
A multiparty multi-session logic

Laura Bocchi1, Romain Demangeon2, and Nobuko Yoshida3

1University of Leicester, 2Queen Mary, University of London, 3Imperial College London

Abstract. Recent work on the enhancement of typing techniques for multiparty
sessions with logical annotations enables, not only the validation of structural
properties of the conversations and on the sorts of the messages, but also prop-
erties on the actual values exchanged. However, specification and verification of
mutual effects of multiple cross-session interactions are still an open problem.
We introduce a multiparty logical proof system with virtual states that enables
the tractable specification and validation of fine-grained inter-session correctness
properties of processes participating in several interleaved sessions. We present a
sound and relatively complete static verification method.

1 Introduction

In extensively distributed computing environments, application scenarios often centre
around structured conversations among multiple distributed participants. A fundamen-
tal challenge is to establish an effective specification and verification method to en-
sure safety in distributed software, where correctness depends on the state of individ-
ual participants and span over multiple conversations and applications. This require-
ment emerged from our ongoing collaboration with the Ocean Observation Initiative
OOI [24], an NSF program to develop a long-term computational infrastructure for en-
vironmental ocean observation. The principals within the OOI infrastructure perform
interactive activities involving distributed resources, e.g., remote instruments, off-shore
sensors, data. It is important to: (1) ensure that the principals carry out each activity
(session) in a way that conform a well-defined protocol, (2) express properties that span
the single activities (e.g., associate each principal with a credit for resource usage, and
ensure that this will always be non negative across sessions1).

A promising direction is the logical elaboration of types for programming lan-
guages [18]. Types offer a stable linkage between the fundamental dynamics of pro-
grams and their mathematical abstractions, serving as a highly effective basis for safety
assurance. In the context of process algebras, approaches like [6, 14, 20] allow tractable2

(e.g., with respect to model checking techniques) validation of properties such as ses-
sion fidelity, progress, and error freedom. Furthermore, they enable the specification of
global properties of multiparty interactions, yet enabling modular local verification of
each principal. The key idea is that conversations are built as the composition of units
of design called sessions which are specified from a global perspective (i.e., a global
session type). Each global type is then projected, making the responsibilities of each

1 This example is taken from the OOI Instrument Control case study and is illustrated in the Appendix of ??.
2 In [14, 20] verification is decidable and has linear complexity.

endpoint explicit. Validation guarantees that when each endpoint conforms to its pro-
jected specification(s), the resulting conversation conforms to the corresponding global
specification(s).

These approaches require to build applications starting from a set of global types
that have to be agreed upon by the principals in the network. This assumption, which
poses some limitations to the flexibility with which the single local processes are mod-
elled, is reasonable in many scenarios, provided that local processes can be built as the
composition of multiple, possibly interleaved, types of sessions. However, one limita-
tion of these approaches is that the properties that they verify are confined to the single
multiparty sessions and do not treat stateful specifications incorporating mutual effects
of multiple sessions run by a principal.

This paper presents a simple but powerful extension of multiparty session specifi-
cations, by enriching the assertion language studied in [6] with capability to refer to
virtual states local to each network principal. The resulting protocol specifications are
called multiparty stateful assertions (MPSAs), and model the skeletal structure of the
interactions of a session, the constraints on the exchanged messages and on the branches
to be followed, and the effects of each interaction on the virtual state. We use invariants
to express properties, on the state of each principal, that must hold even when several
sessions are executed in parallel. Principals in a network hence serve as units of ver-
ification: static validation ensures that principals behave as prescribed by MPSAs and
their invariants are satisfied.

To see the kind of properties we are interested in, consider the following fragment
of specification for the dialogue between a ticket allocation server (S) and its client
(C), where the server allocates numbered tickets of increasing value to each client in
consecutive, separate sessions:

SÑ C : py :intqty � S.xuxS.x++y

The protocol between the server and each client is the single message-passing action
where S sends C a message of type int. The description of this simple distributed
application implies behavioural constraints of greater depth than the basic communi-
cation actions. The (sender-side) predicate and effect for the interaction step, ty �
S.xuxS.x++y, asserts that the message y sent to each client must equal the current value
of S.x, a state variable x allocated to the principal serving as S; and that the local effect
of this message send is to increment S.x. In this way, S is specified to send incremental
values across consecutive sessions.

The behaviour described above cannot be encoded by only using the primitives
in [6]. In fact, in order to ensure inter-session properties one must discipline concurrent
state updates with some mechanism of lock/unlock or atomic access/update, but lock-
/unlock and atomic access/update can only be described as properties that span over
multiple sessions.

Contribution We present a sound and relatively complete validation method for
MPSAs, based on statically-verifiable proof rules. The most distinctive feature with re-
spect to [6] is the possibility of expressing properties that span several sessions. The
decidability/complexity of verification depends on the decidability/complexity of pred-
icate evaluation in the logic that is chosen to express constraints and invariants (Proposi-
tion 10). We prove that our analysis is sound (Theorem 13) and complete (Theorem 14)

2

w.r.t. the semantical satisfaction relation induced by the two labelled transition systems
for processes and specifications.

Synopsis In § 2 we present MPSAs, that is the language for (stateful) protocol spec-
ifications, and their consistency criteria (i.e., well-assertedness). In § 3 we present the
calculus for networks of principals, each running a process. In § 4 we give the validation
rules of networks against MPSAs; their properties are presented in § 5. Related work is
discussed in § 6. Use cases from [24], auxiliary definitions, and full proofs can be found
in the online report [5].

