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Abstract

Design by Contract (DbC) promotes reliable software development through elaboration of type
signatures for sequential programs with logical predicates. This paper presents an assertion
method, based on the π-calculus with full recursion, which generalises the notion of DbC to
multiparty distributed interactions to enable effective specification and verification of distributed
multiparty protocols. Centring on global assertions and their projections onto endpoint asser-
tions, our method allows clear specifications for typed sessions, constraining the content of the
exchanged messages, the choice of sub-conversations to follow, and invariants on recursions.
The paper presents key theoretical foundations of this framework, including a sound composi-
tional proof system for verifying processes against assertions.
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1. Introduction

This paper introduces an assertion method for the specification and verification of distributed
multiparty protocols. We draw ideas from a framework known as Design-by-Contract (DbC),
which is widely used in practice in the context of sequential programming [27, 22]. DbC [34]
centres on the idea that systems should be built on the basis of precise contracts stipulated be-
tween users and sequential programs. Each contract consists of an elaboration of the type signa-
tures of a program with pre/post-conditions and invariants. Consider the following type signature
saying “method foobar should be invoked with an integer, and it will return (if ever) a string”:

string foobar(int n)

The following elaboration of the type signature of foobar would allow us, for instance, to say
“method foobar should be invoked with an integer n that is less than 10, and it will return (if
ever) a string with size n”:
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string foobar(int n)
// precondition: n<10
// postcondition: size(result) = n

A type signature stipulates the key interface of a program. By associating type signatures
with logical predicates, DbC enables a highly effective framework for specifying, validating
and managing systems’ behaviour. Such framework is usable throughout all phases of software
development [38, 30, 32]. As a modelling and programming practice, DbC encourages engineers
to make contracts among software modules precise [34, 23], and build a system on the basis of
these contracts. The aim is to prevent defensive programming thus to improve reliability.

Reliability is a critical issue also in multi-organisational distributed applications, e.g., Web
Services and financial protocols, where the interaction scenarios are much more complex than,
say, request-reply. However, the traditional DbC-based approaches are limited to type signatures
of sequential procedures. For designing, implementing and managing distributed applications,
it is essential to have a tractable and rigorous description of how interactions should proceed
through collaborations among participants: the format and the content of the messages, and
how conversation structures are to unfold as communications take place. Such descriptions can
be used as a basis of the whole range of engineering activities: high-level modelling, design,
implementation, runtime management as well as legal and social practice including auditing and
standardisation.

Unfortunately the current state of the art for the description of application-level distributed
protocols is severely limited. As an example we consider financial protocols. The International
Organization for Standardization (ISO) is currently working on a methodology called universal
financial industry message scheme [46] for specifying and developing financial protocols. Fi-
nancial protocols are typically used for deciding transactions of critical business and economical
significance. The messages for such transactions should be sent and received following a strictly
stipulated protocol structure agreed upon by all parties. It is important, both for business and
legal concerns, that each party properly carries out the responsibility associated with its roles in
the protocol. Currently the description of such a protocol is given only informally (except for the
message formats), by combining informal charts and natural language sentences.

There are three main issues in current practice:

1. It is imprecise: descriptions of protocols are unclear, ambiguous, and legally unusable.
2. It is incomplete: only a small subset of traces from the whole protocol is captured by the

description; it is not possible to describe the whole structure and essential constraints.
3. It is informal: the description cannot be used for formal reasoning about protocols; for

checking their internal consistency; for verifying, either by hand or by machine, the con-
formance of endpoint programs against a stipulated protocol; for code generation; for
testing; and for runtime communication monitoring.

We are currently lacking a methodology, backed up by a rigorous theory, which allows precise,
complete and formal description of application-level distributed protocols suitable for all stages
of software engineering.

In this paper we introduce a theory of assertions for distributed multiparty interactions, and
present a method for specifying and verifying structures and constraints of distributed protocols
inspired by the notion of Design-by-Contract (DbC). Adapting DbC to concurrency and com-
munications poses new challenges due to the fact that, for instance, responsibilities are spread
among distributed participants, and that each participant has a different knowledge of the system
and a different perspective of obligations and guarantees.

3



Global Type 

0. Assert

Global 
Assertion

Well asserted
Global Assertion

1. Check

2. Project

Well asserted
Endpoint 

Assertions T3

G

Asserted
Process P1

3. Validate

Asserted
Process P2

Asserted
Process P3

Well asserted
Endpoint 

Assertions

Well asserted
Endpoint 

Assertions

T2

T1

G

G

  (0) Add predicates to Global Types 
  (1) Check well-assertedness
  (2) Project     obtaining a well asserted Endpoint Assertion       for each role
  (3) Validate      against        Pi Ti

Ti

Assertion method

Figure 1: The assertion method

In previous work, it has been shown that multiparty session types can be used as a formal
type signature for multiparty sessions [8, 4, 29]. A session is an abstraction unit consisting of a
structured series of message exchanges among multiple participants. Conversations in distributed
applications are organised in terms of sessions, which can possibly interleave in a single applica-
tion. For example, a session for an electronic commerce can run interleaved with a session for a
financial transaction to settle its payment. However, a session type does not, for example, allow
to express constraints on the values of the exchanged messages.

Our theory centres on the notion of global assertion, which specifies a contract for the par-
ticipants in a multiparty session by elaborating a session type with logical predicates. Just as
in the traditional DbC, the use of logical predicates allows us to specify more refined protocols,
regarding, among others, content of messages, how choice of sub-conversations is made based
on preceding interactions, and what invariants may be obeyed in recursive interactions.

We present below the key ideas, which are illustrated in Figure 1.

0. Assert - A specification for a multiparty session is given as a global assertion G , namely a
type signature specifying the structure of the session annotated with logical predicates. A
global assertion may be designed from scratch or by elaborating an existing global session
type [29].

1. Check - A minimal semantic criterion, well-assertedness of G , characterises consistent spec-
ifications with respect to the temporal flow of events, to avoid unsatisfiable specifications.

2. Project - G is projected onto the endpoints, yielding one endpoint assertion (Ti) for each
participant in the session. Each endpoint assertion specifies the behavioural responsibility,
as well as the assumptions that the endpoint can rely on. The consistency of endpoint
assertions is preserved by projection, so that well-assertedness can be checked only once
at the global level.

3. Validate - Asserted processes, modelled with a variant of the π-calculus annotated with pred-
icates, are verified against endpoint assertions through a sound and relatively complete
compositional proof system. Noticeably, an asserted process can be validated against one
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or more endpoint assertions, as sessions can interleave in a single application. For exam-
ple, a session for an electronic commerce can run interleaved with a session for financial
transaction to settle its payment.

Contributions. This article is the full version of the extended abstract published in [7]. Here we
include the detailed definitions and explanations, additional results and examples, and complete
proofs. We also expand the related work. Our contributions include an algorithmic validation
of consistency of global assertions (Propositions 3.6 and 4.7); semantic foundations of global
assertions through labelled transitions (Propositions 6.6 and 7.4); a sound proof system for the
compositional validation of processes against assertions (Theorem 8.4), leading to predicate er-
ror freedom (Corollary 7.5). The latter result ensures that the process will meet its obligations
assuming that the remaining parties do so.

Outline. § 2 gives an informal illustration of global assertions by two examples. § 3 presents the
formal syntax of global assertions; § 3.2 defines consistency of global assertions in terms of two
principles called history sensitivity and temporal satisfiability, § 3.3 and § 3.4 present a design-
time checker for history sensitivity and temporal satisfiability, respectively. § 4 presents the
formal syntax of endpoint assertions and the projection of global assertions onto the endpoints;
§ 4.1 defines consistency of endpoint assertions, which is proven to be preserved by projection.
§ 5 introduces our process language and validation of processes; § 5.1 defines the asynchronous
π-calculus with session initialisation and extended with predicate annotations and run-time errors
to notify violations of the constraints; § 5.2 presents the rules for static local validation against
endpoint assertions which rely on a refinement relation on endpoint assertions. § 6 presents the
semantics of assertions; § 6.1 defines the labelled transition systems for processes and for end-
point assertions, § 6.2 defines behavioural conformance of processes with assertions, and § 6.3
shows that if a process satisfies a specification then it also satisfies any weaker specification. § 7
presents our subject reduction result which yields a predicate error freedom theorem. Soundness
is presented in § 8. § 9 concludes with further results and related work. Appendixes contain the
proofs and detailed definitions.

2. DbC for Distributed Multiparty Interactions

In our theory contracts are specified as global assertions. A global assertion uses logical formulae
to prescribe, for each interaction specified in the underlying session type, what the sending party
must guarantee, and dually what the receiving party can rely on. Concretely:

1. Each message exchanged in a session is associated with a predicate which constrains the
values carried in the message (e.g., “the seller will send an invoice to the buyer where the
amount of product is equal to the amount previously specified by the buyer in the order”).
The predicate is an obligation for the sender and a pre-condition for the receiver.

2. Each branch in a session is associated with a predicate which constrains the selection of
that branch (e.g., “the seller can choose the ‘sell’ option for a product only if the ordered
quantity does not exceed the stock”). The predicate is an obligation for the selector and a
pre-condition for the other participant.

3. Each recursion in a session is associated with an invariant representing an obligation to be
maintained by all parties at each repetition of the recursion (e.g., “while negotiating, seller
and buyer maintain the price per unit about a fixed threshold”).
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The aim of this paper is to provide a design-time method for specification and validation
of these constraints. Below we informally illustrate the key ideas of this specification method
by showing two examples of global assertion using sequence diagrams annotated by logical
formulae.

Example 2.1 (Buyer-Seller). Figure 2 specifies a simple session involving participants Buyer
and Seller. The content of the messages exchanged by the participants is represented by the
interaction variables Order and Invoice, both of type Int.

Buyer Seller

Offer:Int

ok

A1 

quit

A2
A1 = (Order > 0)  
A2 = (Order < MAXORDER)
A3 = (Invoice = Order)

Invoice:Int
A3

predicates

⊕

Figure 2: Global assertion for session “Buyer-Seller”.

First Buyer asynchronously sends Seller an order. The message carries the variable Order
representing the quantity of the order. Then Seller chooses between the branches ok or quit.
In the ok branch Seller sends Buyer an invoice (i.e., a message that carries variable Invoice
representing the dispatched quantity of product). In the quit branch the protocol terminates with
no sale (e.g., Seller is out of stock). The predicates express constraints on the values that can
be exchanged. The example uses three predicates. By A1, Buyer guarantees that the quantity
of the order is greater that 0 and, dually, Seller can rely on this fact. By A2, Seller selects
the branch ok only if the quantity requested by the order is less than the constant MAXORDER
(e.g., orders that are too large must be rejected). A3 specifies the relationship between the data
previously sent in the order and the data being sent by the seller in the invoice.

Example 2.2 (Three Parties with Recursion). Figure 3 describes a multiparty session among
the participants Buyer, Seller, and Warehouse. The content of the messages is represented by
the interaction variables vq,vo of type Int, vp,vo of type Price, va,vn of type Bool and vk of type
Update (e.g., the enumeration type {commit,cancel} of commands to the warehouse database).

Buyer sends Warehouse a request vq specifying the amount of product to buy; Warehouse
sends Seller a boolean va representing the availability of the specified amount of product;
Seller sends Buyer a boolean vn representing the availability of product and a starting price vp
for the negotiation. Next, Buyer selects either to proceed with a recursive negotiation (branch
ok) or to quit the protocol (branch quit). In the first case, Buyer sends Seller an offer vo.
Seller continues the negotiation (hag) or terminates the negotiation accepting (sell) or rejecting
(quit) the offer. The recursion has one parameter p vo that is initially set to vp (the initial price
defined by Seller) and, upon recursive invocation, takes the value that vo had in the previous
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Buyer Seller

hag

sell

A
A3

Warehouse

μt<vp>(p_vo:Price)

t<vo>

 vo:Price

A  = (p_vo ≥ vp) 
A1 = (vq > 0) 
A2 = (vn = va ∧ vp > 0)
A3 = (vn = true)
A4 = (vo ≥ vp)
A5 = (vo > p_vo)

predicates

A1

⊕

 vq:Int
 va:Bool

ok

quit

A4
⊕

A5

exit

 vn:Bool, vp:Price

 vk:Update

 vk:Update

A2

Figure 3: Global assertion for session “Three-Parties with Recursion”.

recursion instance. This allows us to compare the current content of vo with the one of the
previous recursion instance (cf. assertion A5 below).

The recursion invariant A states that p vo is always greater or equal than vp; by A1 Buyer

guarantees that the amount of product is greater than 0 and dually, Warehouse relies upon it;
by A2 Seller guarantees that the availability is the same specified by Warehouse and that the
initial price is greater than 0. By A3 Buyer guarantees that the protocol continues (i.e., branch
ok is selected) only if there is enough product (i.e., vn = true); by A4 Buyer guarantees that the
offer is always greater or equal than vp, by A5 Seller guarantees that the negotiation continues
only if Buyer has increased the offer with respect to the previous recursion instance (or with
respect to the initialisation value when executing the first instance).

3. Global Assertions

In this section we present the syntax and consistency criteria for global assertions. We also
illustrate an effective method to check for the consistency of global assertions.

3.1. Syntax of Global Assertions
First, we fix the model of the predicates, called underlying logic, for which we assume the

decidability of the validity of closed formulae. We use the following syntax of logical formulae,
often called predicates.

A,B ::= true | false | φ(e1, . . . ,en) | A∧B | ¬A | ∃v(A)
e1,e2 ::= n | e1 op e2

where ei ranges over expressions and φ ranges over pre-defined atomic predicates with fixed
arities and types [33, §2.8]. Constants (e.g., Bool, Int, etc) are denoted with n and op ranges over
pre-defined binary expressions operators. We denote the set of free variables of A with var(A),
similarly for var(e).

Global assertions (ranged over by G ,G ′, . . .) elaborate global session types in [29] with pred-
icates. The syntax is given below:
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G ::= p→ p′ : k (ṽ : S̃){A}.G
| p→ p′ : k {{A j}l j : G j} j∈J

| µt〈ũ : A′〉(ṽ : S̃){A}.G
| t〈ũ : A′〉
| G ,G ′

| end

• p,p′, .. are participants,

• k,k′, .. are channels,

• u,v, .. are interaction variables,

• S,S′, .. are sorts.

Interaction p→ p′ : k (ṽ : S̃){A}.G describes a communication between a sender p and a receiver
p′ via the kth session channel (k is a natural number), followed by G . The variables in the vector
ṽ are called interaction variables and bind their occurrences in A and G ; interaction variables
are sorted by sorts S (Bool, Int, ...) that denote types for first-order message values (i.e., do not
include channels). The predicate A constrains the content of ṽ: the sender p guarantees A and
the receiver p′ relies on A (like in the rely-guarantee paradigm [31]).

Branching p→ p′ : k{{A j}l j : G j} j∈J allows the selector p to send to participant p′, through
k, a label li from {l j} j∈J (J is a finite set of indexes). In this case p guarantees Ai (upon which p′

can rely). Once li is selected, Gi is to be executed by all parties.
Recursive assertions (cf. [19]) take the form

µt〈ũ : A′〉(ṽ : S̃){A}.G (3.1)

(where t is an assertion variable) and specify how a recursive session should be carried out
through interactions among participants. The vector of formal parameters ṽ consists of pairwise
distinct variables, and S̃ is a vector of sorts of the same length of ṽ (each vi in ṽ has sort Si
of S̃). The expression 〈ũ : A′〉 in (3.1) denotes the set of all the vectors of values satisfying
A′ and settles the initial conditions on formal parameters ṽ; the vectors ṽ and ũ have the same
length (each ui corresponds to vi in ṽ and has sort Si). Assertion A is the recursion invariant
which specifies the condition that needs to be obeyed at each recursion instantiation, namely
each occurrence of the form t〈ũ : A′〉 in the recursion body G ; expression 〈ũ : A′〉 denotes the set
of vectors of values satisfying A′, as in (3.1), and constrains the values of ṽ in the next recursion
instance. A recursive assertion can be unfolded to an infinite tree, as in the equi-recursive view
on recursive types [41]. The free occurrences in A and G of parameters in ṽ are bound in the
recursive assertion. We impose that each recursion instantiation in G is guarded by prefixes, i.e.
the underlying recursive types should be contractive and, for simplicity, assume that there is at
least a recursion instantiation in G . In recursive assertions and recursion instantiations, when
convenient, we use 〈ẽ〉 as an abbreviation for 〈ũ : ũ = ẽ〉 (with all variables in ũ fresh).

Composition G ,G ′ represents the parallel interactions specified by G and G ′, while end
represents the termination. Sorts and trailing occurrences of end are often omitted.

We write p∈G when p occurs in G . For simplicity, we avoid linearity-check [4] by assuming
that each channel in G is used (maybe repeatedly) only between two parties: one party for
input/branching and by the other for output/selection.

Example 3.1 (Global Assertion for “Buyer-Seller”). The protocol illustrated in Example 2.1
is modelled by the global assertion GBS below, where k1, k2, and k3 are communication channels:

GBS = Buyer→ Seller : k1 (Order : Int){A1}.
Seller→ Buyer : k2{{A2}ok : Gpay,

{true}quit : end }
Gpay = Seller→ Buyer : k3 (Invoice : Int){A3}.end

A1 def
= (Order > 0)

A2 def
= (Order < MAXORDER)

A3 def
= (Invoice = Order)
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Example 3.2 (Global Assertion for “Three Parties with Recursion”). The protocol illustrated
in Example 2.2 is modelled by the global assertion Gneg below:

Gneg = Buyer→ Warehouse : k1 (vq : Int){A1}.
Warehouse→ Seller : k2 (va : Bool){true}.
Seller→ Buyer : k3 (vn,vp : Bool,Price){A2}.
Buyer→ Seller : k4{{A3}ok : Gok, {true}quit : Gend}

Gok = Seller→ Warehouse : k5 (vk : Update){true}.
µt〈vp〉(p vo : Price){A}.
Buyer→ Seller : k6 (vo : Price){A4}.
Seller→ Buyer : k7{{A5}hag : t〈vo〉,

{true}exit : end,
{true}sell : end }

Gend = Seller→ Warehouse : k5 (vk : Update){true}.end

A def
= (p vo ≥ vp)

A1 def
= (vq > 0)

A2 def
= (vn = va∧ vp > 0)

A3 def
= (vn > 0)

A4 def
= (vo ≥ vp)

A5 def
= (vo > p vo)

where k1. . . k7 are (linear) channels and the recursion parameter p vo (initially set to vp) denotes
the offer of Buyer in the previous recursion instance.

3.2. Well Asserted Global Assertions
When setting up global assertions as a contract among multiple participants, we should prevent
inconsistent specifications, such as those in which it is logically impossible for a participant to
meet the specified obligations. Below we define consistency of global assertions in terms of
two constraints on the predicates in terms of two principles: history sensitivity and temporal
satisfiability.

Let I (G) be the set of variables occurring in G (i.e., the variables exchanged in the interac-
tions and the recursion parameters). A participant p knows a variable v ∈ I (G) if either

• v occurs in an interaction of G involving p as a sender or receiver,

• v is a recursion parameter of recursive assertion µt〈ũ : A′〉(ṽ : S̃){A}.G ′ occurring in G and
p knows (1) all the variables in var(A′), and (2) all variables in var(A′′) for each recursive
instantiation t〈ũ : A′′〉 in G ′.

I (G) �p denotes the set of variables of G that p ∈ G knows; this relation can be computed
effectively (see Appendix A).

History sensitivity: “A predicate guaranteed by a participant p can only contain those interac-
tion variables that p knows.”

Temporal satisfiability: “For each possible set of values satisfying A and, for each predicate A′

appearing after A, it is possible to find values satisfying A′”.

History sensitivity requires each participant, say p, to know all the variables involved in the
predicates on which p has an obligation.

Example 3.3 (History sensitivity). The following global assertion violates history sensitivity

pA→ pB : k1(u : Int){true}. pB→ pC : k2 (v : Int){true}. pC→ pA : k3 (z : Int){z < u}. end
9



since pC has to send z such that z < u without knowing the value of u. We model below a similar
(although not equivalent) conversation that satisfies history sensitivity:

pA→ pB : k1(u : Int){true}. pB→ pC : k2 (v : Int){v < u}. pC→ pA : k3 (z : Int){z < v}. end

where pC is able to choose a non-violating value for z since she knows v and she relies on v being
smaller than u.

Temporal satisfiability requires that a process can always find a valid forward path at each
interaction point until it meets the end (if ever). This property is violated, for example, when a
global assertions has a trivially false predicate (e.g., pA→ pB : k1(v : Int){false}.G). However, it is
not sufficient to check the satisfiability of each single predicate to ensure temporal satisfiability.
Rather, we should check that no predicates can become unsatisfiable when considered in the
temporal sequence of the conversation flow. In other words, for every set of values satisfying
a predicate occurring at some point of the protocol, there must exist at least one set of values
satisfying all predicates that will occur later in the protocol.

Example 3.4 (Temporal satisfiability). GT S no below violates temporal satisfiability:

GT S no = pA→ pB : k1(v : Int){v > 6}.pB→ pA : k2 (z : Int){v > z∧ z > 6}. end

In fact, if pA sends v= 7, which satisfies v> 6, then pB will not be able to find a value that satisfies
7 > z∧ z > 6. Global assertion GT S yes models a similar (although not equivalent) conversation
that satisfies temporal satisfiability:

GT S yes = pA→ pB : k1(v : Int){v > 7}.pB→ pA : k2 (z : Int){v > z∧ z > 6}. end

In GT S yes, predicate v > 7 guarantees that there is at least one non violating value for z.

Definition 3.5 (Well-assertedness). Assertions satisfying history sensitivity and temporal satis-
fiability are called well-asserted.

Proposition 3.6 (Decidability of Well-assertedness). Checking well-assertedness of global as-
sertions is decidable if the underlying logic is decidable.

In the rest of this section we present a method for effectively checking the well-assertedness
of global assertions. We first introduce a simple compositional checker for history sensitivity
(§ 3.3), then we give the compositional rules for checking temporal satisfiability (§ 3.4).

