
A Java Inspired Semantics for Transactions in SOC
Extended Paper

Laura Bocchi and Emilio Tuosto

Department of Computer Science, University of Leicester, UK

Abstract. We propose a formal semantics for distributed transactions inspired
by the attribute mechanisms of the Java Transaction API. Technically, we model
services in a process calculus featuring transactional scope mechanisms borrowed
from the so called container-managed transactions of Java. We equip our calcu-
lus with a type system for our calculus and show that, in well-typed systems, it
guarantees absence of run-time errors due to misuse of transactional mechanisms.

1 Introduction

The Service-Oriented Computing (SOC) paradigm envisages distributed systems as
loosely-coupled computational entities which dynamically discover each other and bind
together. Although appealing, SOC has imposed to re-think, among other classic con-
cepts, the notion of transaction. The long lasting and cross-domain nature of SOC makes
typically unfeasible to adopt ACID transactions, which are implemented by locking the
involved resources. The investigation of formal semantics of SOC transactions (often
referred to as long-running transactions) has been a topic of focus in the last few years
(see § 8 for a non-exhaustive overview). Central to this investigation is the notion of
compensation (a weaker and “ad hoc” version of the classic rollback of database sys-
tems) which has mainly been studied in relation to mechanisms of failure propagation.

In this paper we address an orthogonal topic, namely the semantics of dynamic
reconfiguration of transactions in SOC which, to the best of our knowledge, has not
been explicitly considered. In SOC, the configuration of a system can change at each
service invocation to include a new instance of the service in the ongoing computation.
There is still a lack of agreement on how the run-time reconfiguration should affect the
relationships between existing and newly created transactional scopes. To illustrate the
main problems, we consider the following example:

〈〈invoke s.P | LCM〉〉 with s implemented as Q (1)

where a process in a transactional scope (represented by the angled brackets) with com-
pensation C invokes a service s and then behaves like P; the invocation triggers a (pos-
sibly remote) instance Q of the service s. Should the system in (1) evolve to a trans-
actional scope that includes Q (i.e., 〈〈P | Q | LCM〉〉)? Should instead Q be running in a
different scope (i.e., 〈〈P | LCM〉〉 | 〈〈Q〉〉)? Or should Q be executed outside any transac-
tional scope (i.e., 〈〈P | LCM〉〉 | Q) or else raise an exception triggering the compensation
C? Notice that each alternative is valid and has an impact on failure propagation.

Enterprise Java Beans (EJB) promote Container Managed Transactions (CMT) as
a mechanism to control dynamic reconfigurations. We take inspiration from the EJB
mechanism and adapt it to SOC transactions. A container can be used to publish objects
and can specify:

– the transactional modality of method calls (e.g., “calling the method fooBar from
outside a transactional scope throws an exception”),

– how the scope of transactions dynamically reconfigure (e.g., “fooBar is always
executed in a newly created transactional scope”).

A limitation of CMT is that it only permits to declare transactional modalities for the
methods to be invoked and does not allow invokers to specify their own requirements
on the needed transactional support. On the contrary service invocations are resolved
at run-time and different providers may publish different implementations of a service.
Hence, it is natural to give the invoker the opportunity to express some requirements on
the transactional behaviour of the invoked services. For instance, in (1) the invocation
to s may require that Q must be executed in the same transactional scope of P.

We do not aim to provide a semantics for CMT but rather investigate how CMT
could be borrowed to address the issues described above for SOC transactions. We
promote some CMT inspired primitives for SOC which allow invokers (and not just
callees) to specify their own transactional requirements. Furthermore, we give a typing
discipline to ensure that invocations do not yield run-time errors due to the incompati-
bility of the transactional modalities required by callers and those guaranteed by callees.

Our main contributions are

1. a semantics to specify dynamic reconfiguration of SOC transactions inspired by
the CMT mechanisms of EJB; namely, we introduce a CCS-like process calculus
called ATc (after Attribute-based Transactional calculus)

2. a type system that guarantees that no error will occur for a method invocation due
to the incompatibility of the transactional scopes of caller and callee

3. a methodology for designing SOC transactions based on our typing discipline.
4. a theory of testing equivalence for ATc, based on the notion of observation and

testing equivalence in [15].
5. a few results obtained applying the provided testing environment. Specifically, we

compare the behaviour of processes (1) with respect to their nesting in transactional
scopes and (2) that specify different transactional attributes. As for (2), different at-
tributes cause different behaviour in general but under some conditions some of
them are interchangeable (Theorem 2). Also, Theorem 2 allows a caller to spec-
ify a larger set of attributes (by including all the interchangeable ones) and possibly
increases the probability of finding a matching service. Finally, we prove that a test-
ing preorder can be established for a non-trivial subclass of systems (Proposition 6)
contrary to the general case (Proposition 5).

Synopsis The transactional mechanisms of EJB are summarised in § 2. The syntax and
semantics of ATc are introduced in § 3. The typing discipline of ATc is in § 4. In § 5 we
give a gist of how our type system can be used to design systems correct wrt dynamic
reconfigurations of transactions. Conclusions and related work are discussed in § 8.

2

2 EJB Transactional Attributes

Roughly, a Java bean can be thought of as a Java object amenable to be executed in a
specialised run-time environment called container (see e.g., [14, 19]). An EJB container
provides standard functionalities to components; in particular, a container is responsible
for the life-cicle of a bean and makes it accessible to other components by binding it to
a naming service1.

For the sake of this paper, we focus on the transactional mechanisms offered by EJB
containers. Specifically, we consider Container Managed Transactions (CMT) whereby
a container associates each method of a bean with a transactional attribute specifying
the modality of reconfiguring transactional scopes. We denote the set of EJB transac-
tional attributes as

(EJB Transactional Attributes) A
def
= {m, s, n, ns, r, rn}

where, following the EJB terminology, m stands for mandatory, s for supported, n for
never, ns for not supported, r for requires, and rn for requires new.

The intuitive semantics of EJB attributes A (ranged over by a, a1, a2, . . .) is illus-
trated in Figure 1 where each row represents the behaviour of one transactional attribute
and shows how the transactional scope (represented by a rectangular box) of the caller
(represented by a filled circle) and callee (represented by an empty circle) behave upon
invocation. The first two columns of Figure 1 represent, respectively, invocations from

callee supports
r (Requires)

invoker is not in a
transactional scope

X

callee supports
rn (Requires New)

callee supports
ns (Not Supported)

callee supports
m (Mandatory)

callee supports
n (Never)

callee supports
s (Supported)

invoker is in a
transactional scope

X

(1)

(2)

(3)

(4)

(5)

(6)

Fig. 1. EJB transactional attributes synopsis

outside and from within a transactional scope. More precisely, (1) a callee supporting r
is always executed in a transactional scope which happens to be the same as the caller’s
if the latter is already running in a transactional scope; (2) a callee supporting rn is

1 http://docs.sun.com/app/docs/doc/819-3658/ablmw?a=view

3

always executed in a new transactional scope; (3) a callee supporting ns is always exe-
cuted outside a transactional scope; (4) the invocation to a method supporting m fails if
the caller is not in a transactional scope (first column of the fourth row in Figure 1), oth-
erwise the method is executed in the transactional scope of the caller; (5) the invocation
to a method supporting n is successful only if the caller is outside a transactional scope,
and it fails if the caller is running in a transactional scope (in this case an exception is
triggered in the caller); (6) a method supporting s is executed inside (resp. outside) the
caller’s scope if the caller is executing in (resp. outside) a scope.

In this paper, we adapt the transactional model of EJB to the context of SOC, where
each provider can be thought of as a container specifying a number of services together
with their transactional attribute. A transactional attribute declares whether a published
service must or must not be executed within a transactional scope and the modality of
dynamic reconfiguration of the transactional scope (e.g., whether a new scope has to
be created, how the scope of the invoking party has to be extended, etc.). We formally
model the behaviour illustrated in Figure 1 by embedding EJB attributes in a simple
process calculus to give a general model for SOC2. Hereafter, according to this inter-
pretation, the terms service provider and container will be used interchangeably.

3 Attribute-based Transaction calculus (ATc)

The ATc calculus is built on top of two layers; processes (§ 3.1) and systems (§ 3.2).
The former specify how communication takes place in presence of (nested) transac-
tional scopes while the latter provide a formal framework for defining and invoking
transactional services and the run-time reconfiguration of the transactional scopes.

3.1 ATc processes

An ATc process is a CCS-like process with three additional capabilities: service in-
vocations, transactional scoping, and compensation installation. Let S and N be two
countably infinite and disjoint sets of names for service and channel, respectively.

Definition 1. The set ATc processes P is defined by following grammar:

P,Q ::= 0 empty process π ::= x input∣∣∣ νx P channel restriction
∣∣∣ x output∣∣∣ P | Q parallel A ⊆ A∣∣∣ !P replication s, s′, . . . range over S∣∣∣ s K A.P service invocation x, y, z, . . . range over N∣∣∣ 〈〈P | LQM〉〉 transactional scope u ranges over S ∪N∣∣∣ πJQK.P compensation installation

Restriction νx P binds x in P and the sets of free and bound channels of P ∈ P are
defined as usual and respectively denoted by fc(P) and bc(P).

2 We refer to the service-oriented paradigm in a technology-agnostic way, abstracting from its
actual realisations (e.g., the Web Service Architecture).

4

The standard process algebraic syntax is adopted for idle process, restriction, parallel
composition, and replication. Process s K A.P invokes a service s required to support a
transactional attributes in A ⊆ A; a transactional scope 〈〈P | LQM〉〉 consists of a running
process P and a compensation Q (confined in the scope) executed only upon failure;
πJQK.P executes π and installs the compensation Q in the enclosing transactional scope
then behaves as P. Service definition and invocation are dealt with in § 3.2.

Definition 2. The structural congruence ≡⊆ P×P, is the smallest equivalence relation
containing α-renaming, the monoidal axioms for | and 0, and satisfying:

!P | P ≡!P 〈〈0 | LQM〉〉 ≡ 0 ≡ L0M LPM|LQM ≡ LP|QM

if P ≡ Q then 〈〈P〉〉 ≡ 〈〈Q〉〉 and LPM ≡ LQM

νx 〈〈P〉〉 ≡ 〈〈νx P〉〉 νx νy P ≡ νy νx P νx 0 ≡ 0 νx (P | Q) ≡ (νx P) | Q, if x < fc(Q)

Hereafter, π.P stands for πJQK.P when Q ≡ 0 and trailing occurrences of 0 are omitted.

In ATc, transactional scopes can be nested up to an arbitrary level. The fact that
a process is inside a transactional scope does not alter its communication capabilities,
since we assume that transactional scopes influence the behaviour of processes only in
case of failure. To model the semantics of communications we use contexts3.