2 Multiparty assertions with virtual states

In the proposed framework, applications are built as the composition of units of de-
sign called sessions. Each type of session is specified as a MPSA, that is an abstract
description of the interactions of the roles of a multiparty session.

The syntax of MPSAs is given in Figure 1. Global assertions (G,G1, . . .) describe a
multiparty session from a global perspective; and local assertions (L,L1, . . .) describe
it from the perspective of one role. U are types of the message contents, which can be
sorts S or local assertions xLy (i.e., for delegation).

A ::� true | false | e1 � e2 | A | A1 ^A2 | Dx.A, U ::� S | xLy, S ::� bool | int | ..

G ::� pÑq : tlipxi : UiqtAiuxEiy.GiuiPI (G-int)
| G1 | G2 (G-par)
| µtxy : A1ypx : SqtAu.G (G-def)
| txy : A1y (G-call)
| end (G-end)

L::� p!tlipxi : UiqtAiuxEiy.LiuiPI (L-sel)
| p?tlipxi : UiqtAiuxEiy.LiuiPI (L-bra)
| µtxy : A1ypx : SqtAu.L (L-def)
| txy : A1y (L-call)
| end (L-end)

Fig. 1. Global and local MPSAs

For expressing constraints we use predicates (A,A1, . . .) with the syntax illustrated
in Figure 1, although we may use other predicates than equality in examples. Predicates
are defined on interaction variables, modelling the content of a message exchanged by
the roles in the session, and on state variables, which are variables of the virtual state
local to one role.

Global Assertions Interaction (G-int), pÑq : tlipxi : UiqtAiuxEiy.GiuiPI , models a
message exchange where role p sends q one of the branch labels li and an interaction
variable xi, with xi binding its occurrences in Ai, Ei, and Gi. Ai is the predicate which
needs to hold for p to select li, and which may constrain the values to be sent for xi.
Note that Ai is at the same time an assumption for the receiver q and a constraint for
the sender p (i.e., if Ai is violated then the blame is on p). Ei is the update prescribed
on the virtual states of p and q, modelling the persistent effects (i.e., with respect to the
lifetime of the single session) of that interaction. An update is a vector of assignments
of the form x :� e, where x is updated by the result of evaluating e in the current state.

3

We assume E does not contain two assignments to the same state variable, and is an
atomic action. Assertion (G-par) is for parallel composition. The recursive definition
(G-def) is the guarded recursion definition and defines a recursion parameter x initially
set equal to a value satisfying the initialisation predicate A1, with A being an invariant
predicate. Global assertions are unfolded implicitly, following an equi-recursive view
on types. (G-call) is the recursive instantiation and (G-end) is the termination.

Hereafter we omit true predicates, empty vectors of variables/updates, and labels of
single branches.

Example 1. Consider a session with two roles, C and S. C makes an offer x to S for
buying a ticket; S either accepts or refuses the offer. In the former case C spends x credits
and receives a ticket, and S earns x credits. Tickets are modelled as serial numbers; they
must all be increasing numbers not exceeding 1000. GT below specifies this scenario:

GT � CÑ S : px : intqtx ¥ 0^ C.credit ¥ xuxC.credit :� C.credit� xy.
SÑ C : tokpy : intqtS.count 1000^ y � S.countuxEoky.end,

koxC.credit :� C.credit� xy.end u
Eok � S.credit :� S.credit� x, S.count :� S.count� 1

C has state variable credit, and S has state variables credit and count (a counter
for serial numbers). The first interaction requires that the offer x does not exceed C’s
credit, and decrements the credit by x. S selects one of the two branches by either label
ok or ko. The former branch can be selected only if S.count 1000.

We denote with varpGq the set of (interaction/state) variables and recursion param-
eters in G, and with varpAq the free variables of A (same for e). The set of variables
that p P G knows, written varpGq æ p, consists of: (i) the state variables of the form
p.x for some x, (ii) the interaction variables sent or received by p in G, and (iii) the
parameters of the recursive definitions µtxy : A1ypx : SqtAu.G1 in G such that p knows
all the free variables in initialisation A1, and all free variables in A2 for all txy : A2y in
G1 (we assume each recursion parameter known by exactly two participants).

Well-assertedness Our theory relies on two consistency principles: history-sensitivity
and temporal-satisfiability. These principles were first introduced in [6]; we discuss
them here as their adaptation to our stateful scenario requires non-trivial extensions.

By history-sensitivity each role must have enough information to fulfil the specified
obligations, namely it requires that: (1) each role p knows all free variables in the pred-
icates that p must guarantee, and (2) each role has enough information to perform the
prescribed updates, that is (i) when to make an update, and (ii) which values to assign.

Definition 2 (History-sensitivity). G is history-sensitive if for each interaction, of the
form pÑ q : tlipxi : UiqtAiuxEiy.GiuiPI , occurring in G, for all i P I:

1. varpGq æ p � varpAiq (i.e., p knows all variables in varpAiq),
2. for all r.x :� e in Ei: (i) either r � p or r � q, and (ii) varpGq æ r � varpeq.

