The property
holds straightforwardly by the cases for the other process types.
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Case [NRES]. Immediate from induction hypothesis.

Case [DEF|. This case is proved by the standard syntactic approximation
of a recursion. By Lemma E.30, we can assume, in all derivations for pro-
cesses in R, the application of Rule [DEF] only occurs in (the last steps
of) a derivation for a transition derivative of a program phrase, with-
out loss of generality. Under this assumption, by Lemma E.32, we know
the premise and conclusion of an application of [DEF] is well-initiated in
the sense of Definition E.31. Note that the reductions of such processes
are completely characterised by 5 (cf. Proposition E.17), and the cor-
respoinding 7-transition for assertions is deterministic. Assume that we

have . .
G;F,X:(”U:S)‘J:l@pl...ﬂ'n@pn,v:S):P (B.187)
>$1:71Q@p1...8,:Tp Qp,

Further we also assume
eI X:(0:9)T1@p1...T,@p, EQ>A (E.188)

In the following we often use the notation for the substitution Q[(Z)R/X]|
which replaces each occurrence of X{é) with R[é/z]. Using well-guardedness
of process variables [27, §2], we first approximate the recursion by the fol-
lowing hierarchy:

P pso

Pl = P[(#)PY/X]

pr L pla)PrX)

Above P’ is chosen as the process which is typed by the same typing as P
and which has no visible action. '* We also set P¥ to be the recursively
defined agent itself:

def X(Z) = Pin P. (E.189)
In the conclusion of [DEF| we abstract the process variable X by the def
construct. Instead, we replace each X in Q with (Z)PY, (z)P!, ... (2)P",
and finally ()P*. We call the result Q°, @', ... Q", and Q“, where Qv
is nothing but the term in the conclusion (after one-time unfolding which
does not change the behaviour).

' For example, writing a(s).S for a[2](s).S and choosing a and s to be fresh, let
pr et (va)(a(s).P) then P’ x~ 0.
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Using Lemma E.29, we first note that, for any (I, A) and €, we have
C;I' P> A. Thus we apply this to (E.187) and replace X in P by
(051..5,) PY:

C;IEP =5:T1@p...5,: T, @p, (E.190)
This can again be used for (E.187) (noting the environment I" can always
be taken as widely as possible in [VAR]):

;I EP?’>5:T1@p...5,: T, @p, (E.191)
In this way we know
Cl'EP'>s51:T1@pr...5,: T, @p, (E.192)
for an arbitrary n. By applying this to (E.188), we obtain:
CGIEQR'=A (E.193)

for an arbitrary n. Now assume, for simplicity, that there are no free vari-
ables in @ (hence in Q™) and therefore € = true (the reasoning is precisely
the same by applying a closing substitution). We can then construct a re-
lation taking each node in the transitions from Q“ and relating it to the
derivative of (I, A), by observing that assertions’ transitions are always
deterministic for the given process and its transition derivatives. Let the
resulting relation be R. Since any finite trace of Q¥ is in some Q", the
conditions of Definition 7.2 hold at each step, hence R is a conditional
simulation, hence done.

Case [CONSEQ]. By Proposition 7.5 (Proposition E.8 in Appendix E.3,
page 85).

Cases [QNIL], [QVAL] and [QSEL| of Figure 17. Again these processes
(queues) do not have transitions.!?

Case [CRES]. By Lemma E.20. This exhausts all cases. O
As an immediate corollary we obtain:

Theorem E.34 (Soundeness for Programs).
Let P be a program. Then I' = P = A implies I' = P = A.

15 The behaviours of queues are taken into account as part of Teree-actions.
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E.8 Proof of Theorem 7.15 (1)-(5) (Monitoring, 2)

This section proves the Erasure Theorem 7.15. It has five clauses, from
(1) to (5). Except for (5) (the erasure theorem), all results are straight-
forward, hence we first list the proof sketch for (1) to (4), then give the
full proof of (5).