Definition 3. A context is a term generated by the following productions:

C[◊] ::= ◊
∣∣∣ 0

∣∣∣ 〈〈◊ | P | LQM〉〉
∣∣∣ P | C[◊]

∣∣∣ C[◊] | P

A context C[◊] is scope-avoiding (s-a, for short) if there are no P,Q ∈ P and context
C′[◊] such that C[◊] = C′[〈〈◊ | P | LQM〉〉].

Definition 3 does not consider νx C[◊] to avoid name capture while prefix contexts
α.C[◊] (where α is either of the prefixes of ATc) are ruled out as they prevent inner
reductions. The semantics of ATc is defined by means of two reduction relations, one
(Definition 4) for process communication and the other (Definition 6) for service invo-
cations (and, correspondingly, reconfigurations of transactional scopes).

Definition 4. The reduction relation of ATc processes is the smallest relation→⊆ P×P
closed under the following axioms and rules:

(p1) C[〈〈πJQK.P | LRM〉〉] | C′[〈〈π̄JQ′K.P′ | LR′M〉〉]→ C[〈〈P | LR | QM〉〉] | C′[〈〈P′ | LR′ | Q′M〉〉]

(p2) C[〈〈πJQK.P | LRM〉〉] | C′[π̄JQ′K.P′]→ C[〈〈P | LR | QM〉〉] | C′[P′], if C′[◊] is s-a

(p3) C[πJQK.P] | C′[π̄JQ′K.P′]→ C[P] | C′[P′], if C[◊] and C′[◊] are s-a

(p4)
P→ P′

P | R→ P′ | R
(p5)

P→ P′

νx P→ νx P′
(p6)

P ≡ P′ → Q′ ≡ Q
P→ Q

3 Other and more standard techniques could have been used (e.g., LTS); however, contexts en-
able us to easily define the semantics of communication and service invocation of ATc.

5

Notice that sender and receiver synchronise regardless the relative nesting of transac-
tional scopes. As in [11], when communication actions are executed compensations are
installed in parallel to the other compensations of the enclosing transactional scope if
any, otherwise they are discarded. In case of failure, only the actions executed before
the failure are compensated, as illustrated by Example 1.

Example 1. Consider the transactional scope PbookNight = 〈〈Ptheatre | Pdinner〉〉 where:

Ptheatre = askSeat.getSeat.payJgetRefundK Pdinner = askTable.getTable.confirmJfreeTableK

Action getRefund compensates pay and action freeTable compensates confirm. The pro-
cess dynamically installs the compensations of its actions. The two executions

〈〈getTable.confirmJfreeTableK | LgetRefundM〉〉 ∗))
〈〈Ptheatre | Pdinner〉〉

∗ 33

∗
,,

〈〈0 | LfreeTable | getRefundM〉〉

〈〈getSeat.payJgetRefundK | LfreeTableM〉〉 ∗

55

show that different compensations may be executed in case of failure. �

3.2 ATc systems

The semantics of transactional scoping of service invocations is given at the level of
systems (Definition 5). Systems can be thought of as an abstraction for EJB and consist
of processes wrapped by containers defined as a partial finite maps γ : S → A × P;
containers assign a transactional attribute and a process (the “body”) to service names.
When defined, γ(s) = (a, P) ensures that, if invoked in γ, the service s supports the
attribute a and activates an end-point that executes as P.

Definition 5. A system in ATc is a pair Γ ` P where the environment Γ is a set of
containers and is derived by the productions in Definition 1 augmented with P ::= err
to represent erroneous processes. Also, the following axioms

!err ≡ err νx err ≡ err 〈〈err | LQM〉〉 ≡ err

extend the congruence relation to erroneous processes.

Given A ⊆ A, P ∈ Γ(s, A) shortens ∃γ ∈ Γ ∃a ∈ A : γ(s) = (a, P) and P ∈ Γ(s, {a}) is
abbreviated as P ∈ Γ(s, a). Hereafter, we use P, Q to range over both P and erroneous
processes. We rule out terms where compensations contain err; basically, err repre-
sent a run-time error and cannot be used by the programmer. A service invocation is
transactional (resp. non-transactional) if it is (resp. not) executed a transaction scope.

Definition 6 formalises the informal presentation in Figure 1 of the CMT mecha-
nisms which are rendered in SOC by allowing environments Γ to offer different im-
plementations of the same service possibly with different attributes. This results in a
non-deterministic semantics where one of several possible reductions is chosen.

Definition 6. The reduction relation of ATc systems is the smallest relation ; closed
under the following rule and axioms of Figure 2 where C[◊] , 0 and C[◊] is s-a in
(ntx1 ÷ 3).

6

(ntx1) Γ ` C[s K A.P] ; Γ ` C[err] m ∈ A

(ntx2) Γ ` C[s K A.P] ; Γ ` C[P] | R R ∈ Γ(s, {s, n, ns} ∩ A)

(ntx3) Γ ` C[s K A.P] ; Γ ` C[P] | 〈〈R〉〉 R ∈ Γ(s, {r, rn} ∩ A)

(tx1)
P = C[〈〈s K A.P1 | P2 | LQM〉〉] bc(P) ∩ fc(R) = ∅

Γ ` P ; Γ ` C[〈〈P1 | P2 | R | LQM〉〉]
R ∈ Γ(s, {m, s, r} ∩ A)

(tx2) Γ ` C[〈〈s K A.P1 | P2 | LQM〉〉] ; Γ ` C[Q] n ∈ A

(tx3) Γ ` C[〈〈s K A.P1 | P2 | LQM〉〉] ; Γ ` C[〈〈P1 | P2 | LQM〉〉] | R ns ∈ A ∧ R ∈ Γ(s, ns)

(tx4) Γ ` C[〈〈s K A.P1 | P2 | LQM〉〉] ; Γ ` C[〈〈P1 | P2 | LQM〉〉] | 〈〈R〉〉 rn ∈ A ∧ R ∈ Γ(s, rn)

(s-p)
P→ P′

Γ ` P ; Γ ` P′

Fig. 2. Semantics of ATc

Axioms (ntx1÷3) rule non-transactional invocations; (ntx1) states that an invo-
cation results in an error when a service supporting attribute m is required4; when a
non-transactional invocation is made to a service supporting either s, or n, or ns, by
(ntx2), the end-point of the service is executed in parallel with the continuation of the
caller; finally by (ntx3), the end-point of a service supporting r or rn will be executed
in a new scope (initially with idle compensation).

Axioms (tx1÷4) determine how transactional invocations modify the scope; by
(tx1), the end-point of the service is executed in the same scope of the caller when the
requested attribute is m, s, or r; instead by (tx2), transactional invocations to a service
supporting n yields a failure which triggers the compensation of the caller; by (tx3) a
transactional invocation requesting ns will let the service end-point to run outside the
caller’s scope; finally, (tx4) states that a transactional invocation requesting rn will let
the service end-point to run in a new scope with idle compensation.

Rule (s-p) lifts process reduction relation to systems.
Communication failures occurring within transactional scopes trigger compensa-

tions while those occurring outside result in an error. Formally, this is modelled within
the theory of testing [15] for ATc given in § 6.

3.3 Some examples of failing invocations

The following examples motivate the need of a disciplined use of transactional at-
tributes. The typing system presented in § 4 ensures that a well-typed process will incur

4 Axiom (ntx1)may seem odd as it introduces an error even if Γ may offer a service supporting
other attributes in A. An actual implementation may in fact select more suitable services with
an appropriate negotiation in the search phase. Here, more simply, we define the conditions to
correctly use attributes avoiding errors in any possible environment; therefore (ntx1) models
the worst case scenario. As shows in § 4, in well-typed processes, invocations requiring m never
occur in s-a contexts.

7

in errors due to the fact that the attributes required by an invoker do not match those
guaranteed by the service.

Example 2. Let PbookTheatre = 〈〈stickets K {m}.Ptheatre | Lscompensate K {m}M〉〉 be a process
that invokes stickets and behaves as Ptheatre = askSeat.getSeat.payJgetRefundK. If a com-
munication of Ptheatre fails (i.e., the left-most axiom in (2) is applied), then the com-
pensation is executed outside a transactional scope. Therefore, the non-transactional
invocation to scompensate will result in an error. �

Example 3. Let Ptheatre as in Example 2 and consider

PbookTheatre = stickets K {m, s, n, ns, r, rn}.Ptheatre Ptickets = askSeats.getSeats.sbank K {m}

The non-transactional invocation stickets in a Γ for which Ptickets ∈ Γ(stickets, s) causes
Ptickets to run outside a transactional scope; hence, invoking sbank leads to an error. �

A provider must guarantee that none of its services yield errors; namely, the exe-
cution of (the body of) a service in any context resulting from its supported attributes
should be safe. For instance, since stickets in Example 3 supports s, the execution Ptickets
should be safe regardless it will run inside or outside a transactional scope. In fact,
whether or not Ptickets will be running in a scope depends on the caller.

4 A Type System for Transactional Services

This section yields a type system for ATc that can determine if a system may fail for a
service invocation due to misuse of the transactional attributes. We give an algebra of
types (§ 4.1), then define a type system for ATc (§ 4.2), and finally we give a suitable
notion of well-typedness for ATc systems (§ 4.3) which is preserved by the reduction re-
lation (Theorem 1) and ensures error-freedom (Corollary 1). All the proofs are reported
in Appendix A.

4.1 Types for ATc

Our types record which transactional attributes may be required/supported in service
invocations of processes. Basically, for each possible invocation, a type specifies if it is
transactional or not and which transactional attributes are declared for the invocation.

Definition 7. Let I ⊆ {i, o}×Awhere labels i and o are the transactional modalities used
to keep track of transactional and non-transactional invocations, respectively. Types are
defined as

(Types) t ::= 0
∣∣∣ (I, t, t)

Let P . t state that P ∈ P has type t. If P . 0 then P does not make any invocations; if
P . (I, tc, tu),

I records the transactional modality/attribute pairs of the service invocations of P;
tc collects the transactional modality/attribute pairs relative to the service invocations

in the compensations of the transactional scopes of P;

8

tu yields modality/attribute pairs for the invocations in the compensation installation
prefixes5 of P;

Example 4. Consider P2 = s K A.yJP1K with P1 . t1. As more clear in § 4.2, P2 . t2 =

({o}×A, 0, t1). In fact, the invocation in P2 is non-transactional and the third component
of t2 is t1 as P1 is used to compensate prefix y. �

Types of processes become more complex in presence of nested scopes.

Example 5. Take the process P3 = 〈〈P2 | Ls′ K A′M〉〉 | 〈〈〈〈P2 | Ls′ K A′′M〉〉〉〉, where P2 is
defined in Example 4. The type of P3 is

t3 = ({i} × (A ∪ A′′), ({o} × A′, 0, 0), 0)

In fact, the invocations in P2 and in the nested compensation in the rightmost scope of
P3 will be transactional; therefore the first component of t3 is {i} × (A ∪ A′′). Moreover,
the leftmost scope of P3 may possibly have a non-transactional invocation (thereby the
second component of t3). �

The next example illustrates the installation of a non-trivial compensation.