A checker for history-sensitivity can be found in Appendix D.1. Consider the assertions:

G � pÑ q : px :intq. qÑ r : py :intq. rÑ s : pz :intqtz ¡ xu
G1 � pÑ q : py :intq. qÑ r : tokpw :intqxr.x1 :� y, p.x2 :� yy, kou

4

G violates (1) because r has to send a value for z that is greater than x without knowing
x. G1 violates both clauses of (2): (i) because p must update x2 not knowing whether
and when the update should be done, and (ii) because in the second interaction r has to
update x1 with y without knowing y.3

By temporal-satisfiability, for each participant p P G, whenever it is p’s turn to
send a value, p can find at least one selection branch and one value which satisfies
the specified constraint. Temporal satisfiability is defined (and checked) using a func-
tion tspG, Aq which returns true only if G always allows a path of interactions going
through G in any possible state. Considering all possible states makes the specifica-
tion robust with respect to arbitrary interactions the same principal may be engaged in
through other sessions. Predicate A is incrementally built as a conjunction of the pred-
icates that appear in G in all the recursive invocations and models the current set of
assumptions.

Definition 3 (Temporal-satisfiability). Let G be a global specification, and A a predi-
cate. tspG, Aq is given by:

1. tsppÑq : tlipxi : UiqtAiuxEiy.GiuiPI , Aq �

#�
iPI tspGi, A^Aiq if A �

�
iPI Dxi.Ai

false otherwise

2. tspG1 | G2, Aq � tspG1, Aq ^ tspG2, Aq

3. tspµtxeypx :SqtA1u.G1, Aq �

#
tspG1, A^A1q if A � pA1re{xsq

false otherwise

4. tsptA1pxqxey, Aq �

#
true if A � A1re{xs

false otherwise

5. tspend, Aq � true

G satisfies temporal satisfiability if tspG, trueq � true.4

In (1) the first condition for “if” demands that there exists at least one branch for which
it is possible to find a value for xi that satisfies the current predicate Ai. The function
is called recursively extending the set of preconditions A with with the closure Ai of
predicate Ai (see Remark 4 below). (2) demands both parts of the composition are
satisfiable. (3) and (4) check recursion, the latter relying on the annotation of recursive
calls with the invariants of the corresponding recursive definitions.

Remark 4. The closure of a predicate A in G, written A, is the predicate obtained
by closing with existential quantifiers the free state variables of G in A. Whereas the
values of interaction variables in a session do not change after they are introduced5,
state variables can be updated a number of times in a number of different ways. Hence

3 [7] proposes algorithms to amend assertions that violate history-sensitivity and temporal-satisfiability as
in [6]. No such algorithms have yet been investigated for the definitions introduced in this paper. Although
relevant, the issue of amending inconsistent assertions is out of the scope of the current work.

4 This property can be relaxed by starting from a stronger precondition A as long as A is then implied by
the principal invariants (which are defined in § 4).

5 Actually, interaction variables in a recursion body are reused at each iteration. However, their values are
due to follow the same constraints at each iteration.

5

a predicate on state variables may be true at a certain time, and become false at a later
time. Hereafter we use A when we want to to ‘keep’ only the persistent assumptions
(those on interaction variables) of A.

The following global specification violates temporal satisfiability

pÑ q : px : intqtx ¡ 0u.qÑ p : py : intqty � x^ y ¡ 100u

In fact, in the first interaction p is allowed to choose any positive value for x, for instance
10. In this case, q cannot find any value for y such that y � 10^ y ¡ 100.

Proposition 5. Given a global assertion G, letm be the size of the syntactic tree of G, n
be the maximum number of variables occurring in each predicate in G, and evalpAq be
the complexity of predicate evaluation (if decidable). History-sensitivity can be checked
in Opm � nq. Temporal-satisfiability is decidable if predicate evaluation is decidable
and, if decidable, it can be checked in Opmq � evalpAq.

Hereafter, we assume assertions to be well-asserted.

Local Assertions Each local assertion L refers to a specific role. Syntax is given in
the right part of Figure 1. Selection (L-sel) p!tlipxi : UiqtAiuxEiy.LiuiPI models an
interaction where the role sends p a branch label li and a message xi. Ai and Ei are the
predicate and update respectively. (L-bra) is the dual branching. The others are as in
the global assertions, except that a local assertion cannot be multi-threaded.

Given a global assertion G, we can automatically derive the local assertions for
each role p P G by projection. The projection rules rely on a few auxiliary definitions:
projection of a predicate, and projection of an update. The projection of a predicate A
on p in G, written A æ p, is defined as Dx̃.A where x̃ � varpAqzpvarpGq æ pq (i.e., the
existential closure of the variables that p does not know). The projection of an updateE
on p in G, written E æ p is the update E1 containing only the assignments pj .xi :� ej
such that pj � p.

The projection rules for global assertions are as in [6], except that updates are now
considered; their detailed presentation is not necessary to understand the results in this
paper, hence we only give an illustration through Example 6. Henceforth, in G æ p we
shall omit the p. prefix when referring to p’s state variables.

Example 6. LC (resp. LS) is the projection of GT from Example 1 on C (resp. S).