Proof of Theorem 7.15 (1, 2). These two are based on essentially the same
observation. Here we discuss the reasoning for (1) which equally applies to
(2). Assume P; has an active output at a session channel s which moves
to P> which has an input at dual s. We assume the latter’s predicate
is violated, and show in fact in that case the former’s predicate should
be violated. This is because the sender’s predicate is always the same
as, or stronger than, the predicate for the corresponding receiver. Ob-
serve the consequence rule (anti-refinement) always strengthens an input
predicate and weakens an output predicate: hence when elaborating the
initial closed program P, such dual pair can only has actually a stronger
output predicate and a weaker input predicate (note when we abstract
away these actions by shared prefix, we should have exactly the same
formula modulo preceding third-party formulae, which are safely made
trivial since the preceding successful communications), hence done.

Proof of Theorem 7.15 (3, 4). Both are an immediate corollary of Theo-
rem 7.11, with, in the case of (4), noting that P and erase(P) have exactly
the same reductions except for the error reductions.

Proof of Theorem 7.15 (5). This is the major proof of this section. Below
we recall erase(P) denotes the result of replacing all predicates in P with
true.

Lemma E.35. If P is a well-asserted process, then for any substitution
o, erase(Po) = erase(P)o.

Proof. By induction on the structure of P, observing that erase(P) does
not change variables, channels, or names of P. ]

The next lemma gives a general condition of the transition derivatives of
a program, which is used to form the closure (bisimulation) in the proof
of Proposition E.38. Below we recall the asserted transition I' — P>A 5
I+~ P' = A’ is defined as:

P 5 P and (I, Ay 5 (I, A",
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Note that, in the case of the T-action, a shared input action and a shared
output action are always allowed by (I, A) (as far as well-typed), and for
an output/selection action, any such action by P such that I' - P> A
is also always allowed by (I, A).

Lemma E.36. Let P be a program and suppose we have I' — Pr=>A with
A= . If we have:

I'-PoAYS" TP = A, (E.194)

i.e. if P' is a multi-step derivative of a program P by asserted transitions,
then (1) A’ contains only singleton assignments for each session (i.e. of
the form §: TQp); and (2) P’ does not contain a queue at a free session
channel.

Proof. (1) is immediate by the definition of asserted transitions. For (2),
assume () is a validated process in which no queue exists at its free ses-
sion channel and assume () has an asserted transition @ LRI it s
T-transition, either it is at a hidden session channel in which case there
is no new free session channel arises: or it is a 7-transition at a shared
channel (initialisation) in which case again we (create new queues un-
der hidden session channels but) do not create free session channels. For
visible transitions, if it receives an initialisation ([LINKIN]), then it cre-
ates free session channels but they are without queues. Similarly when
it requests an initialisation ([LINKOUT]), hence again R does not have a
queue at a free session channel. O

We now establish the key lemma. Recall below we say (I, A) allows «
when (I", AY 5 (I', A”) for some (I, A").

Lemma E.37. Let P be a closed process such that I' — Pr>A and which
does not own a queue at a free session channel. Then

1. If P 5 P’ does not induce an error then erase(P) > erase(P’).

2. If erase(P) 5 Q with o being an output, a selection, the T-action or
an action at a shared channel, then P > P’ such that Q = erase(P’).

3. Iferase(P) 5 Q with o being an input or branching action and (I, A)
allows o, then P =5 P’ such that erase(P') = Q.

Remark. Above observe that erase(P) allows any transition which the
underlying process can do, since the interaction predicate associated with
each action always trivially holds.
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Proof. For (1), all transitions of P are identical with those of erase(P)
except those inducing an assertion error, i.e. those in which the associated
predicate is violated. But by I' - P> A, Proposition 7.8 and Lemma 7.9
means all transitions allowed by (I"; A) never induce errors. For substitu-
tions induced by an input in [RECV], we use Lemma E.35.

(2) is because, in brief, by the definition of transitions of assertions
in Figure 11, an output, selection, the 7-action and an action at a shared
name is always allowed by (I, A). Thus by Proposition 7.8 and Lemma
7.9, P also has this action, without an assertion error. The argument for
(3) is similar, noting any input and branching action of erase(P) allowed
by (I, A) is again an action of P without violating the associated predi-
cate. Below we give a detailed case analysis for (2) and (3), since they are
at the core of the bisimilarity result for establishing Proposition E.38.