Example 6. The type of P4 = zJs1 K A1K.〈〈zJs1 K A1K | Ls2 K A2.zJs3 K A3KM〉〉 is

t4 = (0, ({o} × (A1 ∪ A2), 0, {o} × A3), {o} × A1)

In fact, P4 does not invoke services but installs compensations that do so. Observe that
the third component of t4 corresponds to the first installation of P4, while the second
component of t4 is the type of the scope occurring in P4. �

It is convenient to treat types as binary trees whose nodes are labelled with subsets
of {i, o} × A. More precisely, the type (I, tc, tu) can be represented as a tree where the
root is labelled I, tc is the left child, and tu is the right child (0 is the empty tree which
is conventionally labelled with the empty set). The operators K, ↓, and ? are used to
“traverse” types and ⊕ to “sum” them as per the following definitions:

0K = ∅, 0↓ = 0? = 0 (I, tc, tu)K = I, (I, tc, tu)↓ = tc, (I, tc, tu)? = tu

0 ⊕ t = t, (I, tc, tu) ⊕ (I′, t′c, t
′
u) = (I ∪ I′, tc ⊕ t′c, tu ⊕ t′u)

We assume that ⊕ has lower precedence than unary operators.
Propositions 1 and 2 will be tacitly used in the proofs of the lemmas and Theorem 1.

Proposition 1. The operator ⊕ is idempotent, associative and commutative.

Proposition 2. Operators K, ↓, and ? distribute over ⊕ and (t1 ⊕ t2)K = t1K ∪ t2K.

5 By Definition 6 compensations vanish for synchronisations outside transactional scopes.

9

4.2 Typing ATc

This section introduces a typing system for ATc. We recall that the ATc programmer
has to write non-erroneous processes for which we give the following typing rules.

Definition 8. The typing rules for non-erroneous processes (cf. Definition 5) are

(idle)
0 . 0

(res)
P . t

νx P . t
P . t P′ . t′

P | P′ . t ⊕ t′
(par)

P . t
!P . t

(repl)

(inv)
P . tp I = {o} × A

s K A.P . (I ∪ tp
K , tp

↓, tp
?)

P . tp Q . tq

πJQK.P . (tp
K, tp

↓, tq ⊕ tp
?)
(comp)

(scope1)
P . (I, tc, tu) Q . tq

〈〈P | LQM〉〉 . ((I ∪ tc
K)[o 7→ i], tu ⊕ tc

↓ ⊕ tc
? ⊕ tq, 0)

P . 0

〈〈P | LQM〉〉 . 0
(scope2)

where, for I ⊂ {i, o} × A, I[o 7→ i]
def
= {(i, a) : (o, a) ∈ I} ∪ (I ∩ {i} × A).

The first five rules are straightforward. Rule (comp) states that the type of the instal-
lation of a compensation Q records the invocations in Q as possible invocations of P
by adding them to the third component of the type of πJQK.P. The last two rules regu-
late the typing of transactional scopes. By rule (scope1), when P is in a transactional
scope the invocations done by the compensations installed by P (recorded in tu) become
possible; therefore they are removed from the third component and added to the second
component with the compensations nested in P (recorded in tc↓ and tc?) and to those of
Q (recorded in tq). Also, tcK records the invocation of the compensation of P when P is
itself defined s a transactional scope (e.g., P = 〈〈Q | LCM〉〉); in this case the compensa-
tions of P will be surely executed inside a transactional scope thus they are included in
the first component with the substitution [o 7→ i]. A transactional scope whose process
does not invoke/install anything is simply typed as 0 by rule (scope2).

Example 7. Consider the process P = π1JQK where

Q = π2JRK and R = s1 K A1.π3Js2 K A2K

The typing of P is t = (0, 0, (0, 0, (I1, 0, I2))) as proved by the type inference below.

I2 = {o} × A2 0 . 0
(inv)

s2 K A2 . (I2, 0, 0) 0 . 0
(Comp)

π3Js2 K A2K . (0, 0, I2) I1 = {o} × A1
(inv)

s1 K A1.π3Js2 K A2K . (I1, 0, I2) 0 . 0
(Comp)

π2JRK . (0, 0, (I1, 0, I2)) 0 . 0
(Comp)

π1JQK . (0, 0, (0, 0, (I1, 0, I2)))
�

Proposition 3. For each non-erroneous P ∈ P there is a unique type t such that P . t.

Proposition 4. For any non-erroneous P,Q ∈ P, if P ≡ Q and P . t then Q . t.

10

Definition 9. Let t be a type. The flat type t̂ of t is defined as follows:

0̂ = ∅ t̂ = tK ∪ Flatten(t↓), if t , 0

Flatten(0) = ∅ Flatten(t) = tK ∪ Flatten(t↓) ∪ Flatten(t?), if t , 0

Notice that ̂t ⊕ t′ = t̂ ∪ t̂′. In the interpretation of t as a tree, the flat type of t is the
union of the set labelling all the nodes of t, excluding those of the subtree t? which
corresponds to dead code (cf. Example 8); in other words, either the typed process is
outside a scope (in which case its pending compensations can be ignored) or the typed
process is inside a scope (hence t? is empty because of rule (Scope1)).

4.3 Well-typedness in ATc

The definition of well-typedness requires some care. In ATc, invocations to services
can be statically typed as transactional or not. However, there is a different notion of
well-typedness to adopt for services.

If P is not published as a service then it is possible to determine the nature of the
service invocations of P by inspecting its code. Therefore, it suffices to specify, for each
service invocation, the attributes for which no run-time errors are possible. This enables
us to adopt the following definition.

Definition 10. Let P ∈ P such that P . t. The process P is well-typed iff (o, m) < t̂.

Example 8. Process P in Example 7 is (trivially) well-typed since t̂ = ∅. In fact, the
only service invocations of P are in the compensations to install (that are dead code
since P is not included in any transactional scope). �

The correctness of a process depends also on the correctness of the services that it
invokes. Remarkably, the fact that the invoked service is well-typed could be guaranteed
by the service provider (as part of the service interface) and required as an obligation
by the service requester in the service discovery phase. Namely, negotiation of transac-
tional attributes should be part of the “contract” between requester and provider. The
study of the mechanisms used to require/negotiate/certify transactional aspects of pub-
lished services is out of the our scopes. However, we remark that our type systems pro-
vides an effective framework to certify compatibility of transactional aspects between
services and invokers.

Ensuring correctness for services is a bit more complex. Whether or not the invo-
cations in the body of (the end-point of) a service, say s, are transactional depends on
which attribute s supports and if the invocation to s happened from within or outside a
transactional scope. Therefore, well-typedness of services takes into account both cases.

Definition 11. Let γ be a container and s be a service such that γ(s) = (a, P) for some
a ∈ A and P ∈ P. Service s is well-typed in γ, if both (3) and (4) below hold.

〈〈P〉〉 . t ∧ a ∈ {r, rn, m, s} =⇒ (o, m) < t̂ (2)

P . t ∧ a ∈ {s, n, ns} =⇒ (o, m) < t̂ (3)

An environment Γ is well-typed iff all the services in the domain of any γ ∈ Γ are
well-typed.

11

We only consider the errors generated by the invocation of a service when attributes
and transactional scopes mismatch. Errors due to other causes (e.g., failure of a commu-
nication channel) have been modelled in [5] by introducing observers, namely processes
which can interfere in communications.

Example 9. Suppose that the process P in Example 7 is the body of a service s sup-
porting s ∈ A. Both the well-typedness of P and of 〈〈P〉〉 must be checked. As argued
in Example 8, P is well-typed while for 〈〈P〉〉 we just need to apply rule (Scope1) as
follows:

π1JQK . (0, 0, (0, 0, (I1, 0, I2))) 0 . 0
(Scope1)

〈〈π1JQK | L0M〉〉 . (0, (0, 0, (I1, 0, I2)), 0)

Clearly, well-typedness of 〈〈P〉〉 depends on whether (o, m) ∈ I1 ∪ I2 or not. �

Theorem 1. Let P ∈ P be well-typed. For every well-typed environment Γ, if Γ ` P ;
Γ ` Q then Q is well-typed.

A straightforward corollary of Theorem 1 is

Corollary 1. If Γ and P ∈ P are well-typed and Γ ` P ; Γ ` Q then Q is a non-
erroneous process.

Our notion of well-typedness is stricter than necessary. In fact, a weaker notion can
be adopted by taking a definition of flat type where the labels of some of the ‘right
children’ of types are not considered. Though yielding less restrictive types, this would
make the theory more complex, therefore we opted for simplicity rather than generality.

5 ATc Type System at Work

The type system presented in § 4 checks that any possible invocation to a service re-
quires a safe set of attributes so to avoid errors due to misuse of transactional scopes
and attributes.

The design of SOC transactions could be easier if we knew, for each service invo-
cation in a process, the maximal set of attributes that satisfies the typing. As a matter of
fact, specifying a larger set of attributes in a service invocation increases the chances of
finding a suitable service supporting one of the attributes. The trade-off is however that
a too large set of attributes may cause a run-time error due to a service instance running
in a wrongly nested transactional scopes.

Arguably, non well-typed processes can be turned into well-typed ones by changing
the attributes of some invocations. We show through an example a method for designing
a well-typed process based on an alternative usage of the typing system in § 4. First,
consider the types obtained as in Definition 7 but for set A which is replaced by an
infinite countable set Ξ of symbolic identifiers. A symbolic process corresponding to
P ∈ P is a term sym(P) obtained by replacing each set of attributes with a distinct
formal identifier in Ξ meant to be substituted by a subset ofA.

12

Example 10. A symbolic process corresponding to PbookTheatre in Example 2 is

sym(PbookTheatre) = 〈〈stickets K X1.askSeat.getSeat.payJgetRefundK | Lscompensate K X2M〉〉

(the sets of attributes in PbookTheatre are replaced by X1 and X2). �

A maximal process is a well-typed process for which augmenting any of the sets of
attributes of its invocations yields the same process or a non-well typed process. Given
a well-typed P ∈ P, max(P) is the maximal process corresponding to P. (Notice that if
P does not make any invocation then P = max(P).)

The typing system of Definition 8 is adapted to symbolic processes by replacing
rule (inv) with

(invSym)
P . tp I = {o} × X

s K X.P . (I ∪ tp
K , tp

↓, tp
?)
, where X not occurs in P

Example 11. By straightforward application of the typing system for symbolic pro-
cesses sym(PbookTheatre) . tsym, where tsym = ({i} × X1, ({o} × X2, 0, 0), 0, 0). Hence, the
flattened type of sym(PbookTheatre) is t̂sym = {{i} × X1, {o} × X2}. �

Finally, the maximal process is obtained by replacing each formal identifies with a
suitable set of attributes. For example,

max(PbookTheatre) = 〈〈stickets K A.askSeat.getSeat.payJgetRefundK | Lscompensate K A \ {m}M〉〉

is obtained by replacing X1 with A and X2 with A \ {m} in sym(PbookTheatre). In fact,
the invocation to stickets (i.e., the one associated with X1) can possibly contain all at-
tributes since they are transactional while the other invocation (i.e., the one to scompensate
associated with X2) can contain all attributes except m.