LC � S ! px : intqtx ¥ 0^ credit ¥ xuxcredit :� credit� xy.L1
C

L1
C � S ?tokpy : intqtDS.count.S.count 1000^ y � S.countu.end,

koxcredit :� credit� xy.endu

LS � C ?px : intqtDC.credit.x ¥ 0^ C.credit ¥ xu.L1
S

L1
S � C ! tokpy : intqtcount 1000^ y � countu

xcredit :� credit� x, count :� count� 1y.end,
ko.endu

The projection of the first interaction of GT on sender C (resp. receiver S) is a send/select
(resp. a receive/branch). The predicates/updates of the projections on a role are the pro-
jections of the predicates/updates on that role.6 The continuation is projected similarly,

6 Note that by well-assertedness (clause 1) the projection of a predicate on the sender of an interaction is
always the predicate itself.

6

proceeding point-wise for each branch. Sometimes the projected predicate includes in-
formation about constraints of interactions between third parties (without however re-
vealing the actual values exchanged by the third parties), e.g., DS.count.S.count
1000^ y � S.count provides C with precondition y 1000.

Well-assertedness is easily extended to local assertions.

3 Multiparty networks with local states

We consider networks of interactional entities called principals linked by a common
global transport, modelled as queues. Each principal runs a located process, that is a
process with multiparty session primitives [2, 20] (to enable rigorous representation of
conversation structures) and with a local state.

Syntax The syntax of networks and processes is given in Figure 2 and is a refined
version of the multiparty session π-calculus from [2, 11] with local states. A local state
σ maps a signature rx̃ : S̃s of typed pairwise disjoint state variables x̃ to their sorts. We
use the injective function idpσq to map each local state to an identifier.

A network can be an empty network H, a located process rP sσ, a parallel compo-
sition of networks N1 | N2, a new session name pνsqN which binds s in N , or a queue
s : h where h are messages in transit through session channel s. A network is initial
if it has no new session names and queues, otherwise it is runtime. We denote the free
session channels in N with fnpNq, similarly for P with fnprP sσq � fnpP q.

(network) N ::� H | rP sσ | N1|N2 | pνsqN | s : h

(state/queue/value) σ ::� rx̃ : S̃s ÞÑ S̃ h ::� H | pp, q, lxvyq � h v ::� n | srps

(process) P ::� arnspyq.P (P-req)
| arispyq.P (P-acc)
| krp, qs!tei ÞÑ lixe

1
iypxiqxEiy;PiuiPI (P-sel)

| krp, qs?tlipxiqxEiy.PiuiPI (P-bra)

| P |Q (P-par)
| pµXpxq.P qxey (P-def)
|Xxey (P-call)
| 0 (P-idle)

(channel/update/exp) k ::� y | s E ::� H | E; x :� e e ::� v | e op e

x, y, . . . interaction variables x, y, . . . state variables X,Y, . . . process variables
a, b, . . . shared name s, s1, . . . session name n, n1, . . . constants

Fig. 2. Syntax of networks and processes

Session request (P-req) multicasts a request to each session accept process (P-acc),
e.g., arispyq.P with i P t2, .., nu, by synchronisation through a shared name a and con-
tinuing as P . (P-sel) is Dijkstra’s guarded command [17] and (P-bra) is the branching
process; they represent communications through an established session k. (P-sel) acts
as role p in session k and sends role q one of the labels li. The choice of the label
is determined by boolean expressions ei, assuming _iPIei � true and i �� j implies

7

ei ^ ej � false. Each label li is sent with the corresponding expression e1i which spec-
ifies the value for xi, assuming e1i and xi have the same type.7 (P-bra) plays role q

in session k and is ready to receive from p one of the labels li and a value for the
corresponding xi, then behaves as Pi after instantiating xi with the received value. In
guarded command (resp. branching), the local state of the sender (resp. receiver) is up-
dated according to update Ei; in both processes each xi binds its occurrences in Pi and
Ei.

Example 7. Processes PS and PC implement LS and LC, respectively, from Example 6.

PS � ar2spzq.zrC, Ss?pxq;P 1
S Eok � count :� count� 1, credit :� credit� x

P 1
S � zrS, Cs!ttcount 1000^ x ¥ 10u ÞÑ okxcountypyqxEoky.0,

tcount ¥ 1000_ x 10u ÞÑ ko.0u

PC � ar2spwq.wrC, Ss!x8ypxqxcredit :� credit� xy;P 1
C

P 1
C � wrS, Cs?tokpyq.0, koxcredit :� credit� xy.0u

We let C � 1 and S � 2. PS accepts a request to participate to a session specified by
GT (assuming a has type GT) on channel z as role 2. In the established session z, the
principal receives an offer x from the co-party. It follows a guarded command with two
cases; if count has not reached its maximum value for serial numbers and the offer is
greater than 10 then the first branch (ok) is taken and count is sent as y, otherwise the
second branch (ko) is taken. Dually, PC sends a request to participate to one instance of
session GT as the role 1. A principal may repeatedly execute a process using recursion,
or run concurrent instances of the same type of session (e.g., rPS | PSsσ) or different
types of session (e.g., rPS | PCsσ) as discussed in Example 9.