3.3. Effective Checking of History-Sensitivity
The rules for checking history-sensitivity are shown in Figure 4, where for readability we omit
sort annotations of the interaction variables. The checker uses the environments E defined by
the following grammar

E ::= /0 | E ,v@L | E , t : v1 @L1, . . . ,vn @Ln

where in expressions of the form v@L, L is a location, namely a set {p,p′} of two participants
who know v. We assume that E uniquely associates (i) a location L to interaction variables and
(ii) a location Li to each recursion parameter vi in the recursive assertion defining t. We denote
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E , ṽ@{p,p′} ` G ∀u ∈ var(A)\ ṽ,E ` u@p

E ` p→ p′ : k (ṽ){A}.G
∀ j ∈ J, E ` G j ∀u ∈

⋃
j∈J var(A j),E ` u@p

E ` p→ p′ : k {{A j}l j : G j} j∈J

E ` G E ` G ′

E ` G ,G ′ E ` end
dom(E)∪{v1, . . . ,vn} ⊇ var(A)\ ũ
E , t : v1 @L1 . . .vn @Ln ` t〈ũ : A〉

E , t : v1 @L1 . . .vn @Ln ` G dom(E)⊇ var(A)\ ũ dom(E)∪{v1, . . . ,vn} ⊇ var(A′)
E ` µt〈ũ : A〉(v1 @L1, . . . ,vn @Ln){A′}.G

Figure 4: Checker for history sensitivity on global assertions

the domain of E with dom(E). For recursive assertions, the checker relies on the annotations
µt〈ũ : A′〉(ṽ1 @L1 . . . ṽn @Ln){A}.G assigning a location to each recursion parameter (an algo-
rithm for automatic annotation is presented in Appendix A).

Hereafter, we write E ` v@p when p ∈ E(v).
The rules in Figure 4 enforce history-sensitivity by disciplining the usage of assertion vari-

ables and restricting the set of interaction variables that can be used in each predicate. The first
two rules require that the sender/selector p must know all the interaction variables of the pred-
icate. The other rules are straightforward. Note that the rules are purely syntactic, hence the
verification of history sensitivity of G is a linear-time problem.

3.4. Effective Checking of Temporal-Satisfiability

The checker for temporal-satisfiability is presented in Definition 3.7. We pre-annotate each
occurrence of assertion variables t with tA(ṽ) where A is the invariant of the recursion binding t
and ṽ are the corresponding formal parameters. This annotation is always possible if G does not
have free assertion variables.

Definition 3.7 (Temporal-Satisfiability of Global Assertions). We recursively define a boolean
function GSat(G ,A) as follows:

1. if G = p1→ p2 : k (ṽ : S̃){A′}.G ′ then{
GSat(G ,A) = GSat(G ′,A∧A′), if A⊃ ∃ṽ(A′)
GSat(G ,A) = false, otherwise

2. if G = p1→ p2 : k {{A j}l j : G j} j∈J then{
GSat(G ,A) =

∧
j∈J GSat(G j,A∧A j), if A⊃ (

∨
j∈J A j)

GSat(G ,A) = false, otherwise

3. if G = G1,G2 then GSat(G ,A) = GSat(G1,A)∧GSat(G2,A)

4. if G = µt〈ũ : A′〉(ṽ : S̃){B}.G ′ then{
GSat(G ,A) = GSat(G ′,A∧B), if A⊃ ∃ũ(A′) and A∧A′ ⊃ (B[ũ/ṽ])
GSat(G ,A) = false, otherwise

5. if G = tB(ṽ)〈ũ : A′〉 then GSat(G ,A) = (A⊃ ∃ũ(A′))∧ (A∧A′ ⊃ (B[ũ/ṽ]))

6. if G = end then GSat(G ,A) = true

11



GSat(G ,A) incrementally builds in A the conjunction of all the predicates that precede the
current interaction predicate. In (1) we require that for all the values that satisfy A, there exists a
set of values for the interaction variables ṽ that satisfy the current predicate A′. In (2) GSat(G ,A)
takes predicates of branching points disjunctively and requires that (for all the values that satisfy
A) there exists at least one branch that can be chosen (i.e., the corresponding predicate A j is true).
Notice that the protocol

Alice→ Bob : k1 (v : Int){v > 0}. Bob→ Alice : k2 {{v < 0}l1 : G1,{v > 0}l2 : G2}

is well-asserted even if only its second branch is satisfiable. We do not specify any relationship
among the predicates in a branching, such as a XOR relationship to enforce determinism in
potential paths, in order to allow abstract (but consistent) specifications. For the same reason,
well-assertedness does not prohibit unreachable branches. Note that global assertions are trivially
satisfiable in a bad environment (i.e., GSat(G , false) = true).

Example 3.8 (Evaluation of GSat). We illustrate the evaluation of GSat(GT S rec, true) where
GT S rec is an extension of global assertion GT S yes of Example 3.4 with recursion, where the
predicate of the second interaction has been modified to include the recursion parameter.

GT S rec = µt〈u′ : u′ = 7〉(u : Int){u≥ 7}.G ′
G ′ = pA→ pB : k1(v : Int){v > u}.G ′′
G ′′ = pB→ pA : k2 (z : Int){v > z∧ z > 6}. t〈u+1〉

To evaluate GSat(GT S rec, true), first we apply case (4) of Definition 3.7. The first condition

true⊃ ∃u′(u′ = 7) and true∧ (u′ = 7)⊃ (u′ ≥ 7)

of (4) is satisfied thus the evaluation is reduced to (the evaluation of) GSat(G ′,u ≥ 7). Next we
apply case (1) of Definition 3.7. The first condition of (1) is satisfied since

(u≥ 7)⊃ ∃v(v > u)

and the evaluation is reduced to GSat(G ′′,(u ≥ 7)∧ (v > u)). Next we apply again case (1) of
Definition 3.7. The first condition of (1) is satisfied

(u≥ 7)∧ (v > u)⊃ ∃z((v > z)∧ (z > 6))

and the evaluation is reduced to GSat(t〈u′ : u′ = u+1〉,A), where A = (u≥ 7)∧ (v > u)∧ (v >
z)∧ (z > 6), which is true by (5) since A⊃ ∃u′(u′ = u+1) and A∧ (u′ = u+1)⊃ (u′ > 7).

The fixed shape of the implications (e.g. no alternating quantifiers) suggests that validation
can be done efficiently [42]. Since the algorithm is compositional it can be integrated with the
checker in Figure 4.
G is well asserted if it satisfies history sensitivity (i.e., Figure 4) and GSat(G , true) = true.

4. Endpoint Assertions and Projection

Endpoint assertions, ranged over by T ,T ′, . . ., specify the behavioural contract of a session from
the perspective of a single participant. The grammar is given as follows:

T ::= k!(ṽ : S̃){A};T | k?(ṽ : S̃){A};T | k&{{Ai}li : Ti}i∈I | k⊕{{A j}l j : T j} j∈I
| µt〈ũ : A′〉(ṽ : S̃){A}.T | t〈ũ : A′〉 | end
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In k!(ṽ : S̃){A};T the sender guarantees that the values sent via k (denoted by S̃-sorted variables
ṽ) satisfy A, then behaves as T ; dually for the receiver k?(ṽ : S̃){A};T .

In k⊕{{A j}l j : T j} j∈I the selector guarantees A j when choosing l j on k; dually assertion
k&{{A j}l j : T j}i∈I states that A j can be assumed when branching at k on a label l j. Assertion
µt〈ũ : A′〉(ṽ : S̃){A}.T constrains parameters ṽ of types S̃ which initially take values ũ (also of
types S̃) that satisfy A′; the invariant of the recursion is A.

Definition 4.1 (Closed and Open Endpoint Assertion). An endpoint assertion is closed (resp.
open) if any of its predicates does not (resp. it may) contain free variables.

Let G be a global assertion, A be a predicate, and p ∈ G (i.e., p is a participant occurring
in G). The projection of A on p with respect to G , written A � G p, is a predicate obtained by
existentially quantifying all the variables of A that p does not know, and is defined as ∃ṽext(A)
where ṽext is the vector of variables in var(A) \ I (G) �p. Hereafter, we assume G understood
and write � p instead of � G p. The projection function in Definition 4.2 yields an endpoint
assertions from a global assertion and a predicate AP according to a participant p. The predicate
AP models the set of assumptions on which p can rely when engaging in the endpoint assertion.

Definition 4.2 (Projection). Given G and AP, the projection of G on a participant p with respect
to AP is denoted by (G) ↓AP

p and recursively defined as follows, assuming p1 6= p2.

(1) (p1→ p2 : k (ṽ : S̃){A}.G ′) ↓AP
p =


k!(ṽ : S̃){A}.(G ′) ↓A∧AP

p if p= p1

k?(ṽ : S̃){(A∧AP)�p}.(G ′) ↓A∧AP
p if p= p2

(G ′) ↓A∧AP
p otherwise

(2) (p1→ p2 : k {{Ai}li : Gi}i∈I) ↓AP
p =


k⊕{{Ai}li : (Gi) ↓Ai∧AP

p }i∈I if p= p1

k&{{(Ai∧AP)�p}li : (Gi) ↓Ai∧AP
p }i∈I if p= p2

(G1) ↓
AP∧

∨
j∈I A j

p (= (Gi) ↓
AP∧

∨
j∈I A j

p ) otherwise
(3) (G1,G2) ↓AP

p = (Gi) ↓AP
p if p ∈ Gi and p 6∈ G j, i 6= j ∈ {1,2}

(4) (µt〈ũ : A′〉(ṽ : S̃){A}.G) ↓AP
p =

{
µt〈ũ : A′ �p〉(ṽ : S){A�p}.(G) ↓AP

p if p ∈ G
end if p 6∈ G

(5) (t〈ũ : A′〉) ↓AP
p = t〈ũ : A′ �p〉

(6) (end) ↓AP
p = end

If no side condition applies, (G) ↓A
p is undefined. The projection of G on p, denoted G �p, is

given as (G) ↓true
p .

Clause (1) in Definition 4.2 projects value passing interactions; the projection for the sender
p1 does not change A, which is consistent with the fact that p1 knows all variables in A (i.e.,
A�p = A) when G is well-asserted (by history sensitivity of G). The projection for the receiver
p2 is more delicate. Consider the following well-asserted global assertion:

Seller→ Buyer : k1 (cost : Int){cost > 10}.
Buyer→ Bank : k2 (pay : Int){pay≥ cost}. end

13



The predicate pay ≥ cost is meaningless to Bank since Bank does not know cost; rather the
projection on Bank should be

k2?(pay : Int){∃cost(cost > 10∧ pay≥ cost)}

which incorporates the constraint between Buyer and Seller. In this way, we give Bank a
stronger pre-condition by using a predicate of the global assertions (without revealing Bank the
actual value of cost). More generally, (1) projects all the past predicates incorporating also the
constraints on interactions in which p2 does not participate. Existential quantification is used to
close the predicate with respect to the variables that the participant does not know. The projection
(1) provides p2 with the strongest precondition, avoiding the burden of defensive programming
(e.g. the programmer of Bank can concentrate on the case pay≥ 10).

The case (2) projects branching interactions and it is similar to value passing. The “other-
wise” case says the projection should be the same for all branches following [29]. In (3), each
participant is in at most a single global assertion to ensure each local assertion is single threaded.
In (4), the projection on p is the recursive assertion itself with its predicate projected on p by
existential quantification, similarly in (5). In (6), the projection of any global assertion G on a
participant that does not participate to any interaction/branching in G is end. Remarkably, by (6)
the projection of end on any participant is end.

Example 4.3 (Projection of “Buyer-Seller”). We define below the projections of GBS (Exam-
ple 3.1) on the two participants TBuyer = GBS �Buyer, and TSeller = GBS �Seller:

TBuyer = k1!(Order : Int){A1};
k2&{{A1∧A2}ok : k3?(Invoice : Int){A1∧A2∧A3}, {A1}quit : end}

TSeller = k1?(Order : Int){A1};
k2⊕{{A2}ok : k3!(Invoice : Int){A3}, {true}quit : end}

where A1 def
= (Order > 0), A2 def

= (Order < MAXORDER), and A3 def
= (Invoice = Order) (cf.

Example 3.1). The projections in Example 4.3 do not introduce existential quantifiers since
both participants know all the variables involved in the session. Remarkably, since Buyer knows
Order, the predicates added by the projection do not add relevant information. In fact, TBuyer
could be simplified as follows:

k1!(Order : Int){A1};k2&{{A2}ok : k3?(Invoice : Int){A3}, {true}quit : end}

More generally, it is not necessary to incorporate a previously occurred predicate A in the projec-
tion of a receive/branching on p, say B, when the truth of B does not depend on A. For example,
if p knows all the variables of a previous predicate A then p does not acquire new information
from the relations stated in A because p knows the actual values assigned to each variable when
they are introduced. Another example is when the free variables in A are unrelated to the free
variables of the current predicate, as illustrated in Example 4.4.

Example 4.4 (Projection of “Three Parties with Recursion”). We define below the projections
of Gneg (Example 3.2) on the three participants TWarehouse = Gneg �Warehouse, TBuyer = Gneg �
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Buyer, and TSeller = Gneg �Seller:

TWarehouse = k1?(vq : Int){A1};k2!(va : Bool){true}
k5?(vk : Update){A∧A2};end

TBuyer = k1!(vq : Int){A1};k3?(vn,vp : Bool,Price){A2′};
k4⊕{{A3}ok : T ok

Buyer, {true}quit : end}
T ok

Buyer = µt〈vp〉(p vo : Price){A}.
k6!(vo : Price){A4};
k7&{{A5}hag : t〈vo〉, {true}exit : end, {true}sell : end}

TSeller = k2?(va : Bool){true};k3!(vn,vp : Bool,Price){A2};
k4&{{A3}ok : T ok

Seller, {true}quit : k5!(vk : Update){true}}
T ok

Seller = k5!(vk : Update){true};
µt〈vp〉(p vo : Price){A}.
k6?(vo : Price){A4};
k7⊕{{A5}hag : t〈vo〉, {true}exit : end, {true}sell : end}

where A def
= (p vo ≥ 100), A1 def

= (vq > 0), A2 def
= (vn = va∧ vp > 0), A2′ def

= (∃vn.A2), A3 def
=

(vn = true), A4 def
= (vo ≥ vp), and A5 def

= (vo > p vo). In the initialisation of the recursive
parameters 〈vp〉 is a shortcut for 〈u : u = vp〉. Notice that the projection of A2 on Seller is A2′

where the variable vn, which is not known by Seller, is closed with the existential quantifier.
Noticeably, the predicate of the last interaction of Twarehouse in Example 4.4 can be simplified

by substituting A∧A2 with true since A and A2 do not add information on vk.
For readability, in the examples of this paper we will omit unnecessary predicates from the

projections. In Definition 4.2, we opted for simplicity rather than efficiency. An alternative
definition of projection which implements the optimization (omitting unnecessary predicates)
can be found in Appendix B.1.

4.1. Well-Assertedness of Endpoint Assertions
Well-assertedness can be defined on endpoint assertions as for global assertions, characterising
the same two principles discussed in §3.2.

An endpoint assertion for endpoint p satisfies history-sensitivity if for each predicate A that
annotates a send or a select interaction, p knows all v ∈ var(A). To check for history-sensitivity
of endpoint assertions is vacuous since all actions are now executed by a single participant. The
decision procedure for the temporal-satisfiability of endpoint assertions is similar to the one in
Definition 3.7.

Definition 4.5 (Temporal-Satisfiability of Endpoint Assertions). We define a boolean func-
tion LSat(T ,A) as follows:

1. If T = k!(ṽ : S){A′};T ′ or T = k?(ṽ : S){A′};T ′ then{
LSat(T ,A) = LSat(T ′,A∧A′), if A⊃ ∃ṽ(A′)
LSat(T ,A) = false, otherwise

2. If T = k⊕{{A j}l j : T j} j∈J or T = k&{{A j}l j : T j} j∈J then{
LSat(T ,A) =

∧
j∈J LSat(T j,A∧A j), if A⊃ (

∨
j∈J A j)

LSat(T ,A) = false, otherwise
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3. If T = µt〈ũ : A′〉(ṽ : S){B}.T ′ then{
LSat(T ,A) = LSat(T ′,A∧B), if A⊃ ∃ũ(A′) and A∧A′ ⊃ B[ũ/ṽ]
LSat(T ,A) = false, otherwise

4. If T = tB(ṽ)〈ũ : A′〉 then LSat(T ,A) = (A⊃ ∃ũ(A′))∧ (A∧A′ ⊃ B[ũ/ṽ])

5. If T = end then LSat(T ,A) = true

We say T satisfies temporal satisfiability if LSat(T , true) = true.

We say T is well-asserted if it satisfies history sensitivity and temporal satisfiability. In
Proposition 4.7 we show that projection preserves well-assertedness. This results relies on the
following lemma.

Lemma 4.6. Let Groot be a well-asserted global assertion and p ∈ Groot . For every sub-term G
of Groot and for every predicate AG such that var(AG )⊆ I (Groot)\ I (G)

GSat(G ,AG )⊃ LSat(G �p,AG �Groot p)

PROOF: See Appendix B.2. 2

Recall that AG �Groot p = ∃ṽext(AG ) where ṽext = var(AG ) \ I(Groot � p). By Lemma 4.6, GSat
(with an assumption on the predicate AG ) implies LSat (with an assumption on the predicate
∃ṽext(AG )); noticeably, such assumption is always satisfied if AG (resp. ∃ṽext(AG )) is obtained as
an incremental conjunction of predicates as that operated by GSat (resp. LSat) from Groot to G .

Proposition 4.7 (Projections). Let G be a well-asserted global assertion. Then for each p ∈ G ,
if G �p is defined then G �p is also well-asserted.

PROOF: The case for history-sensitivity is trivial, considering that the predicates annotating
send/select interactions of projection G � p are exactly those that appear in the corresponding
interactions of G (and p knows all the interaction variables therein, by well-assertedness of G).
The case for temporal satisfiability immediately follows from Lemma 4.6. 2

5. Compositional Validation

In § 5.1 we present the language for protocol implementation. We use the π-calculus with multi-
party sessions [29] augmented with predicates for checking (both outgoing and incoming) com-
munications and errors to notify a run-time violation of the contract. The reduction rules for
asserted processes are also given in § 5.1. The validation system for asserted processes is pre-
sented in § 5.2.

5.1. The Asserted π-Calculus

The syntax of asserted programs or simply programs (P,Q, . . .) is given below.
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P ::= a[2..n](s̃).P request

| a[p](s̃).P accept

| s!〈ẽ〉(ṽ){A};P send

| s?(ṽ){A};P receive

| s�{A}l;P selection

| s�{{Ai}li : Pi}i∈I branch

| if e then P else Q cond

| (νa : G)P hide

| P | Q parallel

| µX〈ẽt̃〉(ṽs̃).P rec def

| X〈ẽs̃〉 rec call

| 0 idle

a[2..n](s̃).P multicasts a session initiation request to each a[p](s̃).P (with 2≤ p≤ n) by multiparty
synchronisation through a shared name a. Send, receive, and selection, all through a session
channel s, are associated with a predicate. Branch associates a predicate to each label. In the
conditional process, e is a boolean expression. The others are standard. Binders for programs are
defined as follows: a[2..n](s̃).P and a[p](s̃).P bind s̃ in P, s!〈ẽ〉(ṽ){A};P and s?(ṽ){A};P bind
ṽ in P, (νa : G)P binds a in P, and µX〈ẽt̃〉(ṽs̃).P binds X , ṽ, s̃ in P. We denote the set of free
program names of P as fpv(P) and we assume that for every recursion definition µX〈ẽt̃〉(ṽs̃).P,
X ∈ fpv(P) (i.e., the recursion body includes at least one call). P is closed if it is without free
variables.

(Asserted) runtime processes or simply processes are obtained extending programs with the
runtime constructs below:

. . . | s : h̃ | errH | errT | (νs̃)P with h ::= l | ñ

Process s : h1..hn represents messages in transit through a session channel s, assuming asyn-
chronous in-order delivery as in TCP, with each hi denoting either a branching label l or a vector
of values ñ. The empty queue is written s : /0. Processes errH and errT denote two kinds of run-
time assertion violation: errH (for “error here”) indicates a predicate violation by the process
itself; and errT (“error there”) a violation by the environment (e.g., another party). Process (νs̃)P
binds s̃ in P, and (P | Q) is for parallel composition.

We denote the set of free (resp. bound) names (i.e., channel names, and shared names) of P
with fn(P) (resp. bn(P)).

We define below the structural congruence on programs and runtime processes as the small-
est relation closed under the following equations and including alpha-renaming.

P | 0≡ P (νa : G)0≡ 0 (νs̃)0≡ 0 P | Q≡ Q | P (P | Q) | R≡ P | (Q | R)
(νa : G)(νa′ : G ′)P≡ (νa′ : G ′)(νa : G)P (νa : G)P | Q≡ (νa : G)(P | Q) if a 6∈ fn(Q)

(νs̃)(νs̃′)P≡ (νs̃′)(νs̃)P (νs̃)P | Q≡ (νs̃)(P | Q) if s̃ 6∈ fn(P)

µX〈ẽt̃〉(ṽs̃).P≡ P[µX(ṽs̃).P/X ][ẽt̃/ṽs̃] where X〈ẽ′s̃′〉[µX(ṽs̃).P/X ]
def
= µX〈ẽ′s̃′〉(ṽs̃).P

Example 5.1 (Programs for Three Parties with Recursion). We define a program implement-
ing global assertion Gneg in Examples 3.2 and 4.4, where s̃ = s1, . . . ,s7 (for simplicity si de-
notes ski ) and Warehouse, Buyer, and Seller are participants 1, 2, and 3, respectively: Pneg =
a[1,3](s̃).P2 | a[1](s̃).P1 | a[3](s̃).P3. In Pneg, Buyer invites the other participants; the role of each
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participant is implemented below:

P1 = s1?(vq){A1}; s2!〈inStock(vq)〉(va){true}; s5?(vk){true}; 0

P2 = s1!〈10〉(vq){A1}; s3?(vn,vp){A2′};
if (vn = true) then (s3 �{A3}ok;Pok

2 ) else (s3 �{true}quit;0)
Pok

2 = µX〈vp, s̃〉(p vo, s̃). s6!〈p vo +1〉(vo){A4};
s7 �{{A5}hag : X〈vo, s̃〉, {true}exit : 0, {true}sell : 0}

P3 = s2?(va){true}; s3!〈va,100〉(vn,vp){A2};
s4 �{{A3}ok : Pok

3 , {true}quit : s5!〈restore〉(vk){true}; 0}
Pok

3 = s5!〈commit〉(vk){true};µX〈vp, s̃〉(p vo, s̃).s6?(vo){A3};
if (vo ≥ 200) then (s7 �{true}sell;0) else

if (vo > p vo) then (s7 �{A5}hag;X〈vo, s̃〉) else (s7 �{true}exit;0)

Above, the warehouse program P1 uses the locally implemented function inStock, from Int to
Bool, to check if the given quantity of product is available. P2 intends to buy 10 items of product
and, in the recursion body the offer increments of one the price of the previous recursion instance.
P3 always proposes 100 as a starting bid. Specific policies are defined for the selection of the
branches in the conditional statement of P3 (e.g., sell is selected if the offer is greater then or
equal to 200); such policies are not part of the contract and do not need to be known by the
other participants, although they must be compatible with the predicates of the selections in the
corresponding assertions.

a[2..n](s̃).P1 | a[2](s̃).P2 | . . . | a[n](s̃).Pn→ (νs̃)(P1 | P2 | . . . | Pn | s1 : /0 | . . . | sn : /0) [R-LINK]

s!〈ẽ〉(ṽ){A};P | s : h̃→ P[ñ/ṽ] | s : h̃ · ñ (ẽ ↓ ñ and A[ñ/ṽ] ↓ true) [R-SEND]

s?(ṽ){A};P | s : ñ · h̃→ P[ñ/ṽ] | s : h̃ (A[ñ/ṽ] ↓ true) [R-RECV]

s�{{Ai}li : Pi}i∈I | s : l j · h̃→ Pj | s : h̃ ( j ∈ I and A j ↓ true) [R-BRANCH]

s�{A}l : P | s : h̃→ P | s : h̃ · l (A ↓ true) [R-SELECT]

if e then P else Q→ P (e ↓ true) if e then P else Q→ Q (e ↓ false) [R-IF]

s!〈ẽ〉(ṽ){A};P→ errH (ẽ ↓ ñ and A[ñ/ṽ] ↓ false) [R-SENDERR]

s?(ṽ){A};P | s : ñ · h̃→ errT | s : h̃ (A[ñ/ṽ] ↓ false) [R-RECVERR]

s�{{Ai}li : Pi}i∈I | s : l j · h̃→ errT | s : h̃ ( j ∈ I and A j ↓ false) [R-BRANCHERR]

s�{A}l : P→ errH (A ↓ false) [R-SELECTERR]

P→ P′

(νa : G)P→ (νa : G)P′
P→ P′

(νs)P→ (νs)P′
P→ P′

P | Q→ P′ | Q
P→ Q′ P≡ P′ Q≡ Q′

P→ Q
[R-ARES/R-SRES/R-PAR/R-STR]

Figure 5: Reduction: non-error cases (top) - error cases (centre) - context rules (bottom)

The reduction semantics with predicate checking is the smallest relation on runtime processes
closed under the rules in Figure 5.
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The satisfaction of the predicate is checked at each communication action: send, receive,
selection and branching, where we write A ↓ true (resp. ẽ ↓ ñ) for a closed formula A (resp.
expression ẽ) when it evaluates to true (resp. ñ). When initiating a session, [R-LINK] establishes a
session through multiparty synchronisation, generating queues and hiding all session channels.
The remaining rules are standard, modelling communications in a session via queues [29, 4].

