
A multiparty multi-session logic

Laura Bocchi1, Romain Demangeon2, and Nobuko Yoshida3

1University of Leicester, 2Queen Mary, University of London, 3Imperial College London

Abstract. Recent work on the enhancement of typing techniques for multiparty ses-
sions with logical annotations enables, not only the validation of structural properties
of the conversations and on the sorts of the messages, but also properties on the ac-
tual values exchanged. However, a specification and verification of mutual effects of
multiple cross-session interactions are still an open problem. We introduce a multiparty
logical system with virtual states that enables the tractable specification and validation
of fine-grained inter-session correctness properties of processes participating in sev-
eral interleaved sessions. We present a sound and relative complete static verification
method, and justify its expressiveness by giving a sound and complete embedding into
Hennessy-Milner logic.

1 Introduction
In extensively distributed computing environments, application scenarios often centre
around structured conversations among multiple distributed participants; correctness
properties often depend on the state of individual participants and span over multiple
conversations and applications. A fundamental challenge is to establish an effective
specification and verification method to ensure safety in distributed software where the
notion of state plays a key role. A promising direction is the logical elaboration of types
for programming languages [15]. Types offer a stable linkage between the fundamental
dynamics of programs and their mathematical abstractions, serving as a highly effective
basis for safety assurance. In the context of process algebras, approaches like [5, 11, 17]
allow tractable (e.g., with respect to model checking techniques) validation of proper-
ties such as progress, session fidelity, and error freedom. Furthermore, they enable the
specification of global properties of multiparty interactions, yet enabling modular lo-
cal verification of each participant. The key idea is that a global specification (i.e., a
global session type) is projected onto each endpoint, making its responsibilities explicit.
When all endpoints conform to their projected specifications, the resulting conversation
is guaranteed to conform to the original global specifications.

However, these approaches are confined to the specification of a single multiparty
session and do not treat stateful specifications incorporating mutual effects of multiple
sessions. This paper presents a simple but powerful extension of multiparty session
specifications, by enriching the assertion language studied in [5] with capability to refer
to virtual states local to each network principal. The resulting protocol specifications
are called multiparty stateful assertions (MPSAs). Each principal in a network hence
serves as unit of verification, in which the local state must conform to the virtual states
of the MPSAs that principal implements. To see the kind of properties we are interested
in, consider the following fragment of specification for the dialogue between a ticket
allocation server (S) and its client (C), where the server allocates numbered tickets of
increasing value to each client in consecutive, separate sessions:

SÑ C : py :Natqty � S.xuxS.x++y

The protocol between the server and each client is the single message-passing action
where S sends C a message of type Nat. The description of this simple distributed
application implies behavioural constraints of greater depth than the basic communi-
cation actions. The (sender-side) predicate and effect for the interaction step, ty �
S.xuxS.x++y, asserts that the message y sent to each client must equal the current value
of S.x, a state variable x allocated to the principal serving as S; and that the local effect
of this message send is to increment S.x. In this way, S is specified to send incremental
values across consecutive sessions.

The behaviour described above cannot be encoded by only using the primitives
in [5] for single-session specifications. In fact, (1) to ensure inter-session properties one
must discipline concurrent state updates with some mechanism of lock/unlock or atomic
access/update, and (2) lock/unlock and atomic access/update can only be described as
properties that span over multiple sessions.

To clarify the relevance of our work, we investigate how our specification corre-
sponds to a Hennessy-Milner Logic (HML) formula [16]. We give the embedding of
the behaviour of a role in a session into a formula: if a process and its state happen
to perform reductions and updates matching the ones of the specification, the required
predicates will hold. For instance, the formula corresponding to the behaviour of S from
the previous example on channel s is:

@y : Nat, rsCpyqspy � S.x^ rS.x++strueq

where r`sφ means “if a process and its state perform the action `, the resulting pair
satisfies φ”. Communications and state updates are both treated as actions of a labelled
transition system. In § 6, we explain how specifications handling several roles in several
sessions can be soundly and completely embedded, through the use of an interleaving
of formulae, exploring all the possible orders in which the actions coming from differ-
ent sessions can be performed, and ensuring that predicates are always satisfied.
Contribution We present a sound and relative complete validation method for MPSAs,
based on statically-verifiable proof rules. The most distinctive feature with respect to
the framework presented in [5] is the possibility of expressing properties that span sev-
eral session, by referring to the states maintained by principals. Our analysis statically
checks that a network, composed of several processes associated with their own states,
satisfies a specification. Principals are associated to invariants, asserting properties on
their state that are supposed to always hold, even when several sessions are executed
in parallel. We prove that our analysis is sound and complete w.r.t. to the semantical
satisfaction relation induced by the two labelled transition systems for processes and
specifications: the actions performed by a typable process and its specification match.
In addition, we justify the relevance of the stateful logical layer of our work by em-
bedding it into Hennessy-Milner logic with predicates [1, 5]. Appendix lists auxiliary
definitions, proof, and a complex use case from [20].

2 Multiparty assertions with virtual states
In the proposed framework, applications are built as the composition of units of design
called sessions. Each type of session is specified as a MPSA, that is an abstract de-

2

scription of the interactions of the roles of a multiparty session. A MPSA specifies the
conditions under which interactions can be done, the constraints on the communicated
values and the effects on the virtual state.

The syntax of MPSAs is given in Figure 1 and extends [5] with the declaration of one
virtual state for each role in the session, and with operations on the states called updates.
Global assertions (G,G1, . . .) describe a multiparty session from a global perspective;
and local assertions (L,L1, . . .) describe it from the perspective of one role.
A ::� true | false | e1 � e2 | A | A1 ^A2 | Dx.A, S ::� bool | nat | .., U ::� S | xLy

G ::� ppp1 : rx̃1 : S̃1stA1u, . . . , pn : rx̃n : S̃nstAnuqq.G
| pÑq : tlipxi : UiqtAiuxEiy.GiuiPI
| G1 | G2

| µtxy : A1ypx : SqtAu.G
| txy : A1y

| end

L::� rx̃ : S̃stAu.L
| p!tlipxi : UiqtAiuxEiy.LiuiPI
| p?tlipxi : UiqtAiuxEiy.LiuiPI
| µtxy : A1ypx : SqtAu.L
| txy : A1y

| end
Fig. 1. Global and local MPSAs

For expressing constraints we use predicates (A,A1, . . .) with decidable evaluation.
We consider here the syntax of A in Figure 1, although we may use other predicates
than equality in examples. Predicates are defined on interaction variables, modelling
the content of a message exchanged by the roles in the session (as [5]), and on state
variables, which are variables local to one role. Whereas the value of interaction vari-
ables does not change after they have been introduced, state variables can be updated a
number of times. As a consequence, a predicate involving state variables may be true or
false at different times during the session. Given a predicate A, we sometimes use the
closure (using existential quantifiers) of the state variables in A, denoted with #A, to
keep only the persistent part of A, namely the part involving interaction variables.

Global Assertions Declaration ppp1 : rx̃1 : S̃1stA1u, . . . , pn : rx̃n : S̃nstAnuqq.G
appears only once at the outset; it declares the roles p1, .., pn involved in the session,
and associates each role pi to the signature rx̃i : S̃is of its virtual state and to an assertion
invariant Ai constraining x̃i. The declaration binds x̃i in Ai and in G; in G we denote
x P x̃i with pi.x, as different roles can have state variables with the same name.

Interaction pÑq : tlipxi : UiqtAiuxEiy.GiuiPI models a message exchange where
role p sends q one of the the branch labels li and an interaction variable xi, with xi
binding its occurrences in Ai, Ei, and Gi. Ai is the predicate which needs to hold for p
to select li, and which may constrain the values to be sent for xi. Note that Ai is at the
same time an assumption for the receiver q and a constraint for the sender p (i.e., if Ai
is violated then the blame is on p). Ei is the update prescribed on the virtual states of
p and q. An update is a vector of assignments of the form x :� e, where x is updated
by the result of evaluating e in the current state. We assume E does not contain two
assignments to the same state variable, and is an atomic action.

G1 | G2 is for parallel composition. The recursive definition is guarded and defines a
recursion parameter x initially set equal to a value satisfying the initialisation predicate
A1, with A being an invariant predicate. end is a termination.

We denote with varpGq the set of (interaction/state) variables and recursion parame-
ters in G, and with varpAq the free variables ofA. We write p P G if p is a role of G. The

3

set of variables that p P G knows, written varpGq æ p, consists of: (i) the state variables
in p’s signature, (ii) the interaction variables sent or received by p in G, and (iii) the
parameters of the recursive definitions µtxy : A1ypx : SqtAu.G1 in G such that p knows
all the free variables in initialisation A1, and all free variables in A2 for all txy : A2y in
G1 (we assume each recursion parameter known by exactly two participants). We omit
true predicates, empty vectors of variables/updates, and labels of single branches.

Example 1. Consider a session with two roles, C and S: C makes an offer x to S for
buying a ticket; S either accepts or refuses the offer. In the former case C spends x credits
and receives a ticket, and S earns x credits. Tickets are modelled as serial numbers; they
must all be increasing numbers not exceeding 1000. GT below specifies this scenario:

GT � ppC : rcredit : NatstACu, S : rcredit : Nat, count : NatstASuqq.
CÑ S : px : NatqtC.credit ¥ xuxC.credit :� C.credit� xy.
SÑ C : tokpy : NatqtS.count 1000^ y � S.countuxEoky,

koxC.credit :� C.credit� xy u
AC � tC.credit ¥ 0u, AS � tS.credit ¥ 0^ S.count ¥ 0^ S.count ¤ 1000u
Eok � S.credit :� S.credit� x, S.count :� S.count� 1

C has state variable credit, and S has state variables credit and S.count (a counter
for serial numbers). The assertion invariants AC and AS require the credit to be non-
negative and the counter to not exceed the maximum number of tickets. The first inter-
action requires that the offer x does not exceed C’s credit, and decrements the credit by
x. S selects one of the two branches by either label ok or quit. The former branch can
be selected only if S.count ¤ 1000.

Local Assertions Each local assertion L (Figure 1) refers to a specific role. The decla-
ration of one role is rx̃ : S̃stAu.L. Assertion p!tlipxi : UiqtAiuxEiy.LiuiPI models an
interaction where the role sends p a branch label li and a message xi. Ai and Ei are the
predicate and update respectively. The branching is dual. The others are as in the global
assertions, except that a local assertion cannot be multi-threaded.

Given a global assertion G, we can automatically derive the local assertions for each
role p P G by projection. The projection rules are as in [5], except that state declarations
and updates are now considered. The projection of a predicateA on p in G, writtenA æ p
is defined as Dx̃.A where x̃ � varpAqzpvarpGq æ pq (i.e., the existential closure of the
variables that p does not know). The projection of an update E on p in G, written E æ p
is the update E1 containing only the assignments pj .xi :� ej such that pj � p.

A detailed presentation of the rules for global assertions is not necessary to under-
stand the results in this paper, hence we only give an illustration through Example I.3.
Henceforth, in G æ p we shall omit the p. prefix when referring to p’s state variables.

Example 2. LC (resp. LS) is the projection of GT from Example I.2 on C (resp. S).

LC � rcredit : NatstACu.S ! px : Natqtcredit ¥ xuxcredit :� credit� xy.L1
C

L1
C � S ?tokpy : NatqtDS.count.S.count 1000^ y � S.countu.end,

koxcredit :� credit� xy.endu

LS � rcredit : Nat, credit : NatstASu.C ?px : NatqtDC.credit.C.credit ¥ xu.L1
S

L1
S � C ! tokpy : Natqtcount 1000^ y � countuxcredit :� credit� x, count :� count� 1y.end,

ko.endu

4

The projection of the declaration of GT on a role includes only the variables/invariant
for that role. The projection of the first interaction of GT on sender C (resp. receiver
S) is a send/select (resp. a receive/branch). The predicates/updates of the projections
on a role are the projections of the predicates/updates on that role.1 The continuation
is projected similarly, proceeding point-wise for each branch. Sometimes the projected
predicate provides useful information, e.g., DS.count.S.count 1000^ y � S.count
provides C with precondition y 1000.

Well-assertedness Our theory relies on the following consistency conditions to prevent
assertions in which it is logically impossible for a role to meet the specified obligations.
History sensitivity (HS) Each role p must know all free variables in the predicates
that p must guarantee (as in [5]), and must have enough information to perform the
prescribed updates. To perform an update, p must know (i) which value to assign and
(ii) when. The following assertion GHS violates (i) as in the second interaction r has
to update x1 with y without knowing y, and (ii) as p must update x2 not knowing
whether/when the update should be done.

GHS � pÑ q : py :Natq. qÑ r : tokpw :Natqxr.x1 :� y, p.x2 :� yy, kou

Invariant Stability (IS) A global assertion G is stable w.r.t. an invariant A if each
update performed in G does not invalidate A. We say that G satisfies invariant stability
if it is stable w.r.t. the invariants of its state declaration. The assertion below does not
satisfy invariant stability because if, e.g., p.credit � 10 and p sends value 20 for x
then the update xp.credit :� p.credit�xy will invalidate the invariant credit ¥ 0.
ppp : rcredit : Natstcredit ¥ 0u, q : r sqq. qÑ p : px : Natqtx ¡ 0uxp.credit :� p.credit� xy

Hereafter, we assume assertions to be well-asserted, in the sense that they satisfy HS
and IS. We extend well-assertedness to local assertions. Note that if G is a well-asserted
and G æ p is defined then G æ p is well-asserted.

3 Multiparty networks with local states
We consider networks of interactional entities called principals linked by a common
global transport, modelled as queues. Each principal runs a located process, that is a
process with multiparty session primitives [2, 17] (to enable rigorous representation of
conversation structures) and with a local state.

Syntax The syntax of networks and processes is given in Figure 2 and is a refined
version of the multiparty session π-calculus from [2, 9] with local states. A local state
σ maps a signature rx̃ : S̃s of typed pairwise disjoint state variables x̃ to their sorts.
We denote the signature of σ as spσq, and use the injective function idpσq to map each
local state to an identifier.

A network can be an empty network H, a located process rP sσ, a parallel compo-
sition of networks N1 | N2, a new session name pνsqN which binds s in N , or a queue
s : h where h are messages in transit through session channel s. A network is initial
if it has no new session names and queues, otherwise it is runtime. We denote the free
session channels in N with fnpNq, similarly for P with fnprP sσq � fnpP q.

1 Note that by HS the projection of a predicate on the sender of an interaction is always the predicate itself.

5

N ::� H

| rP sσ

| N1 | N2

| pνsqN

| s : h

P ::� 0

| urnspyq.P

| urispyq.P

| krp, qs!tei ÞÑ lixe
1
iypxiqxEiy;PiuiPI

| krp, qs?tlipxiqxEiy.PiuiPI

| P |Q

| pµXpxq.P qxey

|Xxey

σ ::� rx̃ : S̃s ÞÑ S̃

h ::�H | pp, q, lxvyq � h

k ::� y | s

u ::� y | a

v ::� n | srps

e ::� v | e op e

E ::�H

| E; x :� e

x, y, . . . interaction variables x, y, . . . state variables X,Y, . . . process variables
a, b, . . . shared name s, s1, . . . session name n, n1, . . . constants

Fig. 2. Syntax of netowrks and processes

A process can be an idle process 0, a session request/accept, a guarded command [14]2,
a branching, a parallel composition of processes, a recursive definition and invoca-
tion. Session request urnspyq.P multicasts a request to each session accept process
urispyq.P (with i P t2, .., nu) by synchronisation through a shared name u and con-
tinuing as P . Guarded command and branching processes represent communications
through an established session k. Guarded command krp, qs!tei ÞÑ lixe

1
iypxiqxEiy;PiuiPI

acts as role p in session k and sends role q one of the labels li. The choice of the
label is determined by boolean expressions ei, assuming _iPIei � true and i �� j
implies ei ^ ej � false. Each label li is sent with the corresponding expression e1i
which specifies the value for xi, assuming e1i and xi have the same type. Branching
krp, qs?tlipxiqxEiy.PiuiPI plays role q in session k and is ready to receive from p one
of the labels li and a value for the corresponding xi, then behaves as Pi after instanti-
ating xi with the received value. In guarded command (resp. branching), the local state
of the sender (resp. receiver) is updated according to update Ei; in both processes each
xi binds its occurrences in Pi and Ei.

Example 3. Processes PS and PC implement LS and LC, respectively, from Exam-
ple I.3.

PS � ar2spzq.zrC, Ss?pxq;P 1
S Eok � count :� count� 1, credit :� credit� x

P 1
S � zrS, Cs!ttcount 1000^ x ¥ 10u ÞÑ okxcountypyqxEoky.0,

tcount ¥ 1000_ x 10u ÞÑ ko.0u

PC � ar2spwq.wrC, Ss!x8ypxqxcredit :� credit� xy;P 1
C

P 1
C � wrS, Cs?tokpyq.0, koxcredit :� credit� xy.0u

We let C � 1 and S � 2. PS accepts a request to participate to a session specified
by GT (assuming a has type GT) on channel z as role 2. In the established session
z, the principal receives an offer x from the co-party. It follows a guarded command
with two cases; if count has not reached its maximum value for serial numbers and
the offer is greater than 10 then the first branch (ok) is taken and count is sent as y,
otherwise the second branch (ko) is taken. Dually, PC sends a request to participate to
one instance of session GT as the role 1. A principal may repeatedly execute a processes
using recursion, or run concurrent instances of the same type of session (e.g., rPS |
PSsσ) or different types of session (e.g., rPS | PCsσ) as discussed in Example I.5.