Operational semantics The LTS is generated from the rules in Figure 3 using the fol-
lowing labels: ` ::� arnsxsy | arisxsy | srp, qs!lxvy | srp, qs?lxvy | τ . We denote with
σ afterE the state σ after the update E. We write σ |ù e Ó v for a closed expression
e when it evaluates to v in σ.
The first and second rule are for requesting and accepting a session initialisation. The
guarded command checks if condition ej is satisfied in the current state σ, and sends a
message consisting of one of the labels lj and an expression e1j (which is evaluated to
a value v in state σ), updates σ according to Ej , and behaves as P rv{xjs. Branching
is symmetric. The synchronous session initialisation creates a new queue. We omit the
standard context/structural equivalence rules.

4 Proof system for multiparty session logic with virtual states

In this section we outline how to obtain the syntactic validation of networks, written
Γ $ N � Σ, assuming processes typable, following [6]. The proof rules rely on the
following environments:

Γ ::� H | Γ, a : G | Γ,X : px : SqL1 @ p1, . . . ,Ln@ pn, ∆ ::� H | ∆, srps : L,
Σ ::� H | Σ, r∆sσ

7 Guarded command can be implemented using selection, if-then-else and lock-unlock. Although our theory
is applicable to these primitives, we choose to make these low-level steps atomic for minimising the syntax.

8

rarnspyq.P sσ
arnsxsy
ÝÝÝÝÝÑ rP rs{yssσ rarispyq.P sσ

arisxsy
ÝÝÝÝÝÑ rP rs{yssσ ps R fnpP qq

rsrp, qs!tei ÞÑ lixe
1
iypxiqxEiy;PiuiPI sσ

srp,qs!ljxvy
ÝÝÝÝÝÝÝÝÑ rP rv{xjssσ

1

pj P I σ |ù e1j Ó v σ |ù ej σ1 � σ afterEjrv{xjsq

rsrp, qs?tlipxiqxEiy.PiuiPI sσ
srp,qs?ljxvy
ÝÝÝÝÝÝÝÝÑ rPjrv{xjssσ

1 pj P I σ1 � σ afterEjrv{xjsq

rP1sσ1
arnsxsy
ÝÝÝÝÝÑ rP 1

1sσ1 rPisσi
arisxsy
ÝÝÝÝÝÑrP 1

i sσi p2 ¤ i ¤ nq

rP1sσ1 | � � � | rPnsσn
τ
ÝÑ pνsqps :H | rP 1

1sσ1 | � � � | rP
1
nsσnq

rP sσ
srp,qs!ljxvy
ÝÝÝÝÝÝÝÝÑ rP 1sσ1

rP sσ | s : h
τ
ÝÑ rP 1sσ1 | s : h � pp, q, ljxvyq

rP sσ
srp,qs?ljxvy
ÝÝÝÝÝÝÝÝÑ rP 1sσ1

rP sσ | s : pp, q, ljxvyq � h
τ
ÝÑ rP 1sσ1 | s : h

Fig. 3. Labelled transition for networks

Γ maps shared names to global assertions and process variables to their parameters.
If Γ $ a : G then a session specified by G can be initiated by processes (via session
request or accept) using a. By the standard kinding rules, we check if the same free
variable appears in different global types in Γ , then they have the same sort. The map-
ping of process variables is for the validation of recursive assertions. ∆ maps session
channels/roles to local assertions. If ∆ $ srps : L then a session is active (i.e., it has
been initialized) on channel s for role p; L specifies the (part of the) session that has
still to be executed. Σ is the specification of a network; each r∆sσ is the specification
of a located process with the respective virtual state.

We also use an assertion environment C, which is incrementally built by conjunction
of the predicates and boolean expressions (i.e., the conditions of a guarded commands)
occurring in the processes being validated, and models their assumptions. Hereafter,
given a predicate A and an update E, we define A afterE to be the predicate obtained
by substituting, for each assignment x :� e in E, each occurrence of x in A with e.

Modelling cross-session properties: the principal invariant Given a located process
rP sσ in a network, we want to allow the architect to model stable properties (i.e., in-
variant) over the variables in σ on across multiple sessions. We call these properties
principal invariant of rP sσ, that is a predicate (following the syntax for A in Figure 1)
over the state variables of σ. Hereafter we assume there exists a function Ipσq that given
a local state σ returns the principal invariant for σ. Principal invariants depend from the
application domain, and the architect should define them prior to the verification.

Example 8. Consider a located process rPC | PSsσp with PC and PS from Example 7.
Assume we want to require that the credit is always non-negative (i.e., the principal
does not contracts debts) and that the counter does not exceed the maximum number of
tickets which is 1000. We can enforce these constraints by setting the principal invariant
Ipσpq to be credit ¥ 0^ 0 ¤ count ¤ 1000.

Proof rules Figure 4 illustrates the proof rules for initial networks and processes.

9

idpσpq � idpσaq σp, σa |ù Ipσpq Ipσpq ^ C;Γ $ P �∆
C;Γ $ rP sσp � r∆sσa

tN1u

pΓ 1,∆1, σ1q � pΓ,∆, σq C � C1 C1;Γ 1 $ N � r∆1sσ1

C;Γ $ N � r∆sσ
tN2u

�
C;Γ $ H�H

C;Γ $ N �Σ C;Γ $ N 1 �Σ1

C;Γ $ N | N 1 �Σ,Σ1 tN3/N4u

C;Γ, a : G $ P � yris : G æ i,∆
C;Γ, a : G $ arispyq.P �∆

tMACCu

@i P I, C ^Ai;Γ $ Pi �∆, krqs : Li C ^Ai � pC afterEiq

C;Γ $ krp, qs?tlipxiqxEiy.PiuiPI � ∆, krqs : p?tlipxi : UiqtAiuxEiy.LiuiPI
tBCHu

@i P IDj P J, li � lj C ^ ei;Γ $ Pire
1
i{xis �∆, krps : Ljre1i{xjs

C ^ ei � pAj ^ pEi � Ejq ^ pC afterEjqqre
1
i{xis

C;Γ $ krp, qs!tei ÞÑ lixe
1
iypxiqxEiy;PiuiPI �∆, krps : q!tljpxj : UjqtAjuxEjy.LjujPJ