In general, one is interested only in some policies for transactional scopes and will
typically choose, for each invocation in a process P, a subset of the attributes of the
corresponding invocation in max(P).

6 A Testing Theory for ATc

In this section we cast the testing theory for ATc. First, we define observers for ATc
in § 6.1, then we give the may and must equivalences in 6.2, and finally we show how
transactional attributes change the observable behaviour of ATc systems via an example
in § 6.3.

6.1 Observed Systems

In this section, we define on observational semantics of ATc systems (hereafter, ranged
over by S , S ′, . . .) based on testing equivalence [15]. The intuition behind testing equiv-
alences is that an observer checks whether a system passes or not a test by interacting
with the system. Two systems are equivalent if they pass the same tests.

13

Definition 12. An observer is derived by the following grammar:

O ::= 0 empty process∣∣∣ X success∣∣∣ π.O prefix∣∣∣ Eπ.O failure∣∣∣ O + O sum∣∣∣ rec X.O recursion∣∣∣ X variable

The structural congruence for observers is the smallest equivalence relation closed
under the monoidal axioms of + and it is denoted as ≡o.

We consider sequential observers. Failing and successful tests are represented by 0 and
X, respectively; prefix π.O allows observes to communicate with the system, while
prefix Eπ.O causes the failure of π in the system and continues as O; observers can
be composed with the external choice operator + and recursively defined as rec X.O
(where the occurrences of X in O are supposed guarded by prefixes). An observer is a
process that can interact with a system over its (free) channels and trigger failures in the
communications (e.g., to check that failures are correctly handled).

Notice that observers cannot be composed in parallel and therefore they do not
communicate among themselves. This, and the fact that ATc does not feature name
passing, allow us to avoid using name restriction in observers.

The failure of an action π is imposed by the observer Eπ.O. As clear from Defini-
tion 13, communication failures could possibly trigger the compensations associated to
the scopes (if any) enclosing failing processes.

Definition 13. The set States of observed system is the set of pairs made of a system
S and an observer O (written as S ‖ O).

The reduction relation of ATc observed systems is the least relation satisfying
the following rules:

(os-tick) S ‖ X S ‖ X Γ ` C[π.P] ‖ π.O Γ ` C[P] ‖ O (os-comm)

Γ ` C[〈〈π.P | R | LQM〉〉] ‖ Eπ.O Γ ` C[Q] ‖ O (os-fail-in)

Γ ` C[π.P] ‖ Eπ.O Γ ` C[err] ‖ O, if C[◊] s-a (os-fail-out)

(os-s)
S ; S ′

S ‖ O S ′ ‖ O
Γ ` P ‖ O Γ ` P′ ‖ O′

Γ ` P ‖ O + O′′ Γ ` P′ ‖ O′
(os-sum)

O ≡o O1 S ‖ O1 S ′ ‖ O2 O2 ≡o O′

S ‖ O S ′ ‖ O′
(os-cong)

Axiom (os-tick) signals that when a test is passed. Axiom (os-comm) models
a communication step involving (a part of) the system and the observer. Axiom
(os-fail-in) describe triggers the compensation when there is a communication
failure within a transactional scope. Axiom (os-fail-out) yields an error when a
failure outside a transactional scope. Rule (os-s) models a step due to transitions of

14

the system that do not involve the observer. The interactions of the system with non-
deterministic observers are defined by rule (os-sum); notice that, by (os-tick), if
O = X, the other branch O′′ is discarded6. Rule (os-cong) is the usual rule for con-
gruence.

A computation is a (possibly infinite) sequence of states S 0 ‖ O0, . . . , S n ‖ On, . . .
such that S i ‖ Oi S i+1 ‖ Oi+1 for each i. We denote with Comp (ranged over by c)
the set of all the computations.

6.2 Testing Equivalences for ATc

Two basic elements of the testing theory are the notions of successful and non-divergent
computation. Intuitively, a computation is successful if the test is passed (i.e., the cor-
responding observer halts with X). Non-divergent computations are successful compu-
tations that reach X before the occurrence of an error. We now cast the basic notions of
the testing theory to ATc observed systems.

Definition 14. Let O % X stand for O = X+O′ for some observer O′. A state Γ ` P ‖ O
is successful if O % X (we let Success = {S ‖ O ∈ States : O % X}).

– Γ ` P ‖ O ∈ States is diverging if P = C[err] for a context C[◊];
– a computation c ∈ Comp is successful if it contains S ‖ O ∈ Success and unsuc-

cessful otherwise;
– a computation c = S 0 ‖ O0, S 2 ‖ O2, . . . , S n ‖ On, . . . diverges if either

1. c is unsuccessful or
2. there is i ≥ 0 such that S i ‖ Oi is diverging and O j 6% X for j < i.

Hereafter, we write S ‖ O % err when S ‖ O is a diverging state, c ⇑ if c is an
unsuccessful computation, and c ⇓ if not c ⇑.

As customary for the testing theory, we use ⊥ and > to denote divergence and non
divergence, respectively. The possible outcomes of a computation are defined in terms
of result sets, namely (non-empty) subsets of {>,⊥}.

Definition 15. The result set of S ‖ O ∈ States,<(S ‖ O) ⊆ {>,⊥}, is defined by

– > ∈ <(S ‖ O) iff for there is a successful c ∈ Comp that starts from S ‖ O,
– ⊥ ∈ <(S ‖ O) iff there is c ∈ Comp starting from S ‖ O such that c ⇑.

As in [15], we consider may and must preorders and the corresponding induced
equivalences. Recall that (i) may-testing enforces some fairness which ensures that
there divergence is not “catastrophic” provided that there is a chance of successful and
(ii) that must-testing corresponds to liveness as it requires all possible computation to
be successful.

Definition 16. Given a system S and an observer O, we say that

S mayO ⇐⇒ > ∈ <(S ‖ O) and S mustO ⇐⇒ {>} = <(S ‖ O)

We define the preorders vm (may preorder) and vM (must preorder) on systems:
6 Also the X branch can be discarded according to rule (os-sum). This is necessary to define

the testing equivalences (cf. § 6.2).

15

– S vm S ′ ⇐⇒ (S mayO =⇒ S ′ mayO), for all observers
– S vM S ′ ⇐⇒ (S mustO =⇒ S ′ mustO), for all observers.

The two equivalences 'm and 'M corresponding to vm and vM are defined as expected:
'm = vm ∩ v

−1
m and 'M = vM ∩ v

−1
M .

6.3 An Example on Observed Behaviour and Attributes

Consider a scenario where a service s acts as a proxy of a shared resource (not explicitly
represented); the body R of s is

R = aJrK.rec X.(u.X + q.r)

The expected behaviour is that, upon invocation, s interact with the resource and imme-
diately locks it (a); then it grants the use of the resource to the client as long as the latter
requests it (u); when the client ends the computations (q), the resource is released (r).
Observe that, if any error occurs after the invocation, the compensation of a (namely, r)
will (correctly) release the resource.

Assume that Γ is an environment such that R ∈ Γ(r, s) and R ∈ Γ(rn, s), namely
there are (at least) two providers for s with the same body R but supporting different
attributes.

Consider the two possible (well-typed) clients P1 and P2 below (their compensa-
tions are immaterial hence omitted)

P1 = 〈〈s K {r}.u.q | L· · ·M〉〉 P2 = 〈〈s K {rn}.u.q | L· · ·M〉〉

where P2 is obtained by replacing the attribute r with rn in the invocation to s of P1.
Both clients invoke s, use (u), and finally release the resource (q).

The different required attributes generate two behaviours. In fact, the invocations of
s from P1 and P2 result in the following systems (Definition 6, rules (tx1) and (tx4),
respectively)

S 1 = Γ ` 〈〈u.q | aJrK.u.q.r | L· · ·M〉〉
S 2 = Γ ` 〈〈u.q | L· · ·M〉〉 | 〈〈aJrK.u.q.r | L0M〉〉

Take the following observer

O = a.(r.X + Eu.r.X)

that checks, after the resource is acquired, if it is released regardless possible failures
on clients’ requests of use (Eu). We have

S 1 ‖ O 〈〈u.q | u.q.r | L· · · | rM〉〉 ‖ r.X + Eu.r.X (4)

S 2 ‖ O 〈〈u.q | L· · ·M〉〉 | 〈〈u.q.r | LrM〉〉 ‖ r.X + Eu.r.X (5)

The result set of the state reached in (5) is {>} since the compensation r will be executed
in both the branches of the observer and the resource eventually released. Instead, the
result set of the state reached in (6) is {⊥,>} since the resource is not released if the
failing branch of the observer is chosen (the system is deadlocked and the resource is
never released); on the contrary the resource is released if no failure arise.

In general, different attributes associated to a service call generate a different obser-
vational behaviour. However, in § 2 we show that, in some cases, it is possible to inter-
change the transactional attributes while preserving the same observed behaviour.

16

7 Results on Testing Equivalence for ATc

We apply the theory of testing of ATc to define a relationship between transactional at-
tributes. Specifically, we show that, under suitable conditions, attribues are interchange-
able. Namely, using an attribute instead of another in a service invocation does not alter
the observational behaviour of systems. Remarkably, the observational theory presented
in § 6 is used here to study some relations on transactional attributes derived from the
testing preorders. Namely, we investigate some preorder relations on attributes defined
in terms of testing preorders and show that systems where equivalent attribute are re-
placed with each other have the same observable behaviour.

Example 12. The example in § 6.3 illustrates how the choice of different at-
tributes yields different observable behaviours. Consider again the process P1 =

〈〈s K {r}.u.q | L· · ·M〉〉 of § 6.3. Since the invocation to s is transactional, then the ob-
servational behaviour of P1 does not change by replacing r with m or s. �

For µ ∈ {m,M}, we define the preorders ≤µ⊆ A × A, (m stands for may while, M
stands for must). Such preorders correspond to the preorders vm and vM on systems.
The intuition is that if S ′ is obtained by replacing a2 for a1 in a system S and a1 ≤µ a2,
then S vµ S ′. Preorder ≤µ is defined in terms of preorders ≤oµ and ≤iµ that differ on how
they act on how they subsitute attributes in transactional scopes.

Before giving ≤µ (cf. Definition 17), two substitutions [/]i and [/]o have to be
defined. These substitutions respectively replace the attributes that appear in transac-
tional invocations or outside transactional scope. The complete definitions are given in
Appendix B (Definition 7) according to the standard attribute substitution also given in
Appendix B; here we consider only the most important cases.

Substitution [/]o acts as the standard substitution except from the case of transac-
tional scope; in fact

〈〈P | LQM〉〉[b/a]o = 〈〈P | L(Q[b/a]o)M〉〉

namely, the running process P is not subject to further substitutions, while the compen-
sation Q is (since it would be executed outside the current transactional scope).