2 This construct can be implemented using selection, if-then-else and lock-unlock. Although our theory is
applicable to these primitives, we choose to make these low-level steps atomic for minimising the syntax.

6

Operational semantics The LTS is generated from the rules in Figure ?? using the
following labels: ` ::� arnsxsy | arisxsy | srp, qs!lxvy | srp, qs?lxvy | τ . We denote with
σ afterE the state σ after the update Ei. We write e Ó v for a closed expression e
when it evaluates to v.

rarnspyq.P sσ
arnsxsy
ÝÝÝÝÝÑ rP rs{yssσ rarispyq.P sσ

arisxsy
ÝÝÝÝÝÑ rP rs{yssσ ps R fnpP qq

rsrp, qs!tei ÞÑ lixe
1
iypxiqxEiy;PiuiPI sσ

srp,qs!ljxvy
ÝÝÝÝÝÝÝÝÑ rP rv{xjssσ

1

pj P I σ |ù e1j Ó v σ |ù ej σ1 � σ afterEjrv{xjsq

rsrp, qs?tlipxiqxEiy.PiuiPI sσ
srp,qs?ljxvy
ÝÝÝÝÝÝÝÝÑ rPjrv{xjssσ

1 pj P I σ1 � σ afterEjrv{xjsq

rP1sσ1
arnsxsy
ÝÝÝÝÝÑ rP 1

1sσ1 rPisσi
arisxsy
ÝÝÝÝÝÑrP 1

i sσi p2 ¤ i ¤ nq

rP1sσ1 | � � � | rPnsσn
τ
ÝÑ pνsqps :H | rP 1

1sσ1 | � � � | rP
1
nsσnq

rP sσ
srp,qs!ljxvy
ÝÝÝÝÝÝÝÝÑ rP 1sσ1

rP sσ | s : h
τ
ÝÑ rP 1sσ1 | s : h � pp, q, ljxvyq

rP sσ
srp,qs?ljxvy
ÝÝÝÝÝÝÝÝÑ rP 1sσ1

rP sσ | s : pp, q, ljxvyq � h
τ
ÝÑ rP 1sσ1 | s : h

Fig. 3. Labelled transition for networks

The first and second rule are for requesting and accepting a session initialisation. The
guarded command checks if condition ej is satisfied in the current state σ, and sends a
message consisting of one of the labels lj and an expression e1j (which is evaluated to
a value v in state σ), updates σ according to Ej , and behaves as P rv{xjs. Branching
is symmetric. The synchronous session initialisation creates a new queue. We omit the
standard context/structural equivalence rules.

4 Proof system for multiparty session logic with virtual states
In this section we outline how to obtain the syntactic validation of networks, written
Γ $ N�Σ. We assume processes typable, following [5], and rely on the environments:

Γ ::� H | Γ, a : G | Γ,X : px : SqL1 @ p1, . . . ,Ln@ pn, ∆ ::� H | ∆, srps : L, Σ ::� H | Σ, r∆sσ

We call Σ a global specification. We also use an assertion environment C, which is
incrementally built by conjunction of the predicates occurring in the processes being
validated, and model their assumptions. The closure #C is defined similarly to #A. We
let initpP q be the set of pairs pa, iq for which P includes a session accept/request on
shared channel a as role i (i.e., the sessions/roles P may engage in).

Well-formedness We want to prevent processes from implementing two assertions that
have different sorts for the same state variable. We say that P is well-formed w.r.t.
Γ if for all pa, iq, pa1, jq P initpP q such that x : S (resp. x : S1) is in the signature of
Γ paq æ i (resp. Γ pa1q æ j), S � S1 holds. If P is well-formed w.r.t. Γ then its signature
spP, Γ q is defined as the union of the signatures of Γ paq æ i for all pa, iq P initpP q.

Stability of Γ and principal invariant A process may implement a number of local as-
sertions, whose signatures may have common state variables. Hence, it is not sufficient

7

to check the invariant stability of each assertion in isolation; we must check that each as-
sertion does not invalidate the invariants of all the assertions that act on the same state.3

We call the conjunction of all these invariants the principal invariant. More precisely,
the principal invariant I of rP sσ w.r.t. Γ is the conjunction of the assertion invariants
of Γ paq æ i for each session pa, iq P initpP q. We say that Γ is stable w.r.t. I if all
assertions in the domain of Γ are invariant stable w.r.t. I.

Validation rules Figure 4 illustrates the proof rules for initial networks and processes.
Rule tN1u decomposes the validation of a network into the validations of each located
process with its corresponding specifications (i.e., idpσpq � idpσaq); both local and
virtual states must have signature spP, Γ q and satisfy the principal invariant, and Γ 1

(i.e., a subset of Γ representing the knowledge of the specific principal) must be sta-
ble w.r.t. the principal invariant. tN4u uses a refinement relation between specifications:
pΓ 1, ∆1, σ1q � pΓ,∆, σq if pΓ 1, ∆1, σ1q specifies a more refined behaviour than pΓ,∆, σq,
in that it poses more restrictions on the output actions and poses less restrictions on the
input actions. The other rules for networks are standard. Rule tMACCu validates a session

idpσpq � idpσaq spσpq � spσaq � spP, Γ q
σp, σa |ù I Γ 1 � Γ Γ 1 stable w.r.t. I I; C;Γ 1 $ P �∆

C;Γ $ rP sσp � r∆sσa

pΓ 1,∆1, σ1q � pΓ,∆, σq

C � C1 C1;Γ 1 $ N � r∆1sσ1

C;Γ $ N � r∆sσ
tN1/N2u

�
C;Γ $ H�H

C;Γ $ N �Σ Γ $ N 1 �Σ1

C;Γ $ N | N 1 �Σ,Σ1 tN3/N4u

G æ i � rx̃ : S̃stAu.L I; C;Γ, a : G $ P � yris : L,∆
I; C;Γ, a : G $ arispyq.P �∆

tMACCu

@i P I I; C ^Ai;Γ $ Pi �∆

I; C;Γ $ srp, qs?tlipxiqxEiy.PiuiPI � ∆, srqs : p?tlipxi : UiqtAiuxEiy.LiuiPI
tBCHu

@i P IDj P J li � lj I ^ C ^ ei � pAj ^ pEi � Ejqqre
1
i{xis

I; C ^#ei;Γ $ P re1i{xis �∆, srps : Ljre1i{xjs
I; C;Γ $ srp, qs!tei ÞÑ lixe

1
iypxiqxEiy;PiuiPI �∆, srps : q!tljpxj : UjqtAjuxEjy.LjujPJ

tSELu

I; C;Γ $ P1 �∆1 I; C;Γ $ P2 �∆2

I; C;Γ $ P1 | P2 �∆1,∆2

∆ end only
I; C;Γ $ 0�∆ tPAR/ENDu

L1re{xs, . . . ,Lnre{xs well-asserted
I; C;Γ,X : pxqL1 @ p1, . . . ,Ln@ pn $ Xxey � srp1s : L1re{xs, . . . , srpns : Lnre{xs

tVARu

I; C;Γ,X : pxqL1 @ p1, . . . ,Ln@ pn $ P � srp1s : L1, . . . , srpns : Ln
I; C;Γ $ pµXpxq.P qxey � srp1s : L1re{xs, . . . , srpns : Lnre{xs

tRECu

Fig. 4. Environments (top), proof rules for networks (centre) and proof rules for processes (bottom)

invitation provided that the invitation conforms to Γ, a : G, and the continuation is vali-
dated with a new ∆ extended with the new session. Note that I � A holds by invariant
stability of Γ . The rule for session request is similar hence omitted. In rule tBCHu the
continuations for each respective branch i are required to be still valid in the extended
environments; namely C is extended to include the current predicate Ai. Note that by
history sensitivity Ai does not include any free state variable. In rule tSELu each branch

3 This property is similar to non-interference in [19, 21].

8

i of the process must correspond to a branch j of the specification, with I � J . Expres-
sion e1i must satisfy Aj under the assumption of condition ei, of the invariant I, and of
the current assertion environment C. C is extended in the premise with the closure #ei.4

The other rules are similar to those in [5].

Example 4. Consider a principal who executes two parallel threads PS and PC from
Example I.4, namely the principal sells a ticket and buys another kind of ticket from
another principal (not modelled here). Assume the global specification is rHsσa and
σp � σa � tcount : Nat, credit : Natu ÞÑ t10, 500u. We show the validation of
true;Γ $ rPS | PCsσp� rHsσa proceeding top-down using the rules in Figure 4. First,
tN1u can be applied; note that I � AS ^ AC is equivalent to tcredit ¥ 0 ^ count ¥
0 ^ count ¤ 1000u and is satisfied by the local and virtual state. Next, rule tPARu

decomposes the derivation of two threads for PS and PC (we omit the illustration of the
latter). We next apply tMACCu and tBRAu to the former thread:

I; tDC.credit.C.credit ¥ xu;Γ $ P 1
S � zrSs : L1

S
tBCHu

I; true;Γ $ zrC, Ss?pxq.P 1
S � zrSs : C?px : NatqtDC.credit.C.credit ¥ xu.L1

S
tMACCu

I; true;Γ $ PS �H

Next, by tSELu, setting e � count 1000 ^ x ¥ 10, A � DC.credit.C.credit ¥ x,
and Eok � count :� count� 1, credit :� credit� x:

I ^A^ e � pcount 1000^ y � count^ Eok � Eokqrcount{ys I;A;Γ $ 0� zrSs : end
I ^A^ e � true I;A;Γ $ 0� zrSs : end

I;A;Γ $ zrS, Cs!te ÞÑ okxcountypyqxEoky.0, e ÞÑ ko.0u
|ù zrSs : C!tokpy : Natqtcount 1000^ y � countuxEoky.end, ko.endu

where each line in the premise corresponds to a branch (i.e., ok and ko). Finally we
apply tENDu to the second premise of each branch.

5 Soundness and completeness of the validation rules
We define a labelled transition relation for specifications xΓ,Σy using the same labels
as for networks. The main difference with the rules for networks is that predicates must
be satisfied for the transition to occur. We illustrate below the most remarkable rules
(the other rules are in Figure 8 in Appendix). The rule for session request:

xpa : G, Γ q; r∆sσy arnsxsy
ÝÝÝÝÝÑ xpa : G, Γ q; r∆, sr1s : Lsσy pG æ 1 � rx̃ : S̃stAu.L, σ |ù Aq

extends ∆ with the new session, given that a : G in Γ and the current state satisfies
assertion invariant A. The rule for session accept is dual. The rule for selection/send:

xΓ ; r∆, srps : q!tlipxi : UiqtAiuxEiy.LiuiPI sσy
srp,qs!ljxny
ÝÝÝÝÝÝÝÑ xΓ ; r∆, srps : Ljrn{xjssσ1y
pj P I, σ |ù Arn{xjs, σ

1 � σ afterEjrn{xjsq

moves to the continuation Lj of the selected branch with the updated state σ1, given that
the sent value n satisfies predicate Aj for branch j in the current state σ.

Semantic conformance is defined using conditional simulation [5], written À, to
relate networks N to specifications xΓ ;Σy.

4 tBCHu/tSELu can be extended to delegation adding the following clause for Ui � xLy: (tBCHu) I; C ^
Ai;Γ $ Pi � ∆, srqs : Li, xi : L, and (tSELu) I; C ^ #ei;Γ $ P re1i{xis � ∆1, srps : Ljre1i{xjs
with ∆ � ∆2, ei : L1

i and ∆1 � ∆2.

9

Definition 1 (Conditional Simulation). A binary relation R over xΓ ;Σy is a condi-
tional simulation if, for each pN, xΓ,Σyq P R, if N `

ÝÑ N 1 with ` being:
(1) a branching then xΓ ;Σy is capable to move at the subject of `, and if xΓ ;Σy `

ÝÑ
xΓ ;Σ1y then pN, xΓ ;Σ1yq P R;
(2) a select, session request/accept, τ then xΓ ;Σy `

ÝÑ xΓ ;Σ1y and pN 1, xΓ ;Σ1yq P R.

Conditional simulation is as standard simulation for all types of actions except for
branching, for which it requires N to be simulated only for legal values/labels (i.e.,
a process must conform to a given specification as long as its environment does so).

Definition 5 (Satisfaction). N satisfies Σ in Γ and C, written C;Γ |ù N � Σ, if for
all closing substitutions σ̃ over N and Σ respecting Γ and C, Nσ̃ À xΓ ;Σσ̃y

We write Γ |ù N � Σ when C is true (e.g., for initial networks). Soundness and
completeness for initial networks are stated below.

Theorem 6 (Soundness of Validation Rules). Let N be an initial network. Then Γ $
N �Σ implies Γ |ù N �Σ

Theorem 7 (Completeness of Validation Rules). Let N �
±
iPI rPisσpi be an initial

network, with Ii principal invariant of rPisσpi, and Σ �
±
iPI r∆isσai be a specifica-

tion. Assume that for all i P I: (1) idpσpiq � idpσaiq, (2) varpIiq � spσpiq � spσaiq,
and (3) Ii equivalent to true. If Γ |ù N �Σ then Γ $ N �Σ

(1–2) are for symmetry between N and Σ. (3) is necessary since the principals in N
can make updates that differ from those made by the corresponding specifications inΣ;
this may not compromise the observable behaviour of N with respect to Σ, but N may
invalidate some principal invariant which would make the thesis false.

6 Embedding into Hennessy-Milner Logic
In order to compare the expressiveness of our system to existing logical frameworks,
we propose an embedding of the local environment associated to a principal into an
HML formula. Our proof rules can be seen as the superposition of two analyses: a
session type system and a logical layer. The former ensures that a process is able to
perform some visible actions and could be easily encoded in HML (for instance, by
using a “surely/then” modality [1]). We focus on the embedding of the latter, namely
on predicate safety, ensuring that stateful predicates will remain satisfied. As a result,
the completeness result of Theorem 8 is given relatively to a unasserted typing result
(Erp∆q is ∆ where all logical predicates and updates have been removed). Formal
details and proof sketches are given in Appendix H.

The LTS associated to our HML consider as actions both the communications of the
process and the updates of the state. Yet, we also explain how a further pure encoding
can translate state updates into interactions. Our embedding is given by:

}q!tlipxi : SiqtAiuxEiy.LiuiPI}srps �
�
iPI @xi : Si, rsrp, qspxiqspAi ^ rEis}Li}srpsq

}q?tljpxj : SjqtAjuxEjy.LjujPJ}srps �
�
jPJ @xj : Sj , rsrq, pspxjqspAj ñ }Lj}srpsq

10

Predicates are required to hold for output actions and used as premises for implications
for input actions. To obtain soundness for typing judgements involving specifications,
we have to introduce interleavings of formulae, treating the fact that for one process
playing several roles in several sessions, the actions could be interleaved in different
way. Interleaving is not a new operator per se and can be seen as syntactic sugar, de-
scribing shuffling of must modalities for formulas. Interp∆,Γ q stands for the embed-
ding of the environments ∆ and Γ .

Theorem 8 (Preciseness).
If I; C;Γ $ P �∆ and σ |ù I, then: P, σ |ù pI ^ C ñ Interp∆,Γ qq.
If σ |ù I, $ P �Erp∆q and P, σ |ù pI ^ C ñ Interp∆,Γ qq then I; C;Γ $ P �∆.

The embedding of recursive types is challenging, as it involves describing by a finite
(yet recursive [12]) formula all the possible infinite interleavings. We explain a method
to obtain this result in Appendix H.

7 Related work and further topics
The preceding integrations of session types with logical constraints include [11], based
on concurrent constraints ensuring bi-linear usage of channels, and [5], based on logical
annotations on interactions, do not treat stateful properties. The combination of types
and logical assertions referring to local state newly proposed in this paper enable fine-
grained specifications and validation, which are not possible in [5, 11].

The expressiveness of the session type-based analyses has been greatly extend these
past few years. On one side, the conversation calculus [7], contracts [10] and dynamic
multirole session types [13] have opened the way to the modelling of protocols com-
plex in their shapes, by describing more accurately how sessions can be joined or left,
who is allowed participate. On the other side, works such as [5, 8] improved the way
interactions inside a session are decribed: in [5], an assertion framework ensure log-
ical property on the communicated values, in [8], a security analysis guarantees that
the coherence of the information flow is preserved. Our work improves the session type
analyses in both directions: by proposing a division of the process being tested into sep-
arate principals that can join one or several sessions independently when conditions are
matched and manage their own state, and by giving a description, inside each session,
of the internal state of each participant and the property it should satisfy.

The refinement types for channels (e.g. [3]) specify value dependency with logical
constraints. For example, one might write ?px : int, !ty : int | y ¡ xuq using the
notations from [15]. It specifies a dependency at a single point (channel), unable to
describe a constraint for a series of interactions among multiple channels. Our theory,
based on multiparty sessions, can verify processes against a contract globally agreed
by multiple distributed peers. The work [6] investigates a relationship between a dual
intuitionistic linear logic and binary session types, and shows that the former defines a
proof system for a session calculus which can automatically characterise and guarantee
a session fidelity and global progress. The work [23] further extends [6] to the dependent
type theory in order to include processes that communicate data values in functional
languages. A recent work [22] encodes dynamic features in [13] in a dependently typed
language for secure distributed programming. None of the above works treat either
virtual states or logical specifications for interleaved multiparty sessions.