tSELu

C;Γ $ P1 �∆1 C;Γ $ P2 �∆2

C;Γ $ P1 | P2 �∆1,∆2

∆ end only
C;Γ $ 0�∆ tPAR/ENDu

L1re{xs, . . . ,Lnre{xs well-asserted
C;Γ,X : pxqL1 @ p1, . . . ,Ln@ pn $ Xxey � srp1s : L1re{xs, . . . , srpns : Lnre{xs

tVARu

C;Γ,X : pxqL1 @ p1, . . . ,Ln@ pn $ P � srp1s : L1, . . . , srpns : Ln
C;Γ $ pµXpxq.P qxey � srp1s : L1re{xs, . . . , srpns : Lnre{xs

tRECu

Fig. 4. Proof rules for networks (top) and proof rules for processes (bottom)

tN1u decomposes the validation of a network into the validations of each located
process against its corresponding specification ∆. The correspondence between prin-
cipal and specification in checked by the clause idpσpq � idpσaq. Furthermore, local
and virtual states must satisfy the principal invariant Ipσpq. P is then validated in the
assertion environment extended (i.e., in conjunction with) the principal invariant.

tN2u is the rule for refinement. This rule is useful to validate processes even if they do
not match exactly a given assertion as long as they implement a behaviour that is ‘more
refined’ than the one prescribed. Refinement is also necessary to prove completeness
of these rules (Theorem 14). We use the following refinement relation between spec-
ifications: pΓ 1, ∆1, σ1q � pΓ,∆, σq if pΓ 1, ∆1, σ1q specifies a more refined behaviour
than pΓ,∆, σq, in that it poses more restrictions on the output actions and poses less
restrictions on the input actions. tN2u allows to refine the assertion environment C by
considering, in the premise, a weaker set of assumptions C1.

tN3u is for empty networks and tN4u is for decomposing the validation of networks.
tMACCu validates a session accept on a shared channel a as role i provided that a is

in the domain of Γ , and that the continuation P is validated against the specification ∆
extended with the new session yris. In the (now active) session yris, P must behave as
Γ paq projected on role i. The rule for session request is similar hence omitted.

tBCHu validates the branching process. ∆ must include an active session krqs on
session channel k for the receiver role q. In the premise, the continuation for each
branch i is required to be still valid in the assertion environment extended with Ai. In

10

the second clause of the premise, for each branch i the update Ei must not invalidate
C; this ensures that the update does not invalidate the principal invariant. The invariant
is not mentioned explicitly (to keep the proof rules concise), but it is implied by C.
In fact, C is the conjunction of (1) the principal invariant (by tN1u), (2) possibly some
interaction predicates (by tBCHu), and (3) possibly some boolean expressions (by tSELu).
Since predicates (2), (3) and Ai do not contain free state variables8, then Ei can only
invalidate the principal invariant (1); on the other hand (2), (3) and Ai are necessary
premises (i.e., C^Ai before the implication) as they may constrain interaction variables
used by Ei.

In tSELu each branch i of the process must correspond to a branch j of the specifica-
tion (li � lj). The continuation must be validated in assertion environment C extended
with the closure ei of the condition of the branch ei. The closure of boolean expression
ei is defined as the closure for predicates (see Remark 4). The clause at the bottom of
the premise requires that, under the assumption C^ei: (1) expression e1i satisfiesAj , (2)
assertion and process have the same effects/updates on the states, (3) update Ej does
not invalidate the principal invariant. 9

tPARu is similar to tN2u but for parallel processes. tENDu validates the idle process
provided that each active session in the specification ∆ is of the form yrps : end.

tVARu validates recursive call given that the active sessions in ∆ correspond to the
roles and local assertions associated to process variable X in Γ and that each Li is still
well-asserted when the recursion parameter is substituted with e. tRECu is the standard
rule for recursion definition. The validation of recursive processes is handled in a sim-
ilar way to [6]; it uses a refinement rule for processes, similar to tN2u and omitted for
simplicity, and the fact that assertions are refined by their unfolding. See [5] for more
details.

Example 9. Consider the located process rPS | PCsσp from Example 8 that executes
two parallel threads: one selling a ticket and the other one buying another kind of ticket
from another principal (the other principal is not modelled here). We show the validation
of true;Γ $ rPS | PCsσp � rHsσa proceeding top-down using the rules in Figure 4.

The global specification rHsσa is initially empty since there are no active sessions.
The active sessions will be added upon session request/accept by PS and PC. We assume
σp � σa � tcount : int, credit : intu ÞÑ t10, 500u and initially C � true.