The validation rules presented in § 5.2 do not rely on the predicates which annotate programs.
We use such annotations to model the runtime checking that the contents of incoming and outgo-
ing messages respect the contract. This runtime checking activity is modelled by the reduction
rules in Figure 5. Here, we use annotated programs for consistency and symmetry. An extension
of our theory where runtime checking is embedded in external dedicated monitors can be found
in [17].

5.2. Validation Rules

For validation, we use judgements of the form

C ;Γ ` P.∆

which reads: “under C and Γ, program P is validated against ∆”; C , Γ and ∆ are defined as
follows:

C ::= true | C ∧A
∆ ::= /0 | ∆, s̃ :T @p

Γ ::= /0 | Γ,a : G | Γ,X : (ṽ : S̃)T1 @p1 . . .Tn @pn

C is an assertion environment which incrementally records the conjunction of predicates;
hereafter, Γ ` P.∆ abbreviates true;Γ ` P.∆.

∆ is an endpoint assertion assignment which maps the channels for each session, say s̃, to a
well-asserted endpoint assertion located at a participant, say T @p. Let ∆1 and ∆2 be endpoint
assertion assignments, their disjoint union ∆1,∆2 is endpoint assertion assignment ∆ such that

∆(s̃) =


∆1(s̃) if s̃ ∈ dom(∆1) and ∀s̃′ ∈ dom(∆2), s̃∩ s̃′ = /0

∆2(s̃) if s̃ ∈ dom(∆2) and ∀s̃′ ∈ dom(∆1), s̃∩ s̃′ = /0

⊥ otherwise

Hereafter, when writing ∆1,∆2 we assume ∆ = ∆1,∆2 is defined.
Γ is a global assertion assignment which maps shared names to well-asserted global asser-

tions and process variables to the specification of their parameters. We write Γ ` a : G when Γ

assigns G to a, and Γ ` X : (ṽ : S̃)T1 @p1 . . .Tn @pn when Γ maps X to the vector of endpoint
assertions T1 @p1 . . .Tn @pn with recursion parameters ṽ sorted by S̃.

The validation rules are given in Figure 6. In each rule, we assume all occurring (global/end-
point) assertions to be well-asserted. We illustrate the key rules.

Rule [SND] validates that participant p sends values ẽ on session channel k, provided that ẽ
satisfy the predicate under the current assertion environment, and that the continuation is valid
once ṽ gets replaced by ẽ. Dually, rule [RCV] validates a value input against the continuation of the
endpoint assertion under the extended assertion environment C ∧A (i.e., the process can rely on
A for the received values after the input). Rules [SEL] and [BRA] are similar. Rules [MACC] and [MCAST]
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C ⊃ A[ẽ/ṽ] C ;Γ ` P[ẽ/ṽ].∆, s̃ :T [ẽ/ṽ]@p

C ;Γ ` sk!〈ẽ〉(ṽ){A};P.∆, s̃ :k!(ṽ : S̃){A};T @p
[SND]

C ∧A;Γ ` P.∆, s̃ :T @p

C ;Γ ` sk?(ṽ){A};P.∆, s̃ :k?(ṽ : S̃){A};T @p
[RCV]

C ⊃ A j C ;Γ ` P.∆, s̃ :T j @p j ∈ I
C ;Γ ` sk �{A j}l j : P.∆, s̃ :k⊕{{Ai}li :Ti}i∈I @p

[SEL]

C ∧Ai;Γ ` Pi .∆, s̃ :Ti @p ∀i ∈ I
C ;Γ ` sk �{{Ai}li : Pi}i∈I .∆, s̃ :k&{{Ai}li :Ti}i∈I @p

[BRA]

C ;Γ ` P.∆, s̃ :(Γ(a)�p)@p p 1
C ;Γ ` a[p](s̃).P.∆

[MACC]
C ;Γ ` P.∆, s̃ :(Γ(a)�1)@1

C ;Γ ` a[2..n](s̃).P.∆
[MCAST]

C ∧ e;Γ ` P.∆ C ∧¬e;Γ ` Q.∆

C ;Γ ` if e then P else Q.∆
[IF]

C ;Γ ` P.∆ C ;Γ ` Q.∆
′

C ;Γ ` P | Q.∆,∆′
[CONC]

∆ end only
C ;Γ ` 0.∆

[IDLE]

C ; Γ, a :G ` P . ∆ a 6∈ fn(C ,Γ,∆)
C ; Γ ` (νa : G)P . ∆

[HIDE] C ′;Γ
′ ` P.∆

′
Γ
′ ⊆ Γ C ⊃ C ′ ∆

′ c ∆

C ;Γ ` P.∆
[CONSEQ]

T1[ẽ/ṽ], . . . ,Tn[ẽ/ṽ] well-asserted and well-typed under Γ, ṽ : S̃
C ; Γ, X : (ṽ : S̃)T1 @p1 . . .Tn @pn ` X〈ẽs̃1 . . . s̃n〉. s̃1 :T1[ẽ/ṽ]@p1, . . . , s̃n :Tn[ẽ/ṽ]@pn

[VAR]

C ; Γ, X : (ṽ : S̃)T1 @p1 . . .Tn @pn ` P. s̃1 :T1 @p 1 . . . s̃n :Tn @pn
C ; Γ ` µX〈ẽs̃1 . . . s̃n〉(ṽs̃1 . . . s̃n).P. s̃1 :T1[ẽ/ṽ]@p 1 . . . s̃n :Tn[ẽ/ṽ]@pn

[REC]

Figure 6: Validation rules for programs

for session acceptance and request validate the continuation against the projection of the global
assertion onto that participant (n is the number of participants in Γ(a) and p is one of them).

Rule [IF] validates a conditional against ∆ if each branch is validated against ∆ under the ex-
tended environment C∧e or C∧¬e, as in the corresponding rule in Hoare logic. It is possible that
one of these two assertion environments is not satisfiable. In this case, in every successive send,
selection or recursion invocation the entailment of the current predicate from the assertion envi-
ronment will be trivially true. Notice that the branch validated under the unsatisfiable assertion
environment will never be executed. Rule [CONC] takes a disjoint union of two endpoint assertion
assignments, and rule [IDLE] takes ∆ which only contains end as endpoint assertions. Rule [HIDE] is
standard, assuming a is not specified in C .

Rule [VAR] validates an instantiation of X with expressions against the result of performing
the corresponding substitutions over endpoint assertions associated to X (in the environment).
In [REC], a recursive program is validated if the recursion body P is validated against the given
endpoint assertions for its zero or more sessions, under the same endpoint assumptions assigned
to the process variable X . The validity of this rule hinges on the partial correctness nature of the
semantics of the judgement.

Rule [CONSEQ] uses the refinement relation c on endpoint assertions. If T c T ′, T specifies
a more refined behaviour than T ′, in that T strengthens the predicates for send/selection, so
it emits/selects less; and weakens those for receive/branching, so it can receive/accept more.
Example 5.2 illustrates this intuition.
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Example 5.2 (Refinement). Below, endpoint assertion Ts refines Tw (i.e., Ts c Tw):

Ts = k1!(v : Int){v > 10}; k2?(z : Int){z > 0}; k3&{{true}l1 : T1,{v > 100}l2 : T2}
Tw = k1!(v : Int){v > 0}; k2?(z : Int){z > 10}; k3&{{v > 5}l1 : T1}

Ts has a stronger obligation on the sent value v, a weaker reliance on the received value z, a
weaker guarantee at l1, and offers one additional branch. The formal definition of refinement
adopts the standard definition of unfolding of recursive assertions given below.

Definition 5.3 (Unfolding of Endpoint Assertions). Assume the following recursive assertion
to be well-asserted: T = µt〈ũ : A〉(ṽ : S̃).T ′ (omitting the invariant since it does not affect the
unfolding). Its one-time unfolding is

unfold(T ) = (T ′[µt(ṽ : S̃).T ′/t],A[ṽ/ũ])

with t〈ũ : A′〉[µt(ṽ : S̃).T ′/t] def
= µt〈ũ : A′〉(ṽ : S̃).T ′

The rest being homomorphic (and returning A = true).

The result of an unfolding is an open process with respect to the recursion parameters ṽ; we anno-
tate it with the initialisation predicate A, which must be considered when computing the closure
(i.e., by checking that A[ñ/ṽ] ↓ true when substituting ñ). The formal definition of refinement is
given below.

Definition 5.4 (Refinement). A binary relation R over closed well-asserted endpoint assertions
is a refinement relation if T1R T2 implies one of the following conditions holds

• T1 = k!(ṽ : S̃){A1};T ′1 and T2 = k!(ṽ : S̃){A2};T ′2 s.t. A1 ⊃ A2 and T ′1 σR T ′2 σ for each
σ = [ñ/ṽ] with A1σ ↓ true.

• T1 = k?(ṽ : S̃){A1};T ′1 and T2 = k?(ṽ : S̃){A2};T ′2 s.t. A2 ⊃ A1 and T ′1 σR T ′2 σ for each
σ = [ñ/ṽ] with A2σ ↓ true.

• T1=k⊕{{A1i}l1i :T1i}i∈I and T2=k⊕{{A2 j}l2 j :T2 j} j∈J s.t. ∀i ∈ I, l1i = l2 j, A1i⊃A2i and
T1iR T2i.

• T1=k&{{A1i}l1i :T1i}i∈I and T2=k&{{A2 j}l2 j :T2 j} j∈J s.t. ∀i ∈ I, l1i = l2 j, A2 j ⊃ A1 j and
T1 jR T2 j.

• ∀i, j∈{1,2} s.t. i 6= j, Ti=µt〈ũ : A′〉(ṽ : S̃){A}.T ′i , T j =T ′j [ñ/ṽ] where (T ′j ,A)= unfold(Ti),
and A[ñ/ṽ] ↓ true.

where predicates are evaluated in fixed environments C , Γ and ∆.
If T1R T2 for some refinement relation R , we say T1 is a refinement of T2 (written T1 c T2).

Definition 5.5 (Refinement of Assertion Assignments). We define refinement of assertions as-
signments (i.e., ∆c ∆′) as follows:

• ∆c ∆

• ∆, s̃ : end@pc ∆

• s̃ : T @pc s̃ : T ′@p if T c T ′
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• ∆1,∆2 c ∆′1,∆
′
2 if ∆i c ∆′i, for i = 1,2

Example 5.6 (Validation of “Buyer-Seller”). We present an implementation P of GBS from Ex-
ample 3.1 and we illustrate a fragment of its validation against the projections TBuyer = GBS �
Buyer and TSeller = GBS �Seller from Example 4.3, that we summarise below for convenience:

TBuyer = k1!(Order : Int){A1};T ′Buyer
T ′Buyer = k2&{{A1}ok : k3?(Invoice : Int){A3}, {true}quit : end}

TSeller = k1?(Order : Int){A1};T ′Seller
T ′Seller = k2⊕{{A2}ok : k3!(Invoice : Int){A3}, {true}quit : end}

A1 = (Order > 0)
A2 = (Order < MAXORDER)
A3 = (Invoice = Order)

Program P is defined as follows; for simplicity we write si for ski and s1,s2,s3 = s̃

P = (νa : GBS)(a[2](s̃).PBuyer | a[2](s̃).PSeller)

PBuyer = s1!〈100〉(Order){A1∧Order < 200};P′Buyer
P′Buyer = s2 �{{A1}ok : s3?(Invoice){A3};0,{true}quit : 0}

PSeller = s1?(Order){A1};P′Seller
P′Seller = if (Order > 10∧A2) then s2 �{A2}ok : s3!〈Order〉(Invoice){A3}; 0

else s2 �{true}quit : 0

Notice that the predicate of the first interaction of PBuyer is strengthened with respect to TBuyer,
that is Buyer guarantees a stronger postcondition on Order. In P′Seller the party expresses a
precise condition Order > 10∧ A2 to determine the branch to select. The first fragment of
validation for P is the following:

true,a : GBS ` PBuyer . s̃ : TBuyer @1
[MCAST]

true,a : GBS ` a[2](s).PBuyer . /0

true,a : GBS ` PSeller . s̃ : TSeller @2
[MACC]

true,a : GBS ` a[2](s).PSeller . /0
[CONC]

true,a : GBS ` a[2](s).PBuyer | a[2](s).PSeller . /0
[HIDE]

true, /0 ` (νa : GBS)(a[2](s).PBuyer | a[2](s).PSeller). /0

We illustrate below the validation of the left-hand side branch (omitting the branch for PSeller),
where A1′ = A1∧Order < 200 and σ = [100/Order]. The rule [CONSEQ] is applied to suit the
predicate A1′ of the process with the predicate A1 of the endpoint assertion; the rule can be
applied since A1′ ⊃ A1 therefore k1!(Order : Int){A1′};T ′Buyer c k1!(Order : Int){A1};T ′Buyer by
Definition 5.4. The dots stand for the validation of the quitting branch that we omit.

−
[IDLE]

A1∧A3σ,a : GBS ` 0. s̃ : end@1
[RCV]

A1σ,a : GBS ` s3?(Invoice){A3σ};0. s̃ : k3?(Invoice : Int){A3σ};end@1 . . .
[BRA]

true⊃ 100≥ 100∧100 < 200 true,a : GBS ` P′Buyerσ. s̃ : T ′Buyerσ@1
[SND]

true,a : GBS ` s1!〈100〉(Order){A1′};P′Buyer . s̃ : k1!(Order : Int){A1′};T ′Buyer @1
[CONSEQ]

true,a : GBS ` s1!〈100〉(Order){A1′};P′Buyer . s̃ : k1!(Order : Int){A1};T ′Buyer @1

Example 5.7 (Validating Seller Process - an Example with Recursion). The validation of Pneg
from Example 5.1 against ∆ = s̃ : TWarehouse @1, s̃ : TBuyer @2, s̃ : TSeller @3 is decomposed in the
validations of each single participant using the rule [CONC]. In this example we focus on a fragment
of P3, the Seller part of Pneg:

true, /0 ` P3 . s̃ : TSeller @3 (5.1)
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TSeller and P3 are summarised below for convenience, with each s1, . . . ,s7 of Pneg corresponding
to a channel k1, . . . ,k7 of Tneg.

TSeller = k2?(va : Bool){true};k3!(vn,vp : Bool,Price){A2};
k4&{{A3}ok : T ok, {true}quit : k5!(vk : Update){true}}

Tok = k5!(vk : Update){true};Trec
Trec = µt〈vp〉(p vo : Price){A}.Tbody
Tbody = k6?(vo : Price){A4};Thag
Thag = k7⊕{{A5}hag : t〈vo〉, {true}exit : end, {true}sell : end}

P3 = s2?(va){true}; s3!〈va,100〉(vn,vp){A2};
s4 �{{A3}ok : Pok, {true}quit : s5!〈restore〉(vk){true}; 0}

Pok = s5!〈commit〉(vk){true};Prec
Prec = µX〈vp, s̃〉(p vo, s̃).Pbody
Pbody = s6?(vo){A4};Phag
Phag = if (vo ≥ 200) then (s7 �{true}sell;0) else Pelse
Pelse = if (vo > p vo) then (s7 �{true}hag;X〈vo, s̃〉) else (s7 �{true}exit;0)

By applying [RCV], [SND], and [BRA] the validation of P3 is reduced to the validation of true, /0 `
0.end (straightforward by [IDLE]) and by A3, /0 ` Pok .Tok which by [SND] is reduced into

A3, /0 ` Prec .Trec (5.2)

The one-time unfolding of Trec is unfold(Trec) = (TBodyσ, p vo = vp) where σ = [µt . . ./t]. By
Definition 5.4, Trecσ[vp/p vo]c Trec. By [CONSEQ], (5.2) follows from:

A3, /0 ` P2 .Trecσ[vp/p vo]@3 (5.3)

By rule [REC], (5.3) follows from

A3,Γ ` s6?(vo){A4}; if . . . . s̃ : Tbodyσ@3 (Γ = X : (p vo : Price)Tbodyσ@3) (5.4)

We show below the derivation tree for (5.4), where we let C = A3∧A4∧¬(v0 ≥ 200).

Tbodyσ[vo/p vo] well asserted
[VAR]

Tbodyσ[vo/p vo]c µt〈vo〉(p vo : Price){A}.Tbody C ,Γ ` X〈vo, s̃〉. s̃ : Tbodyσ[vo/p vo]@3
[CONSEQ]

C ,Γ ` X〈vo, s̃〉. s̃ : µt〈vo〉(p vo : Price){A};Tbody @3
(substituting)

C ∧ vo > p vo ⊃ vo > p vo C ,Γ ` X〈vo, s̃〉. s̃ : t〈vo〉σ@3
[SEL]

C ∧ vo > p vo,Γ ` s4 �{vo > p vo}hag;X〈vo, s̃〉. s̃ : Thagσ@3 . . .
[IF]

. . . C ,Γ ` if (vo > p vo) then (s7 �{true}hag;X〈vo, s̃〉) else (s7 �{true}exit;0). s̃ : Thagσ@3
[IF]

A3∧A4,Γ ` if (vo ≥ 200) then (s7 �{true}sell : 0) else (Pelse). s̃ : Thagσ@3
[RCV]

A3,Γ ` s6?(vo){A4}; if . . . . s̃ : k6?(vo : Price){A4};Thagσ@3

The . . . on the premise of (both occurrences of) rule [IF] indicate the missing validation of the
first and second branch, respectively. We focus instead on the branch containing the recursive
instantiation. In [CONSEQ] the endpoint assertion is unfolded again and, as before by Definition 5.4,
the unfolding is a refinement.
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6. Semantics of Assertions

A desirable soundness condition is that if a process can be validated against an assertion as-
signment then its behaviour conforms with the behaviour of that assignment. In order to define
the semantics of judgement, we compare the semantics of processes with that of endpoint asser-
tions. To this purpose we define the labelled transition systems for asserted processes and for
assertions, and we give the rules for semantic conformance, or satisfaction, of asserted processes
against endpoint assertion assignment.

6.1. Labelled Transition Systems for Processes and Assertions
The labelled transition relation for asserted processes uses the following labels

α ::= a[2..n](s̃) | a[i](s̃) | s!ñ | s?ñ | | s� l | s� l | τ

for session requesting/accepting, value sending/receiving, selection, branching, and the silent
action, respectively. We write P α→ Q when P has a one-step transition α to Q.

a[2..n](s̃).P
a[2..n](s̃)→ P a[i](s̃).P

a[i](s̃)→ P [LINKOUT]/ [LINKIN]

A[ñ/ṽ] ↓ true

sk!〈ñ〉(ṽ){A};P
sk!ñ→ P[ñ/ṽ]

A[ñ/ṽ] ↓ true

sk?(ṽ){A};P
sk?ñ→ P[ñ/ṽ]

[SEND]/ [RECV]

A ↓ true

sk �{A}l : P
sk�l→ P

(A j ↓ true) j∈I

sk �{{Ai}li : Pi}i∈I
sk�l j→ Pj

[SEL]/ [BRANCH]

A[ñ/ṽ] ↓ false

sk!〈ñ〉(ṽ){A};P τ→ errH

A[ñ/ṽ] ↓ false

sk?(ṽ){A};P
sk?ñ→ errT

[SENDERR]/ [RECVERR]

A ↓ false

sk �{A}l : P τ→ errH

(A j ↓ false) j∈I

sk �{{Ai}li : Pi}i∈I
sk�l j→ errT

[LABELERR]/ [BRANCHERR]

P→ Q

P τ→ Q

P α→ P′ bn(α)∩ fn(Q) = /0

P | Q α→ P′ | Q
[TAU]/[PAR]

P α→ P′

(νa : G)P α→ (νa : G)P′
P α→ P′

(νs̃)P α→ (νs̃)P′
[ARES]/[SRES]

P′ α→ Q′ P≡ P′ Q≡ Q′

P α→ Q
[STR]

Figure 7: Labelled transition for processes: non-error cases (top) - error cases (centre) - τ and context cases (bottom)

The transition rules for processes are shown in Figure 7 and are the standard synchronous
ones except that (i) they include the reduction semantics given in § 5.1 (i.e., P→ Q induces
P τ→ Q), and (ii) predicates are checked at each communication action and if the predicate is
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−
〈Γ,∆〉 τ→ 〈Γ,∆〉

[TR-TAU]

−
〈(a : G ,Γ),∆〉 a[2..n](s̃)→ 〈(a : G ,Γ),∆, s̃ : G �1@1〉

[TR-LINKOUT]

−
〈(a : G ,Γ),∆〉 a[i](s̃)→ 〈(a : G ,Γ),∆, s̃ : G � i@i〉

[TR-LINKIN]

A[ñ/ṽ] ↓ true

〈Γ,(∆, s̃ : k!(ṽ : S̃){A};T @p)〉 sk!ñ→ 〈Γ,(∆, s̃ :T [ñ/ṽ]@p)〉
[TR-SEND]

A[ñ/ṽ] ↓ true

〈Γ,(∆, s̃ : k?(ṽ : S){A};T @p)〉 sk?ñ→ 〈Γ,(∆, s̃ : T [ñ/ṽ]@p)〉
[TR-RECV]

A j ↓ true

〈Γ,(∆, s̃ : k⊕{{Ai}li : Ti}i∈I @p)〉 sk�l j→ 〈Γ,(∆, s̃ : T j @p)〉
[TR-SEL]

A j ↓ true

〈Γ,(∆, s̃ : k&{{Ai}li : Ti}i∈I @p)〉 sk�l j→ 〈Γ,(∆, s̃ : T j @p)〉
[TR-BRANCH]

Figure 8: Labelled transition for endpoint assertions

violated then in the case of input/branching action the process moves to errT, and in the case of
an output/selection the process moves to errH with τ-action.