11

Another future direction is to link between our static analysis and a dynamic monitor-
based approach. Using our local specification as a monitor at each end-point, incoming
and outgoing messages can be verified and filtered. We are currently working on this
topic with [20] based on the logic developed in this paper.

References
1. M. Berger, K. Honda, and N. Yoshida. Completeness and logical full abstraction in modal

logics for typed mobile processes. In ICALP (2), volume 5126 of LNCS, pages 99–111.
Springer, 2008.

2. L. Bettini et al. Global progress in dynamically interleaved multiparty sessions. In CONCUR,
volume 5201 of LNCS, pages 418–433. Springer, 2008.

3. K. Bhargavan, C. Fournet, and A. D. Gordon. Modular verification of security protocol code
by typing. In POPL, pages 445–456, 2010.

4. L. Bocchi, R. Demangeon, and N. Yoshida. A multiparty multi-session logic (extended
report). http://www.cs.le.ac.uk/people/lb148/statefulassertions.html.

5. L. Bocchi, K. Honda, E. Tuosto, and N. Yoshida. A theory of design-by-contract for dis-
tributed multiparty interactions. In CONCUR, volume 6269 of LNCS, pages 162–176, 2010.

6. L. Caires and F. Pfenning. Session types as intuitionistic linear propositions. In CON-
CUR’10, volume 6269 of LNCS, pages 222–236. Springer-Verlag, 2010.

7. L. Caires and H. T. Vieira. Conversation types. In ESOP, volume 5502 of LNCS, pages
285–300. Springer, 2009.

8. S. Capecchi, I. Castellani, and M. Dezani-Ciancaglini. Information flow safety in multiparty
sessions. In EXPRESS, volume 64 of EPTCS, pages 16–30, 2011.

9. M. Carbone, K. Honda, and N. Yoshida. Structured interactional exceptions in session types.
In CONCUR, volume 5201 of LNCS, pages 402–417. Springer, 2008.

10. G. Castagna and L. Padovani. Contracts for mobile processes. In CONCUR 2009, number
5710 in LNCS, pages 211–228, 2009.

11. M. Coppo and M. Dezani-Ciancaglini. Structured communications with concurrent con-
straints. In TGC, pages 104–125, 2008.

12. M. Dam. Ctl* and ectl* as fragments of the modal mu-calculus. TCS, 126(1):77–96, 1994.
13. P.-M. Deniélou and N. Yoshida. Dynamic multirole session types. In POPL, pages 435–446,

2011.
14. E. W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of programs.

Commun. ACM, 18:453–457, August 1975.
15. T. Freeman and F. Pfenning. Refinement types for ML. SIGPLAN Not., 26(6):268–277,

1991.
16. M. Hennessy and R. Milner. On observing nondeterminism and concurrency. In ICALP,

pages 299–309, 1980.
17. K. Honda, N. Yoshida, and M. Carbone. Multiparty Asynchronous Session Types. In

POPL’08, pages 273–284. ACM, 2008.
18. K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous session types. In G. C.

Necula and P. Wadler, editors, POPL, pages 273–284. ACM, 2008.
19. L. Lamport and F. B. Schneider. The “hoare logic” of csp, and all that. ACM Trans. Program.

Lang. Syst., 6:281–296, April 1984.
20. Ocean Observatories Initiative (OOI). http://www.oceanleadership.org/

programs-and-partnerships/ocean-observing/ooi/.
21. S. S. Owicki and D. Gries. An axiomatic proof technique for parallel programs i. Acta Inf.,

6:319–340, 1976.

12

22. N. Swamy, J. Chen, C. Fournet, P.-Y. Strub, K. Bharagavan, and J. Yang. Secure distributed
programming with value-dependent types. In ICFP. ACM, 2011.

23. B. Toninho, L. Caires, and F. Pfenning. Dependent session types via intuitionistic linear type
theory. In PPDP’11. ACM, 2011.

24. N. Yoshida, P.-M. Deniélou, A. Bejleri, and R. Hu. Parameterised multiparty session types.
In FoSSaCs’10, volume 6014 of LNCS, pages 128–145. Springer, 2010.

13

A Auxiliary Definitions
Definition 2 (Refinement). A binary relation R over pΓ,∆, σq is a refinement relation
if pΓ1, ∆1, σ1qRpΓ2, ∆2, σ2q implies one of the following conditions holds

– xΓ1; r∆1sσ1y
`
ÝÑ xΓ1; r∆

1
1sσ

1
1ywith ` being a selection action then xΓ2; r∆2sσ2y

`
ÝÑ

xΓ2; r∆2sσ
1
2y with pΓ1, ∆

1
1, σ

1
1qRpΓ2, ∆

1
2, σ

1
2q.

– xΓ2; r∆2sσ2y
`
ÝÑ xΓ2; r∆

1
2sσ

1
2ywith ` being a branching action, then xΓ1; r∆1sσ1y

`
ÝÑ

xΓ1; r∆
1
1sσ

1
1y with pΓ1, ∆

1
1, σ

1
1qRpΓ2, ∆

1
2, σ

1
2q.

If pΓ1, ∆1, σ1qRpΓ2, ∆2, σ2q for some refinement relation R, we say pΓ1, ∆1, σ1q is a
refinement of pΓ2, ∆2, σ2q (written pΓ1, ∆1, σ1q � pΓ2, ∆2, σ2q).

Definition 3 (Algorithm for the derivation of init(P)).

– if P � arnspyq.P 1 then initpP q � pa, 1q Y initpP 1q
– if P � arispyq.P 1 then initpP q � pa, iq Y initpP 1q
– if P � srp, qs!tei ÞÑ xe1ipxiqxEiy.PiuiPI then initpP q �

�
iPI initpPiq

– if P � srp, qs?tpxiqxEiy.PiuiPI then initpP q �
�
iPI initpPiq

– if P � P1 | P2 then initpP q � initpP1q Y initpP2q
– if P � µXxy : A1ypx : SqtAu.P 1 then initpP q � initpP 1q
– if P � Xxy : A1y or P � 0y then initpP q � H

Definition 4 (Algorithm for the derivation of the principal invariant). Given Γ and
rP sσ the principal invariant, denoted with IpΓ, rP sσq or simply I is defined as:

^pa,iqPinitpP qAi s.t. Γ paq æ i � rx̃ : S̃stAiu.L

Definition 5 (Projection). Assume p, q, r P G and p �� q. The projection of G on
r P G, written G æ r, is defined as follows.

p1q pppp1 : rx̃1 : S̃1stA1u, . . . , pn : rx̃n : S̃nstAnu.Gqqq æ r � rx̃i : S̃istAiu.pG æ piq if r � pi
p2q ppÑ q : tlipxi : UiqtAiuxEiy.GiuiPIq æ r �$'&

'%
q!tlipxi : UiqtAiuxEi æ ry.pGi æ pquiPI if r � p �� q,

p?tlipxi : UiqtAi æ ruxEi æ ry.pGi æ qquiPI if r � q �� p,

G1 æ r if r �� q, p

p3q pG1 | G2q æ r �

#
Gi æ r if r P Gi and r R Gj , i �� j P t1, 2u

end if r R G1 and r R G2.

p4q pµtxy : A1ypx : SqtAu.Gq æ r �

#
µtxy : A1 æ rypx : SqtA æ ru.G æ r if r P G
end if r R G

p5q txy : A1y æ r � txy : A1 æ ry

B Congruence, Reduction and Labelled Transitions
Figure 5 presents the full congruence rules for networks and processes, where the asyn-
chronous messages are considered upon permutation. Figure 6 and Figure 8 illustrate
the full transition rules for networks and specifications. Figure 6 models silent actions
as reductions from Figure 7. In the paper we have represented silent actions explicitly
in the LTS for a more concise presentation.

14

N | H � N N1 | N2 � N1 | N2 pN1 | N2q | N3 � N1 | pN2 | N3q if a R fnpNq

pνsqH � H pνsqpνs1qN � pνs1qpνsqN pνsqN | N 1 � pνsqpN | N 1q if s R fnpNq

s : h1 � pp1, p2, lxvyq � pq1, q2, l
1xv1yq � h2 � s : h1 � pq1, q2, l

1xv1yq � pp1, p2, lxvyq � h2

�if p1 �� q1 or p2 �� q2

P | 0 � P P | Q � Q | P pP | Qq | R � P | pQ | Rq

pµXpxq.P qxey � P rµXpxq.P {Xsre{xs where Xxe1yrµXpxq.P {Xs def
� pµXpxq.P qxe1y

Fig. 5. Structural congruence for networks (top) and processes (bottom)

rarnspyq.P sσ
arnsxsy
ÝÝÝÝÝÑ rP rs{yssσ rarispyq.P sσ

arisxsy
ÝÝÝÝÝÑ rP rs{yssσ ps R fnpP qq

rsrp, qs!tei ÞÑ lixe
1
iypxiqxEiy;PiuiPI sσ

srp,qs!ljxvy
ÝÝÝÝÝÝÝÝÑ rP rv{xjssσ

1

pj P I σ |ù e1j Ó v ^ ej σ1 � σ afterEjrv{xjsq

rsrp, qs?tlipxiqxEiy.PiuiPI sσ
srp,qs?ljxvy
ÝÝÝÝÝÝÝÝÑ rPjrv{xjssσ

1 pj P I σ1 � σ afterEjrv{xjsq

N ÝÑ N 1

N
τ
ÝÑ N 1

rP sσ
`
ÝÑ rP 1sσ ps R fnpP q

rErP ssσ `
ÝÑ rErP 1ssσ

N � N0 N0
`
ÝÑ N 1

0 N 1
0 � N 1 fnp`q R bnpEr sq

ErNs `ÝÑ ErN 1s

Fig. 6. Labelled transition for networks

C Effective Checking of Well Assertedness
Checking History Sensitivity We uses the environments E defined by the following
grammar:

E :� H | E , x@p | E , x@L | E , t : x@L
Expressions of the form y@p assign a state variable y to a role, and y@L assigns an
interaction variable or recursion parameters to a location L. A location is a set tp, p1u
of the two roles who know x. The checker relies on the annotation of the recursion
parameters with their locations and we assume recursion parameter to be known by
only two roles. We denote the domain of E with dompEq. We write E $ x@p when
p � Epxq, p P Epxq, or Eptq � x@L and p P L.

The rules in Figure 9 enforce history sensitivity by restricting the set of variables
that can be used in each predicate and update. The first two rules require that each role
knows all the interaction variables of the predicate to be checked at its side. The other
rules are straightforward. Note that the rules are purely syntactic, hence the verification
of history sensitivity of G is a linear-time problem.

Checking Invariant Stability This principle requires that each update performed in a
global assertion does not invalidate the assertion invariants in the declaration of that
global assertion. To check for invariant stability, we use the function defined below,
where Ainv is the invariant, and Abag is a set of preconditions built as the incremental
conjunction of interaction predicates (initially true).

Definition 6 (Invariant Stability). Let G be a global specification, Ainv and Apre two
predicates. ISpG, Ainv, Abagq is given by:

15

rarnspyq.P1 | Q1sσ1 |
±

2¤i¤nrarispyiq.Pi | Qisσi ÝÑ pνsqps :H |
±

1¤i¤nrPirs{yis | Qisσiq

j P I σ |ù ej σ |ù e1j Ó v σ1 � σ afterEjrv{xjs

rsrp, qs!tei ÞÑ lixe
1
iypxiqxEiy;PiuiPI | Qsσ | s : h ÝÑ rPjrv{xjs | Qsσ

1 | s : h � pp, q, ljxvyq

j P I σ1 � σ afterEjrv{xjs

rsrp, qs?tlipxiqxEiy.PiuiPI | Qsσ | s : pp, q, ljxvyq � h ÝÑ rPjrv{xjs | Qsσ
1 | s : h

P � P0 P0 ÝÑ P 1
0 P 1

0 � P 1

P ÝÑ P 1
N � N0 N0 ÝÑ N 1

0 N 1 � N 1
0

ErNs ÝÑ ErN 1s

Fig. 7. Reduction for networks

1. ISppÑ q : tlipxi : UiqtAiuxEiy.GiuiPI , Ainv, Abagq �#�
iPI ISpGi, Ainv, Abag ^#Aiq if

�
iPI Ainv ^Abag ^Ai � Ainv afterEi

false otherwise

2. ISpG1 | G2, Ainv, Abagq � STSpG1, Ainv, Abagq ^ STSpG2, Ainv, Abagq

3. ISpµtxu : A1ypx : SqtAu.G1, Ainv, Abagq � ISpG1, Ainv, Abag ^Aq

4. ISptxu : A1y, Ainv, Abagq � ISpend, Ainv, Abagq � true

The function ISp , , q can be adapted for local assertions. We use the same nota-
tion as it will be clear from the context whether we are checking global or local asser-
tions.

Definition 7 (Invariant Stability for Local Assertions). Let L be a global specifica-
tion, Ainv and Apre two predicates. ISpL, Ainv, Abagq is given by:

1. ISpp!tlipxi : UiqtAiuxEiy.LiuiPI , Ainv, Abagq �#�
iPI ISpLi, Ainv, Abag ^#Aiq if

�
iPI Ainv ^Abag ^Ai � Ainv afterEi

false otherwise

2. ISpp?tlipxi : UiqtAiuxEiy.LiuiPI , Ainv, Abagq �#�
iPI ISpLi, Ainv, Abag ^#Aiq if

�
iPI Ainv ^Abag ^Ai � Ainv afterEi

false otherwise

3. ISpµtxu : A1ypx : SqtAu.L1, Ainv, Abagq � ISpL1, Ainv, Abag ^Aq

4. ISptxu : A1y, Ainv, Abagq � ISpend, Ainv, Abagq � true

D Message Assertions
We introduce the definitions for processes with queues. The aim is to take into account,
in the proof of soundness of the validation rules, the mechanisms of message exchange
of runtime processes. We use message assertions which abstract messages in queues.

Definition 9 (Message Assertions). The syntax of endpoint assertions is extended as
follows:

L ::� . . . |M |M;L M ::� p!lxvy |M;M1

We call M a message assertion.

In Definition 9, p!lxvy represents a label/value lxvy in the queue for participant p,
and M;M1 represents a queue with multiple elements.

Figure 10 presents the additional validation rules for runtime processes (to extend
the rules in Figure 4).

Figure 11 presents the additional transition rules for message assertions.

16

xΓ ;Σ1y
`
ÝÑ xΓ ;Σ1

1y

xΓ ;Σ1, Σ2y
`
ÝÑ xΓ ;Σ1

1, Σ2y

xΓ ;Σ2y
`
ÝÑ xΓ ;Σ1

2y

xΓ ;Σ1, Σ2y
`
ÝÑ xΓ ;Σ1, Σ

1
2y

tTR-CTX1/TR-CTX2u

�

xΓ ;Σy
τ
ÝÑ xΓ ;Σy

tTR-TAUu

G æ 1 � rx̃ : S̃stAu.L σ |ù A

xpa : G, Γ q; r∆sσy arnsxsy
ÝÝÝÝÝÑ xpa : G, Γ q; r∆, sr1s : Lsσy

tTR-A-MREQu

G æ i � rx̃ : S̃stAu.L σ |ù A

xpa : G, Γ q; r∆sσy arisxsy
ÝÝÝÝÝÑ xpa : G, Γ q; r∆, sris : Lsσy

tTR-A-MACCu

tTR-A-BCHu

j P I σ |ù Arn{xjs σ1 � σ afterEjrn{xjs

xΓ ; r∆, srps : q?tlipxi : UiqtAiuxEiy.LiuiPI sσy
srq,ps?ljxny
ÝÝÝÝÝÝÝÝÑ xΓ ; r∆, srps : Ljrn{xjssσ1y

tTR-A-SELu

j P I σ |ù Arn{xjs σ1 � σ afterEjrn{xjs

xΓ ; r∆, srps : q!tlipxi : UiqtAiuxEiy.LiuiPI sσy
srp,qs!ljxny
ÝÝÝÝÝÝÝÑ xΓ ; r∆, srps : Ljrn{xjssσ1y

tTR-A-DELBCHu

j P I σ |ù Aj σ1 � σ afterEj Uj � xLy

xΓ ; r∆, srps : q?tlipxi : UiqtAiuxEiy.LiuiPI sσy
srq,ps?ljxtrrsy
ÝÝÝÝÝÝÝÝÝÑ xΓ ; r∆, srps : Lj , trrs : Lsσ1y

tTR-A-DELSELu

j P I σ |ù Aj σ1 � σ afterEj Uj � xLy

xΓ ; r∆, srps : q!tlipxi : UiqtAiuxEiy.LiuiPI , trrs : Lsσy
srp,qs!ljxtrrsy
ÝÝÝÝÝÝÝÝÝÑ xΓ ; r∆, srps : Ljsσ1y

Fig. 8. Labelled transition for specifications

E Soundness
E.1 Auxiliary Lemmas
This section contains auxiliary lemmas for soundness. The proofs of Lemma 1, Lemma 2
can be found below. The proofs of Lemma 3 and Lemma 4 are similar to the ones in [5]
(hence omitted) as the stated properties do not directly involve the state.