Substitution [/]i acts as expected but for the service invocation and transactional
scope cases, respectively defined as

(s K A.P)[b/a]i = s K A.(P[b/a]i) (6)

〈〈P | LQM〉〉[b/a]i = 〈〈P[a/b] | LQ[b/a]iM〉〉 (7)

In (7), the substitution does not change the attributes of the invocation to s, since the
process is outside a transactional scope. In (8), the standard substitution of a for b is
applied to the running process of the scope P (the substitutions has to act on all the
invocations in P) while [b/a]i is applied to the compensation Q (as Q could be executed
outside a transactional scope).

A standard attribute substitution σ is applied to a system Γ ` P by setting

(Γ ` P)σ = Γσ ` Pσ where Γσ =

∅, Γ = ∅

Γ′σ ∪ {γ, upd(γ, σ)}, Γ = Γ′ ∪ {γ}

17

r rn

nsn

s m

≤µ
o

r rn

nsn

s m

≤µ
r rn

nsn

s m

≤µ
i

Fig. 3. Order on attributes

and upd(γ, σ) : s 7→ (σ(a),R)) for each s such that γ(s) = (a,R). Also, [/]i are
extended on systems by letting (Γ ` P)[b/a]i = Γ[b/a] ` (P[b/a]i) and similarly for
[/]o. Finally, (S ‖ O)σ = Sσ ‖ O for any attribute substitution σ, namely substitutions
do not affect observers.

The relationships between transactional attributes are formally defined as follows:

Definition 17. Let a1, a2 ∈ A and µ ∈ {m,M},

– a1 ≤
o
µ a2 ⇐⇒ S vµ S [a1/a2]o, for any system S

– a1 ≤
i
µ a2 ⇐⇒ S vµ S [a1/a2]i, for any system S .

We let ≤µ = ≤iµ ∩ ≤
o
µ and =µ = ≤µ ∩ ≤µ.

Figure 3 illustrates the relationships between attributes associated to non trans-
actional invocations (leftmost box), transactional invocations (middle box), and both
transactional and non transactional invocations (rightmost box). The bidirectional re-
lationships are represented by arrows without edges. Solid lines are the equivalences
proved in Theorem 2 while the preorder relations represented by the dashed arrows are
conjectured to hold for subclasses of systems that can be suitably characterised using
the types in § 4.

Lemma 1. If a1, a2 ∈ {r, rn}, for any system S

S ; S ′ =⇒ S [a2/a1]o ; S ′[a2/a1]o (8)

Proof. The proof is by induction on the derivation of S ; S ′ (cf. Definition 6); we let
σo = [a2/a1]o and σ = [a2/a1], and given A ⊆ A, Aσo stand for A \ {a1} ∪ {a2}.

Firstly, consider the axioms (ntx1÷3) for which S = Γ ` C[◊] ◦ s K A.P for a s-a
context C[◊]. By definition, Sσo = Γσ ` C[◊]σo ◦ s K Aσo.Pσo and

– if S ; S ′ is obtained by axiom (ntx1) then S ′ = Γ ` C[err] and m ∈ Aσo,
therefore Sσo ; Γσ ` C[◊]σo ◦errσo (by (ntx1)) and Γσ ` C[◊]σo ◦errσo =

Γσ ` C[err]σo = S ′σo (by Proposition 6 in Appendix B);
– if S ; S ′ is obtained by axiom (ntx3) then S ′ = Γ ` C[P] | 〈〈R〉〉 with R ∈
Γ(s, {r, rn} ∩ A). Then Γσ(s) = (σo(a),Rσo) with a = a1 ∨ a = a2, hence Rσo ∈
Γσ(s, {a} ∩ Aσo). Therefore Sσo ; Γσ ` C[◊]σo ◦ (C[P] | 〈〈R〉〉)σo (by (ntx3))
and Γσ ` C[◊]σo ◦ (Γ ` C[P] | 〈〈R〉〉)σo = Γσ ` C[P]σo | 〈〈Rσo〉〉 = S ′σo (by
Proposition 6 in Appendix B).

18

The proof in the case where S ; S ′ is obtained by axiom (ntx2) is similar to the
previous case.

Secondly, consider (tx1)where S = Γ ` C[◊]◦〈〈s K A.P1 | P2 | LQM〉〉 for a context
C[◊] and S ′ = Γ ` C[◊] ◦ 〈〈P1 | P2 | LQM〉〉. Since R ∈ Γ(s, A) then, by definition of Γσ,
R ∈ Γ(s, (A ∩ {m, s, r})σo). We have the following two cases:

– If C[◊] is not s-a, then there exists a context C′′[◊] such
that C[◊] = C′′[◊] ◦ 〈〈◊ | R | LQ′′M〉〉. Hence, Sσo = Γσ `

C′′[◊]σo ◦ 〈〈〈〈s K A.P1 | P2 | LQM〉〉 | R | LQ′′M〉〉σo = Γσ ` C′′[◊]σo ◦
〈〈〈〈s K A.P1 | P2 | LQM〉〉 | R | LQ′′σoM〉〉 = (i.e., the substitution does not involve
the process inside the inner transactional scope nor its compensation). Therefore,
the thesis follows by (tx1).

– If C[◊] is s-a, then Sσo = Γσ ` C[◊]σo ◦ 〈〈s K A.P1 | P2 | LQM〉〉σo = Γσ `
C[◊]σo ◦ 〈〈s K A.P1 | P2 | LQσoM〉〉 (i.e., the substitution does not involve the pro-
cess inside the transactional scope but it involves its compensation). In this case
Sσo ; Γσ ` C[◊]σo ◦ 〈〈P1 | P2 | LQσoM〉〉 (by (tx1)) and Γσ ` C[◊]σo ◦
〈〈P1 | P2 | LQσoM〉〉 = S ′σo

The proof in the case where S ; S ′ is obtained by axiom (tx2÷4) is similar.
Finally, consider the axiom (s-p) for which S = Γ ` P and by definition,

Sσo = Γσ ` Pσo. If S ; S ′, where S ′ = Γ ` P′ then, since all the possible pro-
cess moves P → P′ do not involve the transactional attributes then also Pσo → P′′. It
is straightforward to observe that P′′ = P′σo:

– If P → P′ by axiom (p1) then P = C[〈〈πJQK1.P1 | LR1M〉〉] | C′[〈〈π̄JQ2K.P2 | LR2M〉〉]
and P′ = C[〈〈P1 | LR1 | Q1M〉〉] | C′[P2].
• If C[◊] is not s-a then there exists context C′′[◊] such that C[◊] =

C′′[◊] ◦ 〈〈◊ | R | LQ′′M〉〉. Pσo = C′′[◊]σo ◦ 〈〈〈〈πJQK1.P1 | LR1M〉〉 | R | LQ′′M〉〉σo |
C′[〈〈π̄JQ2K.P2 | LR2M〉〉]σo, hence only R2 is involved in the substitu-
tion provided that C′[◊] is not s-a). Therefore, Pσo → C′′[◊] ◦
〈〈〈〈P1 | LR1 | Q1M〉〉 | R | LQ′′M〉〉σo = P′σo.

• If C[◊] is s-a then Pσo = C[◊]σo ◦ 〈〈πJQK1.P1 | LR1σ
oM〉〉 |

C′[〈〈π̄JQ2K.P2 | LR2M〉〉]σo and only R2 is involved in the substitution provided
that C′[◊] is s-a. Therefore, Pσo → C[◊]σo ◦ 〈〈P1 | LR1 | Q1σ

oM〉〉 = P′σo.

The proofs for the remaining axioms are similar while the proof for the inference rules
is a straightforwad applycation of the inductive hypothesis. ut

Observe that also the converse of (9) holds.

Lemma 2. For any observed system S ‖ O

S ‖ O S ′ ‖ O′ =⇒ (S ‖ O[b/a]o) (S ′ ‖ O′)[b/a]o (9)

where a, b ∈ {r, rn}.

Proof. The proof is by induction on the derivation of the transition in the hypothesis
of (10), hereafter referred to as t. Recall that, for any observed system S ‖ O and
attribute substitution σ, (S ‖ O)σ = Sσ ‖ O by definition.

19

First we consider the axioms of Definition 13. The proof is trivial if t is an instance
of (os-tick). For the remaining axioms, let S = Γ ` C[◊] ◦ π.P for an environment
Γ, a context C[◊], and π.P ∈ P.

– If t holds by axiom (os-comm), then (S ‖ O)[b/a]o Γ[b/a]o ` C[◊][b/a]o ◦
P[b/a]o ‖ O′ by (os-comm) because (S ‖ O)[b/a]o = Γ[b/a]o ` C[◊][b/a]o ◦
π.P[b/a]o ‖ O (by Proposition 6 in Appendix B).

– If t holds by axiom (os-fail-in) then, for a context C′[◊], C[◊] = C′[◊] ◦
〈〈◊ | R | LQM〉〉 and the proof is similar to the previous case.

– The case (os-fail-out) is slightly more involved. By Proposition 6 (cf. Ap-
pendix B), (S ‖ O)[b/a]o = Γ[b/a]o ` C[◊][b/a]o ◦ π.P[b/a]o ‖ O since C[◊] is s-a
by the side condition of (os-fail-out). Therefore, (os-fail-out)may also be
applied to (S ‖ O)[b/a]o obtaining Γ[b/a]o ` C[◊][b/a]o ◦ err ‖ O = (C[err] ‖
O)[b/a]o.

We now consider the inference rules in Definition 13.

– Let t be obtained with a proof ending with an application of (os-s). By Lemma 1
S [b/a]o ; S ′[b/a]o and therefore (S ‖ O)[b/a]o S ′[b/a]o ‖ O′ by rule (os-s).

– If t is obtained with a proof ending with an application of (os-sum), then S = Γ `
P for a P ∈ P. By inductive hypothesis, (S ‖ O)[b/a]o (Γ ` P′ ‖ O′)[b/a]o for
a P′ ∈ P. Hence, by rule (os-sum), (S ‖ O + O′′)[b/a]o = S [b/a]o ‖ O + O′′
S ′[b/a]o ‖ O′ = (S ′ ‖ O′)[b/a]o

The case of (os-cong) is trivially obtained by induction. ut

Theorem 2. The following equivalences onA hold

(a) r =oµ rn (b) ns =oµ n =oµ s (c) m =iµ r =iµ s

Proof. We prove (a) and we omit the proofs for (b) and (c) as they are similar to (a)
once a lemma analogous to Lemma 2 is proved.

If µ = m then and there is a successful computation c from S ‖ O, then there is
a successful computation from (S ‖ O)[a2/a1]o (by induction of the sequence c and
Lemma 2.