The asymmetry between the violations in incoming messages, which generate visible moves,
and outgoing messages, which result in silent moves, reflects the fact that we want to ensure that
a participant will respect a contract as long as the environment does so. In fact, we model the
fact that outgoing violations are not immediately visible and can be addressed and fixed locally
(e.g., “blocked” by a runtime monitor). Incoming violations instead are caused by messages that
are already in a queue, and whose effects are not isolated; such messages may, for instance, have
auditing relevance, or raise issues to be addressed by some control authority, etc.

The semantics of endpoint assertions is defined as another labelled transition relation, of form
〈Γ,∆〉 α→ 〈Γ′,∆′〉, which reads: the specification 〈Γ,∆〉 allows the action α, with 〈Γ′,∆′〉 as the
specification for its continuation. In this transition relation, only legitimate (assertion-satisfying)
actions are considered. Figure 8 lists the full rules. The transition rules for endpoint assertions
are the standard synchronous ones. By rule [TR-TAU] specification 〈Γ,∆〉 can always make a silent
transition. Rule [TR-LINKOUT] starts a new session for participant 1, specified as the projection on
1 of the global assertion G associated to a by the global assertion assignment. Rule [TR-LINKIN]

is similar, for participant i. Rule [TR-SEND] (resp. [TR-RECEIVE]) sends (resp. receives) a vector
of values only if it satisfies the current predicate A. Similarly, [TR-SEL] (resp. [TR-BRANCH]) sends
(resp. receives) a branching label only if the associated predicate is satisfied. Noticeably, 〈Γ,∆〉
never allows violating actions.
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6.2. Behavioural Conformance of Processes

We define the semantic counterpart of Γ ` P .∆ by using a simulation between the transitions
of processes and those of assertions. The simulation relation (Definition 6.1), requires an in-
put/branching action to be simulated only for “legal” values/labels, i.e. for actions in which
predicates are not violated. Intuitively, we demand that a process conforms to a given contract
as long as its environment behaves as prescribed by that contract. Below we use the predicate
erasure erase(P) that erases all the predicates from P. Similarly erase(∆) erases predicates from
the underlying session types, giving the typing environments. We denote with Γtyping the envi-
ronment that associates free interaction variables to sorts (in the sense of [29]). Hereafter, if there
exists an α such that 〈Γ,∆〉 allows α then we say that 〈Γ,∆〉 is capable to move at the subject
sbj(α) (the subject of α).

Definition 6.1 (Conditional Simulation). Let R be a binary relation whose elements relate a
closed process P without errH or errT and a pair of assignments 〈Γ,∆〉 such that Γtyping `
erase(P) . erase(∆) in the typing rules in [29, §4]. Then R is a conditional simulation if, for
each (P,〈Γ,∆〉) ∈ R :

1. for each input/branching/session-accept transition P α→ P′, 〈Γ,∆〉 is capable to move at
sbj(α) and, if 〈Γ,∆〉 α→ 〈Γ′,∆′〉 then (P′,〈Γ′,∆′〉) ∈ R

2. for each output/selection/τ/session-request transition P α→ P′, 〈Γ,∆〉 α→ 〈Γ′,∆′〉 such that
(P′,〈Γ′,∆′〉) ∈ R

We write P- 〈Γ,∆〉 when (P,〈Γ,∆〉) ∈ R for some conditional simulation R .

The condition that P must be well-typed against Γtyping and erase(∆) prevents “incomplete”
processes (i.e., those that do not perform all the activities required by the respective endpoint
assertion) from being considered semantically correct. For instance, without this condition the
inaction 0 would be conditionally simulated by any ∆.

Example 6.2 (Example of Conditional Simulation). This example illustrates why the defini-
tion of conditional simulation distinguishes between input and output actions. We verify P -
〈Γ,∆〉 for the process and endpoint assertion assignment defined below:

P = s1!〈10〉(v){v≥ 10};s2?(u){u≥ 10};0
∆ = s1,s2 : k1!(v : Int){v≥ 10};k2?(u : Int){u≥ 10};end@p

First, P can make a transition for rule [SEND]:

P
s1!10→ s2?(u){u≥ 10};0

Following Definition 6.1 (2), we observe that, by rule [TR-SEND] (since 10≥ 10 ↓ true)

〈Γ,∆〉 s1!10→ 〈Γ,s1,s2 : k2?(u : Int){u≥ 10};end@p〉

Next, the process can perform an input step, receiving a range of possible values. Assume the
process is receiving u = 5 which violates the predicate u≥ 10:

s2?(u){u≥ 10};0 s2?5→ errT
26



The process conforms to the assertion by Definition 6.1 (1) since conditional simulation only
requires 〈Γ,s1,s2 : k2?(u : Int){u≥ 10};end@p〉 to be capable to move at subject s2?. Having
received a violating value is not P’s fault since P does not have an obligation on u; reversely,
the guarantees of P have been violated therefore P does not have any further obligation on the
computation. On the other hand, if P receives a valid value for u

s2?(u){u≥ 10};0 s2?10→ 0

the usual requirements apply; namely one must check

〈Γ,s1,s2 : k2?(u : Int){u≥ 10};end@p〉 s2!10→ 〈Γ,s1,s2 : end@p〉

and 0- 〈Γ,s1,s2 : end@p〉.
We can now define the satisfaction relation.

Definition 6.3 (Satisfaction). Let P be a closed process and ∆ an endpoint assertion assignment.
If P - 〈Γ,∆〉 then we say that P satisfies ∆ under Γ, and write Γ |= P . ∆. The satisfaction
is extended to open processes, denoted C ;Γ |= P .∆, by considering all closing substitutions
respecting Γ and C over ∆ and P.

The judgement Γ |= P.∆ in Definition 6.3 states that (1) P will send valid messages or selection
labels; and (2) P will continue to behave well (i.e., without going into error) w.r.t. the continua-
tion specification after each valid action in (1) as well as after receiving each valid message/label
(i.e. which satisfies an associated predicate). The satisfaction is about partial correctness since,
if P (is well-typed and) has no visible actions then the satisfaction trivially holds.

6.3. Behavioural Conformance and Refinement

Proposition 6.6 says that a process satisfying a stronger specification also satisfies a weaker one.
We prove Proposition 6.6 after two auxiliary lemmas.

Lemma 6.4. Assume ∆ c ∆′. If 〈Γ,∆〉 is capable of moving at the subject sbj(α) then 〈Γ,∆′〉 is
also capable to move at the subject sbj(α).

PROOF: The proof is straightforward from the definition refinement (Definition 5.4). Up to
the unfolding of recursive assertions, an endpoint assertion may differ from its refinement only
in (a) the predicates in case of input/output/selection/branching and (b) the sets of possible la-
bels/branches in case of selection/branching. By Definition 5.4, if a refinement T1 consists of
an input/output/selection/branching with subject k then also the refined process T2 consists of
an input/output/selection/branching, respectively, with subject k (for input and branching we use
well-assertedness). This property holds recursively for the respective continuations.

Lemma 6.5. Assume ∆c ∆′.

1. If 〈Γ,∆〉 α→ 〈Γ1,∆1〉 s.t. α is an output/selection, then 〈Γ,∆′〉 α→ 〈Γ1,∆
′
1〉 s.t. ∆1 c ∆′1.

2. If 〈Γ,∆〉 α→ 〈Γ1,∆1〉 s.t. α is an input/branching action, and if 〈Γ,∆′〉 allows α, then
〈Γ,∆′〉 α→ 〈Γ1,∆

′
1〉 s.t. ∆1 c ∆′1.

3. If 〈Γ,∆〉 τ→ 〈Γ1,∆1〉 then 〈Γ,∆′〉 τ→ 〈Γ1,∆
′
1〉 or 〈Γ,∆′〉 τ→ τ→ 〈Γ1,∆

′
1〉 s.t. ∆1 c ∆′1.
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PROOF: The proof is by induction on the structure of ∆, and is relegated in Appendix D.1.

Proposition 6.6 (Refinement). If Γ |= P.∆ and ∆c ∆′ then Γ |= P.∆′.

PROOF: The proof is by induction on the transitions of P. We report below a proof sketch. The
full proof is in Appendix D.2. We proceed by case analysis.
Case 1. If P α→ P′ by output/selection/τ transition, since Γ |= P .∆ then 〈Γ,∆〉 α→ 〈Γ,∆1〉. By
Lemma 6.5, 〈Γ,∆′〉 α→ 〈Γ,∆′1〉 where ∆1 c ∆′1.
Case 2. If P α→ P′ by input/branching, since Γ |= P.∆ then 〈Γ,∆〉 has the capability of a move at
the subject sbj(α). By Lemma 6.4 also 〈Γ,∆′〉 has the capability of a move at the subject sbj(α).
We have two possible cases:

• ∆′ cannot move (because its predicate is more restrictive) but still Γ |= P.∆′ since 〈Γ,∆′〉
is capable of an input/branching step at the subject sbj(α),

• 〈Γ,∆′〉 α→ 〈Γ,∆′1〉. In this case also 〈Γ,∆〉 α→ 〈Γ,∆1〉 since the refinement is less restrictive
that the refined endpoint assertion in input/branching moves. By Lemma 6.5, ∆1 c ∆′1.
The predicate holds by induction.

7. Subject Reduction and Error Freedom

We prove subject reduction after few auxiliary lemmas. The full proofs are in Appendix F and
are based on message assertions which extend endpoint assertions with runtime queues (see Ap-
pendix C). Synchronization of endpoint assertions with message queues corresponds to a τ

action.

Lemma 7.1. Suppose Γ ` P.∆. If P τ→ P′ then Γ ` P′ .∆ or Γ ` P′ .∆′ s.t. 〈Γ,∆〉 τ→ 〈Γ,∆′〉.

PROOF: The proof is relegated to Appendix F.1. 2

A straightforward corollary of Lemma 7.1 is the following.

Lemma 7.2 (Subject Reduction for Silent Actions). Suppose Γ`P.∆ and P→P′. Then there
exists ∆′ s.t. Γ ` P′ .∆′ and either ∆′ = ∆ or 〈Γ,∆〉 τ→ 〈Γ,∆′〉.

A similar result holds for non-silent actions. We first give an auxiliary lemma showing that
validation is preserved by structural equivalence.

Lemma 7.3 (Subject Congruence). If Γ ` P1 .∆ and P1 ≡ P2 then Γ ` P2 .∆.

PROOF: The proof is relegated to Appendix F.3. 2

Proposition 7.4 (Subject Reduction for Visible Transitions).
If Γ ` P.∆ and P α→ P′ with α 6= τ then

1. if α is an output, a selection or an action at a shared channel, then there exist Γ′, ∆′ s.t.
〈Γ,∆〉 α→ 〈Γ′,∆′〉 and Γ′ ` P′ .∆′.
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2. if α is an input or a branching and there exist Γ′, ∆′ s.t. 〈Γ,∆〉 α→ 〈Γ′,∆′〉 then Γ′ ` P′ .∆′.

PROOF (SKETCH): (The detailed proof is relegated to Appendix F.4). The proof is by induction
on the validation proof of Γ ` P.∆. (1) is the standard property for subject reduction. We intro-
duced (2) for input actions since P could receive, despite behaving according to the specification,
violating input from the environment. Therefore, in the case of input actions we require subject
reduction to hold only for non violating messages form the environment, namely those messages
which are allowed by 〈Γ,∆〉. The non trivial case is when rule [REC] is used; in this case the proof
follows by observing that (i) P can only move after being unfolded, that (ii) by induction the
unfolding satisfies the statement, and that (iii) by Lemma 7.3 (the case of structural equivalence
of a process with its unfolding) the statement holds also if we fold P′. 2

As an immediate consequence of subject reduction, observing that if there is a derivation for
P then P does not contain errors (Proposition Appendix C.4 in Appendix Appendix C), we now
establish error freedom.

Corollary 7.5 (Predicate Error Freedom). Suppose P is a closed program, Γ`P.∆ and P
α1..αn−→

P′ such that 〈Γ,∆〉 allows α1..αn. Then P′ contains neither errH nor errT.

8. Soundness

The soundness proof relies on basic properties of the validation rules (cf. Figure 6 on page 20)
and their extension with runtime queues and message assertions (cf. Figure C.11 in Appendix
C).

Lemma 8.1 (Postponement of [REC]). For each judgment Γ ` P .∆ derivable from the rules in
Figure 6 there exists a proof such that all the applications (if any) of [REC] are at the root of the
proof tree.

PROOF: The premise of [REC] for Q (the main process) reads:

C ;Γ,X : (ṽ : S̃)T1 @p1 . . .Tn @pn ` Q.∆

Note the only condition it demands is the assumption contains X : (ṽ : S̃)T1 @p1 . . .Tn @pn and
the only effect of the application of [REC] is we lose this assumption. Since no other rules use
this assumption, we can always permute an application of any rule with [REC] to obtain the same
conclusion. 2

Definition 8.2. We say C ;Γ ` P .∆ is well-initiated if ∆ contains only singleton assignments
and, moreover, P has no queue at a free session channel.

Lemma 8.3. The premise of [REC] is well-initiated if and only if its conclusion is well-initiated.

PROOF: Because the assertion assignment does not change and the process does not change
except adding the new definition. 2
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Theorem 8.4 (Soundness for Open Processes).
Let P be a program phrase. Then C ;Γ ` P.∆ implies C ;Γ |= P.∆.

PROOF (SKETCH): (The full proof is relegated to Appendix G.2).
The proof is based on the fact that the set R of pairs made of a program phrase and its

validating environment both closed under any substitution (consistent with the validating envi-
ronment) is a conditional simulation. Let R be the relation collecting all the pairs of the form
(Pσ,〈Γσ,∆σ〉) such that C ;Γ ` P .∆ where: (i) P is a sub-term of a multi-step α→-derivative of
a program phrase, (ii) ∆ is an endpoint assertion assignment possibly containing non-singleton
assignments, and (iii) σ is a closing substitution consistent with C and Γ. We show that R is a
conditional simulation, by rule induction on the validation rules in Figures 6 (and their extension
to runtime queues and message assertions in Figure C.11 in the Appendix). Most of the cases
straightforwardly follow by induction (on the proof of the validation judgment). The case for
[CONSEQ] follows by Proposition 6.6. The case for [REC] deserves particular care: by Lemma 8.1
we assume that, in all derivations for processes in R , the application of rule [REC] only occurs
in the last steps of a derivation for a transition derivative of a program phrase, without loss of
generality. Under this assumption, by Lemma 8.3, we know that the premise and conclusion of
an application of [REC] is well-initiated (therefore we only consider singleton assignments). This
case is then proved by the standard syntactic approximation of recursion. 2

As an immediate corollary we obtain:

Theorem 8.5 (Soundness for Programs).
Let P be a program. Then Γ ` P.∆ implies Γ |= P.∆.

9. Extensions and Related Work

Extensions to shared and session channel passing and completeness. The theory we have
introduced directly extends to shared channel passing and session channel passing, or delegation,
carrying over all formal properties. In both cases, we have only to add predicate annotations to
channels in assertions as well as in asserted processes. The shape of the judgement and the proof
rules do not change, similarly the semantics of the judgement uses a conditional simulation.
We obtain the same soundness result as well as completeness of the proof rules for the class of
processes whose newly created channels are immediately exported. The proof system is complete
relative to the decidability of the underlying logic for processes without hidden shared names
[43, 7]. In order to prove completeness, we introduce the generation rules for programs and
program phrases by which we can derive a “principal” formula. The general intuition is that, for
every P, Γ and ∆ such that Γ |= P .∆, we can generate ∆′ such that Γ ` P .∆′ and ∆′ c ∆ (thus
Γ ` P .∆ by rule [CONSEQ]). Since the presentations of these extensions would require detailed
notions of refinement and judgements, for simplicity, we relegate them to [43].

Hennessy-Milner logic for the π-calculus. Hennessy-Milner Logic (HML) is an expressive
modal logic with an exact semantic characterisation [26]. The presented theory addresses some
of the key challenges in practical logical specifications for the π-calculus, unexplored in the
context of HML. First, by starting from global assertions, we gain in significant concision of
descriptions while enjoying generality within its scope (properties of individual protocols). Pre-
vious work [19, 3] show how specifications in HML, while encompassing essentially arbitrary
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behavioural properties of processes, tend to be lengthy from the practical viewpoint. In this con-
text, the direct use of HML is tantamount to reversing the methodology depicted in Figure 1 of
§ 1: we start from endpoint specifications and later try to check their mutual consistency, which
may not easily yield understandable global specifications.

As another practical aspect, since c is decidable for practically important classes assertions
[43], the present theory also offers algorithmic validation methods for key engineering concerns
[44] including consistency of specifications (cf. §3.2) and correctness of process behaviours with
full recursion against non-trivial specifications, whose analogue may not be known for the gen-
eral HML formulae on the π-calculus. The use of the underlying type structures plays a crucial
role. This is in contrast to validation for the whose analogue may not be known in the context of
general HML formulae.

From the viewpoint of logical specifications for name passing, the present theory takes an
extensional approach: we are concerned with what behaviours will unfold starting from given
channels, than their (in)equality [19]. While our approach does reflect recommended practices
in application-level distributed programming (where the direct use of network addresses is dis-
couraged), it is an interesting topic to study how we can treat names as data as studied in [19].

Corresponding assertions and refinement/dependent types. The work [9] combines session-
types with correspondence assertions. The type system can check that an assertion end L is
matched by the corresponding begin effect. Assertions L in the effects of [9] are lists of values,
not general logical logical formulae like ours.

The use of session types to describe behavioural properties of objects and components in
CORBA is studied in [47]. In another vein, the refinement types for channels (e.g. [6]) specify
value dependency with logical constraints. For example, one might write ?(x : int, !{y : int | y >
x}) using the notations from [48, 24]. It specifies a dependency at a single point (channel),
unable to describe a constraint for a series of interactions among multiple channels. Our theory,
based on multiparty sessions, can verify processes against a contract globally agreed by multiple
distributed peers.

Contract-based approaches to functions and communications.. Verification using theories of
contracts for programming functional languages, with applications to the validation of financial
contracts, is studied in [40, 49]. Our theory uses the π-calculus with session types as the underly-
ing formalism to describe contracts for distributed interactions. We observe that a contract-based
approach for sequential computing is generally embeddable to the present framework (noting
that function types are a special form of binary session types and that the pre/post conditions in
sequential contracts are nothing but predicates for interactions resulting from the embedding); it
is an interesting subject of study to integrate these and other sequential notions of contracts into
the present framework, which would enable a uniform reasoning of sequential and concurrent
processes.

In [11, 20] use c-semirings to model constraints that specify a Service Level Agreement. The
later work [18] studies a combination of binary session types and the primitives from [11] for
processes to be able to check a logical condition when initiating a session and ensure bilinearity
of channels (i.e. duality of communication). It would be interesting to consider global assertions
where the logical language is replaced with c-semirings. This would allow global assertions to
express soft constraints but it could affect the effectiveness of our approach. However c-semirings
do not feature negation and the decidability of logics based on c-semirings has not been deeply
investigated.
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The global consistency checking is used in advanced security formalisms. In [25] a rely-
guarantee technique is applied to a trust-management logic. The main technical difference is
that users have to directly annotate each participant with assertions because of the the absence of
global assertions. In [5] cryptography is used to ensure integrity of sessions but logical contracts
are not considered.

Theories of contracts for web services based on advanced behavioural types are proposed,
including those using CCS [10], π-calculus [16], and conversation calculus [13]. Recent work
[2] extends contracts to formulae of an intuitionistic logic and studies expressiveness and de-
cidability. Some of the authors in this line of study focus on compliance of client and services,
often defining compliance in terms of deadlock-freedom, e.g., in [1] a type system guaranteeing
a progress property of clients is defined. The work [12] investigates a relationship between for
a dual intuitionistic linear logic and binary session types, and shows that the former defines a
proof system for a session calculus which can automatically characterise and guarantee a session
fidelity and global progress.

Our approach differs from the preceding works in its use of global assertions for elaborating
the underlying type structure, combined with the associated compositional proof system. This
permits us to express and enforce fine-grained contracts of choreographic scenarios. Global/end-
point assertions can express constraints over message values (including channels), branches and
invariants, which cannot be represented by types alone, cf. [29]. The enriched expressiveness
of specifications introduces technical challenges: in particular, consistency of specifications be-
comes non-trivial. The presented consistency condition for global assertions is mechanically
checkable relatively to the decidability of the underling logic, and ensures that the end-point
assertions are automatically consistent when projected. On this basis a sound and relatively
complete proof system is built that guarantees semantic consistency.

As a different DbC-based approach to concurrency, an extension of DbC has been proposed
in [37], using contracts for SCOOP [35] in order to reason about liveness properties of concurrent
object-oriented systems. The main difference of our approach from [37] is that our framework
specifies focuses on systems based on distributed message passing systems while [37] treats
shared resources. The notion of pre-/post-conditions and invariants for global assertions centring
on communications and the use of projections are not found in [37]. The treatment of liveness in
our framework is an interesting topic for further study.

Since the first work [29] was proposed, the multiparty session types have been developed in
several contexts, for example, such as distributed object optimisation [45], parallel algorithms
[36, 50] and security [5, 14], some of which initiated industrial collaborations [39, 44], see [28].
For a more expressive language extension, we plan to integrate with dynamic natures based on
multirole session types [21] and global escape [15].
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Appendix A. Algorithm for Annotating Recursion Parameters with Locations

We define an algorithm to determine the locations of recursion parameters in a global asser-
tion G . More precisely, we give a function L(G ;E ;MK;C) where MK (after “must know”) is a set
of pairs (p,v) which reads “participant p is required to have met interaction variable v”, and C
assigns interaction parameters and a vector of sets of interaction variables to a assertion variable
t so that the ith element of the vector includes all the variables passed as the ith argument of a
recursive invocation of t in G .