Substitution The substitution lemma uses the following lemma saying that any substi-
tution of a free variable with a value in a local assertion preserves well-assertedness.

Lemma 10. Let L be a well-asserted local assertion (and well-typed wrt the underlying
typing discipline), x : U be an interaction variable, v : U be a value of the same type
as x. If Crv{xs admits solutions then Lrv{xs is well-asserted.

Proof. History sensitivity is clearly not affected by the substitution of an interaction
variable with a value, as it is based on the notion of knowledge and a value is obviously
known by any participant. For invariant stability, assume Lrv{xs. Since L is invariant
stable by hypothesis, the checker ISp , , q (Definition 7) will return false for Lrv{xs
because of the otherwise case is met in (1) or (2). In both cases, if the predicate pAinv^

17

E, x̃1@p1, . . . , x̃n@pn $ G @i P t1, . . . , nu, varpAiq � x̃i

E $ ppp1 : rx̃1stA1u, . . . , pn : rx̃nstAnuqq.G
@i P I, E, xi@tp, qu $ Gi @y P pvarpAiq Y varpEiqqzxi, E $ y@p @y P varpEiqzxi, E $ y@q

E $ pÑ q : tlipxiqtAiuxEiy.GiuiPI
E $ G E $ G1

E $ G,G1 E $ end
@y P varpeq, @r P L, E $ y@r

E, t : x@L $ txey

E, t : x@L $ G dompEq � varpAqzx

E $ µtxeypx@LqtAu.G
Fig. 9. Syntactic checker for history sensitivity

C;Γ $ N � r∆1, sr1s : L1sσ1, . . . , r∆n, srns : Lnsσn tsris : Liu1¥i¥n coherent
C;Γ $ pνsqN � r∆1sσ1, . . . , r∆nsσn

tCRESu

C;Γ $ s :H� tsris :Hu1¥i¥n tQNILu

C;Γ $ s :h� r∆, srps : Lsσ,Σ
C;Γ $ s : h � pp, q, lxvyq � r∆, srps : q!lxvy;Lsσ,Σ tQVALu

Fig. 10. Additional Proof Rules for Runtime Networks and Processes

Abag ^ Ai � Ainv afterEiqrv{xs is false then also the its (stronger) unsubstituted
version is false, which makes L not invariant stable contradicting the hypothesis.

Lemma 1 (Substitution). Let I; C;Γ $ P �∆ with ∆ well-asserted and x : U be an
interaction variable and v : U be a value. If x P fnpP q then I; Crv{xs;Γ $ P rv{xs �
∆rv{xs and ∆rv{xs is well-asserted.

Proof. The proof is by on the validation rules. We proceed by case analysis o the rules
in Figure 4.

Case tSELu. We set P � srp, qs!tei ÞÑ lixe
1
iypxiqxEiy;PiuiPI and ∆ � ∆1, srps :

q!tljpxj : UjqtAjuxEjy.LjujPJ . We first assume x : S. By tSELu:

@i P IDj P J li � lj I ^ C ^ ei � pAj ^ pEi � Ejqqre
1
i{xis

I; C ^#ei;Γ $ Pire
1
i{xis �∆

1, srps : Ljre1i{xjs
I; C;Γ $ P �∆1, srps : q!tljpxj : UjqtAjuxEjy.LjujPJ

(1)

Without loss of generality we assume x R txjujPJ . The first premise of (1) entails the
following predicate

pI ^ C ^ ei � pAj ^ pEi � Ejqqre
1
i{xjsqrv{xs (2)

since the free occurrences of x (if any) in the first premise of (1) are supposed to be
universally quantified. By definition, (2) is equivalent to

pI ^ C ^ eiqrv{xs � pAj ^ pEi � Ejqqre
1
i{xjsrv{xs (3)

Moreover, by inductive hypothesis, we have

I; Crv{xs;Γ $ Pire
1
i{xisrv{xs � p∆

1, srp1s : Ljqrv{xs (4)

By applying tSELu with premises (3) and (5) we obtain the thesis. If x : xLy the case is
similar except x does not need to be substituted to the predicates.

18

�

xΓ, r∆, srps : q!lxvy;Lsσy srp,qs!lxvy
ÝÝÝÝÝÝÝÑ xΓ, r∆, srps : Lsσy

tT1u

j P I σ |ù Ajrn{xjs Ó true σ1 � σ afterEjrn{xjs

xΓ ; rsrps : q!tlipxi : UiqtAiuxEiy.LiuiPI sσy
τ
ÝÑ xΓ ; rsrps : q!ljxny;Ljrv{xjssσ1y

tT2u

j P I σ |ù Ajrn{xjs Ó true σ2 � σ1 afterEjrn{xjs

xΓ ; rsrps : q!ljxny;Lsσ, rsrqs : p?tlipxi : UiqtAiuxEiy.LiuiPI sσ1y
τ
ÝÑ xΓ ; rsrps : Lsσ, rLjrn{xjssσ2y

tT3u

j P I σ |ù Aj Ó true σ1 � σ afterEj Uj � xLy
xΓ ; rsrps : q!tlipxi : UiqtAiuxEiy.LiuiPI , trrs : Lsσy

τ
ÝÑ xΓ ; rsrps : q!ljxtrrsy;Ljsσ1y

tT4u

j P I σ |ù Aj Ó true σ2 � σ1 afterEj Uj � xLy
xΓ ; rsrps : q!ljxvy;L1, trrs : Lsσ, rsrqs : p?tlipxi : UiqtAiuxEiy.LiuiPI sσ1y

τ
ÝÑ xΓ ; rsrps : L1sσ, rLj , trrs : Lsσ2y

tT5u

Fig. 11. Labelled transition for message assertions

Case tBCHu. We set P � srp, qs?tlipxiqxEiy.PiuiPI and ∆ � ∆1, srp2s : p1?tlipxi :
UiqtAiuxEiy.LjuiPI . By rule tBCHu (we omit the case for delegation acceptance as it is
similar) and assume x : S1:

I; C ^Ai;Γ $ Pi �∆, srp2s : Li
I; C;Γ $ P �∆1, srp2s : p1?tlipxi : UiqtAiuxEiy.LjuiPI

Without loss of generality we assume x R txiuiPI . By induction

I; pC ^Aiqrv{xs;Γ $ Pirv{xs � p∆
1, srp2s : p1?tlipxi : SiqtAiuxEiy.LjuiPIqrv{xs

(5)
By applying (5) as a premise for tBCHu we obtain the thesis.

Case tMREQu (resp. tMACCu). This case follows straightforwardly by induction. The case
for tMACCu is similar.

Case tVARu. We set P � Xxey. By tVARu

L1re{ys...Lnre{ys well-asserted
I; C;Γ,X :py : S1qL1 @ p1..Ln@ pn $ Xxey �∆1, srp1s : L1re{ys, .., srpns : Lnre{ys

Without loss of generality we assume x �� y. Since L1re{ys...Lnre{ys are well-typed
wrt the underlying typing discipline, x : S, y : S1 and v : S then L1re{ysrv{xs...Lnre{ysrv{xs
are also well-typed. L1re{ysrv{xs...Lnre{ysrv{xs are well-asserted by Lemma 10. By
applying L1re{ysrv{xs...Lnre{ysrv{xs as a premise of tVARu we obtain the thesis.

Remaining Cases The other case are straightforward.

19

Evaluation

Lemma 2 (Evaluation). If I; C;Γ $ P peq �∆peq and σ |ù e Ó v for a σ s.t. σ |ù I
then we have I; C;Γ $ P re{vs �∆re{vs.

Proof. The proof is by induction on the validation rules. We proceed by case analy-
sis. By decidability of underlying logic, we can write σ |ù Are{xs Ó true when a
closed formula Are{xs evaluates to true. Note that if we further have e Ó then we have
Arv{xs Ó true.

Case tSELu. IfP peq � srp, qs!tei ÞÑ lixe
1
iypxjqxEjy;PjpequiPJ thenP pvq � srp, qs!tei ÞÑ

lixe
1
iypxjqxEjy;PjpvquiPJ and

∆peq � ∆ � ∆1peq, srp1s : p2!tlipxi : SiqtAipequxEipeqy.LjpequiPI

with and I^C^ei � pAj^pEi � Ejqqre{xjs. Notice that I^C^ei � pAj^pEi �
Ejqqre{xjs is equivalent to

I ^ C ^ ei � pAj ^ pEi � Ejqqrv{xjs (6)

By inductive hypothesis

I; C;Γ $ P 1rv{es �∆1rv{es, srps : Lrv{es (7)

By applying (6) and (7) to the validation rule tSELu the lemma holds for this case.

Recursion Invocation If P peq � Xxey (since P peq is well-formed against ∆ by hy-
pothesis) then P pvq � Xxvy. Since the substituted specification is still well-asserted
(as it does not contain expressions) then P pvq is well-formed against ∆rv{xs by rule
tVARu.

Remaining cases The remaining cases are similar to the previous ones or straightfor-
ward by induction.

Other lemmas

Lemma 3 (Assertion Reduction and Coherence). If ∆ is coherent and xΓ ; r∆sσy τ
ÝÑ

xΓ 1; r∆1sσ1y then ∆1 is again coherent.

Lemma 4 (Subject Congruence). If I; true;Γ $ P1�∆ andP1 � P2 then I; true;Γ $
P2 �∆

20

E.2 Soundness Proof

Theorem 6 (Soundness for Initial Networks) follows immediately from Lemma 6 (Sound-
ness for open Networks), via Lemma 5. Lemma 5 shows there is a conditional simula-
tion between the closing substitution of each single open validated located process and
its corresponding specification. Recall that in the derivation of an open located process
C may not be true, and we take a closing substitution consistent with C and Γ).

Lemma 5. Let R be a relation collecting all pairs of the form prPσ̃sσp; xΓ σ̃; r∆σ̃sσayq
such that I; C;Γ $ P �∆ where:

1. rP sσp is a sub-term of a multi-step `
ÝÑ-derivative of a located process,

2. r∆sσa is an assertion assignment with state,
3. p qσ̃ is a closing substitution of interaction variables consistent with C, Γ and ∆,
4. σp |ù I and σa |ù I

Then R is a conditional stateful simulation.

Proof. We show that R is a conditional stateful simulation by induction on the depth of
the validation tree. We proceed by case analysis of the last rule applied.

Case tMREQu (resp. tMACCu). In this case P is defined as arnspyq.P 1. The last derivation
rule for P is tMREQu where Γ � Γ 1, a : G

G æ 1 � rx̃ : S̃stAu.L I; C;Γ $ P 1 � yr1s : L, ∆
I; C;Γ $ arnspyq.P 1 �∆

(8)

The only possible transition of Pσ̃ � arnspyq.P 1σ̃ is by tTR-MREQu in Figure 6.
Notice that by σa |ù I (condition (4) in the hypothesis).

By tTR-MREQu:

rarnspyq.P 1σ̃sσp

arnsxsy
ÝÝÝÝÑ rP 1σ̃rs{yssσp

xΓ σ̃; r∆σ̃sσay can move by tTR-A-MREQu in Figure 8 since the first premise of tTR-A-MREQu

follows immediately from G æ 1 � rx̃ : S̃stAu.L (by first premise of (8)), and the sec-
ond premise of tTR-A-MREQu (i.e., σa |ù A) holds by definition of I:

xΓ σ̃; r∆σ̃sσay
arnsxsy
ÝÝÝÝÑ xΓ σ̃; r∆σ̃, sr1s : Lσ̃sσay

prP 1σ̃sσp; xΓ σ̃; r∆σ̃, sr1s : Lσ̃sσayq P R by applying Lemma 1 to the third premise
of (8), observing that the conditions (1�4) are preserved. R is a conditional stateful
simulation by induction. The case for tMACCu is similar.

Case tBCHu. In this case P is defined as s?tlipxiqxEiy.PiuiPI . The last derivation rule
for P is tBCHu:

@i P I I; C ^Ai;Γ $ Pi �∆1

if Ui � xLy then ∆1 � ∆, srqs : Li, xi : L otw ∆1 � ∆, srqs : Li
I; C;Γ $ srp, qs?tlipxiqxEiy.PiuiPI � ∆1, srqs : p?tlipxi : UiqtAiuxEiy.LiuiPI

(9)

21

The possible transitions of Pσ̃ are with label srp, qs?ljxvy for some v by tTR-BCHu

in Figure 6:

rsrp, qs?tlipxiqxEiσ̃y.Piσ̃uiPI sσp
srp,qs?ljxvy
ÝÝÝÝÝÝÝÑ rPj σ̃rv{xjssσ

1
p σ1p � σp afterEj

By the shape of the specification in (9), srqs : p?tlipxi : UiqtAiuxEiy.LiuiPI is able
to make a move at subject s?. By definition of conditional simulation we are inter-
ested in inspecting only the case in which the specification can make a step with label
srp, qs?ljxvy. If the specification moves with label srp, qs?ljxvy we have two cases:

– Case Uj � S. Hence, by tTR-A-BCHu in Figure 8:

xΓ σ̃; rsrqs : p?tlipxi : UiqtAiσ̃uxEiσ̃y.Liσ̃uiPI sσay
srp,qs?ljxvy
ÝÝÝÝÝÝÝÑ xΓ σ̃; rsrqs : Lj σ̃sσ1ay

with
σ1a � σa afterEj (10)

prPj σ̃sσ
1
p; xΓ σ̃; x∆σ̃, srqs : Lj σ̃yσ1ayq P R holds observing that the conditions

(1�4) are preserved. Notice that condition (4) follows by invariant stability. R is a
conditional stateful simulation by induction.

– Case Uj � xLy. In this case v � trrs. This case is similar to the previous one
except ∆ moves by tTR-A-DELBCHu in Figure 8:

xΓ σ̃; rsrqs : p?tlipxi : UiqtAiσ̃uxEiσ̃y.Liσ̃uiPI sσay
srp,qs?ljxtrrsy
ÝÝÝÝÝÝÝÝÑ

xΓ σ̃; rsrqs : Lj σ̃, trrs : Lsσ1ay

with
σ1a � σa afterEj (11)

Case tSELu. In this case P is defined as srp, qs!tei ÞÑ lixe
1
iypxiqxEiy;PiuiPI . The last

derivation rule for P is tSELu:

@i P IDj P J s.t. xi � xj li � lj I ^ C ^ ei � pAj ^ pEi � Ejqqre
1
i{xis

I; C ^#ei;Γ $ P re1i{xis �∆
1, srps : Ljre1i{xis

if Ui � xLy then ∆ � ∆2, e1i : L1
i and ∆1 � ∆2 otw ∆1 � ∆

I; C;Γ $ srp, qs!tei ÞÑ lixe
1
iypxiqxEiy;PiuiPI �∆, srps : q!tljpxj : UjqtAjuxEjy.LjujPJ

(12)
The only possible transition is by tTR-SELu in Figure 6. Assume first that the value

sent is of type S. By tTR-SELu then Pσ̃ performs the following transition

rsrp, qs!lipxiqxEiσ̃y.Piσ̃sσp

srp,qs!lixvy
ÝÝÝÝÝÝÝÑ rPiσ̃rv{xissσ1

p
σ1p � σp afterEi

Notice that
σa |ù Aj σ̃rv{xis (13)

following by xi � xj , σa |ù I (condition (4) in the hypothesis), I^C^ei � Ajrv{xis
(second premise of (12) above), and the fact that σ̃ is consistent with C (condition (3)
in the hypothesis).

22

By (13) as premise of rule tTR-A-SELu in Figure 8:

xΓ σ̃; r∆σ̃, srps : q!tljpxj : UjqtAj σ̃uxEj σ̃y.Lj σ̃ujPJ sσay
srp,qs!ljxvy
ÝÝÝÝÝÝÝÑ xΓ σ̃; r∆σ̃, srps : Ljsσ1ay

with li � lj and
σ1a � σa afterEj σ̃ (14)

prPiσ̃sσp
; xΓ σ̃; r∆σ̃, srps : Lj σ̃sσ1ayq P R, observing that the conditions (1�4) are

preserved. Notice that case (4) holds by invariant stability. R is a conditional stateful
simulation by induction.

This case in which xj is a session channel is similar to the previous one, except
transition tTR-A-SELu of P has a corresponding tTR-A-DELSELu of xΓ σ̃; r∆σ̃sσay.

Case tEMPTYu. We can set P � 0; the property holds since there are no transitions.

Case tPARu. A parallel process P � P1 | P2 can only make either independent actions or
reductions involving only either P1 or P2 (no reductions due to communication between
P1 and P2 as only one role can be played by one principal in each session instance).
This case is direct from the induction hypothesis.

Case tVARu. We set P to be Xxey with Γ pXq � px : SqL1 @ p1..Ln@ pn. Pσ̃ is a pro-
cess such that I; Cσ̃;Γ σ̃ $ Pσ̃re{xs�∆σ̃ where∆σ̃ � ∆0σ̃, sr1s : L1re{xs, ..., srns :
Lnre{xs is the closure of the endpoint assertion of P . The property follows from the
cases for the other process types.