The case µ = M is proved by a contrapositive argument. If there is a non successful
computation from (S ‖ O)[a2/a1]o. Then, by Lemmas 5 (cf. Appendix B) and Lemma 2,
a non successful computation may be found for S ‖ O. ut

7.1 Relating Different Scope-Scenarios

In general, the behaviour of a system changes depending on how its processes are nested
in transactional contexts (Proposition 5). However, we illustrate how to compare sys-
tems in different transactional contexts when restricting to a non-trivial class of systems
(Proposition 6).

Proposition 5. For all environments Γ, there exist P,R,Q ∈ P such that:

1. Γ ` 〈〈P | R | LQM〉〉 @M Γ ` 〈〈P | LQM〉〉 | 〈〈R〉〉

20

2. Γ ` 〈〈P | LQM〉〉 | 〈〈R〉〉 @M Γ ` 〈〈P | R | LQM〉〉
3. Γ ` 〈〈P | R | LQM〉〉 @M Γ ` 〈〈P | LQM〉〉 | 〈〈R | LQM〉〉
4. Γ ` 〈〈P | LQM〉〉 | 〈〈R | LQM〉〉 @M Γ ` 〈〈P | R | LQM〉〉
5. Γ ` 〈〈P | R | LQM〉〉 @M Γ ` 〈〈P | LQM〉〉 | R
6. Γ ` 〈〈P | LQM〉〉 | R @M Γ ` 〈〈P | R | LQM〉〉

Proof. The proof is straightforward and consists of the following counterexamples:

1. Γ ` 〈〈a | b | LcM〉〉 and Γ ` 〈〈a | LcM〉〉 | 〈〈b〉〉 are distinguished by Eb.c.X
2. Γ ` 〈〈a | LcM〉〉 | 〈〈b〉〉 and Γ ` 〈〈a | b | LcM〉〉 are distinguished by Ea.b.X
3. Γ ` 〈〈aJeK.d | d.b | LcM〉〉 and Γ ` 〈〈aJeK.d | LcM〉〉 | 〈〈d.b | LcM〉〉 are distinguished by
Eb.e.X

4. Γ ` 〈〈a | LcM〉〉 | 〈〈b | LcM〉〉 and Γ ` 〈〈a | b | LcM〉〉 are distinguished by Ea.b.X
5. Γ ` 〈〈a | b | LcM〉〉 and Γ ` 〈〈a | LcM〉〉 | b are distinguished by Eb.c.X
6. Γ ` 〈〈a | LcM〉〉 | b and Γ ` 〈〈a | b | LcM〉〉 are distinguished by Ea.b.X.

It is straightforward to see that in each case the observer is successful for the first pro-
cess and fails on the second one. ut

Lemma 3. Let P . t and (o, a) < t̂ (resp. (i, a) < t̂):

– if P→ P′ and P′ . t′ then (o, a) < t̂′ (resp. (i, a) < t̂′).
– let Γ be an environment whose codomain only includes processes PS such that

PS . ts and (i, a) < t̂s (resp. (o, a) < t̂s) then for all observer O.
• If Γ ` P ; Γ ` P′ and P′ . t′ then (o, a) < t̂′ (resp. (i, a) < t̂′).
• If Γ ` P ‖ O Γ ` P′ ‖ O′ and P′ . t′ then (o, a) < t̂′ (resp. (i, a) < t̂′).

If attributes are used “wisely”, then systems may preserve their behaviour in differ-
ent transactional contexts. Interestingly, a characterisation of such class of systems can
be given in terms of our types.

Definition 18. A process P ∈ P is prudent if P . t and t̂ ∩ {(o, r), (i, n)} = ∅. A system
Γ ` P is prudent if P and all the processes in the codomain of Γ are prudent.

Intuitively, a system is prudent when it does not deliberately put unmatchable require-
ments on its invocations.

Proposition 6. If Γ ` 〈〈P | LQM〉〉 is a prudent system (i, n) < t̂′ then

Γ ` P | R vM Γ ` 〈〈P | LQM〉〉 | R

for all R ∈ P.

Proof. We prove that for all observer O

Γ ` P | R must O =⇒ 〈〈P | LQM〉〉 | R must O (10)

If O ↘ X or P ↘ err the proposition holds immediately. Otherwise we proceed by
induction on the transition steps. P | R ‖ O cannot move because of (os-tick) since
O 6↘ X. P | R ‖ O can make the following steps:

21

(os-comm) In this case P | R = C[π.P1] and Γ ` C[π.P1] ‖ O Γ ` C[P1] ‖ O then,
also by (os-comm), we can set 〈〈P | LQM〉〉 | R = C′[π.P1] and Γ ` C′[π.P1] ‖ O
Γ ` C′[P1] ‖ O. The proposition holds by induction.

(os-fail-in) The case is similar to the case for (os-comm).
(os-fail-out) In this case the observed system either moves to a state Γ ` P′ | R ‖

O′ or to the state Γ ` P | R′ ‖ O′. In the first case process P′ is erroneous and
in the second case or R′ is erroneous. In the first case Equation (11) is true since
Γ ` P′ | RmustO′ does not hold, in the second case because Γ ` P | R′ mustO′

does not hold.
(os-sum)/(os-cong) The properties hold similarly to the previous three cases.
(os-s) If Γ ` P | R ; S ′ by:

– (ntx1) then S ′ = Γ ` C[err]. Since the process in the system is erroneous
then S ′ mustO does not hold and the proposition holds immediately for this
case.

– (ntx2) then P | R = C[s K A.P′] with C[◊] s-a and Γ ` P | R ; ΓC[P′] | PS

where Γ(s, a) = PS for a ∈ A. Attribute a can be either s or ns (not n
by hypothesis7 On the other hand, 〈〈P | LQM〉〉 | R can make different moves
according to whether the service call is in P or in R. If the service call is
in R then 〈〈P | LQM〉〉 | R = C′[s K A.P′] with C′[◊] is s-a. In this case
Γ ` P ; ΓC′[P′] | PS by (ntx2) and the proposition holds by induction
since the hypothesis are preserved for the continuations. If the service call is in
P then 〈〈P | LQM〉〉 | R = C′[〈〈s K A.P′ | LQM〉〉]. In this case C′[〈〈s K A.P′ | LQM〉〉]
can move either by (tx1) or by (tx3) according to whether a = s or a = ns.
If a = s then Γ ` C′[〈〈s K A.P′ | LQM〉〉] ; Γ ` C′[〈〈P′ | PS | LQM〉〉] by (tx1).
In this case the proposition holds by induction (Γ ` (P′ | PS) | RmustΓ `
〈〈P′ | PS | LQM〉〉 | R) since the hypothesis are preserved. If a = ns then
Γ ` C′[〈〈s K A.P′ | LQM〉〉] ; Γ ` C′[〈〈s K A.P′ | LQM〉〉 | PS]. In this case the
proposition holds by induction (Γ ` P′ | (R | PS)mustΓ ` 〈〈P′ | LQM〉〉 | (R | PS)
since the hypothesis are preserved.

– (ntx3) then P | R = C[s K A.P′] with C[◊] s-a and Γ ` P | R ; ΓC[P′] |
〈〈PS 〉〉 where Γ(s, a) = PS for a ∈ A. Attribute a is rn (it cannot be r by
hypothesis). Since a = rn then 〈〈P | LQM〉〉 | R = C′[〈〈s K A.P′ | LQM〉〉] and
Γ ` 〈〈P | LQM〉〉 | R ; Γ ` C′[〈〈P′ | LQM〉〉] | 〈〈PS 〉〉. In this case the proposi-
tion holds by induction (Γ ` P′ | (R | 〈〈PS 〉〉)mustΓ ` 〈〈P′ | LQM〉〉 | (R | 〈〈PS 〉〉)
since the hypothesis are preserved.

– (tx1)/(tx2)/(tx3)/(tx3)/(tx4) then P = C[Pi] for some Pi. We can also
apply the same rule to 〈〈P | LQM〉〉with C′[◊] = 〈〈C[◊] | LQM〉〉. The theorem holds
by induction.

– (s-p) then P moves for one of the rule for processes in Definition 4. 〈〈P | LQM〉〉
can do the same step with context 〈〈◊ | LQM〉〉 and the theorem holds by induc-
tion.

ut

7 We could remove this hypothesis by requiring a compensation that, instead of actually com-
pensating, continues the activity that had been suspended by the failure of the running process.

22

8 Concluding Remarks and Related Work

We embed a few primitives for managing the dynamic reconfiguration of transactional
scopes in ATc to generalise the transactional mechanisms of EJB to SOC so to have
consistent and predictable failure propagation. We give a type system that guarantees
absence of failures due to misuse of transactional attributes. The adopted mechanisms
find their basic motivations in SOC where one open issue is the lack of agreement on
the semantics of dynamic reconfigurations of transactional scopes. Such problem is
amplified when services support and rely on different kinds of transactional behaviour.
An original contribution of this paper is the definition of mechanisms to determine
and control the dynamic reconfiguration of distributed transactions. Service invocations
cause systems reconfiguration; specifically, invocations may dynamically introduce new
transactional scopes or rearrange the old ones.

We are currently extending ATc with a theory of testing [15] where observers can
cause communication failures. The aim is to test the correctness of the system be-
haviour, including failure handling and compensations. On this basis it is possible to
define a notion of equivalence for ATc systems. The intuition is that two systems are
equivalent if they satisfy the same set of tests; some preliminary results are summarised
below (the interested reader is referred to [5] for a detailed presentation).

The theory of testing of ATc shows that under some conditions some transactional
attributes are equivalent. Namely, it is possible to replace a transactional attribute with
an equivalent one without altering the behaviour of the system. Notice that this also
allows one to specify a larger set of transactional attributes for service invocations. For
example, 〈〈s K A.P | LQM〉〉 maintain the same behaviour if A is any of the subsets of
{r, m, s} since the invocation of s happens inside a transaction.

Since both dynamic reconfiguration and LRT are a key aspects in SOC, it is crucial
to provide a formal account of their inter-relationships and to understand and control
the mechanisms of failure.

Languages for service orchestration (e.g., WS-BPEL [17]) provide support for dis-
tributed transactions and have been modelled extending some process calculi like those
in [3, 10, 12, 13] with primitives that allow a party to define the scopes, failure han-
dlers, and compensation mechanisms (see [20] for an overview and a comparison of
such approaches). StAC [8] and CJoin [6] are process calculi which model arbitrar-
ily nested transactions and focus on the separation of process management with er-
ror/compensation. The latter offers a mechanism to merge different scopes but it is not
offering the flexibility of the transactional attributes of ATc.

At the best of our knowledge, none of the proposed framework has been given a
type system as the one proposed here (a formal comparison of different approaches
for compensations in flow composition languages can be found in [7]). The existing
literature addresses only part of the dynamic aspects involved in error management. For
example, [11] proposes a model for dynamic installations of compensation processes,
however, dynamic reconfigurations of transactional scopes have not been considered.