We first apply tN1u with Ipσpq � credit ¥ 0 ^ 0 ¤ count ¤ 1000 from Ex-
ample 8. For readability we will write I instead of Ipσpq in this example. Note that I
is satisfied by the local and virtual state. Next we apply rule tPARu that decomposes the
derivation of two threads for PS and PC. We omit the illustration of the latter thread.

Below we illustrate the application of rule tMACCu and tBCHu to the former thread:

I ^ tDC.credit.C.credit ¥ xu;Γ $ P 1
S � zrSs : L1

S

I ^ tDC.credit.C.credit ¥ xu � pI afterHq
tBCHu

I;Γ $ zrC, Ss?pxq.P 1
S � zrSs : C?px : NatqtDC.credit.C.credit ¥ xu.L1

S
tMACCu

I;Γ $ PS �H

8 By history-sensitivity Ai does not include any free state variable.
9 tBCHu/tSELu can be extended to delegation adding the following clause for Ui � xLy: (tBCHu) C ^
Ai;Γ $ Pi �∆, krqs : Li, xi : L, and (tSELu) C ^ ei;Γ $ P re1i{xis �∆1, krps : Ljre1i{xjs with
∆ � ∆2, ei : L1

i and ∆1 � ∆2.

11

For readability we will simplify I ^ tDC.credit.C.credit ¥ xu with the equivalent
predicate I. Next, by tSELu, setting e � count 1000^ x ¥ 10, and Eok � count :�
count� 1, credit :� credit� x:

I ^ e � pcount 1000^ y � count^ Eok � Eok ^ I afterEokqrcount{ys I;Γ $ 0� zrSs : end
I ^ e � true I;Γ $ 0� zrSs : end

I;Γ $ zrS, Cs!te ÞÑ okxcountypyqxEoky.0, e ÞÑ ko.0u
$ zrSs : C!tokpy : Natqtcount 1000^ y � countuxEoky.end, ko.endu

where each line in the premise refers to a branch (i.e., ok and ko). The most delicate
clause is I^e � pcount 1000^y � count^Eok � Eok^I afterEokqrcount{ys
which requires: (1) the interaction predicate to be satisfied under the current assump-
tions, and in fact pcount 1000 ^ y � countqrcount{ys is implied by e, (2) the
updates to be consistent, and in fact trivially Eok � Eok, and (3) the update to not
invalidate the invariant, and in fact credit � x ¥ 0 ^ 0 ¤ count � 1 ¤ 1000 is true
under the assumptions credit ¥ 0, x ¥ 10 and 0 ¤ count. Finally we apply tENDu to
the second premise of each branch.

The effectiveness of the proof rules depends on the logic chosen for the predi-
cates, which depends on the application scenario. An example which fits these crite-
ria is the Presburger arithmetic, which is often sufficiently expressive: practical uses
of multiplication are encodable [19], and formulae with quantifiers may be calculated
efficiently [23, 25].

Proposition 10. The proof of C;Γ $ N � Σ is decidable if predicate evaluation is
decidable.

5 Soundness and completeness of the validation rules

We define a labelled transition relation for specifications xΓ,Σy using the same labels
as for networks. The main difference with the rules for networks is that predicates must
be satisfied for the transition to occur. We illustrate below the most remarkable rules
(the other rules are in Figure 9 in Appendix). The rule for session request:

xpa : G, Γ q; r∆sσy arnsxsy
ÝÝÝÝÝÑ xpa : G, Γ q; r∆, sr1s : G æ 1sσy

extends ∆ with the new session, given that a : G in Γ and the current state satisfies
assertion invariant A. The rule for session accept is dual. The rule for selection/send:

j P I σ |ù Ajrn{xjs σ1 � σ afterEjrn{xjs

xΓ ; r∆, srps : q!tlipxi : UiqtAiuxEiy.LiuiPI sσy
srp,qs!ljxny
ÝÝÝÝÝÝÝÑ xΓ ; r∆, srps : Ljrn{xjssσ1y

moves to the continuation Lj of the selected branch with the updated state σ1, given
that the sent value n satisfies predicate Aj for branch j in the current state σ.

Semantic conformance is defined using conditional simulation [6] to relate net-
works N to specifications xΓ ;Σy.

Definition 11 (Conditional Simulation). A binary relation R over N and xΓ ;Σy is a
conditional simulation if, for each pN, xΓ ;Σyq P R, if N `

ÝÑ N 1 with ` being:
(1) a branching then xΓ ;Σy is capable to move at the subject of `, and if xΓ ;Σy `

ÝÑ

12

xΓ ;Σ1y then pN 1, xΓ ;Σ1yq P R;
(2) a select, session request/accept, τ then xΓ ;Σy `

ÝÑ xΓ ;Σ1y and pN 1, xΓ ;Σ1yq P R.
We write N À xΓ ;Σy if there exists a conditional simulation R s.t. pN, xΓ ;Σyq P R.

Conditional simulation is like standard simulation for all types of actions except for
branching, for which it requires N to be simulated only for legal values/labels (i.e., a
process must conform to a given specification as long as its environment does so).

Definition 12 (Satisfaction). N satisfies Σ in Γ and C, written C;Γ |ù N � Σ, if for
all closing substitutions σ̃ over N and Σ respecting Γ and C, Nσ̃ À xΓ ;Σσ̃y.

We write Γ |ù N � Σ when C is true (e.g., for initial networks). Soundness and
completeness for initial networks are stated below.