L(G ;E ;MK;C) returns a triple (E ′,MK′,C′) as follows:

1. if G = p→ p′ : k (ṽ){A}.G ′, then return L(G ′;E , ṽ@{p,p′};MK\{(p,v),(p′,v) : v ∈ ṽ};C)
2. if G = p→ p′ : k {{A j}l j : G j} j∈J then return d j∈JL(G j;E ;MK;C)
3. if G = G1,G2 then return di∈{1,2}L(Gi;E ;MK;C)

4. if G = t〈u1, . . . ,un : A1, ...,An〉1, assuming C(t) = ṽ,V1, . . . ,Vn, then return
(E ,MK,C[t 7→ ṽ,V1∪ var(A1)\u1, . . . ,Vn∪ var(An)\un])

5. if G = end then return (E ,MK,C)
6. if G = µt〈u1, . . . ,un : A1, ...,An〉(ṽ){A}.G ′ then return

L(G ′;E ;MK;C[t 7→ ṽ,var(A1)\u1, . . . ,var(An)\un]).

where d returns BadAssertion if one of its arguments is BadAssertion otherwise

d j∈J(E j,MK j,C j) = (∪ j∈JE j,∪ j∈JMK j,∪ j∈JC j)

If L(G ;E ;MK;C) returns a triple (E ′,MK′,C′) such that, for every t ∈ dom(C′), C′(t) has the
form

ṽ,{v1
1, . . . ,v

1
n1
}, . . . ,{vm

1 , . . . ,v
m
nm}

and for each 1 ≤ i ≤ m, vi
1, . . . ,v

i
ni

have the same location Li in E , such variables are located
at Li. Otherwise the program is badly specified when the previous condition does not hold or
L(G ;E ;MK;C) returns BadAssertion.

Appendix B. Endpoint Assertions and Projection

Appendix B.1. An Alternative Definition of Projection

Given G and A, the projection of G for a participant p with respect to A is denoted by (G) ↓A
p

and, assuming p1 6= p2, recursively defined as follows.

1The algorithm requires the assertion used for assignments to recursion parameters, to be partitioned into a number
of independent sub-predicates A1, ...,An, one for each recursion parameter (see also case 6). This requirement still allows
us to model global assertions as described in § 3.
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(1) (p1→ p2 : k (ṽ : S̃){A}.G ′) ↓AP
p =


k!(ṽ : S̃){A}.(G ′) ↓A∧AP

p if p= p1

k?(ṽ : S̃){OPT (A,AP)�p}.(G ′) ↓A∧AP
p if p= p2

(G ′) ↓A∧AP
p otherwise

(2) (p1→ p2 : k {{Ai}li : Gi}i∈I) ↓AP
p =


k⊕{{Ai}li : (Gi) ↓Ai∧AP

p }i∈I if p= p1

k&{{OPT (Ai,AP)�p}li : (Gi) ↓Ai∧AP
p }i∈I if p= p2

(G1) ↓
AP∧

∨
j∈I A j

p (= (Gi) ↓
AP∧

∨
j∈I A j

p ) otherwise

(3) (G1,G2) ↓AP
p =

{
(Gi) ↓AP

p if p ∈ Gi and p 6∈ G j, i 6= j ∈ {1,2}
end if p 6∈ G1 and p 6∈ G2

(4) (µt〈ũ : A′〉(ṽ : S̃){A}.G) ↓AP
p = µt〈ũ : A′ �p〉(ṽ : S){A�p}.(G) ↓AP

p

(5) (t〈ũ : A′〉) ↓AP
p = t〈ũ : A′ �p〉

(6) (end) ↓AP
p = end

Definition 4.2 uses A∧AP in the projection of value and branching on the receiving party.
Here we use OPT to eliminate, where possible, some sub-predicates from AP. More specifically:

1. if p knows all variables in A then AP is omitted,
2. otherwise,

(a) we include all sub-predicates of AP involving variables of A that p does not know,
(b) we include recursively all predicates of AP involving variables of the predicates added

in (a) that p does not know.

We assume A and AP are conjunctions of sub-predicates and we denote with set(A) the set of
such sub-predicates for A. Set of predicates, are ranged over by S,S′, and var(S) =∪Ai∈Svar(Ai).
We denote with set−1(S) the predicate obtained as the conjunction of the predicates in S. We
define OPT (A,AP) = set−1( fext(set(A),set(AP)) where fext(Sto,S f rom) is the following recursive
function from couples of sets of predicates to sets of predicates (Sto is the set of predicates to
include in the projection and A f rom is the set of predicates from which to extract sub-predicates):

fext(Sto, S f rom)=
if S f rom = /0 or var(Sto)\ I(G)�p∩ var(S f rom) = /0 then return Sto
else return Sto∧OPT (SB,S f rom \SB)
// with SB = {A : A ∈ S f rom and vi ∈ var(A)}vi∈var(Sto)\I(G)�p

Remark. By using the definition above instead of Definition 4.2 we still preserve the properties
of Lemma 4.6 and Proposition 4.7. In fact, eliminating some sub-predicates from AP does not
affects the construction, in LSat, of the preconditions ‘bag’. In fact, the eliminated predicates are
just a replication of some predicates that have been met in previous interactions, thus are already
included in the predicate ‘bag’. For the same reason, also validation is unaffected by the usage
of the definition above instead of Definition 4.2.

Appendix B.2. Proof of Lemma 4.6
The proof relies on the following tautologies of first-order logic:

(a) ∀w(C(w)⊃C′)≡ ∃w(C(w))⊃C′, if w does not occur free in C′

(b) ∃w(C(w))∧∃w(C(w)∧C′(w))≡ ∃w(C(w)∧C′(w))
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and on the following lemma

Lemma Appendix B.1. For any global assertion G , if A≡B then GSat(G ,A) holds iff GSat(G ,B)
holds and LSat(G ,A) holds iff LSat(G ,B) holds.
PROOF: Trivial by inspection of the Definitions 3.7 and 4.5.

We now proceed with the proof of Lemma 4.6.
Let Groot be a well-asserted global assertion and p be a participant of Groot . For every sub-

term G of Groot and for every predicate AG such that

var(AG )⊆ I (Groot)\ I (G) (B.1)

GSat(G ,AG )⊃ LSat(G �p,∃ṽext(AG ))

where
ṽext = var(AG )\ I(Groot � p) (B.2)

PROOF: The proof is by induction on on the structure of G .

Value sending/receiving. G = p1→ p2 : k (ṽ : S̃){A}.G ′
Case p= p1. By Definition 4.2, G �p= k!(ṽ : S̃){A};(G ′ �p) and by (B.2) and history sensitivity
of G

ṽext ∩ var(A) = /0 (B.3)

By temporal satisfiability of G , AG ⊃ ∃ṽ(A) which, by (B.3) and (a), is equivalent to

∃ṽext(AG )⊃ ∃ṽ(A) (B.4)

By (B.4), Lemma Appendix B.1, and Definition 4.5, LSat(G � p,∃ṽext(AG )) returns true iff
LSat(G ′�p,∃ṽext(AG )∧A) does. By (B.3) LSat(G ′�p,∃ṽext(AG )∧A)≡ LSat(G ′�p,∃ṽext(AG ∧
A)). The thesis follows by induction on GSat(G ′,AG ∧A) and LSat(G ′ �p,∃ṽext(AG ∧A)), ob-
serving that by history sensitivity of G , ṽext = var(AG ∧A) \ I(Groot � p), and var(AG ∧A) ⊆
I (Groot)\ I (G).
Case p= p2. By Definition 4.2, G �p= k?(ṽ : S̃){∃ṽext ṽ′ext(AT ∧A)};T ′, where ṽ′ext is the (pos-
sibly empty) vector of variables of A, which are not in ṽext and which are not known by p. By
temporal satisfiability of G , AG ⊃ ∃ṽ(A), which is equivalent to

AG ⊃ AG ∧∃ṽ(A) (B.5)

From (B.5) and (B.1)
AG ⊃ ∃ṽ(AG ∧A) (B.6)

By weakening the conclusion of (B.6)

AG ⊃ ∃ṽ∃ṽext ṽ′ext(AG ∧A) (B.7)

Since ṽext does not appear free in the conclusion of (B.7) then, by (a), (B.7) is equivalent to

∃ṽext(AG )⊃ ∃ṽ∃ṽext ṽ′ext(AG ∧A) (B.8)

Let T ′ = G ′ �p; by (B.8) and Definition 4.5

LSat(G �p,∃ṽext(AG )) is equivalent LSat(T ′,∃ṽext(AG )∧∃ṽext ṽ′ext(AG ∧A))

and the latter is equivalent to LSat(T ′,∃ṽext ṽ′ext(AG ∧A)) by (b). The lemma holds for this case
by induction on GSat(G ′,AG ∧A) and LSat(T ′,∃ṽext ṽ′ext(AG ∧A)).

Like in the previous case, we obtain the thesis by induction.
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Branching. G = p1→ p2 : k {{A j}l j : G j} j∈J .
Case p= p1. By Definition 4.2, G �p= k⊕{{A j}l j : T j} j∈J where, by (B.2) and history sensi-
tivity

ṽext ∩
⋃
j∈J

var(A j) = /0 (B.9)

By temporal satisfiability of G ,

AG ⊃ A1∨ . . .∨An (B.10)

By (B.9) and (a), (B.10) is equivalent to

∃ṽext(AG )⊃ A1∨ . . .∨An (B.11)

By (B.11) and Definition 4.5

LSat(G �p,∃ṽext(AG )) = ∧ j∈JLSat(T j,∃ṽext(AG )∧A j)

where for each j ∈ J, T j = G j � p. By (B.9) LSat(T j,∃ṽext(AG )∧A j) ≡ LSat(T j,∃ṽext(AG ∧
A j)). The thesis follows by applying the inductive hypothesis on all GSat(G j,AG ∧ A j) and
LSat(T j,∃ṽext(AG ∧A j)) with j ∈ J.

Like in the previous cases, we obtain the thesis by induction.
Case p= p2. By Definition 4.2, G �p= k&{{∃ṽext ṽ

j
ext(AT ∧A j)}l j : T j} j∈J where for all j ∈ J,

ṽ j
ext are the (possibly empty) vectors of variables of A j, which are not in ṽext and which p does

not know. By temporal satisfiability of G , AG ⊃ A1∨ . . .∨An which is equivalent to

AG ⊃ AG ∧ (A1∨ . . .∨An) (B.12)

By weakening the conclusion of (B.12)

AG ⊃ ∃ṽext ṽ
j
ext(AG ∧ (A1∨ . . .∨A j)) (B.13)

Since ṽext does not appear free in the conclusion of (B.13) then, by (a), (B.13) is equivalent to

∃ṽext(AG )⊃ ∃ṽext ṽ
j
ext(AG ∧ (A1∨ . . .∨A j)) (B.14)

By (B.14) and Definition 4.5, LSat(G �p,∃ṽext(AG ))=∧ j∈JLSat(T j,∃ṽext(AT ∧A j)). The thesis
follows by the inductive hypothesis, for all j∈ J, on GSat(G j,AG ∧A j) and LSat(T j,∃ṽext ṽ

j
ext(AG ∧

A j)). Observe T j = G j �p by definition of projection, (B.2) holds for ṽext ṽ
j
ext on AG ∧A j, and

(B.1) holds for AG ∧A j by history sensitivity of G .

Recursion. Given G = µt〈ũ : A〉(ṽ : S̃){B}.G ′, let

ṽA
ext = var(A)\ I (Groot �p)

ṽB
ext = var(B)\ I (Groot �p)

G �p = µt〈ũ : ∃ṽA
ext(A)〉(ṽ : S̃){∃ṽB

ext(B)}.T ′ where T ′ = G ′ �p

By well-assertedness of G

(AG ⊃ ∃ũ(A)) and (AG ∧A⊃ B[ũ/ṽ]) (B.15)
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By weakening the conclusions of the two predicates in (B.15)

(AT ⊃ ∃ũṽA
ext(A)) and (AT ∧A⊃ ṽB

ext(B[ũ/ṽ])) (B.16)

By (B.1) and (a), (B.16) is equivalent to

(∃ṽext(AT )⊃ ∃ũṽA
ext(A)) and (∃ṽext(AT ∧A)⊃ ṽB

ext(B[ũ/ṽ])) (B.17)

By (B.17) and Definition 4.5, LSat(G �p,∃ṽext(AG )) = LSat(T ′,∃ṽext(AT ∧B)) which holds
by induction.

Composition. G = G1,G2. The projection is either G1 or G2, hence the result is immediate by
induction hypothesis.

Assertion Variable. G = tB(ṽ)〈ũ : A〉. The proof proceeds like in the case of recursion definition.

End - end. Immediate.

Appendix C. Runtime Processes and Message Assertions

We introduce the definitions for processes with queues. The aim is to take into account, in the
proof of soundness of the validation rules, the mechanisms of message exchange of runtime
processes.

We use message assertions (corresponding to message types in [4]), which abstract messages
in queues.

Definition Appendix C.1 (Message Assertions). The syntax of endpoint assertions (cf. Sec-
tion 4) are extended as follows:

T ::= ... | M | M ;T M ::= k!〈~n〉 | k⊕ l | M ;M ′

We call M a message assertion.

In Definition Appendix C.1, k!〈~n〉 represents a value ñ in a queue, k⊕ l represents a label
in a queue, and M ;M ′ represents a queue with multiple elements. We use a context for end-
point assertion assignments H [ · ]; such context extends endpoint assignments to non-singleton
assignments, and groups queues and assignments related to the same session. Namely, a vector
of session channels is assigned to a set {Tp @p}p∈I of located endpoint assertions, indexed by
participants.

H [ · ] ::= [ · ] |H [ · ], Tp@p | Tp@p, H [ · ]
We introduce the composition operator ◦ of endpoint assignments:

(∆1, s̃ : /0)◦∆2 = ∆1◦∆2

(∆1, s̃ : H1[M @p])◦(∆2, s̃ : H2[Tp@p]) =(∆1, s̃ : H1[M ′@p])◦(∆2, s̃ : H2[T ′p @p])

where, in the second rule, we add a prefix of a message assertion to an endpoint assertion from
the head of a queue (M ∗Tq = M ′ ∗T ′p ), and ∗ is a commutative and associative operator s.t.

(k!〈ñ〉;M )∗T = M ∗ k!〈ñ〉;T (k⊕ l;M )∗T = M ∗ k⊕ l;T
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A[ñ/ṽ] ↓ true

s̃ : H [k!(ṽ : S̃){A};T ]→ s̃ : H [k!〈ñ〉;T [ñ/ṽ]]
[MA-SEND]

A j ↓ true, j ∈ I
s̃ : H [k⊕{{Ai}li :Ti}i∈I ]→ s̃ : H [k⊕ l j;T j]

[MA-SEL]

A[ñ/ṽ] ↓ true

s̃ : H [k!〈ñ〉;T @p, k?(ṽ : S̃){A};T ′@q]→ s̃ : H [T @p,T ′[ñ/ṽ]@q]
[MA-SR]

A j ↓ true, j ∈ I
s̃ : H [k⊕ l j;T @p, k&{{Ai}li :Ti}i∈I @q]→ s̃ : H [T @p,T ′@q]

[MA-SB]

∆1→ ∆
′
1

∆1,∆2→ ∆
′
1,∆2

∆2→ ∆
′
2

∆1,∆2→ ∆1,∆
′
2

[MA-CON1]/[MA-CON2]

Figure C.9: Additional reduction rules for message assertions

Figure C.9 introduces the reduction rules for message assertions, which extend the rules in
Definition 5, and play a key role in the proof of Subject Reduction (Lemma 7.2).

Rule [MA-SEND] non-deterministically instantiates an endpoint assertion for sending a value
under predicate A to a corresponding message assertion whose carried values satisfies A. Rule
[MA-SEL] non-deterministically instantiates an assertion for selecting a branch under the predi-
cates {Ai}i∈I to a specific label (message assertion) l j when A j (with j ∈ I) evaluates to true.
Rule [MA-SR] depicts how a sending message assertion interacts with its dual, the assertion for
receiving. Rule [MA-SB] depict how a selection message assertion interacts with the assertion for
branching. Rules [MA-CON1] and [MA-CON2] close the reduction under contexts. The motivation
for having the non-deterministic instantiation rules for value sending and selection is to enable
the assertion reduction to follow the process reduction: an assertion assignment has more reduc-
tions than the corresponding process, which serves the purpose since we only demand that the
assertion can follow the process in reduction (as long as the predicate is satisfied).

Next we define transitions involving message assertions, where a non-singleton assignment
may have a transition which represents a reduction at a free session channel; such transitions
model communications from/to endpoint assertions to/from queues belonging to the same (non-
singleton) assignment. The transition rules for message assertions, both the visible and the in-
visible ones, are given in Figure C.10. Rules [TR-M-SEND] and [TR-M-SEL] are straightforward and
are used only over singleton assertions, just as in Figure 8. Other τ-transition relations follow the
reduction rules defined in Figure C.9.

Proposition Appendix C.2 (Extended Transitions).

1. (coincidence with reduction) If 〈Γ,∆〉 τ→ 〈Γ,∆′〉 by the rules in Figure C.10, then ∆→ ∆′.

2. (coincidence with reduction) P→ Q iff P τ→ Q.
3. (determinism of non-free session actions) Suppose 〈Γ,∆〉 α→ 〈Γ′,∆′〉 such that α is not

derived from the rules in Figure C.10. Then 〈Γ,∆〉 α→〈Γ′′,∆′′〉 implies Γ′=Γ′′ and ∆′=∆′′.

PROOF: (1) and (3) are straightforward. (2) is also direct from the definitions.
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−
〈Γ,(∆, s̃ :k!〈ñ〉;T @p)〉 sk!ñ→ 〈Γ,(∆, s̃ :T @p)〉

[TR-M-SEND]

−
〈Γ,(∆, s̃ : k⊕ l j;T @p)〉 sk�l j→ 〈Γ,(∆, s̃ : T @p)〉

[TR-M-SEL]

A[ñ/ṽ]↓ true

s̃ : H [k!(ṽ : S̃){A};T ]
τ→ s̃ : H [k!〈ñ〉;T [ñ/ṽ]]

[TR-TAU-SEND]

A j ↓ true j∈ I

s̃ : H [k⊕{{Ai}li :Ti}i∈I ]
τ→ s̃ : H [k⊕ l j;T j]

[TR-TAU-SEL]

A[ñ/ṽ] ↓ true

s̃ : H [k!〈ñ〉;T @p, k?(ṽ : S̃){A};T ′@q]
τ→ s̃ : H [T @p,T ′[ñ/ṽ]@q]

[TR-TAU-VAL]

A j ↓ true j ∈ I

s̃ : H [k⊕ l j;T @p, k&{{Ai}li :Ti}i∈I@q]
τ→ s̃ : H [T @p,T ′@q]

[TR-TAU-BRA]

∆1→ ∆
′
1

∆1,∆2
τ→ ∆
′
1,∆2

∆2→ ∆
′
2

∆1,∆2
τ→ ∆1,∆

′
2

[TR-CON1]/[TR-CON2]

Figure C.10: Labelled transition for message assertions

First, we extend c to message assertions by extending Definition 5.4 with the clauses about
message assertions.

Definition Appendix C.3 (Refinement for Message Assertions). A binary relation R over closed
endpoint assertions is a refinement relation if T1R T2 implies one of the conditions in Definition
5.4 or one of the following conditions holds.

• T1 = k!〈ñ〉;T ′1 and T2 = k!〈ñ〉;T ′2 such that T ′1 R T ′2 .

• T1 = k⊕ l j;T ′1 and T2 = k⊕ l j;T ′2 such that T ′1 R T ′2 .

• T1 = k!〈ñ〉;T ′1 and T2 = k!(ṽ : S̃){A};T ′2 such that A[ñ/ṽ] ↓ true and T ′1 R T ′2 [ñ/ṽ].

• T1 = k⊕ l j;T ′ and T2 = k⊕{{Ai}li : T ′i }i∈I with ( j ∈ I) such that A j ↓ true and T ′R T ′j .

If T1R T2 for some refinement relation R , then we say T1 is a refinement of T2, denoted T1 c T2.

Assertion assignments used for refinements now include non-singleton assignments; in spite of
this, the non-trivial refinement of endpoint assertions is only applied to singleton assignments.

Finally, we list the validation rules for queues and channel hiding in Figure C.11 (from [4]).

The first four rules concern the extended sets of processes and assertion assignments (ac-
cordingly [CONC] now uses the extended ◦ defined above). Henceforth we write C ;Γ ` P .∆ for
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−
C ;Γ ` sk : /0 . s̃ :{ /0@p}p∈I

[QNIL]

C ;Γ ` sk : h̃ . ∆, s̃ :H [T @p]

C ;Γ ` sk : h̃ · ñ . ∆, s̃ :H [k!〈ñ〉;T @p]
[QVAL]

C ;Γ ` sk : h̃ . ∆, s̃ :H [T @p]

C ;Γ ` sk : h̃ · l . ∆, s̃ :H [k⊕ l;T @p]
[QSEL]

C ;Γ ` P.∆, s̃ : {Tp @p}p∈I {Tp @p}p∈I coherent
C ;Γ ` (ν s̃)P.∆

[CRES]

Figure C.11: Validation rules for runtime processes

a runtime process P when it is derived by combining the rules of Figure 6 and those of Figure
C.11.
Note that the validation of the composability of multiple processes is relegated to the session
hiding rule [CRES] rather than to the parallel composition rule [CONC]. By the shape of these rules
we immediately observe:

Proposition Appendix C.4. Suppose Γ ` P.∆, then P contains no errH nor errT.

Appendix D. Refinement (Proofs of Section 6.3)

Appendix D.1. Proof of Lemma 6.5
Assume ∆c ∆′ below.

1. If 〈Γ,∆〉 α→ 〈Γ1,∆1〉 such that α is an output or selection, then 〈Γ,∆′〉 α→ 〈Γ1,∆
′
1〉 such that

∆1 c ∆′1 again.
2. If 〈Γ,∆〉 α→ 〈Γ1,∆1〉 such that α is an input or branching action, and if 〈Γ,∆′〉 allows α,

then 〈Γ,∆′〉 α→ 〈Γ1,∆
′
1〉 such that ∆1 c ∆′1 again.