One of the limitations of our approach is the lack of link mobility à la π-calculus; the
extension of our approach to a name passing calculus is left as future work. We argue
that the type discipline proposed here can be simply adapted to a name passing version
of ATc. In fact, our type system is orthogonal to the communication mechanisms. On

23

the contrary, the testing theory of ATc will be greatly affected by the introduction of
name passing features.

Other interesting extensions would be to allow the communication of attributes and
a primitive enabling a service s to make a parametrised invocation to a service s′ using
the same attribute supporte by s (recall that attributes are when services are published
in containers). Such features give a great expressiveness but require more sophisticated
type disciplines.

An orthogonal topic is the modelling of protocols for deciding the outcome of dis-
tributed transactions (e.g., the work in [1]). Some standards like Business Transaction
Protocol (BTP) [16] and Web Service Transaction (WS-Tx [18]) have been proposed for
LRTs. Such protocols involve a more general scenario than the classic atomic commit:
the global consensus is no longer necessary and is substituted by weaker constraints.
In [2, 4] BTP cohesion along with the properties ensured by the “weakened” constraints
have been studied via a formalisation in the asynchronous π-calculus (see [9] for an
overview on the cohesion-base approach of BTP).

The present paper provides a high level semantics of failure propagation, compen-
sation and scope reconfiguration, while abstracting from protocols necessary to imple-
ment them. Consider, for example, the process 〈〈s K {r}.P | LQM〉〉 invoking a service s
whose body is xJP′K.Q′. Since service s supports the attribute r, its body is executed
inside the same scope (if any) of the caller, according to Definition 6.

Γ ` 〈〈s K {r}.P | LQM〉〉;∗ Γ ` 〈〈P | P′ | LQ | Q′M〉〉

The same above includes compensations of different possibly cross-domain and dis-
tributed processes. Noteworthy, the mechanism that trigger Q and Q′ are not trivial The
higher level perspective we adopted has the advantage of providing a concise but rigor-
ous understanding of dynamic scope reconfigurations. We leave the investigation of the
underneath coordination protocols, which would provide a skeleton for the implemen-
tation of the higher level mechanisms, as a future work. (We remark that this issue is
common to any theory of distributed transactions.)

References

1. M. Berger and K. Honda. The two-phase commitment protocol in an extended pi-calculus.
Electr. Notes Theor. Comput. Sci., 39(1), 2000.

2. L. Bocchi. Compositional nested long running transactions. In FASE, volume 2984 of LNCS,
pages 194–208. Springer, 2004.

3. L. Bocchi, C. Laneve, and G. Zavattaro. A calculus for long-running transactions. In
E. Najm, U. Nestmann, and P. Stevens, editors, FMOODS, volume 2884 of Lecture Notes
in Computer Science, pages 124–138. Springer, 2003.

4. L. Bocchi and R. Lucchi. Atomic commit and negotiation in service oriented computing. In
COORDINATION, volume 4038 of LNCS, pages 16–27. Springer, 2006.

5. L. Bocchi and E. Tuosto. A Java Inspired Semantics for Transactions in SOC
(extended report), 2009. Available at http://www.cs.le.ac.uk/people/lb148/
javatransactions.html.

6. R. Bruni, H. Melgratti, and U. Montanari. Nested Commits for Mobile Calculi: Extending
Join. In J.-J. Lévy, E. Mayr, and J. Mitchell, editors, IFIP TCS, pages 563–576, 2004.

24

7. R. Bruni, H. C. Melgratti, and U. Montanari. Theoretical foundations for compensations in
flow composition languages. In POPL, pages 209–220. ACM, 2005.

8. M. Butler and C. Ferreira. An operational semantics for stac, a language for modelling
long-running business transactions. In In Coordination 2004, volume 2949 of LNCS, pages
87–104. Springer-Verlag, 2004.

9. S. Dalal, S. Temel, M. Little, M. Potts, and J. Webber. Coordinating business transactions on
the web. IEEE Internet Computing, 7(1):30–39, 2003.

10. C. Guidi, I. Lanese, F. Montesi, and G. Zavattaro. On the interplay between fault handling
and request-response service invocations. In ACSD, pages 190–198. IEEE, 2008.

11. C. Guidi, I. Lanese, F. Montesi, and G. Zavattaro. Dynamic error handling in service oriented
applications. Fundam. Inf., 95(1):73–102, 2009.

12. C. Laneve and G. Zavattaro. Foundations of web transactions. In FoSSaCS, volume 3441 of
LNCS, pages 282–298. Springer, 2005.

13. M. Mazzara and I. Lanese. Towards a unifying theory for web services composition. In
WS-FM, volume 4184 of LNCS, pages 257–272. Springer, 2006.

14. S. Microsystems. Enterprise javabeans (ejb) technology, 2009. http://java.sun.com/
products/ejb/.

15. R. D. Nicola and M. C. B. Hennessy. Testing equivalences for processes. Theoretical Com-
put. Sci., 34(1–2):83–133, Nov. 1984.

16. OASIS. Business Transaction Protocol (BTP), 2002.
17. OASIS. Web Services Business Process Execution Language (WS-BPEL) Version 2.0. Tech-

nical report, 2007.
18. OASIS. Web Services Transaction (WS-TX), 2009.
19. D. Panda, R. Rahman, and D. Lane. EJB3 in action. Manning, 2007.
20. C. Vaz, C. Ferreira, and A. Ravara. Dynamic recovering of long running transactions. In

TGC, volume 5474 of LNCS, pages 201–215. Springer, 2008.

25

A Proofs of the Results in § 4

Proposition 1. The operator ⊕ is idempotent, associative and commutative.

Proof. Let | | be the function mapping types to natural numbers defined as

|0| = 0 |(I, t1, t2)| = 1 + max{|t1|, |t2|}

We prove that t ⊕ t = t by induction on |t|. The base case is trivial since |t| = 0 iff t = 0.
Assume ⊕ idempotent on any type t′ such that |t′| < |t|, then t = (I, t1, t2) for some I,
t1 and t2. By definition, t ⊕ t = (I ∪ I, t1 ⊕ t1, t2 ⊕ t2) and, by inductive hypothesis and
idempotency of ∪, we conclude t ⊕ t = t.

The proofs for associativity and commutativity are similar. ut

Proposition 2. All the operators K, ↓, and ? distribute over ⊕ . Moreover,
(t1 ⊕ t2)K = t1K ∪ t2K.

Proof. Trivially, from the Definition 7.

For convinience we recall here Definition 8.

Definition 8. The typing rules for non-erroneous processes (cf. Definition 5) are

(idle)
0 . 0

(res)
P . t

νx P . t
P . t P′ . t′

P | P′ . t ⊕ t′
(par)

P . t
!P . t

(repl)

(inv)
P . tp I = {o} × A

s K A.P . (I ∪ tp
K , tp

↓, tp
?)

P . tp Q . tq

πJQK.P . (tp
K, tp

↓, tq ⊕ tp
?)
(comp)

(scope1)
P . (I, tc, tu) Q . tq

〈〈P | LQM〉〉 . ((I ∪ tc
K)[o 7→ i], tu ⊕ tc

↓ ⊕ tc
? ⊕ tq, 0)

P . 0

〈〈P | LQM〉〉 . 0
(scope2)

where, for I ⊂ {i, o} × A, I[o 7→ i]
def
= {(i, a) : (o, a) ∈ I} ∪ (I ∩ {i} × A).

Proposition 3. For each non-erroneous P ∈ P there is a unique type t such that P . t.

Proof. By induction on the structure of P and inspection of the typing rules in Defini-
tion 8. ut

Proposition 4. For any non-erroneous P,Q ∈ P, if P ≡ Q and P . t then Q . t.

Proof. The proof easily follows by induction on the derivation of P ≡ Q (considering
Definition 2 as the specification of a proof system).

Rule (par), the definition of ⊕, and Proposition 1 prove the thesis if P ≡ Q is
obtained from the monoidal laws of the parallel composition.

The axioms on restriction are accommodated by rule (res) (e.g., if P.t then νx P.t,
hence νy νx P . t and similarly for the other side of νy νx P ≡ νx νy P).

Rules (repl/par) proved that if P . t then !P | P . t ⊕ t and, by idempotency of ⊕
we have the thesis.

Let 〈〈P | LRM〉〉 ≡ 〈〈Q | LRM〉〉 be derived by P ≡ Q and P . t. By inductive hypothesis,
Q . t, hence the thesis follows by rule (scope1).

The other cases are similar. ut

26

Some auxiliary lemmas are necessary before proving the correctness of our typing
discipline (Theorem 1 and Corollary 1).

Lemma 1. Let P ∈ P be well-typed and C[◊] be a context. If C[P] is well-typed then
any transactional scope which is a subterm of C[0] is well-typed or it is nested in a
well-typed transactional scope in C[◊].

Proof. The thesis is by induction on the structure of the context C[◊].
The base cases C[◊] = ◊ and C[◊] = 0 are trivial.
Assume C[◊] = Q | C′[◊], then the transactional scopes in C[◊] are subterms

either of Q or of C′[◊]. Since C[P] is well-typed both Q and C′[P] are well-typed
(otherwise by rule (par) we get a contradiction). Hence the inductive hypothesis guar-
antees that any transactional scope of Q or C′[0] is well-typed or nested in a well-typed
scope. (The proof for C[◊] = C′[◊] | Q is analogous).

If C[◊] = 〈〈◊ | Q | LRM〉〉, the well-typedness of C[P] implies that 〈〈Q | LRM〉〉 is well-
typed (otherwise rule (scope1) yields a contradiction); by inductive hypothesis, the
statement holds for the scopes is Q or R. ut

Noticing that C[0] is well-typed if C[P] is well-typed for a well-typed P ∈ P,
Lemma 1 can be restates as

Corollary 2. If C[◊] is a context such that C[0] is well-typed, then any transactional
scope subterm of C[0] is well-typed or it is nested in a well-typed transactional scope
in C[◊].

Lemma 2. If 〈〈P | LQM〉〉 is well-typed then, for any context C[◊] such that C[0] is well-
typed, C[〈〈P | LQM〉〉] is well-typed.

Proof. Trivially, by structural induction on the structure of C[◊]. ut

Remarkably, Lemma 2 does not hold for generic well-typed processes (e.g., consider
the process of Example 9).

Lemma 3. If P,Q ∈ P are well-typed then P | Q is well-typed.

Proof. Let P.tp and Q.tq, by rule (par), P | Q.tp⊕tq. The thesis follows by observing
that ̂tp ⊕ tq = t̂p ∪ t̂q. ut

By inspection of the rule (scope1), a transactional scope may contain the pair
(o, m) only in its second component (the left child of the type). This observation is used
in Lemma 4 below.

Lemma 4. If 〈〈P1 | LQ1M〉〉 and 〈〈P2 | LQ2M〉〉 are well-typed then 〈〈P1 | P2 | LQ1 | Q2M〉〉 is
well-typed.

For convinience we repeat Definition 6.