Let P be a closed process without queues at a free session channel
and I' - P> A. Assume further

erase(P) 5 Q

is obtained by a derivation tree 7" from the rules in 15. We proceed by
induction on the structure of 7.

— If T ends with the application of [LINKOUT] (resp. [LINKIN]) then
erase(P) = 2. (3).Q "5 Q (vesp. erase(P) = aisl (3).Q 57 Q)
for some Q); then the thesis follows by observing that P af2.nl(s) r

(resp. P al1(s) P’) for a process P’ such that @ = erase(P)’ and by
Proposition 7.8.

— If Y is the application of rule [SEND] to erase(P) then P = s3!(a)(0){A}; Q.

Sk!ﬁ

Since by hypothesis (I, Ay = {I"”,A’) implies that A[a/0] holds
true (by the premises of rule [TR-SEND]), therefore P i [n/7].
The proof ends by noticing that erase(Q[n/v]) = erase(Q)[n/v] (by
Lemma E.35) is the process reached by erase(P) and by Proposi-
tion 7.8.

— The cases when 7 is the application of rule [RECV], [LABEL], [BRANCH]
are similar to the case for rule [SEND].

— If 7 ends with the application of [PAR], then P has shape P;|P, (hence
erase(P) = erase(P))|erase(P,)). Since I' - P = A, by rule [CONC]
(Figure 10), there must be A; and Ay such that A; = Ay, A =
Ar0Ag, and I' - Py = A; for i = 1,2. Assume that

I'ierase(P)>Ay 5T - Qo A, (E.195)
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then by inductive hypothesis we have

I'-P>A ST -PosA (E.196)
where erase(P’) = @, hence done. Hence

([ Ay o A ST, A o Ay) (E.197)

and, by rule [PAR], P;|P» % P'|P,, which concludes the proof for this
case.

If T ends with the application of the rule [NRES] then P has either
() the shape (va: §)Q or (i7) (v3)Q.

We first consider the case (7). Let

I' (va: 9erase(Q)=>A S I - (va: 9)Q' (E.198)

be the last transition in 7. Since I' - P=A, I';a : § + Q= A by rule
[NRES]| in Figure 10 and, by inductive hypothesis,

Na:SFQeAST-Q"'=A (E.199)

with a ¢ fna and erase(Q") = Q'. Hence, by rule [NRES], P 5 (va :

9)@//'
For the case (i7), let

' (vd)erase(Q) = A 5 I - (v3)Q (E.200)
be the last transition in 7. Since '+ P = A,
I'-QoA,5:{T,@p}per (E.201)

for {Jp @p}per coherent (rule [CRES] § 7.2) which, by inductive hy-
pothesis, has a transition a to I"” + Q" = A’ with 5§ n fna = ¢ and
erase(Q”) = @', hence done.

The case [BOUT] is similar to (i) of the previous case.

The case when the last rule of 7" is [DEF] straightforwardly follows
by induction and by the fact that erase() homomorphically extends
to contexts, noting the transition of defined agents can be derived by
unfolding.

Similarly for the case [STR].

The case the transition is derived by [TAU]. Suppose:

I'erase(P) A ST QA (E.202)
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By Rule [TAu] this also means
erase(P) — @ (E.203)

By Lemma E.36, P (nor @) does not contain queues at free session
channels. Hence by Lemma 7.9 as well as noting that the case of the
reduction A — A’ in Lemma 7.9 can only be caused when there is a
reduction at a free session channel, we know I' = I" and A" = A in
(E.202). Now by (E.203) we know

PP (E.204)

for some P’, by a derivation 7’ corresponding to 7", where 7’ may
possibly differ from 7 in the use of one of the error rules, i.e. the rules
in Figure 9. But by I' — P > A and Lemma 7.9, the process P’ in
(E.204) cannot contain an assertion error, hence 7” does not use an
error reduction rule. Hence by (1) above, we have ) = erase(P’), as
required.

This exhausts all cases. O
We now prove:

Lemma E.38 (originally Theorem 7.15-(5)). Let P be a program
and I' = P> A. Then we have (1) I |= erase(P) > A and (2) '+ P ~
erase(P) > A.