3. If 〈Γ,∆〉 τ→ 〈Γ,∆1〉 then 〈Γ,∆′〉 τ→ 〈Γ,∆′1〉 or 〈Γ,∆′〉 τ→ τ→ 〈Γ,∆′1〉 such that ∆1 c ∆′1 again.

PROOF: We first proof (1) and (2) by induction on the structure of ∆. We assume ∆ (resp. ∆′)
to have the structure ∆side,∆re f (resp. ∆′side,∆

′
re f ) where ∆re f has the form s̃ : T @p. We assume

without loss of generality that the transition is from ∆re f . We do not consider [TR-LINKOUT] and
[TR-LINKIN] since they just add the same new element to the assertion assignment. For the same
reason, in the proofs below for value input and value output, we do not consider the cases of new
name import and export, since they only add to Γ the same new elements.

Values sending. If ∆ = ∆side, s̃ : k!(ṽ : S̃){A1};T ′@p then 〈Γ,∆〉 sk!ñ→ 〈Γ,∆side, s̃ : T ′@p〉 by
[TR-SEND]. By hypothesis we have ∆ c ∆′, so we can set ∆′ = ∆′side, s̃ : k!(ṽ : S̃){A2};T ′′@p

by Definition 5.4, with ∆side c ∆′side, T ′ c T ′′ and A1 ⊃ A2. Since A1 ⊃ A2 then

A1[ñ/ṽ] ↓ true⊃ A2[ñ/ṽ] ↓ true

It follows that also the following transition is possible: 〈Γ,∆′〉 sk!ñ→ 〈Γ,∆′side, s̃ : T ′′@p〉. The
lemma hold by induction for this case since ∆side, s̃ : T ′@pc ∆′side, s̃ : T ′′@p.
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Value receiving. If ∆ = ∆side, s̃ : k?(ṽ : S̃){A1};T ′@p then 〈Γ,∆〉 sk?ñ→ 〈Γ,∆side, s̃ : T ′@p〉 by
[TR-REC]. Assume further we have

〈Γ,∆′〉 allows sk?ñ (D.1)

As before, by hypothesis and by Definition 5.4 we can set: ∆′ = ∆′side, s̃ : k?(ṽ : S̃){A2};T ′′@p

such that ∆side c ∆′side, T ′ c T ′′ and A2 ⊃ A1. By (D.1), however, we also have A2[ñ/ṽ] ↓ true. It

follows that the following transition is possible: 〈Γ,∆′〉 sk?ñ→ 〈Γ,∆′side, s̃ : T ′′@p〉. The statement
hold since ∆side, s̃ : T ′@pc ∆′side, s̃ : T ′′@p.

Selection. If ∆=∆side, s̃ : k⊕{{A1i}li : T1i}i∈I @p then by [TR-SEL] 〈Γ,∆〉 sk�l j→ 〈Γ,∆side, s̃ : T1 j @p〉.
By hypothesis and by Definition 5.4, we can set ∆′ = ∆′side, s̃ : k⊕{{A1i}li : T1i}i∈J @p with
∆side c ∆′side, and there exists i ∈ J such that l j = li, A1i ⊃ A2 j and T1i c T2 j. It follows that

also the following transition is possible: 〈Γ,∆′〉 sk�l j→ 〈Γ,∆′side, s̃ : T2 j @p〉. The lemma hold since
∆side, s̃ : T1i @pc ∆′side, s̃ : T2 j @p.

Branching. If ∆ = ∆side, s̃ : k&{{A1i}li : T1i}i∈I @p then 〈Γ,∆〉 sk�l j→ 〈Γ,∆side, s̃ : T1 j @p〉. As-
sume further we have

〈Γ,∆′〉 allows sk � l j (D.2)

By hypothesis and by Definition 5.4, we can set ∆ = ∆′side, s̃ : k&{{A1i}li : T1i}i∈J @p with
∆side c ∆′side. By (D.2) we know j ∈ J and A1 j ↓ true. It follows that also the following transition

is possible: 〈Γ,∆′〉 sk�l j→ 〈Γ,∆′side, s̃ : T2 j @p〉. The lemma hold since ∆side, s̃ : T1i @p c ∆′side, s̃ :
T2 j @p.

In the proof for (3), we denote with τ the (silent) transition in Figure 8 and with τs the
transitions in Figure C.10 (reductions at a free session channel). The case for τ is immediate.

We now prove (3) for actions τs, more precisely we prove that if 〈Γ,∆〉 τs→ 〈Γ,∆1〉 then
〈Γ,∆′〉 τs→ 〈Γ,∆′1〉 or 〈Γ,∆′〉 τs→ τs→ 〈Γ,∆′1〉 such that ∆1 c ∆′1 again.

The proof is identical to the proof of Lemma 6.5 except the pairs introduced in Definition
Appendix C.3. The case for identical pairs is immediate. For the remaining two cases, we treat
the case of send. The case of selection is by the same argument. First we consider the case of a
visible action. Using the same notations as in the proof of Lemma 6.5:

∆ = ∆side, s̃ : k!〈ñ〉;T1 @p

∆′ = ∆′side, s̃ : k!(ṽ : S̃){A};T ′1 @p

such that ∆sidec∆′side, T1c T ′1 and A[ñ/ṽ] ↓ true. Now consider the following labelled transition:

〈Γ,∆〉 sk!ñ→ 〈Γ,∆side, s̃ : T ′@p〉

By A[ñ/ṽ] ↓ true we can derive:

〈Γ,∆′〉 sk!ñ→ 〈Γ,∆′side, s̃ : T ′1 @p〉.

as required. Next we consider the τs-action. Suppose

〈Γ,∆〉 τs→ 〈Γ,∆1〉 (D.3)
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First assume in (D.3) that this action is induced by the reduction from s̃ : H [k!(ṽ : S̃){A};T ] in
∆ to its instantiation s̃ : H [k!〈ñ〉;T [ñ/ṽ]@p] in ∆1 such that

A[ñ/ṽ] ↓ true. (D.4)

Then ∆′ will have the corresponding reduction from

s̃ : H [k!(ṽ : S̃){A′};T ′]

in ∆′, because, by the definition of refinement, we have A⊃A′, hence by (D.4) we obtain A′[ñ/ṽ] ↓
true too, so that we obtain the corresponding instantiation:

s̃ : H [k!〈ñ〉;T ′[ñ/ṽ]@p]

for which we have, by definition, k!〈ñ〉;T [ñ/ṽ] c k!〈ñ〉;T ′[ñ/ṽ] as required. On the other hand
if the transition in (D.3) is induced by the following redex in ∆

s̃ : H [k!〈ñ〉;Ta@p, k?(ṽ){Ab};Tb@q]

and, under A[ñ/ṽ] ↓ true, this has the reduction into:

s̃ : H [Ta@p, Tb@[ñ/ṽ]@q]

First assume the corresponding assertions in ∆′ have the isomorphic shape:

s̃ : H [k!〈ñ〉;T ′a @p, k?(ṽ){A′b};T ′b @q] (D.5)

such that Ta ⊃ T ′a , A′b ⊃ Ab, and Tb[m̃/ṽ] c T ′b [m̃/ṽ] (if A′b[m̃/ṽ] ↓ true). Thus (D.5) can have the
corresponding reduction, hence 〈Γ,∆′〉 can have the corresponding τs-action, and the result is
again in the closure, as required. Second when the corresponding assertions in ∆′ do not have the
isomorphic shape, we can set:

s̃ : H [k!(ṽ : S̃){A′a};T ′a @p,k?(ṽ){A′b};T ′b @q] (D.6)

s.t. Ta[m̃/ṽ]c T ′b [m̃/ṽ] (if Aa[m̃/ṽ] ↓ true), Tb[m̃/ṽ]T ′b [m̃/ṽ] (if A′b[m̃/ṽ] ↓ true), and the following:

Aa ⊃ A′a[ñ/ṽ] (D.7)

A′b ⊃ Ab. (D.8)

By (D.7) we know (D.6) has the reduction into:

s̃ : H [k!〈ñ〉;T ′a [m̃/ṽ]@p, k?(ṽ){A′b};T ′b @q] (D.9)

From (D.8) we obtain the reduction from (D.9) into s̃ : H [T ′a [m̃/ṽ]@p, T ′b @[ñ/ṽ]@q] as re-
quired.

Appendix D.2. Proof of Proposition 6.6
If Γ |= P.∆ and ∆c ∆′ then Γ |= P.∆′.

PROOF: The proof is by induction on the transitions of P. We proceed by case analysis. We
consider only the cases of Definition 5.4 (i.e., we ignore the cases where the end-point assertion
differs from its refinement only in the continuation since they are straightforward by induction).
In this proof we refer to the transition rules for asserted processes in Figure 7 and the transition
rules for end-point assertions in Figure 8.
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Value sending. If P = sk!〈ẽ〉(ṽ){A1};P′ then ∆ = ∆side, s̃ : k!(ṽ : S̃){A1};T ′@p. Let ẽ ↓ ñ, P
sk!ñ→

P′ by either [SEND] or [SENDERR] according to whether A1[ñ/ṽ] ↓ true or A1[ñ/ṽ] ↓ false. Since
Γ |= P.∆ (by hypothesis) then:

Case A1[ñ/ṽ] ↓ true. 〈Γ,∆〉 sk!ñ→ 〈Γ,∆side, s̃ : T ′@p〉 by [TR-SEND]. By Lemma 6.5 〈Γ,∆′〉 sk!ñ→
〈Γ,∆′side, s̃ : T ′′@p〉. By induction, if Γ |= P′ .∆side, s̃ : T ′@p then Γ |= P′ .∆′side, s̃ : T ′′@p.

Case A1[ñ/ṽ] ↓ false. 〈Γ,∆〉 cannot make any transition and the lemma holds trivially.

Value receiving. If P = sk?(ṽ){A1};P′ then ∆ = ∆side, s̃ : k?(ṽ : S̃){A1};T ′@p. P
sk?ñ→ P′ by

either [RECV] or [RECVERR] according to whether A1[ñ/ṽ] ↓ true or A1[ñ/ṽ] ↓ false. Since Γ |= P.∆

(by hypothesis) then:

Case A1[ñ/ṽ] ↓ true. 〈Γ,∆〉 sk?ñ→ 〈Γ,∆side, s̃ : T ′@p〉 by [TR-REC]. By Lemma 6.5 〈Γ,∆′〉 sk?ñ→
〈Γ,∆′side, s̃ : T ′′@p〉. By induction, if Γ |= P′ .∆side, s̃ : T ′@p then Γ |= P′ .∆′side, s̃ : T ′′@p.

Case A1[ñ/ṽ] ↓ false. if A1[ñ/ṽ] ↓ false then 〈Γ,∆〉 cannot make any transition and the lemma
holds trivially.

Select. If P = sk � {A1 j}l j : P′ then ∆ = ∆side, s̃ : k⊕{{A1i}li : T1i}i∈I @p. P
sk�l j→ P′ by either

[LABEL] or [LABELERR] according to whether A1 j ↓ true or A1 j ↓ false. Since Γ |=P.∆ (by hypothesis)
then:
Case A1 j ↓ true. 〈Γ,∆〉 sk�l j→ 〈Γ,∆side, s̃ : T1 j @p〉 by [TR-SEL]. By Lemma 6.5 〈Γ,∆′〉 sk�l j→ 〈Γ,∆′side, s̃ :
T2 j @p〉. By induction, if Γ |= P′ .∆side, s̃ : T1 j @p then Γ |= P′ .∆′side, s̃ : T2 j @p.

Case A1 j ↓ false. 〈Γ,∆〉 cannot make any transition and the lemma holds trivially.

Branching. If P = sk � {{A1 j}l j : Pj}i∈I then ∆ = ∆side, s̃ : k&{{A1i}li : T1i}i∈I @p. P
sk�l j→ P′

by either [BRANCH] or [BRANCHERR] according to whether A1 j ↓ true or A1 j ↓ false. Since Γ |= P.∆

(by hypothesis) then:

Case A1 j ↓ true. 〈Γ,∆〉 sk�l j→ 〈Γ,∆side, s̃ : T1 j @p〉. By Lemma 6.5 〈Γ,∆′〉 sk�l j→ 〈Γ,∆′side, s̃ :
T2 j @p〉. By induction, if Γ |= P′ .∆side, s̃ : T1 j @p then Γ |= P′ .∆′side, s̃ : T2 j @p.

Case A1 j ↓ false. 〈Γ,∆〉 cannot make any transition and the lemma holds trivially.

Parallel. If P = Q | R then ∆ = ∆Q,∆R, where C ;Γ ` Q.∆Q and C ;Γ ` R.∆R. Let us consider
the case in which Q | R α→ Q′ | R (by [PAR]) and for some rule 〈Γ,∆R,∆Q〉 α→ 〈Γ,∆R,∆Q1〉. Since
∆ c ∆′ (by hypothesis), then ∆′ = ∆′Q,∆

′
R where ∆R c ∆′R and ∆Q c ∆′Q (by rule [CONC]). By

Lemma 6.5, 〈Γ,∆′〉 α→ 〈Γ,∆′R,∆′Q1〉. By induction, if Γ |= P′ .∆R,∆Q1 then Γ |= P′ .∆′R,∆
′
Q1.

Appendix E. Substitution and Evaluation Lemmas

Both subject reduction for visible transitions and soundness hinge on the substitution lemma
and on the evaluation lemma.

The substitution lemma uses the following lemma saying that any substitution of a free vari-
able with a constant in an endpoint assertion preserves well-assertedness.
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Lemma Appendix E.1. If T is well-typed and well-asserted, ũ : S̃ and ñ : S̃, then T [ñ/ũ] is
well-asserted.

PROOF: Straightforward from the fact that LSat universally quantifies the free variables of T . 2

Lemma Appendix E.2 (Substitution Lemma). Let C ` P .∆ with ∆ well-asserted and u : S
in the typing environment erase(Γ) (i.e., [29]). If u ∈ fn(P) and n has sort S then C [n/u];Γ `
P[n/u].∆[n/u] and ∆[n/u] is well-asserted.

PROOF: The substitution lemma uses the following lemma saying that any substitution of a free
variable with a constant in an endpoint assertion preserves well-assertedness.

Lemma Appendix E.3. If T is well-asserted and well-typed under erase(Γ), ũ : S̃ and ñ : S̃ then
T [ñ/ũ] is well-asserted.

PROOF: The proof trivially follows from the fact that LSat universally quantifies the free vari-
ables of T . 2

PROOF: The proof is by rule induction on validation rules. We proceed by case analysis o the
rules in Figure 6 and Figure C.11. Assume u : S′.

Values sending. If P = sk!〈ẽ〉(ṽ){A};P′ then by [SND]

C ⊃ A[ẽ/ṽ] C ;Γ ` P′[ẽ/ṽ].∆, s̃ : T @p

C ;Γ ` sk!〈ẽ〉(ṽ){A};P′ .∆, s̃ : k!(ṽ : S̃){A};T @p

Without loss of generality we assume u 6∈ ṽ. By definition, (C ⊃ A[ẽ/ṽ])[n/u] is equivalent to
C [n/u]⊃ A[ẽ/ṽ][n/u] and, since C ⊃ A[ẽ/ṽ] is supposed to be universally quantified on the free
variable u, thus

C [n/u]⊃ A[ẽ/ṽ][n/u] (E.1)

Moreover, by inductive hypothesis, we have

C [n/u];Γ ` P′[ẽ/ṽ][n/u]. (∆, s̃ : T @p)[n/u] (E.2)

By applying [SND] with premises (E.1) and (E.2) we obtain

C [n/u];Γ ` (sk!〈ẽ〉(ṽ){A};P′)[n/u]. (∆, s̃ : k!(ṽ : S̃){A};T @p)[n/u]

The substituted endpoint assertion is well-asserted by Lemma Appendix E.3.

Values receiving. If P = sk?(ṽ){A};P′ then by [RCV]

C ∧A,Γ ` P′ .∆, s̃ : T @p

C ;Γ ` sk?(ṽ){A};P′ .∆, s̃ : k?(ṽ : S̃){A};T @p

Without loss of generality we assume u 6∈ ṽ. By inductive hypothesis

(C ∧A)[n/u];Γ ` P′[n/u]. (∆, s̃ : T @p)[n/u]. (E.3)

By applying (E.3) as a premise for [RCV] we obtain

C [n/u];Γ ` (sk?(ṽ){A};P′)[n/u]. (∆, s̃ : k?(ṽ : S̃){A};T @p)[n/u]

The substituted endpoint assertion is well-asserted by Lemma Appendix E.3.
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Selection. If P = sk �{A j}l j : Pj then by [SEL]

Γ ` C ⊃ A j C ;Γ,u : S′ ` Pj .∆, s̃ : T j @p j ∈ I
C ;Γ,u : S′ ` sk �{A j}l j : Pj .∆, s̃ : k⊕{{Ai}li : Ti}i∈I @p

By inductive hypothesis

C [n/u];Γ ` Pj[n/u]. (∆, s̃ : T @p)[n/u] (E.4)

Since (C ⊃ A j) then also (C ⊃ A j)[n/u] holds, i.e.

Γ ` C [n/u]⊃ A j[n/u] (E.5)

By applying (E.4) and (E.5) as a premise for [SEL] we obtain

C [n/u];Γ ` (sk �{A j}l j : Pj)[n/u]. (∆, s̃ : k⊕{{Ai}li : Ti}i∈I @p)[n/u]

where the substituted endpoint assertion is well-asserted by Lemma Appendix E.3

Branching. The case for [BRA] is similar to the case of [SEL].

Conditional. If P = if e then Q else R then by [IF]

C ∧ e;Γ ` Q.∆ C ∧¬e;Γ ` R.∆

C ;Γ ` if e then Q else R.∆

By inductive hypothesis

(C ∧ e)[n/u];Γ ` Q[n/u].∆[n/u] and
(C ∧¬e)[n/u];Γ ` R[n/u].∆[n/u] (E.6)

By applying (E.6) as a premise for [IF] we obtain

C [n/u];Γ ` if e[n/u] then Q[n/u] else R[n/u].∆[n/u]

where the substituted endpoint assertion is well-asserted by inductive hypothesis.

Session Request. If P = a[2..n](s̃).P′ by [MCAST]

Γ ` a : G C ;Γ ` P.∆, s̃ : (G �1)@1

C ;Γ ` a[2..n](s̃).P′ .∆

By inductive hypothesis

C [n/u];Γ ` P′[n/u].∆[n/u], s̃ : (G �1)@1[n/u] (E.7)

Also Γ ` a : G [n/u] (trivially since G does not have free variables). By applying (E.7) as a
premise for [MCAST] we obtain

Γ ` a[2..n](s̃).P′[n/u].∆[n/u]

where the substituted endpoint assertion is well-asserted by inductive hypothesis.
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Session Acceptance. The case for [MACC] is similar to the case for [MCAST].

Recursive Invocation. If P = X〈ẽs̃1..s̃n〉 by [VAR]

T1[ẽ/ṽ]...Tn[ẽ/ṽ] well-asserted
C ;Γ,u : S′,X : (ṽ : S̃)T1 @p1..Tn @pn ` X〈ẽs̃1..s̃n〉

.∆, s̃1 : T1[ẽ/ṽ]@p1, .., s̃n : Tn[ẽ/ṽ]@pn

Without loss of generality we assume u 6∈ ṽ. Since T1[ẽ/ṽ]...Tn[ẽ/ṽ] are well-typed under erase(Γ),u :
S′, ṽ : S̃ and n : S′ then T1[ẽ/ṽ][n/u]...Tn[ẽ/ṽ][n/u] are also well-typed. T1[ẽ/ṽ][n/u]...Tn[ẽ/ṽ][n/u]
are well-asserted by Lemma Appendix E.3.

By applying T1[ẽ/ṽ][n/u]...Tn[ẽ/ṽ][n/u] as a premise of [VAR] we obtain

C [n/u];Γ,X : (ṽ : S̃)T1[n/u]@p1 . . .Tn[n/u]@pn ` X〈ẽs̃1..s̃n〉[n/u]
.s̃1 : T1[ẽ/ṽ][n/u]@p1..s̃n : Tn[ẽ/ṽ][n/u]@pn

Remaining Cases. The cases for [CONC], [IDLE], [HIDE], [CONSEQ] and [REC] and [CRES] are straightfor-
ward. Also [QNIL], [QVAL] and [QSEL] are immediate since there are no free variables in P.

Lemma Appendix E.4 (Evaluation Lemma). If C ;Γ ` P(ẽ) . ∆(ẽ) and ẽ ↓ ñ then we have
C ;Γ ` P[ñ/ẽ].∆[ñ/ẽ].

PROOF:
PROOF: The proof is by rule induction on the validation rules (Figures 6 and C.11). We proceed
by case analysis. By decidability of underlying logic, we can write A[ẽ/ṽ] ↓ true when a closed
formula A[ẽ/ṽ] evaluates to true. Note that if we further have ẽ ↓ ñ then we have A[ñ/ṽ] ↓ true.

Values sending. If P(ẽ) = sk!〈ẽ〉(ṽ){A};P′ then P(ñ) = sk!〈ñ〉(ṽ){A};P′ and

∆(ẽ) = ∆
′, s̃ : k!(ṽ : S̃){A};T @p

with and C ⊃ A[ẽ/ṽ]. Notice that C ⊃ A[ẽ/ṽ] is equivalent to

C ⊃ A[ñ/ṽ] (E.8)

By inductive hypothesis

C ;Γ ` P′[ñ/ẽ].∆
′[ñ/ẽ], s̃ : T [ñ/ẽ]@p (E.9)

By applying (E.8) and (E.9) to the validation rule [SEND] the lemma holds for this case.

Recursion Invocation. If P(ẽ) = X〈ẽs̃1..s̃n〉 (since P(ẽ) is well-formed against ∆ by hypothesis)
then P(ñ) = X〈ñs̃1..s̃n〉. Since C ⊃ A[ẽ/ṽ] is equivalent to C ⊃ A[ñ/ṽ] then P(ñ) is well-formed
against ∆[ñ/ṽ] by rule [VAR].

Conditional. P(e) = if e then Q else R the property holds by induction since C ∧ e ↓ true is
equivalent to C ∧n ↓ true.

Remaining cases. The remaining cases are straightforward by induction.
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Appendix F. Subject Reduction (Proofs of Section 7)

Subject reduction relies on the following auxiliary lemmas.

Lemma Appendix F.1. Suppose C ;Γ ` P|Q .∆ (i.e., there is a derivation). There exists an-
other derivation with the same conclusion and with the same or lesser length than the original
derivation such that the last rule applied is [CONC].

PROOF: By the shape of the validation rules, the last rule applied to derive this judgement can
only be either [CONC] or [CONSEQ]. In the latter case, since c is only applied point-wise, and this
does not affect the composability by ◦ we can first apply the same refinement [CONSEQ] point-wise
then finally apply [CONC], to obtain the same final conclusion. 2

In this subsection, for a convenience of the case analysis, we explicitly write P τs→P′ if P τ→P′

is derived by the reduction rules at free session channels. The current definition of τ-action as
well as τs-action is not based on compatible visible actions but is defined from reduction. The
following lemma shows that, in spite of this, the τ-action is indeed derivable from complementary
visible actions except for initiation and conditionals. Below, C[ ] denotes a reduction context.
Notice that, in cases (4) and (5), P′ could be errT. Assume below all transitions are typed under
the implicit typing.