Cases tRECu. This case is proved by the standard syntactic approximation of a recursion.
We can assume, in all derivations for processes in P , the application of tRECu only occurs
in (the last steps of) a derivation. Assume that we have

I; C;Γ,X : px : SqL1@p1..Ln@pn |ù P � srp1s : L1..srpns : Ln (15)

Further we also assume

I; C;Γ,X : px : SqL1@p1..Ln@pn |ù Q�∆ (16)

Let y range over interaction names and session channels. In the following we of-
ten use the notation for the substitution QrpyqR{Xs which replaces each occurrence
of Xxey with Rre{ys. Using well-guardedness of process variables in [18], we first
approximate the recursion by the following hierarchy:

P 0 def� P 1 � 0 P 1 def� P rpxqP 0{Xs . . . Pn�1 def� P rpxqPn{Xs

Above P 0 is chosen as the process which is typed by the same typing as P and
which has no visible action. For example, choosing a and s to be fresh, P 0 def

� pνa :
Gqpar2spyq.P 1q then P 0 � 0. We also set Pω � µXxyypxq.P 1 to be the recursively
defined agent itself.

23

In the conclusion of tRECu we abstract the process variable X by the µ construct.
Instead, we replace each X in Q with pyqP 0, pyqP 1, . . . , pyqPn, and finally pyqPω .
We call the result Q0, Q1, . . . Qn, and Qω , where Qω is nothing but the term in the
conclusion (after one-time unfolding which does not change the behaviour).

Now suppose that I; C;Γ $ S � ∆ is derivable and that I; C0;Γ0 $ S0 � ∆0

occurs in its derivation, hence S0 occurs in S. Suppose that also I; C0;Γ0 $ S1
0 �∆0.

We can replace the occurrence of S0 in S by S1
0, with the result written S1, such that

I; C;Γ $ S1 �∆ is derivable.
Using property, we first note that, for any xΓ ; r∆sσay and C, we have C;Γ |ù P 0 �

∆. Thus we apply this to (15) and replace X in P by pxqP 0:

C;Γ |ù P 1 � srp1s : L1, . . . , srpns : Ln

This can again be used for (15) (noting the environment Γ can always be taken as
widely as possible in tVARu): C;Γ |ù P 2 � srp1s : L1, . . . , srpns : Ln. In this way we
know that for an arbitrary n: C;Γ |ù Pn � srp1s : L1, . . . , srpns : Ln.

By applying this to (15) , we obtain:

C;Γ |ù Qn �∆

for an arbitrary n. Now assume, for simplicity, that there are no free variables in Q
(hence in Qn) and therefore C � true (the reasoning is precisely the same by apply-
ing a closing substitution). We can then construct a relation taking each node in the
transitions from Qω and relating it to the derivative of xΓ ; r∆sσay, by observing that
assertions transitions are always deterministic for the given process and its transition
derivatives. Let the resulting relation be R . Since any finite trace of Qω is in some Qn,
the conditions of conditional simulation hold at each step.

Lemma 6 (Soundness for Open Networks). LetN be a network. Then C;Γ $ N�Σ
implies C;Γ |ù N �Σ

Proof. Let R be a relation collecting all pairs of the form pN ;Σq such that C;Γ $

N � Σ where: (i) N is a sub-term of a multi-step `
ÝÑ-derivative of an initial network,

(ii) Σ is a specification. Proceeding by induction on the length of the derivation tree.
We proceed by case analysis of the validation rules for networks in Figure 4 and in
Figure 10. Subject reduction for silent actions (Lemma 9)

Case tN1u. If tN1u is applied then N � rPisσa, Σ � r∆1sσp, and

I; C;Γ $ P �∆

This case follows by Lemma 5, observing that by premise fourth condition (σa |ù I
and σp |ù I) holds by premise of tN1u.

Case tN2u. This case follows by definition of refinement.

Case tN3u. This case is immediate since N � H thus cannot make any transition.

24

Case tN4u. A parallel network N � N1 | N2 can make either independent actions or
reductions. The case for independent actions is direct from the induction hypothesis. If
the reduction takes place by interaction, then we use Lemma 9.

Cases tQNILu, tQVALu. Queues do not have transitions. The behaviours of queues are taken
into account as part of τ -actions in the case for tN3u above.

Case tCRESu. This case follows by Lemma 3.

F Subject Reduction Proofs
Lemma 7. If N ÝÑ N 1 then one of the following cases hold:

1. N � Er±iPt1..nurPisσis with P1 � arnspy1q.P
1
1 | Q1 and Pi � arispyiq.P

1
i | Qi

s.t.
rP1sσ1

arnsxsy
ÝÝÝÝÑ rP 1

1 | Q1sσ1 rPisσi
arisxsy
ÝÝÝÝÑ rP 1

i | Qisσi

and N 1 � Erpνsqps :H |
±
iPt1..nurP

1
i | Qisσiqs

2. N � ErrP sσ | s : hs s.t. rP sσ
srp,qs!lxvy
ÝÝÝÝÝÝÑ rP 1sσ and

N 1 � ErrP 1sσ | s : h � pp, q, lxvyqs

3. N � ErrP sσ | s : pp, q, lxvyq � hs s.t. rP sσ
srp,qs?lxvy
ÝÝÝÝÝÝÑ rP 1sσ

and N 1 � ErrP 1sσ | s : hs

Proof. Immediate from the corresponding reduction rules.

Lemma 8. 1. If rP sσ
arnsxsy
ÝÝÝÝÑ rP 1sσ and C;Γ $ rP sσ�Σ thenΣ � r∆sσ1 for some

∆, σ1, and C;Γ $ rP 1sσ � r∆, sr1s : Lsσ1

2. If rP sσ
arisxsy
ÝÝÝÝÑ rP 1sσ and C;Γ $ rP sσ �Σ then Σ � r∆sσ1 for some ∆, σ1, and

C;Γ $ rP 1sσ � r∆, sris : Lsσ1

3. If rP sσp
srp,qs!lxvy
ÝÝÝÝÝÝÑ rP 1sσ1p and C;Γ $ rP sσp | s : h � Σ then Σ � r∆sσa for

some ∆, σa and C;Γ $ rP 1sσp | s : h � pp, q, lxvyq � r∆1sσ1a s.t. xΓ ; r∆sσay
τ
ÝÑ

xΓ ; r∆1sσ1ay

4. If rP sσp
srp,qs?lxvy
ÝÝÝÝÝÝÑ rP 1sσ1p and C;Γ $ rP sσ | s : pp, q, lxvyq � h � Σ then

Σ � r∆sσ1 for some ∆, σ1, and either
– Σ can move at subject s?rp, qs but cannot move with label srp, qs?lxvy
– C;Γ $ rP 1sσp | s : h� r∆

1sσa s.t. xΓ ; r∆sσay
τ
ÝÑ xΓ ; r∆1sσ1ay.

Proof. (1) and (2) are immediate. Below we show the cases (3) and (4).

Case (3) Suppose we have I; true;Γ $ P | s : h�∆. We safely assume the last rule
applied is tPARu, thus we can assume ∆ � ∆0, ∆1 for some ∆0 and ∆1, and

I; C;Γ $ P �∆0 (17)

Now consider the transition rP sσp
srp,qs!lixvy
ÝÝÝÝÝÝÝÑ rP 1sσ1p, by (17) we observe ∆0 has the

shape
∆0 � srps : q!tljpxj : UjqxEjytAju;LjujPJu, ∆00

25

and that P 1 can be typed by ∆1
0 such that:

∆1
0 � srps : Ljrv{xis, ∆00 (18)

Now the assertion ∆1 for the queue has the shape, omitting the vacuous “end”: ∆1 �
s : M hence the addition of the values to this queue, s : h�pp, q, lixvyq, must have the
endpoint assertion:

∆1
1 � srps : q!lixvy;M (19)

Setting ∆1 � ∆1
0, ∆

1
1, we know I; true;Γ $ P 1 | s : h�pp, q, lixvyq �∆

1. By (18) and
(19) we obtain

∆1
0, ∆

1
1 � srps : q!lixvy;Ljrv{xis, ∆00, ∆1

and
xΓ ;∆0, ∆1y

τ
ÝÑ xΓ ;∆1

0, ∆
1
1y

and the only change is at the assertion assignment at srps, as required.

Case (4). Suppose we have I; true;Γ $ P | s : h�pp, q, lixvyq �∆. Again we safely
assume the last rule applied is tPARu. Thus we can assume, for some ∆0 and ∆1:

I; true;Γ $ s : h�pp, q, lixvyq �∆1

with ∆ � ∆0, ∆1, and
I; true;Γ $ P �∆0 (20)

Now consider the transition

rP sσp
srp,qs?ljxvy
ÝÝÝÝÝÝÝÑ rP 1sσ1p (21)

As before, we can infer, from (20) and (21) the shape of ∆0 as follows,

∆0 � srqs : p?tljpxi : UiqxEiytAiu;LiuiPI , ∆00

for some p; and that P 1 can be validated against ∆1
0 given as

∆1
0 � srqs : Lrv{xjs, ∆00 (22)

Now the assertion ∆1 for the queue has the shape (again omitting “end”-only asser-
tions):

∆1 � srqs : p?ljxvy;M (23)

which, if we take off the values (hence for the queue s : h), we obtain:

∆1
1 � srqs : M (24)

Note this is symmetric to the case (1) above. As before, setting∆1 � ∆1
0, ∆

1
1, we know:

I; C;Γ $ P 1 | s : h� ∆1. By (22) and (24) we obtain

∆1
0, ∆

1
1 � srqs : Ljrv{xjs, ∆00, ∆1
τ
Ð∆0, ∆1

The only change from ∆ to ∆1 is at the type assignment at srqs, as required.

26

For convenience of the case analysis we explicitly write P τsÝÑ P 1 if P τ
ÝÑ P 1 is

derived by the reduction rules for free session channels.

Lemma 9 (Subject Reduction for Silent Actions). Suppose Γ $ N �Σ.

1. if N τ
ÝÑ N 1 then Γ $ N 1 �Σ again

2. if N τsÝÑ N 1 then there exists Σ1 s.t. xΓ,Σy τ
ÝÑ xΓ,Σ1y and Γ $ N 1 �Σ1.

Proof. If N τ
ÝÑ N 1 then each of the cases of Lemma 7 are possible, we inspect them

one by one.

Case (1): Session Initiation. By Lemma 7 (1) and (2) we setN � rP1sσ1 |
±

2¥i¥nrPisσi
where P1 � arnspy1q.P

1
1 | Q1 and Qi � arispyiq.P

1
i | Qi. As given in Lemma 7 (2)

the actions of Pi compensate each others and correspond to reduction N ÝÑ pνsqps :
H |
±

1¥n¥nrP
1
i rsris{yis | Qisσiq by the first rule in Figure 7.

Since Er s is a reduction context we can safely set

Γ $ rarispyiqtAiu.Pisσi � r∆isσ
1
i

so that r∆1sσ
1
1, ..., r∆nsσ

1
n � Σ.

Hence, by premise of validation rule tMACCu we have, with Γ paq � G,

Γ $ rPisσi � r∆i, sris : Lisσ1i

with G æi� δtAiuLi (similarly for role 1).
Since tG æiuiPI is obviously coherent then Γ $ pνsqp

±
i P

1
i rsis{ys | Qiq �∆ as

required.

Case (2): Select. By Lemma 7 (3) we set N � ErrP sσp | s : hs with

rP sσp

srp,qs!lxvy
ÝÝÝÝÝÝÑ rP 1sσ1

p
. As above we can safely set I; true;Γ $ rQsσ1

p
| s : h̃ �

∆. By Lemma 8 we can infer I; true;Γ $ rP 1sσ1

p
| s : h̃ � pp, q, lxvyq � ∆1 such

that xΓ, r∆sσay
τ
ÝÑ xΓ, r∆1sσ1ay. Since N reduces to N 1 by τ -transition rather than τs

transition, we know that s is hidden in N . Assume therefore without loss of generality

N � CrpνsqprP sσ | s : h |Mqs I; true;Γ $ rP sσ | s : h |M �Σ1

with Σ1 coherent and Σ1 � Σ,Σ01. By Lemma 3 and Σ1 ÝÑ Σ1, Σ01 we know
Σ1, Σ01 is also coherent, hence done.

Case (3): Branch. The argument exactly follows case (2) above except using Lemma 7
(3) and Lemma 8 (4) instead of Lemma 7 (2) and Lemma 8 (3), respectively.

Case τs. Proceeds as above but without restricting s.

Lemma 10. If I; C;Γ $ P � ∆ and rP sσp
`
ÝÑ rP 1sσ1p for some `, P 1, σp and σp s.t.

σp |ù I then:

27

– if ` is a branching action then xΓ ; r∆sσpy is able to move at subject of `, and if

xΓ ; r∆sσpy
`
ÝÑ xΓ ; r∆1sσ1ay then we have I; true;Γ $ P 1 �∆1.

– if ` is not a branching nor a τ action then xΓ ; r∆sσay
`
ÝÑ xΓ ; r∆1sσ1ay then we have

I; true;Γ $ P 1 �∆1.

Proof. The proof is by induction on the validation rules .We proceed by the case anal-
ysis depending on the last rule used for deriving this judgement. We assume processes
are closed. Further below notice C in the conclusion of each rule should be true by our
assumption.

Case tSELu. In this case, we derive I; true;Γ $ P �∆ with:

P � srp, qs!tei ÞÑ lixe
1
iypxiqxEiy;PiuiPj and ∆ � ∆0, srps : q!tljpxj : UjqtAjuxEjy;LjujPJ

(25)
P can move only by tTR-SELu in Figure 6: rP sσp

`
ÝÑ rPirv{xissσ

1
p with ` � srp, qs!lixvy,

σ1p � σp afterEi, and
σp |ù ei Ó v (26)

since P is closed the only free variables in ei are state variables defined in σp. By the
first premise of validation rule tSELu we have:

I � Ajre
1
i{xjs (27)

By (26) and (27) we infer I � Ajrv{xjs.
From I � Arv{xjs, since σa |ù I we have σa |ù Arv{xjs hence xΓ ; r∆sσay can

move by tTR-SELu:

xΓ ; r∆sσay
`
ÝÑ xΓ ; r∆0, srps : Ljrv{xjssσ1ay

with σ1a � σa afterEi
By the third premise of validation tSELu we have

I; true;Γ $ Pjre
1
i{xis �∆0, srps : Ljre1i{xjs (28)

By Evaluation Lemma, (28) immediately gives I; true;Γ $ Pjrv{xjs � ∆0, srps :
Lrv{xjs as required. This case holds by induction observing that σ1p |ù I and σ1a |ù I
by invariant stability.

Case tBCHu. In this case the conclusion is I; true;Γ $ P �∆ with:

P � srp, qs?tlipxiqxEiy.PiuiPI and ∆ � ∆0, srps : q?tlipxi : UiqtAiuxEiy.LiuiPI
(29)

By the shape of P we can set ` � srq, ps?ljxvy. P can move only by tTR-BCHu, obtaining

rP sσp
`
ÝÑ rPjrv{xjssσ

1
p, with σ1p � σp afterEj . By the shape of∆ from the validation

rule tBCHu we have that ∆ is able to move at subject of `. In case xΓ ; r∆sσay can move
with label ` we have by tTR-BCHu:

xΓ, r∆sσay
`
ÝÑ xΓ ; r∆0, srps : Lrv{xjssσ1ay

28

with σ1a � σa afterEj . for which σa |ù Arv{xjs. Now the premise of validation rule
tBCHu:

I; true^Aj ;Γ $ Pj �∆0, srps : L
By Substitution Lemma we obtain

I; true^Ajrv{xjs;Γ $ Pjrv{xjs �∆0, srps : Lrv{xjs

Since by history sensitivity Aj does not contain free state variables the it is possible
to evaluate it. By Ajrv{xjs Ó true and by validation rule tBCHu we obtain I; true;Γ $
Pjrv{xjs�∆0, srps : Lrv{xjs as required. This case holds by induction observing that
σ1p |ù Iand σ1a |ù I by invariant stability.

Case tMREQu. In this case we have I; true;Γ $ P � ∆ such that, combining with the
premises of the rule tMREQu we have: P � arnspyq.Q and I; true;Γ $ Q�∆, sr1s : L
where

Γ paq � G and G æ1� δtAu.L and I � A (30)

By the shape of P we can set ` � arnsxsy and P `
ÝÑ Q. By (30) we have I � A and

by hypothesis σa |ù I hence σa |ù A. Therefore the following transition is possible
using tTR-A-MREQu: xΓ, r∆sσpy

`
ÝÑ xΓ, r∆, sr1s : Lsσay as required.

Case tMACCu. Similar to the case tMCASTu above.

Case tPARu. Immediate, since the visible transition for P | Q is reducible to the same
action by either P or Q, and because the resulting assertion environments (one result
of the visible transition) can again be composed, because linear compatibility only de-
pends on channel names and participant names.

CasetRECu. This case follows from applying induction on the unfolding of P and folding
it back after the transition.

Other cases. In each case, direct from the induction hypothesis.

Case tVARu. Immediate since in this case there is no reduction from P .