Proof. For the proof of (1), assume 8 witnesses the conditional similarity
for P and (I',A). We then create a new relation 8 by the following
construction:

(P AY) eS8 = (erase(P),{I,A))e§ (E.205)

This is a conditional simulation because: by Lemma E.37 (1, 2), each
output/selection /T /free-shared-channel action of erase(P) is matched by
P, with the resulting pair again in the closure; similarly for input/branch-
ing action that is allowed by (I', A), using Lemma E.37 (1, 3), hence as
required.

To prove (2) we define € as:

€ ={(P,erase(P)) | ' - P> A}

such that each P is a closed process without queues at each of its free
session channels and that A is a collection of singleton assignments, i.e. of
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the form 5 : T@p at each session. By Lemma E.36, this covers all multiple
step derivatives of programs by asserted transitions. Let (P, erase(P)) € €
and I' - P > A. First assume:

I-PoAST QA (E.206)

Observe that (I AY 5 (I, A"y and I' - P > A. By Lemma E.37 we
know
erase(P) 2 erase(Q). (E.207)

and the resulting pair is again in the closure, done. For the other direction,
i.e. to show any asserted transition of erase(P) is matched by one of P,
assume:

erase(P) > R. (E.208)

where (I, A) % (I', A"). By Lemma E.37 (1,2,3) we know
I'-PoAST P sA (E.209)

with R = erase(P’), hence as required. O

E.9 Proof of Theorem 7.13 (Effective Validation)

We prove Theorem 7.13, whose statement is reproduced below. Recall
that we let [NRES] in Figure 10 use the annotation in Convention 7.1
and we dispense with [CONSEQ]. Write I' —* P = A for the resulting
validation rules.

Theorem E.39. Given I', P and A, the provability of I' +* P> A is
decidable.

Proof. We rely on an initial environment I” that maps the multicast chan-
nels to well-formed and well-asserted global assertions. The validation of
P against A is done by applying the rules in Figure 10. We define the
algorithm in terms of a recursive function from processes, environments,
assertion environments and end-point assertions to booleans. This is done
by defining an algorithm VAL given below. We distinguish a number of
cases depending on P and we define VAL(P, C, I', A) as follows:

— If P = s e)(v){A}; P’
If A=A 5:k!l(0: S){A};T @p and C > A[¢/7] then
return VAL(P',C, I, A, 5 : T'[é/v] @p)

else return false.
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If P=s;?(0){A}; P’
If A=A 5:k?(0: S){A}; T @p then
return VAL(P',C A A, A’,5: T ap)
else return false.
If P =si<{A;}l;;P;
IfA=A5:k®{{A}l;: Titier@p and € D A; then
return VAL(P;,C, I, A’,5: T;@p)
else return false.
IfP= Sk > {{Az}ll Pi}ie]
IfA=A5: ]{Z&{{Al}ll : ‘Ti}iel @p then
return Avier VAL(P;,, C A A, I A' )5 : T;@p)
else return false.
If P = close 5; P
If A= A" §:end@p then return VAL(P',C, I"A)
else return false.
If P = @[2.q] (3).P' then
return VAL(P',C, I, (A,5: I'(a) [1@1)).
If P = afp](5).P' then
return VAL(P',C, I",(A,5: I'(a) I p@p)).
If P=Qa | Ra (where we assume ) and P annotated with A and
A’ respectively, which does not lose generality since by inspecting
the free session channels of () and R we can automatically find the
partition of the original assertion assignment) then
return VAL(Q, C, I, A) A VAL(R, C, I, A7).
If P =if e then @ else R then
return VAL(Q,C A e, I, A) A VAL(R,C A —e, I, A).
If P = X({é51..5,)
If C o A[é/n] then return true
else return false.
If P =def X(051...5,) =P in X{(€51...5,)
(If we can find T;, 1 < i < n, such that
A=A 5 :T1[é/v]@ps, .., 8 : Tp[€/0] Qpa
{ and C D A[é/?] then
return VAL(P', C, (I, X (¢ : S)T} @p,..T,, @p,))

L else return false.
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In the last line deciding if such T; exists or not is easy by checkinhg all
occurrences of € in the resulting formulae and testing them one by one.
These rules immediately induce an effective algorithm. O
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