Lemma Appendix F.2. If P→ P′ then one of the following cases hold:

1. P≡C[if e then Q1 else Q2] s.t. P′ ≡C[Q1] (if e ↓ true) or P′ ≡C[Q2] (if e ↓ false)

2. P≡C[P1 | . . . | Pn] s.t. P1
a[2..n](s̃)→ P′1 and (Pi

a[i](s̃)→ P′i )2≤i≤n with P′ ≡C[(νs̃)(P′1 | . . . | P′n)]
3. P≡C[Q|s : h̃] s.t. Q s!~n→ Q′ and P′ ≡C[Q′|s : h̃ ·~n]
4. P≡C[Q|s : h̃ ·~n] s.t. Q s?~n→ Q′ and P′ ≡C[Q′|s : h̃]

5. P≡C[Q|s : h̃] s.t. Q s�l→ Q′ and P′ ≡C[Q′|s : h̃ · l]
6. P≡C[Q|s : h̃ · l] s.t. Q s�l→ Q′ and P′ ≡C[Q′|s : h̃]
7. P≡C[Q | s : h̃] s.t. Q τ→ errH and P′ ≡C[errH | s : h̃]

PROOF: Immediate from the corresponding reduction rules. 2

By Lemma Appendix F.2 we can reduce the reasoning on each communication-induced reduc-
tion to the corresponding visible action combined with the accompanying transformation of a
queue. The difference cases are analysed below, after an auxiliary lemma that rules out case (7)
in case of validated processes.

Lemma Appendix F.3. Suppose C ;Γ ` P.∆. Then P 6 τ→ errH.

PROOF: Assume that both C ;Γ ` P.∆ and P τ→ errH. By inspection of the transition rules (cf.
Figure 7), P can move to errH only when the last rule applied is either [SENDERR] or [LABELERR]. In
case of [SENDERR], we let P =C[sk!〈ñ〉(v){A}.P′] and A[ñ/ṽ] ↓ false for some C[ ], sk, ṽ, ñ, A, and
P′. Then by inspecting the validation rules, the derivation of C[sk!〈ñ〉(v){A}.P′] is done applying
rule [SND] to the following (after zero or applications of [CONC], [HIDE], and [CRES])

C ;Γ
′ ` sk!〈ẽ〉(v){A}.P′ .∆

′, s̃ : k!(ṽ){A}.T ′@p
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for some Γ′, ∆′, p and T ′ with C ′ ⊃ A[ẽ/ṽ]. Notice that the assertion environment C does not
change after the application of rules [CONC], [HIDE], and [CRES]. Since by Proposition Appendix C.4,
P does not contain errT nor errH, then [ñ/ṽ] is a substitution consistent with C thus

C ⊃ A[ẽ/ṽ]

which contradicts A[ñ/ṽ] ↓ false. The case of [LABELERR] is similar.

Lemma Appendix F.4. Assume all transitions are well-typed, and ∆ be the derivation via re-
duction of a singleton assignment.

1. If P
a[2..n](s̃)→ P′ and Γ ` P.∆ such that Γ(a) = G then Γ ` P′ .∆, s̃ : G �1@1

2. If P
a[p](s̃)→ P′ and Γ ` P.∆ such that Γ(a) = G then Γ ` P′ .∆, s̃ : G �p@p

3. If P s!~n→ P′ and Γ ` P|s : h̃.∆ then Γ ` P′|s : h̃ · ñ.∆′ such that ∆→ ∆′

4. If P s�l→ P′ and Γ ` P|s : h̃.∆ then Γ ` P′|s : h̃ · l .∆′ such that ∆→ ∆′

5. If P s?ñ→ P′ and Γ ` P|s : h̃ · ñ.∆ then Γ ` P′|s : h̃.∆′ such that ∆→ ∆′

6. If P s�l→ P′ and Γ ` P|s : h̃ · l .∆ then Γ ` P′|s : h̃.∆′ such that ∆→ ∆′

Further in the cases of (3,4,5,6) above, ∆ and ∆′ only differ in the assignment at s̃ such that s ∈ s̃.

Remark. In clause (3) we do not include the case of bound outputs since we do not need them in
Lemma Appendix F.2 (due to the use of contexts).
PROOF: (1) and (2) are immediate. Below we show the cases (3) and (5) since (4) (resp. (6)) is
an easy version of (3) (resp. (5)).
Case (3) Suppose we have Γ ` P|s : h̃ .∆. By Lemma Appendix F.1, we safely assume the last
rule applied is [CONC]. Thus we can assume for some ∆0 and ∆1 that Γ ` s : h̃.∆1 with ∆0 ◦∆1 = ∆,
and

Γ ` P . ∆0 (F.1)

Now consider the transition P s!ñ→ P′, by (F.1) we observe ∆0 has the shape

∆0 = s̃ : H [k!(ṽ){A};T @p],∆00

for some p and with s = sk; and that P′ can be typed by ∆′0 such that:

∆
′
0 = s̃ : H [T [ñ/ṽ]@p],∆00 (F.2)

Now the assertion ∆1 for the queue has the shape, omitting the vacuous “end”: ∆1 = s̃ : H [M @p]
hence the addition of the values to this queue, s : h̃ · ñ, must have the endpoint assertion:

∆
′
1 = s̃ : H [k!〈ñ〉;M @p] (F.3)

Setting ∆′ = ∆′0 ◦∆′1, we know Γ ` P′|s : h̃ · ñ.∆′. By (F.2) and (F.3) and the type composition ◦
and the reduction→, we obtain

∆
′
0 ◦∆

′
1 = s̃ : H [k!〈ñ〉;T [ñ/ṽ]@p], ∆00, ∆1

← ∆0,∆1
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That is we have ∆→ ∆′, and the only change is at the assertion assignment at s, as required.
Case (5). Suppose we have Γ ` P|s : h̃ · ñ . ∆. Again by Lemma Appendix F.1, we safely
assume the last rule applied is [CONC]. Thus we can assume, for some ∆0 and ∆1: Γ ` s : h̃ · ñ.∆1,
∆0 ◦∆1 = ∆, and

Γ ` P.∆0 (F.4)

Now consider the transition
P s?ñ→ P′ (F.5)

As before, we can infer, from (F.4) and (F.5) the shape of ∆0 as follows, with s = sk:

∆0 = s̃ : H [k?(ṽ){A};T @p],∆00

for some p; and that P′ can be validated against ∆′0 given as

∆
′
0 = s̃ : H [T [ñ/ṽ]@p],∆00 (F.6)

Now the assertion ∆1 for the queue has the shape (again omitting “end”-only assertions):

∆1 = s̃ : H [k!〈ñ〉;M @p] (F.7)

which, if we take off the values (hence for the queue s : h̃), we obtain:

∆
′
1 = s̃ : H [M @p] (F.8)

Note this is symmetric to the case (1) above. As before, setting ∆′ = ∆′0 ◦∆′1, we know: Γ `
P′|s : h̃ . ∆′. By (F.6) and (F.8) and the type composition ◦ and the type reduction→, we obtain

∆
′
0 ◦∆

′
1 = s̃ : H [T [ñ/ṽ]@p], ∆00, ∆1

← ∆0,∆1

That is we have ∆→ ∆′, and the only change from ∆ to ∆′ is at the type assignment at s, as
required.

Appendix F.1. Proof of Lemma 7.1

Suppose Γ ` P.∆.

1. If P τ→ P′ then Γ ` P′ .∆ again.
2. If P τs→ P′ then Γ ` P′ .∆′ such that ∆→ ∆′.

PROOF: Assume
true;Γ0 ` P.∆0 and P τ→ P′ (F.9)

Each of the six cases in Lemmas Appendix F.2 are possible, which we inspect one by one. Below
let C[ ] be an appropriate reduction context.
Case (1): Conditional. By Lemmas Appendix F.2 (1) assume P=C[R] where R= if e then Q1 else Q2
such that if e ↓ true then P′ = Q1. Since C[ ] is a reduction context we know R is closed. There-
fore we can safely set true;Γ ` R .∆. By Lemma Appendix F.1 we postpone refinements. We
can assume R is inferred by [IF] of Figure 6. Hence we have true∧ e;Γ ` Q1 .∆. By [CONSEQ] we
get true;Γ ` Q1 .∆ as required. Dually for the case of e ↓ false.
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Case (2): Link. By Lemma Appendix F.2 (2) we set P =C[R] where R = P1 | . . . | Pn with their
initialization actions compensating each other, as given in Lemma Appendix F.2 (2), i.e.

P1
a[2..n](s̃)→ P′1 and Pi

a[i](s̃)→ P′i (2≤ i≤ n)

As before, we can safely set true;Γ ` R .∆. By Lemma Appendix F.1 we can assume R is
inferred by [MACC] or [MCAST] of Figure 6 by consecutive applications of [CONC], hence we safely
assume: true;Γ ` Pi .∆i such that ∆1 ◦ . . . ◦∆n = ∆. By Lemma Appendix F.4 (1) and (2), we
have, with Γ(a) = G ,

true;Γ ` P′i .∆i, s̃ : (G � i)@i

hence
true;Γ ` P1|..|Pn .∆, s̃ : {(G � i)@i}1≤i≤n

Since {(G � i)@i}1≤i≤n is obviously coherent, we have true;Γ ` (νs̃)(P1|..|Pn).∆ as required.
Case (3): Send. By Lemmas Appendix F.2 (3) we set P =C[Q|s : h̃] with

Q s!~n→ Q′ (F.10)

As above we can safely set
true;Γ ` Q|s : h̃.∆ (F.11)

By Lemmas Appendix F.4 (3), (F.10) and (F.11), we infer: true;Γ ` Q′|s : h̃ · ñ .∆′ such that
∆→ ∆′ where the only change is at s̃ which contains s. Since P reduces to P′ by τ-transition
rather than τs-transition, we know that this s̃ in R are hidden in P. Assume therefore, without
loss of generality:

P≡C′[(νs̃)(Q|s : h̃|R)]
Γ1 ` Q|s : h̃|R.∆1

∆
′ coherent and ∆1 = ∆◦∆01

By Lemma Appendix G.1 and noting ∆1 → ∆′ ◦∆01 we know ∆1 = ∆′ ◦∆01 is also coherent,
hence as required.
Case (4): Receive. By Lemmas Appendix F.2 (4) we set P =C[Q|s : h̃ ·~n] with

Q s?~n→ Q′ (F.12)

As above we can safely set
true;Γ ` Q|s : h̃ ·~n.∆ (F.13)

As before, by Lemmas Appendix F.4 (4), (F.12) and (F.13), we get: true;Γ ` Q′|s : h̃ .∆′ such
that ∆→ ∆′ where the only change is at s̃ which contains s. Then we can set, without loss of
generality:

P≡C′[(νs̃)(Q|s : h̃|R)]
Γ1 ` Q|s : h̃|R.∆1

∆
′ coherent and ∆1 = ∆◦∆01

As before, by Lemma Appendix G.1 and ∆1→ ∆′ ◦∆01 we know ∆1 = ∆′ ◦∆01 is also coherent,
hence done.
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Case (5): Select. The argument exactly follows case (3) above using Lemma Appendix F.2 (5)
and Lemma Appendix F.4 (5) instead of Lemma Appendix F.2 (3) and Lemma Appendix F.4
(3), respectively.
Case (6): Branch. The argument exactly follows case (4) above except using Lemma Appendix
F.2 (6) and Lemma Appendix F.4 (6) instead of Lemma Appendix F.2 (4) and Lemma Appendix
F.4 (4), respectively.

Finally the τs-reduction,

true;Γ0 ` P.∆0 and P τs→ P′

rather than (F.9), precisely follow the same reasoning as given in the cases of 3,4,5,6 above,
excepting we do not have to hide s̃.

Appendix F.2. Proof of Lemma Appendix F.5
Subject congruence relies on the following auxiliary lemma to handle the case structural

equivalence between a process and its unfolding.

Lemma Appendix F.5. Let Γ′ = Γ,X : (ṽ : S̃)T1 @p1..Tn @pn and assume

C ;Γ
′ ` P′ .∆

′ and C ;Γ
′ ` P. s̃1 : T1 @p1..s̃n : Tn @pn

Then C ;Γ ` P′[µX(ṽs̃).P/X ].∆′.

PROOF: Recall that Γ′ = Γ,X : (ṽ : S̃)T1 @p1..Tn @pn. Furthermore,

C ;Γ
′ ` P′ .∆

′ (F.14)

where we let ∆′ = s̃1 : T ′1 @p1..s̃n : T ′n @pn, and

C ;Γ
′ ` P. s̃1 : T1 @p1..s̃n : Tn @pn (F.15)

where we denote s̃1 : T1 @p1..s̃n : Tn @pn with ∆. The thesis is

C ;Γ ` P′[µX(ṽs̃).P/X ].∆
′ (F.16)

The proof is by induction on the depth of the derivation of (F.14).

Base Cases. The validation terminates by applying one rule: either [IDLE] or [VAR].
Case [IDLE]. In this case P′ = 0 and ∆′ is end only. Since P′[µX(ṽs̃).P/X ] = 0 we can validate it
against ∆′ via [IDLE], obtaining (F.16).
Case [VAR]. In this case either P′ = X ′〈ẽs̃〉 or P′ = X〈ẽs̃〉 for some ẽ. In the former case,
P′[µX(ṽs̃).P/X ] = P′ and (F.16) follows straightforwardly from (F.14). In the latter case, by
(F.14) (applying [VAR], with s̃ = s̃1, .., s̃n):

T1[ẽ/ṽ], ..,Tn[ẽ/ṽ] well-asserted and well-typed under Γ, ṽ : S̃
C ;Γ

′ ` X〈ẽs̃1..s̃n〉. s̃1 :T1[ẽ/ṽ]@p1, .., s̃n :Tn[ẽ/ṽ]@pn

thus
T ′i = Ti[ẽ/ṽ] i = 1, ..,n (F.17)

Substituting, P′[µX(ṽs̃).P/X ] = µX〈ẽs̃〉(ṽs̃).P. By applying (F.15) as a premise for rule [REC] we
obtain

C ;Γ
′ ` P. s̃1 :T1 @p 1..s̃n :Tn @pn

C ;Γ ` µX〈ẽs̃1..s̃n〉(ṽs̃1..s̃n).Ps̃1 :T1[ẽ/ṽ]@p 1..s̃n :Tn[ẽ/ṽ]@pn

from which we obtain (F.16) observing that by (F.17) s̃1 :T1[ẽ/ṽ]@p 1..s̃n :Tn[ẽ/ṽ]@pn = ∆′.
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Inductive Cases. We show only the most relevant cases, i.e., those where the last rule applied is
[SEND], and [REC]. The case for [RCV] is similar to [SEND] considering that the substitution of X does
not affect the assertion environment C . The cases for [SEL] and [BRA] are similar to [SEND] and [RCV],
respectively.
Case [SEND]. In this case P′ = sk!〈ẽ′〉(ṽ′){A};P′′, P = sk!〈ẽ′〉(ṽ′){A};P′′[µX(ṽs̃).P/X ], and ∆′ =
∆′′, s̃k : k!(ṽ′ : S̃′){A};T @pk. From (F.14), which is obtained using rule [SEND] we have premises

C ⊃ A[ẽ′/ṽ′] and C ;Γ
′ ` P′′[ẽ′/ṽ′]. (∆′′, s̃k : T @pk)[ẽ

′/ṽ′] (F.18)

From (F.18), by induction, follows

C ;Γ
′ ` P′′[ẽ′/ṽ′][µX(ṽs̃).P/X ]]. (∆′′, s̃k : T @pk)[ẽ

′/ṽ′] (F.19)

By using (F.19) and C ⊃ A[ẽ′/ṽ′] (from F.18) as premises for [SEND] we obtain (F.16) for this case:

C ;Γ
′ ` sk!〈ẽ′〉(ṽ′){A};P′′[µX(ṽs̃).P/X ].∆

′

Case [REC]. Since we use Barendregts convention and X ∈ dom(Γ′), if rule [REC] is used then
P′ = µX ′〈ẽs̃〉(ṽ′s̃).P′′′ with X ′ 6= X and P′[µX(ṽs̃).P/X ] = µX ′〈ẽs̃〉(ṽ′s̃).P′′′[µX(ṽs̃).P/X ]. By
(F.14)

C ;Γ,X ′ : (ṽ′ : S̃′)T1 @p1..Tn @pn ` P′′′ . s̃1 :T1 @p 1..s̃n :Tn @pn

C ;Γ ` µX ′〈ẽs̃〉(ṽ′s̃).P′′′ . s̃1 :T1[ẽ′/ṽ′]@p 1..s̃n :Tn[ẽ′/ṽ′]@pn
(F.20)

As in the previous cases, we can use induction on the premise of F.20 obtaining

C ;Γ,X ′ : (ṽ′ : S̃′)T1 @p1..Tn @pn ` P′′′[µX(ṽs̃).P/X ]. s̃1 :T1 @p 1..s̃n :Tn @pn

which can be then used as a premise for [REC] to obtain F.16 for this case:

C ;Γ ` µX ′〈ẽs̃〉(ṽ′s̃).P′′′[µX(ṽs̃).P/X ]. s̃1 :T1[ẽ′/ṽ′]@p 1..s̃n :Tn[ẽ′/ṽ′]@pn

Appendix F.3. Proof of Lemma 7.3 (Subject Congruence)

If Γ ` P1 .∆ and P1 ≡ P2 then Γ ` P2 .∆

PROOF: We proceed by case analysis considering, for each rule for structural equivalence, the
two symmetric cases:
Case P≡ P | 0. If P2 = P1 | 0, by hypothesis

Γ ` P1 .∆ (F.21)

Assume ∆′ = t : end with t 6∈ dom(∆), then Γ ` 0.∆′ by rule [IDLE]. By [CONC] with premises (F.21)
and C ;Γ ` 0.∆′:

Γ ` P1 | 0.∆,∆′

By rule [CONSEQ] and since ∆,∆′ c ∆ then Γ ` P1 | 0.∆ as required.
If P1 = P2 | 0 then C ;Γ ` P1 .∆ follows from the first premise of [CONC] applied to P2.

Case P | Q≡ Q | P. Immediate, observing that the order of the premises of [CONC] is immaterial.
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Case (P | Q) | R ≡ P | (Q | R). This case follows from the fact that the both the derivation
for (P | Q) | R and the one for P | (Q | R) depend, after two applications of [CONC], to premises
Γ ` P.∆P, C ;Γ ` Q.∆Q and Γ ` R.∆R for some ∆P, ∆Q and ∆R.
Case (νa)0≡ 0. This case is straightforward from the application of [HIDE] and [END].
Case (νs̃)0 ≡ 0. This case is similar to the previous case and follows from the application of
[CRES] in Figure C.11 and [END].
Case (νa)(νa′)P ≡ (νa′)(νa)P (resp. (νs̃)(νs̃′)P ≡ (νs̃′)(νs̃)P). Straightforward from the fact
that the order of elements in Γ (resp. ∆) is immaterial.
Case (νa)(P) |Q≡ (νa)(P |Q) if a 6∈ fn(Q). If P1 = (νa : G)(P) |Q and P2 = (νa : G)(P |Q) is
straightforward by [CONSEC] and [CONC]. The case for P1 = (νa : G)(P |Q) and P2 = (νa : G)(P) |Q
and follows from the fact that name a is only used by rules [MACC] and [MCAST] which are not used
in the validation tree of Q since a 6∈ fn(Q).
Case (νs̃)(P) | Q≡ (νs̃)(P | Q) if s̃ 6∈ fn(Q). If P1 = (νs̃)(P) | Q and P2 = (νs̃)(P | Q), from the
validation tree of P1 it follows (applying [CONC], and in the first case also [CRES])

Γ |= P.∆, s̃ : {Tp @p}p∈I and C ;Γ |= Q.∆ (F.22)

The validation of Γ |= P2 .∆, after applying [CRES], is reduced into Γ |= P | Q.∆, s̃ : {Tp @p}p∈I
which holds by [CONC] with premises (F.22).

The case for P1 = (νs̃)(P | Q), and P2 = (νs̃)(P) | Q proceeds similarly.
Case µX〈ẽt̃〉(ṽs̃).P≡ P[µX(ṽs̃).P/X ][ẽt̃/ṽs̃]

If P1 = µX〈ẽs̃〉(ṽs̃).P (note that for P1 to be validated it must be t̃ = s̃.) and P2 =P[µX(ṽs̃).P/X ][ẽs̃/ṽs̃]
then by hypothesis

Γ ` µX〈ẽs̃〉(ṽs̃).P. s̃1 : T1[ẽ/ṽ]@p1..s̃n : Tn[ẽ/ṽ]@pn (F.23)

By [REC], (F.23) has premise

Γ,X : (ṽ : S̃)T1 @p1..Tn @pn ` P. s̃1 : T1 @p1..s̃n : Tn @pn (F.24)

We proceed by induction on the size of the derivation tree of P1. The base cases are for trees
obtained using first [REC] and then either [IDLE] or [VAR]. The case for [IDLE] is straightforward. The
case of [VAR] is also straightforward considering that if P = X〈ẽ′s̃〉 then P1 = µX〈ẽt̃〉(ṽs̃).X〈ẽ′s̃〉
and P2 = X〈ẽ′s̃〉[µX(ṽs̃).P/X ][ẽt̃/ṽs̃] = µX〈ẽt̃〉(ṽs̃).X〈ẽ′s̃〉 thus P1 = P2.

In all other cases, observe that by (F.24) and the substitution lemma

Γ,X : (ṽ : S̃)T1 @p1..Tn @pn ` P[ẽs̃/ṽs̃]. s̃1 : T1[ẽ/ṽ]@p1..s̃n : Tn[ẽ/ṽ]@pn (F.25)

Since P is not X〈ẽ′t̃〉 (which is considered in the base case), whatever rule is applied to validate
(F.25) can be applied also to

Γ,X : (ṽ : S̃)T1 @p1..Tn @pn ` P[µX(ṽs̃).P/X ][ẽs̃/ṽs̃]. s̃1 : T1[ẽ/ṽ]@p1..s̃n : Tn[ẽ/ṽ]@pn
(F.26)

and, assuming that the validation tree of (F.25) has premise C ,Γ′ ` P′ .∆′ we can observe by in-
specting the validation rules (except [IDLE] and [VAR]) that the validation tree of (F.26) has premise
C ,Γ′ ` P′[µX(ṽs̃).P/X ].∆′. The thesis follows from Lemma Appendix F.5.