Lemma 11. If true;Γ $ N � Σ and N `
ÝÑ N 1 and xΓ ;Σy `

ÝÑ xΓ ;Σ1y where ` �� τ ,
then we have true;Γ $ N 1 �Σ1

Proof. The proof is by induction on the validation rules. The case for tN1u follows by
Lemma 11. The cases for tN2u and tN3u are straightforward. We show below the case for
tN4u.

Suppose the conclusion is true;Γ $ N � r∆sσ which is derived from

true;Γ0 $ N � r∆0sσ0 (31)

with Γ0, ∆0, σ0 � Γ,∆, σ. Now first suppose the concerned visible action ` is neither
a receive action nor a branching. Now suppose N `

ÝÑ N 1. By induction hypothesis and

29

by (31), xΓ0; r∆0sσ0y
`
ÝÑ xΓ 1

0; r∆
1
0sσ

1
0y for some Γ 1

0, ∆1
0 and σ10 for which we have, by

induction hypothesis
true;Γ 1

0 $ N 1 � r∆1
0sσ

1
0 (32)

Since the assertion transition is deterministic and by definition of refinement Γ 1
0, ∆

1
0, σ

1
0 �

Γ 1, ∆1, σ1, by (32) we can use tN4u to reach the thesis.

G Completeness
Assuming Γ |ù rP sσp � r∆0sσa, we introduce generation rules (Figure 12) to obtain
a formula ∆ parametric with respect to a number of predicate variables. Then we show
that there exist a substitution ξ of the predicate variables in ∆ such that: (1) true;Γ $
rP sσp � r∆ξsσa (i.e., provability of validation rules, Lemma 13), and (2) ∆ξ � ∆0

(completeness via refinement, Lemma 14). The thesis is a consequence of (2) and of
validation rule tN4u.

Remark 1. We consider a more general formulation of our framework where the up-
dates are expressed as predicates namely E def

� E1 ^ x1 : A where x1 denotes x after
the update and A can refer to the values in the current state (e.g., x). We can express the
formulation in the paper, i.e., E def

� E1; x :� e as Egen
def
� E1

gen ^ tx
1 � eu. Also,

we consider recursive definitions that can have more than one recursion parameter.

G.1 Predicate Variables and Extended Predicates

The generation rules for principal formulae use sequents with predicate variables with
fixed arities. We need predicate variables since we cannot rely on a specific predicate
when we stipulate a constraint on an input value: if we concretize it, we may lose
principality (i.e., the principal formula is not the strongest), since the stronger an in-
put constraint is, the stronger a related output constraint is. Similarly we use predicate
variables also for the updates of the branching.

Definition 8 (Extended predicates). Extended predicates are defined as predicates
where predicate variables can occur; predicate variables are ranged over by φpxq and
are meant to be replaced by normal predicates A such that fnpAq � x (similarly for
φpxq).

G.2 Generalised Sequent

We use the following sequents towards completeness, all using predicate variables.

1. C;Γ0 $� P � ∆. This is used for generation of principal formulae and reads:
”Under C as constraints on values and Γ0 as public contracts for shared
names, P has the principal formula ∆”.

Note predicates in these assertions use predicate variables, defined in Definiton 8.

2. C;Γ $ext N�Σ. This is the same provability as the one obtained using the valida-
tion rules in Figure 4 except using an extended syntax of predicates incorporating
predicate variables (in both predicates and updates of the branching).

30

3. C;Γ |ùext rP sσp � r∆sσa. Again this is the same satisfiability as we defined in
Definition 5 except using the syntax of predicates incorporating predicate variables
(the semantics of predicate variables is taken in the standard way, taking satisfiabil-
ity under all closing substitutions).

In brief (1) is the sequent for generation described in G.4 while (2) and (3) are the se-
quents for validation/satisfiability obtained extending the logic with predicate variables.

As more clear later, for all possible concrete substitutions, (2) implies the normal
provability and (3) implies satisfiability.

G.3 Two Merge Operations
This subsection is a technical discussion introducing and studying two merge operations
used in the generation rules. This subsection is technical, needed only for the proofs of
completeness, hence may as well be skipped until the proof of the theorem.

Convention 11 (shape of recursive assertions). In this subsection and henceforth we
assume two recursive assertions to be merged are always in the same shape. Since the
shape of recursive assertions to be generated rely on the shape of recursions in the
original process, this assumption means semantically neutral assumption (up to a simple
transformation) of recursions in processes. Since generated formulae are equivalent for
different shapes of recursions, this does not lose generality.

Merging Assertions (1)

Definition 12 (Merge). Let L1 and L2 be two local assertions. The function _ takes
two local assertions and merges them; it is recursively defined as follows:

– p!tlipxi : UiqtAiuxE
1
i y;LiuiPI _ p!tlipxi : UiqtBiuxE

2
i y;L1

iuiPI
def
� p!tlipxi :

UiqtAi _BiuxE
1
i _ E

2
i y;Li _ L1

iuiPI

– p?tlipxi : UiqtAiuxE
1
i y;LiuiPI _ p?tlipxi : UiqtBiuxE

2
i y;L1

iuiPI
def
� p?tlipxi :

UiqtAi ^BiuxE
1
i ^ E

2
i y;Li _ L1

iuiPI

– µtxỹ1 : Aypx̃1 : Ũ1qttrueu.L1
1 _ µtxỹ2 : Bypx̃2 : Ũ2qttrueu.L1

1
def
� µtxỹ1, ỹ2 : A^Bypx̃1, x̃2 : Ũ1Ũ2qttrueu.L1

1 _ L1
2

where we assume x̃1 �� x̃2 and ỹ1 �� ỹ2.
– txx̃1 : Ay _ txx̃2 : By

def
� txx̃1x̃2 : A^By where we assume x̃1 �� x̃2.

– end _ end � end.

Definition 13. The merge operation is extended to assignments∆ in the obvious way,
i.e. ∆1 _∆2 is the pointwise merge of ∆1 and ∆2.

Lemma 14. 1. pΓ,∆1, σq � pΓ,∆1 _∆2, σq.
2. If pΓ,∆1, σq � pΓ,∆

1, σq and pΓ,∆2, σq � pΓ,∆
1, σq then pΓ,∆1 _ ∆2, σq �

pΓ,∆1, σq.

Proof. The proof of (1) and (2) is straightforward by induction under arbitrary closing
substitution.

31

Merging Assertions (2) We also need a refined merging function when considering
the guarded command, to take into account the conditions.

Definition 15 (Parametric Merge). The parametric merge of assertions tLiuiPI wrt
conditions teiuiPI (written _tei,LiuiPI) is defined recursively as follows:

– _tei,LiuiPI with Li � p!tljpxj : UjqtA
i
juxE

i
jy;LijujPJ is defined as

p!tljpxj : Ujqt_iPIp#ei ^Aijqux#ei � Eijy;_tei,LijuiPIujPJ

– _tei,LiuiPI with Li � p?tlipxj : UjqtA
i
juxE

i
jy;LijujPJ is defined as

p?tljpxj : Ujqt_iPIp#ei � Aijqux#ei � Eijy;_tei,LijuiPIujPJ

– µtxỹ1 : Aypx̃1 : Ũ1qttrueu.L1
1 _ µtxỹ2 : Bypx̃2 : Ũ2qttrueu.L1

1
def
� µtxỹ1, ỹ2 : A^Bypx̃1x̃2 : Ũ1Ũ2qttrueu.L1

1 _ L1
2

where we assume x̃1 �� x̃2 and ỹ1 �� ỹ2.
– txx̃1 : Ay _ txx̃2 : By

def
� txx̃1x̃2 : A^By where we assume x̃1 �� x̃2.

Definition 16. The parametric merge operation is extended to assignments ∆ in the
obvious way, i.e. the pointwise merge of each ∆i.

Lemma 17. The following properties of parametric _ hold:

∆i � _tei, ∆iuiPI

_tei, ∆iuiPI � ∆i if ei Ó true

G.4 Generation of Principal Assertions
The rules use judgements of the form

C;Γ0 $� P � ∆ (33)

The rules in Figure 12 (cf. page 34) induce an algorithm that takes in input Γ0, C and P
and generates “most general” ∆ for P under the conditions C and assignment Γ0. We
remark that the principal general assertion of a program may not exist, in which case
the algorithm is supposed to return ’error’. However, if the process is well typed wrt the
underlying typing discipline then a principal formula will be generated.

Without loss of generality, we assume the standard bound variable convention. The
generation rules use the merge and parametric merge.

Each rule is naturally obtained, where under the left-hand side environment we
derive the right-hand side principal formulae for processes inductively.

In the rule for selection, observe that P may have different branches corresponding
to the same branch lj of the local assertion (although with different conditions). We set
J as the set of indexes of non replicated labels, with the cardinality of J , denoted with
|J | being the number of partitions of I collecting all indexes s.t. l1 � l2. We denote
each of such partitions with Hpjq.

As a local assertion cannot have duplicated branches, we have to create one branch
for the principal formula (say lj) that types all the branches (say li) of the process

32

such that lj � li. Notice also that by well-typedness of P , for each h1, h2 P Hpjq,
xh1 � xh2. The extension with delegation does not present further challenges proceeds
as in [5] except the predicates and updates are treated as in the case of selection (where
xi is not in the free variables of updates and predicates). The same holds for session
receive.

In the rule for the input action we introduce the notation Doutx̃.∆ for the existential
closure of interaction variables on each assertion in ∆ where Doutx̃.L is closing with
existential quantifiers x̃ in the predicates for selection and recursion in L.

We use an annotation on which role the process is defining/instantiating.

Definition 9. Doutx̃.L is defined as: (1) p!tlipxi : UiqtDx̃.AiuxEiy.LiuiPI if L �
p!tlipxi : UiqtAiuxEiy.LiuiPI , (2) µtxy : A1ypx : SqtDx̃Au.L1 if L � µtxy : A1ypx :
SqtAu.L1, (3) L otherwise.

The following proposition holds:

Proposition 1. For any assertion L and any vector of pairwise dijoint interaction vari-
ables x̃

L � Dx̃.pLq

Proof. Trivially from the definition of refinement and existential closure, observing that
the existential closure weakens only the predicate of selections and recursion.

G.5 Completeness
Lemma 12. I; C, Γ $ext P �∆ � I; Cξ, Γ ξ $ P �∆ξ. for each ξ such that Γξ
and ∆ξ are well-asserted.

Lemma 13 (Provability by Validation Rules). If C;Γ0 $� P � ∆, then C, Γ0 $
ext

rP sσp � r∆sσa.

Proof. We show each generation rule in Figure 12 is an instance of the corresponding
extension of the validation rules in Figure 4 with predicate variables: if the assumption
is read as a sequent with $ext rather than $�, then the same holds for the conclusion,
which is enough for the soundness of the each extended validation rule.

tSELu By hypothesis, for all distinguished labels li in P (with I being the branch indexes
of P) we have C ^#ei;Γ0 $� Pi �∆i, yrps : Li. Consider one generic i P I , by
induction from the derivation of P :

I; C ^#ei;Γ0 $
ext Pi �∆rest, yrps : Ljre1i{xjs (34)

We now show that the first precondition of validation rule tSELu when trying to
validate P against the generated formula is

I ^ C ^ ei � Aj ^ pEj � ^hPHpjqeh � Ehqre
1
i{xjs (35)

with
Aj

def
� C ^_hPHpjqpeh ^ xj � e1hq

33

C;Γ0 $� P �∆, yris : L Γ0paq � G G æi � rx̃ : S̃stAu.L
C;Γ0 $� arispyq.P �∆

tMACCu

C;Γ0 $� P �∆, yr1s : L Γ0paq � G G æ1 � rx̃ : S̃stAu.L
C;Γ0 $� arnspyq.P �∆

tMCASTu

Hpjq with j P J is one of the |J | partitions of I collecting all indexes s.t. @i1, i2 P Hpjq l1 � l2
Aj � C ^_hPHpjqpeh ^ xj � e1hq

Ej � _hPHpjqpeh � Ehq
C ^#ei;Γ0 $� Pi �∆i, krps : Li

C;Γ0 $� krp, qs!tei ÞÑ lixe
1
iypxiqxEiy;PiuiPI

� p_t#ei,∆iuiPIq, krps : q!tljpxjqtAjuxEjy._ t#ei,LiuiPHpjqujPJ

tSELu

C ^ Φpxiq;Γ0 $� Pi �∆i, krps : Li
C;Γ0 $� krp, qs?tlipxiqxEiy.PiuiPI � Doutx̃ip_t∆iuiPIq, krps : q?tlipxiqtφipxiquxφ

1
iy;LiuiPI

tBCHu

C;Γ0 $� Pi �∆i pi � 1, 2q
C;Γ0 $� P1 | P2 �∆1,∆2

tPARu
∆ end only
C;Γ0 $� 0 �∆

tINACTu

�
C;Γ0, X :px : SqtXi @ pi..tXn @ pn $� X

i
nxey � srpis : tXi xy : y � e ^ Cy

tVARu

C;Γ0, X :px : SqtX1 @ p1..tXn @ pn $� P �∆, srpis : Li
C ; Γ0 $� µX

i
nxeypxq.P �∆, srpis : µtXxy : y � eypxqttrueu.Li

tRECu

Fig. 12. Generation rules for programs (see Definition 9 for Dout).

holds with e1i � e1h for some h P H . First of all notice that the conclusion pEj �
^hPHpjqeh � Ehq holds since exactly one eh is true (at least one is true by premise
_heh and only one is true by well typedness of P). Thus (35) can be simplified as
follows, making Aj explicit:

I ^ C ^ ei � C ^_hPHpjqpeh ^ xj � e1hqre
1
i{xjs (36)

which is equivalent to (considering only the predicate for the branch for which
e1i � e1h and ei � eh and . . . denoting the remaining predicates)

I ^ C ^ ei � C ^ ppeh ^ e1i � e1hq _ . . .q (37)

which is true (with I true).
From (34), using premise (37) for validation rule tSELu, and then using the fact that
∆i � _t#ei, ∆iuiPI and Li � _t#ei,LiuiPHpjqby Lemma 17 to apply validation
rule tN4u we obtain the thesis.

tBCHu Easy by inductive hypothesis and straightforward application of extended valida-
tion rule tBCHu. For the existential elimination, observe that:
1. all occurrences of the abstracted variable are in send/select and recursion in-

stantiation; and

34

2. all recursion instantiation is used in send/select inside the recursion body.
Thus existential elimination only anti-refines the given assertion, hence done.

tMCASTu By inductive hypothesis from C;Γ0 $� P � ∆, yr1s : L1 it follows

I; C;Γ0 $
ext P �∆, yr1s : L1 (38)

where Γ0paqæ1 � rx̃ : S̃stAu.L1.
By tMCASTu of extended validation, we have

I; C;Γ0 $
ext arnsxsy.P �∆ (39)

which, because we have Γ0, a : G � Γ0, is equivalent to,

C;Γ0, a : G $ext P �∆ (40)

as required.
tPARu By induction.
tINACTu Immediate from the corresponding validation rules.
tRECu To prove this case, we consider substitution instance of the assumption of the rule,

with t instantiated into the corresponding recursive assertion in the conclusion. By
this we can apply the original (validation) rule for recursion, hence as required.

This exhausts all cases.

Definition 10. We say that ξ is a concretising substitution if no predicate variables
occur in its codomain.

Lemma 14 (Completeness via Refinement). Let C;Γ0 |ù rP sσp�r∆0sσa be an open
judgment (and P be well-typed, wrt the underlying typing discipline, against the type
obtained by erasing all predicates and updates from ∆). Let C;Γ0 $� P � ∆ be the
generated formula. Assume that : (1) idpσpq � idpσaq, (2) varpIq � spσpq � spσaq,
and (3) I equivalent to true. There exists a concretising substitution ξ such that for any
closing substitution σ̃ consistent with C, ∆ξσ̃ is well-asserted and ∆ξσ̃ � ∆0.

Proof. By induction on the size of the process (we use the size of processes rather than
direct structural induction since we need to reason up to substitutions, even though we
can in effect use rule induction). In the proof below, we use typed labelled transition for
open processes, which stands for the family of its instantiations into closed processes
as defined before.

Case tMACCu. We assume P � arispyq.P 1. By hypothesis

C;Γ0 |ù rarispyq.P
1sσp � r∆0sσa (41)

C;Γ0 $� arispyq.P
1
� ∆ (42)

By (41) and one step of conditional simulation

C;Γ0 |ù rP
1sσp � r∆0, sris : Lsσa Γ0paq æi� rx̃ : S̃stAu.L

By (42) and the application of generation rule tMACCu

C;Γ0 $� P
1
� ∆, yris : L Γ0paq æi� rx̃ : S̃stAu.L

By induction ∆, yris : Lξσ̃ � ∆0, sris : L hence by definition of refinement follows
∆ξσ̃ � ∆0 for some σ̃, ξ.

35

Case tSELu. We assume P � krp, qs!tei ÞÑ lixe
1
iypxiqxEiy.PiuiPI . Below for brevity

we use labelled transition for open processes, which stands for the family of its instan-
tiations into closed processes as defined before. We do not mention these substitutions
since for each substitution the same reasoning applies. By hypothesis

C;Γ0 |ù rsrp, qs!tei ÞÑ lixe
1
iypxiqxEiy.PiuiPI sσp�

r∆rest
0 , srps : q!tpxj : UjqtA

1
juxE

1
jy.LjujPJ sσa

(43)

where we note that E1
i may differ from the corresponding E1

j . After one step of condi-
tional simulation with ` � srp, qs!lixvy and (43)

C;Γ0 |ù rPirv{xissσ
1
p � r∆

rest
0 , srps : Ljrv{xjssσ1a

where σ1p � σp afterEi and σ1a � σa afterE
1
j .