27

Definition 6. The reduction relation of ATc systems is the smallest relation ; closed
under the following rule and axiom:

(ntx1) Γ ` C[s K A.P] ; Γ ` err m ∈ A

(ntx2) Γ ` C[s K A.P] ; Γ ` C[P] | R R ∈ Γ(s, {s, n, ns} ∩ A)

(ntx3) Γ ` C[s K A.P] ; Γ ` C[P] | 〈〈R〉〉 R ∈ Γ(s, {r, rn} ∩ A)

(tx1)
P = C[〈〈s K A.P1 | P2 | LQM〉〉] bc(P) ∩ fc(R) = ∅

Γ ` P ; Γ ` C[〈〈P1 | P2 | R | LQM〉〉]
R ∈ Γ(s, {m, s, r} ∩ A)

(tx2) Γ ` C[〈〈s K A.P1 | P2 | LQM〉〉] ; Γ ` C[Q] n ∈ A

(tx3) Γ ` C[〈〈s K A.P1 | P2 | LQM〉〉] ; Γ ` C[〈〈P1 | P2 | LQM〉〉] | R ns ∈ A ∧ R ∈ Γ(s, ns)

(tx4) Γ ` C[〈〈s K A.P1 | P2 | LQM〉〉] ; Γ ` C[〈〈P1 | P2 | LQM〉〉] | 〈〈R〉〉 rn ∈ A ∧ R ∈ Γ(s, rn)

(s-p)
P→ P′

Γ ` P ; Γ ` P′

where C[◊] , 0 and C[◊] is s-a in (ntx1 ÷ 3).

Theorem 1. Let P ∈ P be well-typed. For every well-typed environment Γ, if Γ ` P ;
Γ ` Q then Q is well-typed.

Proof. Let P . t we proceed by case analysis on transactionality of invocations.
For non-transactional invocations, let C[◊] be a s-a context such that P = C[s K

A.P′].

(ntx1) The transition in the statement cannot be derived using this axiom otherwise
we would have (o, m) ∈ t̂ which contradicts well-typedness of P (as C[◊] is s-a).

(ntx2) In this case, Q = C[P′] | R where R is the body of a service s in Γ supporting an
attribute a ∈ {s, n, ns}. Assume R . tr, by (4) in Definition 11 and well-typedness of
Γ, we have that (o, m) < t̂r. Hence, by the typing rule (par) (and possibly (repl))
C[P′ | R] is well-typed since C[◊] may only consists of parallel and replicated
contexts.

(ntx3) This case is analogous to the previous one but for the fact that (3) in Defini-
tion 11 is used to prove well-typedness of the body of the service.

For transactional invocations, let C[◊] be a context such that P =

C[〈〈s K A.P1 | P2 | LQM〉〉].

(tx1) Assume that
– R is the body of a service s in Γ supporting an attribute a ∈ {m, s, r} and R . tr;
– Q . tq, P1 . t1, P2 . t2, and C[〈〈P1 | P2 | R | LQM〉〉] . t′.

The proof is by induction on the structure of C[◊].
If C[◊] = ◊ then the flat type of 〈〈P1 | P2 | LQM〉〉 is included in t̂ and
therefore 〈〈P1 | P2 | LQM〉〉 is well-typed. By hypothesis, 〈〈R〉〉 is well-typed then
〈〈P1 | R | P2 | LQM〉〉 is well-typed by Lemma 4.
Let C[◊] = 〈〈◊ | P0 | LQ0M〉〉; by Corollary 2 C[0] well-typed. Also, observe that the
flat type of 〈〈P1 | R | P2 | LQM〉〉 is a subset of t̂↓ plus tr↓ and both such sets do not
contain (o, m).

28

(tx2) Let Q . tq; we proceed by induction on the structure of C[◊].
If C[◊] = ◊, it suffices to observe that t̂q ⊆ t̂, hence (o, m) < t̂q.
If C[◊] = R | C′[◊], then both R and C′[〈〈s K A.P1 | P2 | LQM〉〉] must be well-typed
(otherwise rule (par)would yield a contradiction). By inductive hypothesis, C′[Q]
is well-typed and therefore C[Q] = R | C′[Q] is well-typed (Lemma 3). The proof
is similar for C[◊] = R | C′[◊] | R.

(tx3) Since P is of the form C[〈〈s K A.P1 | P2 | LQM〉〉], its flat type includes the
flat type of C[〈〈P1 | P2 | LQM〉〉] (as, by rule (inv), the former is obtained by
adding to the latter the modality/attribute pairs of the invocation to s). Hence,
C[〈〈P1 | P2 | LQM〉〉] is well-typed, moreover R is the body of a service supporting
ns and is assumed well-typed in Γ. Therefore, C[〈〈P1 | P2 | LQM〉〉] | R is also well-
typed because (by Lemma 3).

(tx4) Similar to (tx3).
ut

B Auxiliary Definitions

Formally, we consider attribute substitutions as functions that maps processes to pro-
cesses (and (observed) systems to (observed) systems). A (standard) attribute substitu-
tion is denoted as [b/a] and it is meant to replace a with b in a process P as follows:

0[b/a] = 0
(νx P)[b/a] = νx (P[b/a])
(P | Q)[b/a] = P[b/a] | Q[b/a]
(!P)[b/a] = !(P[b/a])
(s K A.P)[b/a] = s K A \ {a} ∪ {b}.(P[b/a])
(〈〈P | LQM〉〉)[b/a] = 〈〈P[b/a] | LQ[b/a]M〉〉
(πJQK.P)[b/a] = πJQ[b/a]K.(P[b/a])
err[b/a] = err

To avoid cumbersome parenthesis, substitutions are supposed to have precedence on all
syntactic operators.

We consider two special classes of substitutions [/]o and [/]i that allow us to
replace attributes respectively outside and inside transactional scopes.

Definition 7. The substitutions P[b/a]o and P[b/a]i are defined by induction on the
structure of the P:

0[b/a]o = 0
νx P[b/a]o = νx (P[b/a]o)
(P | Q)[b/a]o = P[b/a]o | Q[b/a]o

(!P)[b/a]o = !P[b/a]o

(s K A.P)[b/a]o = s K A \ {a} ∪ {b}.P[b/a]o

〈〈P | LQM〉〉[b/a]o = 〈〈P | LQ[b/a]oM〉〉
(πJQK.P)[b/a]o = πJQ[b/a]oK.P[b/a]o

0[b/a]i = 0
(νx P)[b/a]i = νx P[b/a]i

(P | Q)[b/a]i = P[b/a]i | Q[b/a]i

(!P)[b/a]i = !P[b/a]i

(s K A.P)[b/a]i = s K A.(P[b/a]i)
〈〈P | LQM〉〉[b/a]i = 〈〈P[b/a] | LQ[b/a]iM〉〉
(πJQK.P)[b/a]i = πJQ[b/a]iK.P[b/a]i

Let σ denote any attribute substitution (standard or not).

29

Proposition 5. Attribute substitutions are idempotent.

Proof. The idempotency of [/]o and [/]i descends from the idempotency of [/]. The
idempotency of [/] is trivially obtained by induction on the structure of processes. ut

Attribute substitutions can be generalised to contexts.

Definition 8. A generalised context is a term derivable from the following grammar:

C[◊] ::= ◊σ
∣∣∣ 0

∣∣∣ 〈〈◊σ | P | LQM〉〉
∣∣∣ P | C[◊]

∣∣∣ C[◊] | P

A generalised context C[◊] is s-a if there are no P,Q ∈ P and generalised context C′[◊]
such that C[◊] = C′[〈〈◊ | P | LQM〉〉].

Notice that contexts as in Definition 3 are generalised contexts where all substitutions
are identities (i.e., [a/a] for an a ∈ A). Moreover, generalised contexts are obtained by
“percolating” attribute substitutions trough the structure of contexts as in Definition 3
according to the following definition.

Definition 9. Given a contexts C[◊] as in Definition 3 and an attribute substitution σ,
C[◊]σ is defined by induction on the structure of C[◊]

C[◊] = ◊ =⇒ C[◊]σ = ◊σ
C[◊] = 0 =⇒ C[◊]σ = 0
C[◊] = 〈〈◊ | P | LQM〉〉 =⇒ C[◊] = 〈〈◊σ | Pσ | LQσM〉〉
C[◊] = P | C′[◊] =⇒ C[◊]σ = Pσ | C′[◊]σ
C[◊] = C′[◊] | P =⇒ C[◊]σ = C′[◊]σ | Pσ

We extend to generalised context the definitions of [/]o and [/]i. Namely, we define
attribute substitutions σo and σi as follows.

Definition 10. Let C[◊] be a contexts as per Definition 3 and σ a substitution of the
form P[b/a]o or P[b/a]i, for some a, b ∈ A. Then C[◊]σ is defined as follows

C[◊]σ =

◊σ, if C[◊] = ◊
0, if C[◊] = 0
〈〈◊ | P | LQσM〉〉, if C[◊] = 〈〈◊ | P | LQM〉〉 ∧ σ = [b/a]o

〈〈◊[b/a] | P[b/a] | LQσM〉〉, if C[◊] = 〈〈◊ | P | LQM〉〉 ∧ σ = [b/a]i

Pσ | C′[◊]σ, if C[◊] = P | C′[◊]
C′[◊]σ | Pσ, if C[◊] = C′[◊] | P

It is convenient to adopt the usual notion of context composition C[◊] ◦ C′[◊] =

C[C′[◊]].

Proposition 6. Let a, b ∈ A. For any contexts C[◊] and C′[◊]

(C[◊] ◦ C′[◊])[b/a] = (C[◊][b/a]) ◦ (C′[◊][b/a])

(C[◊] ◦ C′[◊])[b/a]i = (C[◊][b/a]i) ◦ (C′[◊][b/a]i)

C[◊] s-a =⇒ (C[◊] ◦ C′[◊])[b/a]o = (C[◊][b/a]o) ◦ (C′[◊][b/a]o)

30

Proof. By induction on the structure of C[◊]. ut

The follwoing example shows that the last statement in Proposition 6 does not hold if
C[◊] is not s-a.

Example 13. Let C[◊] = 〈〈◊〉〉 and C′[◊] = 〈〈◊ | LQM〉〉. By definition,

(C[◊] ◦ C′[◊])[b/a]o = 〈〈〈〈◊ | Ls K {a}M〉〉〉〉

while (C[◊][b/a]o) ◦ (C′[◊][b/a]o) = 〈〈〈〈◊ | Ls K {b}M〉〉〉〉.

Notice that Proposition 5 implies the following corollary.

Corollary 3. For any context C[◊] and substitution σ, (C[◊]σ)σ = C[◊]σ.

Given a substitution [b/a] we define its inverse [b/a]−1 as [a/b] (and similarly for
[/]o and [/]i.

Lemma 5. For every system S and substitution [/], (Sσ)σ−1 = S (and consequently,
(C[◊]σ)σ−1 = C[◊]).

Proof. Structural induction on S . ut

31