If P1 = P[µX(ṽs̃).P/X ][ẽt̃/ṽs̃] and P2 = µX〈ẽt̃〉(ṽs̃).P then by hypothesis

Γ ` P[µX(ṽs̃).P/X ][ẽt̃/ṽs̃].∆ (F.27)
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for some ∆, and since X ∈ fn(P) the validation tree includes (with Γ⊆ Γ′)

A;Γ
′,X : (ṽ : S̃)T1 @p1..Tn @pn ` P. s̃1 :T1 @p1, .., s̃n :Tn @pn

A;Γ
′ ` µX〈ẽ′s̃〉(ṽs̃).P. s̃1 :T1[ẽ′/ṽ]@p1, .., s̃n :Tn[ẽ′/ṽ]@pn

(F.28)

From the premise of (F.28) and [REC] we obtain

A;Γ
′ ` µX〈ẽs̃〉(ṽs̃).P. s̃1 :T1[ẽ/ṽ]@p1, .., s̃n :Tn[ẽ/ṽ]@pn

from which it follows

Γ ` µX〈ẽs̃〉(ṽs̃).P. s̃1 :T1[ẽ/ṽ]@p1, .., s̃n :Tn[ẽ/ṽ]@pn

since:

1. Since P is closed, A express constraints only on ṽ or on variables that are introduced in P.
Such variables however do not appear in the unfolding, i.e., they are not in fn(µX〈ẽs̃〉(ṽs̃).P).

2. Γ′ does not add to Γ any definition on free process variables in µX〈ẽs̃〉(ṽs̃).P.

From the premise of (F.28) we also know that ∆ in (F.27) is t̃1 : T1[ẽ/ṽ]@p1..t̃n : Tn[ẽ/ṽ]@pn
thus

Γ ` µX〈ẽs̃〉(ṽs̃).P.∆

Case (νs1..sn)(s1 : /0 | . . . | sn : /0)≡ 0. The case is straightforward by application of [CRES] and [QNIL]

in Figure C.11.

Appendix F.4. Proof of Proposition 7.4 (Subject Reduction - Visible Transitions)

If Γ ` P.∆, P α→ P′, and 〈Γ,∆〉 α→ 〈Γ′,∆′〉 where α 6= τ, then we have Γ′ ` P′ .∆′.
PROOF: The proof is by rule induction on the validation rules in Figures 6 and C.11, showing a
stronger result which adds to the statement:

If P α→ P′ and Γ ` P.∆ with α being an output, a selection, or an action at a shared
channel (accept and request), then 〈Γ,∆〉 allows α.

In the following proof we refer to both the transition rules for asserted processes in Figure 7 and
the transition rules for endpoint assertions in Figure 8. Assume we have:

1. Γ ` P.∆ (which stands for true;Γ ` P.∆)
2. P α→ P′ and
3. 〈Γ,∆〉 α→ 〈Γ′,∆′〉

We proceed by the case analysis depending on the last rule used for deriving this judgement. We
assume processes are closed. Further below notice C in the conclusion of each rule should be
true by our assumption.
Case [SND] (Figure 6). In this case, we derive true;Γ ` P.∆ with:

P = sk!〈ẽ〉(ṽ){A};Q and ∆ = ∆0, s̃ : k!(ṽ : S̃){A};T @p

By the first premise of [SEND] we have:

true⊃ A[ẽ/ṽ] (F.29)
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Since P is closed, we can set ẽ ↓ ñ. By (F.29) we infer A[ñ/ṽ] ↓ true. It follows that P can move
only by [SEND] (i.e., not [SENDERR]), hence, setting α = sk!ñ, P α→ Q[ñ/ṽ] def

= P′. Now ∆ can move
by [TR-SEND]: 〈Γ,∆〉 α→ 〈Γ, (∆0, s̃ : T [ñ/ṽ]@p)〉. By the second premise of [SEND] in Figure 6, we
have

true;Γ ` Q[ẽ/ṽ].∆0, s̃ : T [ẽ/ṽ]@p (F.30)

By Lemma Appendix E.4 (Evaluation Lemma), (F.30) immediately gives true;Γ ` Q[ñ/ṽ] .
∆0, s̃ : T [ñ/ṽ]@p as required.
Case [RCV] (Figure 6). In this case the conclusion is true;Γ ` P.∆ with:

P = sk?(ṽ){A};Q and ∆ = ∆0, s̃ : k?(ṽ : S̃){A};T @p

By the shape of P we can set α = sk?ñ. By [TR-REC] 〈Γ,∆〉 α→ 〈Γ,∆0, s̃ : T [ñ/ṽ]@p〉 for which
A[ñ/ṽ] ↓ true. Thus P can move only by [RECV] (not by [RECVERR]), obtaining P α→ Q[ñ/ṽ]. Now
the premise of [RCV] in Figure 6 says:

true∧A;Γ ` Q.∆0, s̃ : T @p

By Lemma Appendix E.2 (Substitution Lemma) we obtain

true∧A[ñ/ṽ];Γ ` Q[ñ/ṽ].∆0, s̃ : T [ñ/ṽ]@p

By A[ñ/ṽ] ↓ true and by [CONSEQ] we obtain true;Γ ` Q[ñ/ṽ].∆0, s̃ : T [ñ/ṽ]@p as required.
Case [SEL] (Figure 6). We can set true;Γ ` P.∆ such that:

P = sk �{A j}l j : Pj and ∆ = ∆0, s̃ : k⊕{{Ai}li : Ti}i∈I @p

By the premise of the rule we have true ⊃ A j hence A j ↓ true, therefore P can move only by
[LABEL] (i.e., not [LABELERR]). Thus we set α = sk � l j and we have P α→ Pj. The following assertion
transition is also possible by [TR-SELECT]: 〈Γ,∆〉 α→ 〈Γ,∆0, s̃ : T j @p〉. By the second premise of
[LABEL] in Figure 6 we get true;Γ ` Pj .∆0, s̃ : T j @p as required.
Case [BRANCH] (Figure 6). In this case we have true;Γ ` P.∆ such that

P = sk �{{Ai}li : Pi}i∈I and ∆ = ∆0, s̃ : k&{{Ai}li : Ti}i∈I @p

By the shape of P we can set α = sk � l j for which we have, by [TR-CHOICE]: A j ↓ true

〈Γ,∆〉 α→ 〈Γ;∆0, s̃ : T j @p〉. Thus P can move only by [BRANCH] (not by [BRANCHERR]), obtaining:
P α→ Pj. Now the premise of [BRANCH] in Figure 6 says:

true∧A j;Γ ` Pj .∆0, s̃ : T j @p

By A j ↓ true and [CONSEQ] we obtain: true;Γ ` Q[ñ/ṽ].∆0, s̃ : T [ñ/ṽ]@p as required.
Case [MCAST] (Figure 6). In this case we have true;Γ ` P . ∆ such that, combining with the
premises of the rule: P = a[2..n](s̃).Q, true;Γ ` Q.∆, s̃ : (G �1)@1, and

Γ ` a : G (F.31)

By the shape of P we can set α = a[2..n](s̃) and a[2..n](s̃).Q α→ Q. By (F.31) the following
transition is possible using [TR-LINKOUT] we obtain 〈Γ,∆〉 α→ 〈Γ,∆, s̃ : (G �1)@1〉 as required.
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Case [MACC] (Figure 6). Similar to the case [MCAST] above.
Case [PAR] (Figure 6). Immediate, since the visible transition for P | Q is reducible to the same
action by either P or Q, and because the resulting assertion environments (one result of the visible
transition) can again be composed, because linear compatibility only depends on channel names
and participant names.
Cases [NRES], [CRES] and [BOUT] (Figure C.11). In each case, direct from the induction hypothesis.
Case [CONSEQ] (Figure 6). Suppose the conclusion is true;Γ ` P.∆ which is derived from

true;Γ ` P.∆0 (F.32)

with ∆0 c ∆. Now first suppose the concerned visible action α is neither a receive action nor a
branching. Now suppose P α→ P′ and

〈Γ,∆〉 α→ 〈Γ′,∆′〉 (F.33)

By induction hypothesis and by (F.32), (F.33) gives us: 〈Γ,∆0〉 α→〈Γ′,∆′0〉 for some ∆′0 for which
we have, by induction hypothesis

true;Γ
′ ` P′ .∆

′
0 (F.34)

Since the assertion transition is deterministic and by Lemma 6.4 we know ∆′0 c ∆′, by (F.34) we
can use [CONSEQ] to reach true;Γ′ ` P′ .∆′ as required.
Case [REC] (Figure 6). Suppose the conclusion is

true;Γ ` µX〈ẽs̃1..s̃n〉(ṽs̃1..s̃n).Pbody .∆

By Lemma 7.3 also the unfolding of P can be validated against ∆

true;Γ ` Pbody[µX ../X ][ẽ/ṽ].∆

and by induction Pbody[µX ../X ][ẽ/ṽ]→ P′body[µX ../X ][ẽ/ṽ] and ∆→ ∆′ with

true;Γ ` P′body[µX ../X ][ẽ/ṽ].∆
′ (F.35)

By (F.35) and again by Lemma 7.3 (by folding the process) we obtain

true;Γ ` µX〈ẽ〉(ṽ)P′body .∆
′

Case [VAR] (Figure 6). Immediate since in this case there is no reduction from P.

Appendix G. Soundness (Proofs of Section 8)

Appendix G.1. Assertion Reduction and Coherence
Lemma Appendix G.1 (Assertion Reduction and Coherence). If ∆ is coherent and ∆→ ∆′

or equivalently 〈Γ,∆〉 τ→ 〈Γ,∆′〉, then ∆′ is again coherent.

PROOF: We only consider the two cases for the send message assertion. The cases for the
select message assertions are treated in the same way. We start from a simpler case. Consider
the following redex:

s̃ : H [k!(ṽ : S̃){A};T @p] (G.1)
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For this being coherent, there is some G such that

k!(ṽ : S̃){A};T c G �p (G.2)

similarly for other endpoint assertions under s̃. Now consider we have a reduction from (G.1) by
the first rule in Figure C.9 into: s̃ : H [k!〈ñ〉;T [ñ/ṽ]@p] where we have

A[ñ/ṽ] ↓ true (G.3)

By (G.2) and (G.3) and because c is transitive we obtain: k!〈ñ〉;T [ñ/ṽ]c G �p as required. For
the other case, the reduction involves a pair. Assume ∆ has a redex

s̃ : H [k!〈ñ〉Ta,k?(ṽ){Ab};Tb] (G.4)

As before, by coherence we can set: k!〈ñ〉;Ta c G �p and k?(ṽ){Ab};Tb c G �q. Note we can
safely assume G has the shape (up to permutation of utterly unordered actions):

G = p→ q : (ṽ : S̃){A′}.G ′

hence we can assume: G �p= k!(ṽ : S̃){A′};(G ′ �p) and G �q= k?(ṽ){A′};(G ′ �q) such that, by
Definition Appendix C.3, A′ ⊃ Ab and A′[ñ/ṽ] ↓ true and hence

Ta c G ′ �p[ñ/ṽ] (G.5)
G ′ �q[ñ/ṽ] ⊃ Tb[ñ/ṽ] (G.6)

Now consider the reduction from (G.4) into s̃ : H [Ta,Tb[ñ/ṽ]].
By (G.5) and (G.6) we obtain Ta c G ′[ñ/ṽ] �p, and Tb[ñ/ṽ] c G ′[ñ/ṽ] �q. Since for each

r 6∈ {p,q}, and because by HSP the variables in ṽ only occur in assertions/actions involving
either p of q, we know G ′[ñ/ṽ]�r = G �r hence as required.

Appendix G.2. Proof of Theorem 8.4 (Soundness for Open Processes)
Let P be a program phrase. Then C ;Γ ` P.∆ implies C ;Γ |= P.∆.

PROOF: Let R be the relation collecting all the pairs of the form (Pσ,〈Γσ,∆σ〉) such that
C ;Γ ` P .∆ where: (i) P is a sub-term of a multi-step α→-derivative of a program phrase, (ii) ∆

is an assertion assignment possibly containing non-singleton assignments, and (iii) σ is a closing
substitution consistent with C and Γ. We show that R is a conditional simulation (in the extended
sense defined in Definition 6.1), by rule induction on the validation rules (in Figures 6 and C.11).
Assume

C ;Γ ` P.∆ (G.7)

is derived and σ is a closing substitution conforming to C and Γ. We carry out case analysis
depending on the last rule used.
Case [SND](Figure 6) . We can set P= sk!〈ẽ〉(ṽ){A};P′ where, in (G.7), ∆=∆′, s̃ : k!(ṽ : S̃){A};T @p

By the definition of closure
Pσ = sk!〈ẽσ〉(ṽ){Aσ};P′σ

where ẽσ ↓ ñ. Process Pσ can only move because of rule [SEND] (Figure 7) with label is sk!ñ. Since
A[ñ/ṽ] ↓ true (by premise of [SEND]) and A[ñ/ṽ]⊃ Aσ[ñ/ṽ], then

sk!〈ẽσ〉(ṽ){Aσ};P′σ
sk!ñ→ P′σ
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We observe
∆σ = ∆

′
σ, s̃ : k!(ṽ : S̃){Aσ};Tσ @p

By [TR-SEND] in Figure 8, since Aσ[ñ/ṽ] ↓ true,

〈Γ,∆′σ, s̃ : k!(ṽ : S̃){Aσ};Tσ @p〉 sk!ñ→ 〈Γ,∆′σ, s̃ : Tσ @p〉

It follows by induction (P′σ,〈Γ,∆′σ, s̃ : Tσ @p〉) ∈ R.
Case [RCV] (Figure 6). We set P = sk?(ṽ){A};P′ and, in (G.7), ∆ = ∆′, s̃ : k?(ṽ : S̃){A};T @p. Let
Pσ = sk?(v){Aσ};P′σ. Observe

∆σ = ∆
′
σ, s̃ : k?(ṽ : S̃){Aσ};Tσ @p

Process Pσ can only move because of rule [RCV] in Figure 7 with label sk?ñ. By definition of
conditional simulation, we only consider the case in which ∆σ is able to move (i.e., ñ : S̃ and
Aσ[ñ/ṽ] ↓ true). In such case, by [RCV] in Figure 7, and by [TR-REC] in Figure 8, respectively:

sk?(ṽ){Aσ};P′σ
sk?ñ→ P′σ and 〈Γ,∆′σ, s̃ : k?(ṽ : S̃){Aσ};Tσ @p〉 sk?ñ→ 〈Γ,∆′σ, s̃ : Tσ @p〉

It follows by induction (P′σ,〈Γ1,∆σ, s̃ : Tσ @p〉) ∈ R.
Case [SEL] (Figure 6). Let P = sk � {A j}l j : Pj, by [SEL] C ;Γ ` sk � {A j}l j : Pj .∆ with ∆ =
∆′, s̃ : k⊕{{Ai}li : Ti}i∈I @p and j ∈ I. Observe that ∆σ = ∆′σ, s̃ : k⊕{{Aiσ}li : Tiσ}i∈I @p. Also
Pσ = sk � {A jσ}l j : Pjσ Process Pσ can only move because of rule [LABEL] in Figure 7 with label
sk � l j and, since A j ↓ true by well formedness of P and A j =⇒ A jσ then

sk �{A jσ}l j : Pjσ
sk�l j→ Pjσ

By [TR-SEL] in Figure 8, since A j ↓ true

〈Γ,∆′σ, s̃ : k⊕{{Aiσ}li : Tiσ}i∈I @p〉 sk�l j→ 〈Γ,∆′σ, s̃ : T jσ @p〉

By induction, (Pjσ,〈Γ,∆′σ, s̃ : T jσ @p〉) ∈ R.
Case [BRANCH] (Figure 6). We can set P = sk � {{Ai}li : Pi}i∈I then Pσ = sk � {{Aiσ}li : Piσ}i∈I .
By [BRANCH] in Figure 6, C ;Γ ` sk�{{Ai}li : Pi}i∈I .∆ with ∆ = ∆′, s̃ : k&{{Ai}li : Ti}i∈I @p. We
observe that

∆σ = ∆
′
σ, s̃ : k&{{Aiσ}li : Tiσ}i∈I @p

Process Pσ can only move because of rule [BRANCH] with label sk � l j. By definition of condi-
tional simulation we only consider the case in which 〈Γ,∆σ〉 is able to perform a branching move
with label sk � l j, that is when A jσ ↓ true. Assuming A jσ ↓ true, by [BRANCH] in Figure 7:

sk �{A jσ}l j : Pjσ
sk�l j→ Pjσ

and by [TR-CHOICE] in Figure 8:

〈Γ,∆′σ, s̃ : k&{{Aiσ}li : Tiσ}i∈I @p〉 sk�l j→ 〈Γ,∆′σ, s̃ : T jσ @p〉

By induction, (Pjσ,〈Γ,∆′σ, s̃ : T jσ @p〉) ∈ R.
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Case [MCAST] (Figure 6). In this case P = a[2..n](s̃).P′ and we can set Γ ` a[2..n](s̃).P .∆. Let
Pσ = a[2..n](s̃).P′σ. Process Pσ can only move because of rule [LINKOUT] in Figure 7:

a[2..n](s̃).P′σ
a[2..n](s̃)→ P′σ

By [TR-LINKOUT] in Figure 8,

〈Γ,∆σ〉
a[2..n](s̃)→ 〈Γ1,∆σ, s̃ : (G �1)σ @1〉

By induction we have (P′σ,〈Γ1,∆σ, s̃ : (G �1)σ @1〉) ∈ R.
Case [MACC] (Figure 6). This case is essentially identical to the case [MCAST] above.
Case [CONC] (Figure 6). The cases of independent actions are direct from the induction hypothesis.
If the reduction takes place by interaction, then we use Lemma 7.1.
Case [IF] (Figure 6). Let P = if e then Q1 else Q2. By [IF] in Figure 6, since (G.7) holds, then
C ∧ e;Γ ` Q1 .∆. We note Pσ = if eσ then Q1σ else Q2σ. Process Pσ can move because of either
[IFT] or [IFF] of Figure 7. Let us consider the case in which the transition happens by rule [IFT] (the
case with [IFF] is symmetric):

if eσ then Q1σ else Q2σ

τ→ Q1σ with eσ ↓ true

By induction, since eσ ↓ true and moreover eσ does not have free variables (Q1σ,〈Γ,∆σ〉) ∈ R as
required.
Case [IDLE] (Figure 6). We can set P = 0; the property holds since there are no transitions.
Case [HIDE] (Figure 6). Immediate from induction hypothesis.
Case [VAR] (Figure 6). We set P = X〈ẽ, s̃1, ..., s̃n〉 with Γ(X) = (ṽ : S̃)T1 @p1 . . .Tn @pn. Pσ is a
process such that Cσ,Γσ ` Pσ[ẽ/ṽ] .∆σ where ∆σ = ∆′σ, s̃1 : T1σ[ẽ/ṽ]@p1, .., s̃n : Tnσ[ẽ/ṽ]@pn is
the closure of the endpoint assertion of P. The property holds straightforwardly by the cases for
the other process types.
Case [NRES] (Figure 6). Immediate from induction hypothesis.
Case [REC] (Figure 6). This case is proved by the standard syntactic approximation of a recursion.
By Lemma 8.1, we can assume, in all derivations for processes in R , the application of Rule
[REC] only occurs in (the last steps of) a derivation for a transition derivative of a program phrase,
without loss of generality. Under this assumption, by Lemma 8.3, we know the premise and
conclusion of an application of [REC] is well-initiated in the sense of Definition 8.2. Assume that
we have

C ;Γ,X : (ṽ : S̃)T1 @p1 . . .Tn @pn |= P. s̃1 : T1 @p1 . . . s̃n : Tn @pn (G.8)

Further we also assume

C ;Γ,X : (ṽ : S̃)T1 @p1 . . .Tn @pn |= Q.∆ (G.9)

Let x range over interaction names and session channels. In the following we often use the
notation for the substitution Q[(x̃)R/X ] which replaces each occurrence of X〈ẽ〉 with R[ẽ/x̃].
Using well-guardedness of process variables [29, §2], we first approximate the recursion by the
following hierarchy:

P0 def
= P′ ≈ 0 P1 def

= P[(x̃)P0/X ] · · · Pn+1 def
= P[(x̃)Pn/X ]
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Above P′ is chosen as the process which is typed by the same typing as P and which has no
visible action. For example, choosing a and s to be fresh, P′ def

= (νa)(a[2](s).P) then P′ ≈ 0. We
also set Pω = µX〈x̃〉(ṽ).P to be the recursively defined agent itself.

In the conclusion of [REC] we abstract the process variable X by the µ construct. Instead, we
replace each X in Q with (x̃)P0, (x̃)P1, ... (x̃)Pn, and finally (x̃)Pω. We call the result Q0, Q1, ...
Qn, and Qω, where Qω is nothing but the term in the conclusion (after one-time unfolding which
does not change the behaviour).

Now suppose that C ;Γ ` S .∆ is derivable and that C0;Γ0 ` S0 .∆0 occurs in its derivation,
hence S0 occurs in S. Suppose that also C0;Γ0 ` S′0 .∆0 where S′0 and S0 have the identical typing
(wrt [29]). We can replace the occurrence of S0 in S by S′0, with the result written S′, such that
C ;Γ ` S′ .∆ is derivable.

Using property, we first note that, for any 〈Γ,∆〉 and C , we have C ;Γ |= P0 .∆. Thus we
apply this to (G.8) and replace X in P by (ṽs̃1..s̃n)P0:

C ;Γ |= P1 . s̃1 : T1 @p1 . . . s̃n : Tn @pn

This can again be used for (G.8) (noting the environment Γ can always be taken as widely as pos-
sible in [VAR]): C ;Γ |= P2 . s̃1 : T1 @p1 . . . s̃n : Tn @pn. In this way we know that for an arbitrary
n: C ;Γ |= Pn . s̃1 : T1 @p1 . . . s̃n : Tn @pn. By applying this to (G.9), we obtain:

C ;Γ |= Qn .∆

for an arbitrary n. Now assume, for simplicity, that there are no free variables in Q (hence in Qn)
and therefore C = true (the reasoning is precisely the same by applying a closing substitution).
We can then construct a relation taking each node in the transitions from Qω and relating it to
the derivative of 〈Γ,∆〉, by observing that assertions’ transitions are always deterministic for the
given process and its transition derivatives. Let the resulting relation be R . Since any finite trace
of Qω is in some Qn, the conditions of Definition 6.1 hold at each step, hence R is a conditional
simulation.
Case [CONSEQ] (Figure 6). By Proposition 6.5.
Cases [QNIL], [QVAL] and [QSEL] (Figure C.11). These processes (queues) do not have transitions.
The behaviours of queues are taken into account as part of τs-actions in the case for [CONC], above.
Case [CRES] (Figure 6). By Lemma Appendix G.1. This exhausts all cases.
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