By generation:

C;Γ0 $� srp, qs!tei ÞÑ lixe
1
iypxiqxEiy.PiuiPI �

_t#ei, ∆iu, yrps : q!tpxj : UjqtAjuxEjy.L�
jujPJ

(44)

with Ej
def
� _hPHpjqeh � Eh, Aj

def
� C ^ _hpjqPHpeh ^ xj � e1hq and L�

j
def
�

_t#ei, ∆iuiPHpjq.
By generation rule tSELu and (44)

C ^#ei;Γ0 $� Pi �∆, yrps : Lgeni

By Lemma 17 _t#ei, ∆iuiPI � ∆i if #ei Ó true and by induction ∆i � ∆rest
0

for all i P I , thus

_t#ei, ∆iuiPI � ∆rest
0 if #ei Ó true for each i P I (45)

Also, by induction for some ξ, σ̃

yrps : Lgeni ξσ̃ � srps : Lirv{xis (46)

The thesis
_tei, ∆iuiPI , yrps : q!tpxi : UiqtAjuxEiy.L�

i uiPIξσ̃
� ∆rest

0 , srps : srps : q!tpxj : UjqtA
1
juxE

1
jy.LjujPJ

follows observing that if yrps : q!tpxi : UiqtC ^ ei ^ xi � e1iuxEiy.L�
i can make a

step with label `, then Aj
def
� C ^ _hpjqPHpeh ^ xj � e1hq is also true. Namely, eh

must be true for some h. Since by definition of P two conditions cannot be true at the
same time then only eh is true. This means that P can make also a step with label `
thus by conditional simulation srps : srps : q!tpxj : UjqtA

1
juxE

1
jy.LjujPJ can also

do a step with label `. Finally, from (46), Lemma 17 and the fact that eh Ó true (thus
#eh Ó true) we obtain that also the continuations preserve the refinement relationship,
namely L�

i ξσ̃ � Lj .

36

Case tBCHu. We assume P � krp, qs?tpxiqxEiy.PiuiPI . By hypothesis

C;Γ0 |ù rsrp, qs?tpxiqxEiy.PiuiPI sσp�
r∆rest

0 , srqs : p?tpxi : UiqtAiuxE
1
iy.LiuiPI sσa

(47)

where we note that E1
i may differ from Ei.

C;Γ0 $� srp, qs?tpxiqxEiy.PiuiPI �
Dx̃_∆i, yrqs : p?tpxi : Uiqtφpxiquxφ

1y.L�
i uiPI

(48)

After one step of conditional simulation and (47)

C;Γ0 |ù rPirv{xissσ
1
p � r∆

rest
0 , srqs : Ljrv{xissσ1a

where σ1p � σp afterEi and σ1a � σa afterE
1
i.

Finally, _tei, ∆iu, yrqs : p?tpxi : UiqtψpxiquxEiy.L�
i uiPI is well asserted. His-

tory sensitivity follows and temporal satisfiability follow from the fact that L� is well
asserted thus admits possible computations also for the values satisfyingAi ifAi admits
solutions. We know that Ai admits solutions for some branch i because ∆0 is temporal
satisfiable. Invariant satisfiability is trivially satisfied since I � true. Updatability is
preserved since P is able to perform the prescribed update.

By generation rule tBCHu and (48)

C ^ φpxiq;Γ0 $� Pi �∆i, yrqs : L�
i

By Lemma 14 _∆i � ∆i, by Proposition 1 and definition of closure used in Fig-
ure 12, Dx̃._∆i � ∆i and by induction ∆i � ∆rest

0 , thus

Dx̃._∆i � ∆rest
0 (49)

Also, by induction for some ξ, σ̃

yrqs : L�
i ξσ̃ � srqs : Lirv{xis (50)

The thesis
Dx̃._∆i, yrqs : p?tpxi : Uiqtφpxiquxφ

1y.L�
i uiPIξσ̃

� ∆rest
0 , srqs : p?tpxi : UiqtAiuxE

1
iy.LiuiPI

for some ξσ̃ follows from (49) observing that if srqs : p?tpxi : UiqtAiuxE1
iy.LiuiPI

can make a step with label ` then yrqs : p?tpxi : Uiqtψpxiquxψ1y.L�
i can also do a step

with label ` where we substitute φpxiq with Ai and φ1 with E1
i since the continuations

still preserve the refinement by (50).

Case tPARu. Assuming C;Γ0 |ù P1 | P2σp�∆1, ∆2 with∆1 and∆2 disjoint, we have
C;Γ0 |ù rP1sσp �∆1 and C;Γ0 |ù P1�∆1.

By inductive hypothesis C;Γ0 $� P1�∆
11 and C;Γ0 $� P2�∆

12 where ∆11 �
∆1 and ∆12 � ∆2. Therefore ∆11, ∆12 � ∆1, ∆2.

Case tVARu. Straightforward.

37

Case tRECu. We present an informal argument (the formal case is very similar to the
corresponding case in [5]: we know by induction the assumption gives the strongest
assertion. Hence its instantiation by an appropriate substitution for the assertion vari-
ables concerned, gives the strongest assertion (recall these variables are introduced at
the time of the tVARu). If the recursive process in the conclusion ever satisfies an asser-
tion, then P in the assumption also satisfies the assertion if the assertion variables are
instantiated into the corresponding recursive assertions (through the unfolding). Ap-
plying this observation to both the satisfying assertion and the strongest assertion, we
can reason, for each finite step, transitions from (the finite unfoldings of) the strongest
assertion refines (the finite unfoldings of) the satisfying assertion.

H HML Embedding
Embedding We use a standard HML with the first-order predicates as in [1]. These
predicates, denoted by A in the following are to the ones appearing in assertions, de-
fined in Figure 1. The LTS associated to our HML consider as actions, denoted by `,
both the communications of the process and the updates of the state. As a consequence
P, σ

`
ÝÑ P 1, σ1 if either P `

ÝÑ P 1 and σ1 � σ or P � P 1 and σ1 � σ after `. We use φ
to denote HML-formulae, which are built from predicates, implications, universal quan-
tifiers, conjunctions and must modalities. We remark that the logic used in this safety
embedding is positive: if we remove the implication symbol, there is no negation, no
existential quantifier, no disjunction and no may modality. Additionally, the implication
will always appear asAñ φmeaning that modalities never appear in the negative side.

φ ::� true | φ^ φ | φñ φ | r`sφ | A | @x : S.φ ` ::� srp, qspxq | srp, qspxq | E

P, σ |ù φ1 P, σ |ù φ2

P, σ |ù φ1 ^ φ2 P, σ |ù true

if P, σ |ù φ1 then P, σ |ù φ2

P, σ |ù φ1 ñ φ2

For all P 1, σ1 s.t. P, σ `
ÝÑ P 1, σ1, P 1, σ1 |ù φ

P |ù r`sφ

σ $bool A

P, σ |ù A

For all values v of type T, P, σ |ù φrv{xs

P, σ |ù @x : T.φ

Fig. 13. Logical rules

The satisfactions rules (Figure 14) are fairly standard, for a pair P, σ to satisfy a
predicate A, A has to hold w.r.t. to σ, denoted by σ $bool A, meaning that σpAq is a
tautology for the boolean logic.

The embedding of local types we propose is parametrised with a session channel
srps. Assertions appearing in input prefixes are embedded as premises in implications,
and assertions in output prefixes have to be satisfied, yielding:

}q!tlipxi : SiqtAiuxEiy.LiuiPI}srps �
�
iPI @xi : Si, rsrp, qspxiqspAi ^ rEis}Li}srpsq

}q?tljpxj : SjqtAjuxEjy.LjujPJ}srps �
�
jPJ @xj : Sj , rsrq, pspxjqspAj ñ }Lj}srpsq

38

P, σ |ù φ1 P, σ |ù φ2

P, σ |ù φ1 ^ φ2 P, σ |ù true

if P, σ |ù φ1 then P, σ |ù φ2

P, σ |ù φ1 ñ φ2

For all P 1, σ1 s.t. P, σ `
ÝÑ P 1, σ1, P 1, σ1 |ù φ

P |ù r`sφ

σ $bool A

P, σ |ù A

For all values v of type T, P, σ |ù φrv{xs

P, σ |ù @x : T.φ

Fig. 14. Logical rules

The embedding of selection, is a conjunction of formulae corresponding to the branches:
for each value sent on the session channel, predicates should be satisfied and, if the state
is updated, the embedding of the continuation should hold. For branching types, the as-
sertion is used as an hypothesis and no update appear.

Soundness To obtain soundness for typing judgements involving specifications, we
have to introduce interleavings of formulae, treating the fact that one process can play
several roles in several sessions. As a simple example both srp1, p2s?pxq.k!rq1, q2s
x10y and k!rq1, q2sx10y.srp1, p2s?pxq can be typed with srp2s : p1?px : Natq.end,
krq1s : q2!py : Natq.end.

Interleaving is not a new operator per se and can be seen as syntactic sugar, describ-
ing shuffling of must modalities. The main rule for interleaving is: r`1sφ1 � r`2sφ2 �
r`1spφ1�r`2sφ2q^r`2spr`1sφ1^φ2q. When interleaving two or more formulae contain-
ing modalities, we obtain a conjunction of formulae, each one representing a different
way of organising all modalities in a way preserving their initial orders. Informally,
the interleaving of r1sr2s and rAsrBs is r1sr2srAsrBs ^ rAsrBsr1sr2s ^ r1srAsr2srBs ^

rAsr1srBsr2s ^ r1srAsrBsr2s ^ rAsr1sr2srBs.
We encode a pair ∆,Γ into a complex formula Interp∆,Γ q, defined as the inter-

leaving of the formulae obtained by encoding the local types of ∆ on their correspond-
ing channels and the formulae corresponding to Γ , built as follows: for each channel
a : IpGq, if some srps is received on a, the resulting process should satisfy the encoding
on srps of the projection of G on p:
Interps1rp1s, . . . , snrpns; a1 : IpG1q, . . . , am : IpGmqq

� }T1}
s1rp1s � . . .� }Tn}

snrpns � φ1 � . . .� φm

where φi � @s1i.@p
1
i.raips

1
irpisqs}Gi æ p1i}s

1

irp
1

is.
The preliminaries lemmas concerning logics need to be proved. Lemma 15 states

that a process cannot perform an action on a channel that does bot appear in its type.
Lemma 16 observes that parallel composition with processes that does not perform any
action does not change the set of formulae a process satisfies. Lemma 17 states that
satisfaction of assertion is stable by reduction and Lemma 18 enforces the stability of
satisfaction judgement by well-typed substitutions.

Lemma 15 (Type safety). If I; C;Γ $ P : ∆ and srps R ∆ Y Γ , then there is no P 1

s.t. P, σ `sÝÑ P 1, σ for any action `s of the form s!rp, qsxl.vy or s!rq, pslpxq.

39

Similarly, if a : IpGq R Γ , there is no P 1, srps s.t. P, σ
apsrpsq
ÝÝÝÝÑ P 1, σ.

The direct corollary that will be used later is that a process typed with an empty ∆
cannot make any action.

Proof. Easily done by induction on the typing rules, noticing that 0 requires an empty
typing context to be typed.

Lemma 16 (Trivial Composition). If P1, σ |ù φ and P2 cannot make any action, then
P1 | P2, σ |ù φ.

Proof. By structural induction over φ, the only interesting case being φ � rαssφ
1. It

is done by supposing that P1 | P2
αsÝÑ P 1, we immediately notice that P1

αsÝÑ P 1
1

and P 1 � P 1
1 | P2, as P2 cannot make any action. We use the induction hypothesis to

conclude.

Lemma 17 (Stability of assertions). If P, σ |ù A and P `
ÝÑ P 1, then P 1, σ |ù A.

Proof. According to logics rules P |ù A if σpAq is a tautology. Thus we directly have
the stronger result, If P, σ |ù A, for all P 1, P 1, σ |ù A.

Lemma 18 (Satisfaction substitution). If P, σ |ù φ and x : S, v : S are not bound in
P, σ and φ, then P rv{xs, σ |ù φrv{xs.

Proof. By induction on φ, as our processes and formulas abide a Barendregt conven-
tion, the case @y.φ is easy as y � x and yneqv the only interesting case being assertion
and must modality:

– Case φ � A. The logic rules notifies that σpAq is a tautology, so any instantiation
of its free variable should be so. Thus σpAqtv{xu is a tautology and any process
(in particular P tv{xu) and the state σ form a pair that satisfies it.

– Case φ � rαsφ1. We prove, by induction on the reduction rules, that if P α
ÝÑ P 1,

then P tv{xu
αtv{xu
ÝÝÝÝÑ P 1tv{xu and use the induction hypothesis.

We state, thanks to the previous lemmas, the following ’simple’ soundness, for sim-
ple local types:

Proposition 2 (Simple Soundness). If I, C,H $ P � srps : L and σ |ù I, then
pP, σq |ù C ñ }L}srps.

The above proposition is proved by induction on the typing judgement.
Unasserted types are built from:

L ::� p?tlipxi : UiqEi.LiuiPI | p!tlipxi : SiqEi.LiuiPI | end

The multiplicative parallel rule is given as:

I; C;Γ1 $ P1 : ∆1 I; C;Γ2 $ P2 : ∆2

I; C;Γ1, Γ2 $ P1 | P2 : ∆1, ∆2

40

Proposition 3 (Simple Completeness). For all L and I, if $ P : srps : ErpLq,
σ |ù I and P, σ |ù C ñ }L}srps then C; I;$ P � srps : L.

Proof. By induction on the typing judgement $ P : srps : ErpLq:
– Case branching. We have L � p0?tlipxi : UiqtAiuxEiy.LiuiPI . Let i P I and

suppose C holds and σ |ù I. We have from the hypothesis $ P � p0?tlipxi :
Uiq.LiuiPI . The unasserted typing rules give P � s?tpxi : SiqtAiu.PiuiPI , and
$ Pi � srps : Li. We know that P, σ |ù C ùñ }L}srIs, which is:

P, σ |ù
©

iPI

@xi.rspxiqspAi ùñ rEis}Li}srIs ^ pAi^ I ^ Cq ùñ I afterEiq

. We know from the shape ofP , given above, and the reduction rules, thatP can per-
form spxiq to Pi, σ |ù pAi ùñ rEis}Li}srps,I^pAi^Iq ùñ I afterEiq. We
see that σ can perform Ei to σ afterEi, meaning that we have Pi, σ afterEi |ù
pAi ùñ }Li}srps,Iq, so we invoke Lemma ??, proving that sigma afterEi |ù I
in order to use the induction hypothesis to get C ^ Ai; I;H $ Pi � Li and
σ afterEi |ù I.To sum up, for all i, C, Ai $ Pi � srps : Li. Additionaly we
have pAi ^ I ^ Cq ùñ I afterEi and this allows us to use the proof rule for
branching to prove C; I;H $ P � srps : L.

– Case selection. We have L � p0?tlipxi : UiqtAiuxEiy.LiuiPI . Suppose C holds
and σ |ù I. We have from the hypothesis$ P � srps : p0?tlipxi : Uiq.LiuiPI . The
unasserted typing rules give P � s!ttAjuxPjypxj : SjqEju, and$ Pj�srps : Lj .
We know that P, σ |ù C ùñ }L}srIs, which is P |ù

�
iPI @xi.rspxiqsAi ^

}Li}srps,I ^ pAi ^ I ^ Cq ùñ I afterEiq. In particular, as C holds, P |ù
rspxjqsAj ^ }Lj}srps,I ^ pAj ^ Iq ùñ I afterEjq We know from the shape
of P , given above, and the reduction rules, that P can perform spxjq to Pj |ù
pAj ^ }Lj}sq, meaning that Aj holds. Also, σ can perform Ej to σ afterEj . To
sum up, we have C ^ I ùñ Aj , Pj |ù C ùñ }Lj}srps,I and $ Pj � srps : Lj ,
Lemma ?? allows us to use the induction hypothesis to get C $ Pj� : Lj and this
allows us to use the proof rule for selection to prove C $ P � srps : L.

– Case parallel. No assertion appear in the parallel rule and we can use Lemmas 15
and 16 to state that exactly one side of the parallel composition satisfies the formula
(along with the same state σ). As a consequence, we use the induction hypothesis
twice and conclude.

– Case end. L � end, so this case is trivial.

Here are additional definitions for interleaving:

r`1sφ1 � pφ2,1 ^ φ2,2q � r`1spφ1 � φ2,1q ^ r`1spφ1 � φ2,2q

φ� true � φ φ� pφ1 ^ φ2q � pφ� φ1q ^ pφ� φ2q

pφ1 ^ φ2q � φ � pφ1 � φq ^ pφ2 � φq @x : T.φ1 � φ2

pAñ φ1q � φ2 � Añ pφ1 � φ2q

The following Lemmas are used in the proofs of soundness and completeness to
handle interleavings.

41

Lemma 19 (Shuffling correctness).
Let P1, P2, φ1, φ2, if P1 |ù φ1 and P2 |ù φ2 and if freepφ1q X freepP2q �

freepφ2q X freepP1q � freepP1q X freepP2q � freepφ1q X freepφ2q � H, then
P1 | P2 |ù φ1 � φ2.

Conversely, if P1 | P2 |ù φ1�φ2, freepφ1qXfreepP2q � freepφ2qXfreepP1q �
freepP1q X freepP2q � freepφ1q X freepφ2q � H, freepφ1q � freepP1q and
freepφ2q � freepP2q.

Proof. We proceed by double structural induction over the pair pφ1, φ2q.

– The most interesting case is when both formula are modalities: φ1 � rα1sφ
1
1 and

φ2 � rα2sφ
1
2. The formula φ1�φ2 is rα1spφ

1
1�φ2q^rα2spφ

1
1�φ2q. We proves that

P1 | P2 satisfies the first formula (the other part is similar). First the condition of
freepP2qXfreepφ1q ensures that there is no P 1

2 s.t. P2
α1ÝÑ P 1

2. As a consequence,

if P1 | P2
alpha1ÝÝÝÝÑ P 1, it means that P1

α1ÝÑ P 1
1. By hypothesis, P 1

1 |ù φ11 and we
use the induction hypothesis to get P 1

1 | P2 |ù pφ
1
1 � φ2q.

– Other cases are treated by destructing one construct, following the definition, and
using the induction hypothesis.

Lemma 20 (Description of free names). If C, I, Γ $ P : ∆ then freepP q �
freep∆q Y freepΓ q

Proof. Easily done by induction on the typing judgement.

Lemma 21 (Nature of an interleaving).

Let ∆ � tskrpks : qk
!
?
t
lipxiq
ei ÞÑ lixe

1
iypxiq

tAiuxEiy.Tk,iuiPIuk and Γ � taj :

IpGjquj be well-formed, then the formula Interp∆,Γ q is equivalent to a formula
guarded by several @ operators guarding a conjunction of formulae, each one starting

with a modality, and this modalities are in bijection with the pairs of pskr
pk, qk
qk, pk

s, lk,iq

and paj ,Hq.

Proof. By induction over the pair Γ,∆, using the definition of the � operator.

Do not understand at all and symbol is too strong

Proposition 4 (Soundness). If I; C;Γ $ P �∆ and σ |ù I, then: P, σ |ù pI ^ C ñ
Interp∆,Γ qq.

Proof. By induction on the typing judgment:

– Case selection. We have ∆ � ∆1, srps : p0?tlipxi : SiqtAiuxEiy.LiuiPI and
P � srp, p0s?tpxi : SiqtAiu.PiuiPI . We use Lemma 21 to state the formula we are
trying to validate using P is a conjunction on several formulas, all beginning with
a different modality from the pairs pskrpks, lk,iq and paj ,Hqx . As P is only able

42

to perform an action srp, p0s?, all formulas starting with a modality associated to a
different name are automatically satisfied, and we have to prove that for each i:

P, σ |ù C ùñ }Ti}
srps, S��skrpks:TkP∆1}Tk}

skrpks,I , S�

�aj :GjrpjsPΓ@sj .rajpsjrpjsqs}Gj |pj }sjrpjs,I , S

. We conclude in a way similar to the one followed in the proof of Proposition 2.
– Case branching. We have P � srp, p0s!tti P IuxPiypxi : Siqu. We use Lemma 21

to state the formula we are trying to validate using P is a conjunction on several
formulas, all beginning with a different prefix. As P is only able to perform an
action srp, p0s!, all formulas starting with a different modality are automatically
satisfied, and we have to prove . We conclude using the proof of Proposition 2.

– Case session reception. We have P � apsq.P 1 and Γ � a : Grps, Γ 1. We use
Lemma 21 to state the formula we are trying to validate using P is a conjunction
on several formulas, all beginning with a different modality. As P is only able
to perform an action on a, all formulas starting with a modality associated to a
different name are automatically satisfied, and we have to prove that P satisfies
@srps, rapsqsInterpΓ 1;∆, s : G|pq. As P is able to receive srps on a, we use the
induction hypothesis to conclude.

– Case parallel composition. Easily done by using Lemmas 19 and 20 and the fact
that both Γ and ∆ are split multiplicatively in the rule for parallel composition we
use.

– Case end is trivial.

Completeness The erasing operator ErpLq, which translates an asserted type into its
unasserted counterpart is straightforwardly defined: we remove every assertion A from
the local types. Unasserted typing rules for the judgements$ P �∆ are easily deduced
from the proof rules. Our completeness result is:

Proposition 5 (Completeness).
If σ |ù I,$ P�Erp∆q and P, σ |ù pI^C ñ Interp∆,Γ qq then I; C;Γ $ P�∆.

Proof. By induction on the unasserted typing judgment, case branching and selection
are treated in a way similar to the proof of Proposition 3, parallel composition is done
using Lemmas 19 and 20.

Embedding to Pure HML We are able to embed a stateful satisfaction relation P, σ |ù
φ into a satisfaction relation P 1 |ù φ1 of a standard π-calculus with first-order values,
by encoding the σ into a π-process:

}x1 ÞÑ v1, . . . , xn ÞÑ vn}p � a1pv1q | . . . | anpvnq |
!x1peq.a1py1q . . . anpynq.pa1pevalpery1 . . . yn{x1 . . . xnsqq | a2py2q | . . . | anpynqq | . . . |
!xnpeq.a1py1q . . . anpynq.pa1py1q | . . . | an�1pyn�1q | anpevalpery1 . . . yn{x1 . . . xnsqqq

For each variable xi in the domain of the stateσ, we add an output prefix emitting its
content on the channel ai and we add a replicated module that waits for an update e

43

at xi, then capture the value of all variables of the current state, replace the variable
xi by evaluating e by eval, and then makes available the other ones. Soundness and
completeness allow us to state that HML formulae for pairs state/process can be seen
as pure HML formulas on the π-processes.

Embedding for state σ is given by the following:

}x1 ÞÑ v1, . . . , xn ÞÑ vn}p � a1pv1q | . . . | anpvnq |
!x1peq.a1py1q . . . anpynq.pa1pevalpety1 . . . yn{x1 . . . xnuqq | a2py2q | . . . | anpynqq |

. . .
!xnpeq.a1py1q . . . anpynq.pa1py1q | . . . | an�1pyn�1q | anpevalpety1 . . . yn{x1 . . . xnuqqq

For each variable xi in the domain of the stateσ, we add an output prefix emitting its
content on the channel ai and we add a replicated module that waits for an update e at
xi, then capture the value of all variable of the current state, replace the variable xi by
evaluating e w.r.t. the values of the state, and then makes available the other variables.

The embedding for the formula is given by the following:

}rEsφ}p � r}E}ps}φ}p }A}p � rx1pv1qs . . . rxnpvnqsAtv1, . . . , vn{

x1, . . . , xnu where the state variables of A are x1, . . . , xn

The following theorem ensures that the encoding is sound and complete.

Proposition 6 (Preciseness).
If P, σ |ù φ, then }P }p | }σ}p |ù }φ}p.
If }P }p | }σ}p |ù }φ}p then P, σ |ù φ

Proof. Easily done by induction on the formulas, remarking first that σ and }σ}p have
the same LTS.

Embedding Recursion Recursion is absent from the previous embeddings, but can
actually be encoded, at the cost of much technical details, we give here a brief sketch of
how we proceed. For this purpose, we add to our HML syntax the recursion operators,
µX.φ and X (similar to the one present in the µ-calculus [12]).

The main difficulty lies in the interaction between interleaving and recursion: loops
coming from different sessions can be interleaved in many different way, and the diffi-
cult task is to compute the finite formula which is equivalent to this interleaving.

As a small example consider the following session environment (interactions are
replaced by integer labels): s1rp1s : µX.1.2.X, s2rp2s : µY.3.4.Y . The simplest HML
formula describing all possible interleavings is:

µA.pr1sµB.pr2sA^ r3sµC.pr4sB ^ r2spr1sC ^ r4s.Aqqq^
r3sµD.pr4s.A^ r1sµE.pr2sD ^ r4spr2sA^ r3sEqqqq

We use the following method to obtain a matching HML formula. We use a transla-
tion through finite automata. Here is a sketch of the method, which takes as arguments
a set session environment ∆:

44

1. Encode every session judgement sirpis : Ti of ∆ independently into a formula φi,
conforming to previous embedding and the definitions }µX.T }srps � µX}T }srps.

2. Translate every formula φi into a finite automata Ai, one state corresponds to a
point between two modalities or a µX in the formula, one transition correponds to
either r`spA ^ rEs�q (output) or r`spA ñ �q (input). Every automata is directed
with a source state corresponding to the head of the formula and leaf states corre-
sponding to recursion variables (or end of protocols).

3. Compute the automata A, the parallel composition of all the Ai, which is still
directed.

4. Expand the automata A, in order to obtain an equivalent branch automata, that is,
an automata such that there is a root (the starting state) and transitions form a tree
(back transitions are allowed but only on the same branch). This could be done by
recursively replacing sub-automata with several copies of this sub-automata.

5. Translate back the automata into a formula, every state with more than two incom-
ing transition is encoded as a recursion operator.

One our example, step 1 gives the formulas µX.r1sr2s.X and µY.r3sr4s.Y . Step 2
gives for each formula an automata with 2 states (initial and between r1s (resp. r3s) and
r2s (resp. r4s)). Step 3 gives an automata with 4 states: the inital one, one after r1s, one
after r3s, one after both r1s and r3s. This automata is diamond-shaped, and, as a result,
not tree-shaped. Step 4 yields an automata with 7 states, which is then translated in the
formula described above.

The preciseness proof relies on the fact that the operation described in 3. and 4. give
equivalent automata, and that two formulas translated to two equivalent automata are
equivalent for the HML satisfaction relation.

The following theorem ensures that the encoding is sound and complete.

Proposition 7 (Preciseness).
If P, σ |ù φ, then }P }p | }σ}p |ù }φ}p.
If }P }p | }σ}p |ù }φ}p then P, σ |ù φ

I Example: OOI Instrument Control
I.1 Motivating example: Instrument Command Usecase
To demonstrate our framework, we use a scenario based on the Instrument Command
(IC) Usecase from the Ocean Observatories Initiative (OOI) [20]. The OOI is an NSF
program to provide long-term infrastructure for delivering scientific data from a large
network of ocean sensor systems to on-shore research stations around the US. Through
the paper we will show how to validate process, engaging in multiple simultaneous
instances of the type of session illustrated below. In the IC usecase, a user U obtains
capabilities to use a particular instrument I from the service registry R. U initiates the
session sending R an InterfaceId message which states the desired measurement
type. R replies with the maximum number of measurements that U is permitted to make
in this session. The process enters the main session loop; in each recursion step U has the
choice of sending I the next Command via the more branch case, or to end the session via
the quit case. The global specification declares that roles U and R must have credit

and load state variables, respectively. credit is used to meter the usage of instruments

45

User
[credit:Nat]

Register
[load:Nat]

 xi : InterfaceId

more(xc : Command)

Instrument
[-]

μt<xn>(y)

xr : Response

xn : Nat

t<y-1>

A1

A2

⊕

load:=load +1
y ≥ 0

credit:=credit-COST

load:=load-1

more()

quit()

A1 = xn > 0 ∧ (load > 10 ⊃ xn = 1)

A2 = y > 0 ∧ credit ≥ COST

quit()

Fig. 15. Instrument control: an example of stateful specification

by each principal, and load records the total current load of the instruments, which
serves multiple users concurrently. Predicate A1 ensures that R permits U to make xn ¡
0 commands; however, if the current load is greater than a certain threshold (fixed as
10 in this example), then U is only permitted to make a single command. The subsequent
update increments the load counter. Next, the recursion µt is annotated with a “loop
counter” y, initialised to xn, and the invariant predicate y ¥ 0. The idea is that one
command can be issued in each recursion step and C should not issue more than the
permitted number of commands; the nested recursion variable t is accordingly annotated
with y � 1. Within the recursion, the more message from U to I is guarded by the
predicate that y ¡ 0 and credit ¥ COST, where COST is the constant number of credits
needed to perform one command; the associated update is to decrease credit by COST.
The quit message to R at the end of the session has the effect of decrementing load.

I.2 Global specification

GIC is the global assertion for the protocol illustrated in § I.1 (where we added assertion
invariants for C and R).

GIC � ppC : rcredit : Natstcredit ¥ 0u, R : rload : Natstload ¥ 0u, I : r sttrueuqq.
CÑ R : pxi : InterfaceIdq.
RÑ C : pxn : Natqtxn ¡ 0^ pR.load ¡ 10 � xn � 1quxR.load :� R.load� 1y.
µtxxnypy : Natqty ¥ 0u.CÑ I : t
morepxc : Commandqty ¡ 0^ C.credit ¥ COSTuxC.credit:= C.credit� COSTy.Gcom,
quitpq.Gendu

Gcom � IÑ C : pxr : Responseqttrueu.IÑ R : morepq.txy � 1y
Gend � IÑ R : quitpqxR.load :� R.load� 1y

GIC specifies non-trivial dependencies between message behaviour and virtual state,
which reflect the past and concurrent behaviours of the principal in other sessions.

46

I.3 Local assertion for R
LR is the projection of GIC in I.2 on role R. The projection makes use of a standard
branch mergeability, which is an extension following e.g. [24].

LR � rload : Natstload ¥ 0u.L1
R L1

R � C ?pxi : InterfaceIdq.L2
R

L2
R � C ! pxn :Natqtxn ¡ 0^ pload ¡ 10 � xn � 1quxload :� load� 1y.L3

R

L3
R � µtxxnypy : Natqty ¥ 0u.I ?tmorepq.txy � 1y, quitpqxload :� load� 1yu

Notice that the recursion invariant in L3
R would actually be, by definition, tD.C.credit.y ¥

0^ C.credit ¥ COSTu.

I.4 Process
Process PR accepts a request to engage in a session specified by global specification
GIC with the role of R. PR is implementing the registry. The other roles involved in the
session are user C, and instrument I. We omit the updates when empty, and the labels
when there is only one branch.

PR � apzrRs : GICq.P
1
R P1

R � zrC, Rs?pxidq;P
2
R

P2
R � zrR, Cs!ttload ¡ 10u ÞÑ x1ypx1qxload :� load� 1y.P2

R,1

tload ¤ 10u ÞÑ x2ypx2qxload :� load� 1y.P2
R,2

P2
R,n � pµXpyq.zrI, Rs?tmorepq.txy � 1y, quitpqxload :� load� 1y.0uqxxny

In P1
R, R receives the identifier xid from C, and tests if state variable load is greater

than the threshold of 10. If so, it sends the value 1; otherwise it sends 2. For brevity, we
have parametrised the definitions of P2

R and P3
R by n P t1, 2u, with n used to initialise

the later recursion parameter y. Each guarded-case leads to the appropriate P2
R,n, which

increments load. R then enters the recursion, following I through the command-loop.
R uses a branching inside the recursion: if more is received enters another recursion;
otherwise, load is decremented.

I.5 Validation of two threads
We show selected extracts from the validation of a principal executing two parallel
threads, each behaving as PR in I.4. We set Γ � a : GIC, namely the principal can
receive invitations to act in GIC, hence I is defined as load ¥ 0. We illustrate the val-
idation of rPR | PRsσp proceeding top-down and using the proof rules in Figure 4. The
first rule to be applied is tN1u:

σp, σa |ù load ¥ 0 load ¥ 0; true;Γ $ PR | PR �H
true;Γ $ rPR | PRsσp � rHsσa

The process can be validated under the assumption that it runs in a state which sat-
isfies the invariant load ¥ 0 (e.g., σpploadq � σaploadq � 3). Next we apply
tPARu which decomposes the derivation into the derivation of two identical threads:
load ¥ 0; true;Γ $ PR � H. We show only the derivation of one thread. The rule
would apply in the same way even if the two parallel processes engaged in different
types of conversations. Next we apply rule tMACCu:

GIC æR� rload : Natstload ¥ 0u.L1
R I; true;Γ $ P1

R � zrRs : L1
R

I; true;Γ $ arRspzqttrueu.P1
R �H

where by definition I entails the session invariant for R. The third premise is equivalent

47

to I; true;Γ $ zrC, Rs?pxid : InterfaceIdq.P2
R � zrRs : L1

R. After the application of
rules tBCHu we derive:

I ^ true^ load ¡ 10 � Ar1{xns I; true;Γ $ P2R,1 � zrRs : L3
R

I ^ true^ load ¤ 10 � Ar2{xns I; true;Γ $ P2R,2 � zrRs : L3
R

I; true;Γ $ zrA, Cs!ttload ¡ 10u ÞÑ x1ypxnqxEy.P2R,1, tload ¤ 10u ÞÑ x2ypxnqxEy.P2R,2u � zrRs : L2
R

where we recall A is defined as txn ¡ 0 ^ pR.load ¡ 10 � xn � 1qu and E is
xload :� load� 1y. Each branch in the premise can rely on the condition load ¡ 10
or pload ¡ 10q. In the case load ¡ 10 it is necessary that xn takes value 1; this is
checked in the first premise for the first branch.

48