Theorem 13 (Soundness of Proof Rules). Let N be an initial network. Then Γ $
N �Σ implies Γ |ù N �Σ.

Theorem 14 (Completeness of Proof Rules). Let N �
±
iPI rPisσpi be an initial

network and Σ �
±
iPI r∆isσai be a specification. Assume that for all i P I: (1)

idpσpiq � idpσaiq, (2) dompσpiq � dompσaiq, and (3) Ipσpiq equivalent to true. If
Γ |ù N �Σ then Γ $ N �Σ.

(1-2) are for symmetry between N and Σ. (3) is necessary since the principals in N
can make updates that differ from those made by the corresponding specifications inΣ;
this may not compromise the observable behaviour of N with respect to Σ, but N may
invalidate some principal invariant which would make the thesis false.

6 Related work and further topics

The preceding integrations of session types with logical constraints include [14], based
on concurrent constraints ensuring bi-linear usage of channels, and [6], based on logical
annotations on interactions, do not treat stateful properties. The combination of types
and logical assertions referring to local state newly proposed in this paper enable fine-
grained specifications and validation, which are not possible in [6, 14].

The expressiveness of the session type-based analyses has been greatly extended
these past few years. On one side, the conversation calculus [9], contracts [12] and dy-
namic multirole session types [16] have opened the way to the modelling of protocols
complex in their shapes, by describing more accurately how sessions can be joined or
left, who is allowed participate. On the other side, works such as [6, 10] improved the
way interactions inside a session are described: in [6], an assertion framework ensures
logical properties on the communicated values, in [10], a security analysis guarantees
that the coherence of the information flow is preserved. Our work improves the session
type analyses in both directions: by proposing a division of the process being tested
into separate principals that can join one or several sessions independently when condi-
tions are matched and manage their own state, and by giving a description, inside each
session, of the internal state of each participant and the property it should satisfy. A re-
cent work [13] examines conditions to ensure that a stateful specification is robust w.r.t.

13

asynchronous communications. Our work provides a complete proof system ensuring
soundness for processes, whereas [13] only addresses properties of types.

The refinement types for channels (e.g. [4]) specify value dependency with logical
constraints. For example, one might write ?px : int, !ty : int | y ¡ xuq (using the nota-
tion from [18]). It specifies a dependency at a single point (channel). Our theory, based
on multiparty sessions, can verify processes against a contract globally agreed by mul-
tiple distributed peers. [3] uses refinement types for channels to verify authentication in
multiparty session protocols, but does not consider multi-session properties.

The work [8] investigates a relationship between a dual intuitionistic linear logic and
binary session types, and shows that the former defines a proof system for a session cal-
culus which can automatically characterise and guarantee a session fidelity and global
progress. None of the above works treat either virtual states or logical specifications for
interleaved multiparty sessions.

The use of Rely-Guarantee conditions or other related methods [22] instead of a sin-
gle invariant does not increase the expressiveness of our system, but could ease proofs
for parallel composition.

A future direction is to link between our static analysis and a dynamic monitor-
based approach. Using our local specification as a monitor at each end-point, incoming
and outgoing messages can be verified and filtered. We are currently working on this
topic with [24] based on the logic developed in this paper.

References

1. M. Berger, K. Honda, and N. Yoshida. Completeness and logical full abstraction in modal
logics for typed mobile processes. In ICALP (2), volume 5126 of LNCS, pages 99–111.
Springer, 2008.

2. L. Bettini et al. Global progress in dynamically interleaved multiparty sessions. In CONCUR,
volume 5201 of LNCS, pages 418–433. Springer, 2008.

3. K. Bhargavan, R. Corin, P.-M. Deniélou, C. Fournet, and J. Leifer. Cryptographic protocol
synthesis and verification for multiparty sessions. In CSF, pages 124–140, 2009.

4. K. Bhargavan, C. Fournet, and A. D. Gordon. Modular verification of security protocol code
by typing. In POPL, pages 445–456, 2010.

5. L. Bocchi, R. Demangeon, and N. Yoshida. A multiparty multi-session logic (extended
report). http://www.cs.le.ac.uk/people/lb148/statefulassertions.html.

6. L. Bocchi, K. Honda, E. Tuosto, and N. Yoshida. A theory of design-by-contract for dis-
tributed multiparty interactions. In CONCUR, volume 6269 of LNCS, pages 162–176, 2010.

7. L. Bocchi, J. Lange, and E. Tuosto. Three algorithms and a methodology for amending
contracts for choreographies. Scientific Annals of Computer Science, 22(1):61–104, 2012.

8. L. Caires and F. Pfenning. Session types as intuitionistic linear propositions. In CON-
CUR’10, volume 6269 of LNCS, pages 222–236. Springer-Verlag, 2010.

9. L. Caires and H. T. Vieira. Conversation types. In ESOP, volume 5502 of LNCS, pages
285–300. Springer, 2009.

10. S. Capecchi, I. Castellani, and M. Dezani-Ciancaglini. Information flow safety in multiparty
sessions. In EXPRESS, volume 64 of EPTCS, pages 16–30, 2011.

11. M. Carbone, K. Honda, and N. Yoshida. Structured interactional exceptions in session types.
In CONCUR, volume 5201 of LNCS, pages 402–417. Springer, 2008.

12. G. Castagna and L. Padovani. Contracts for mobile processes. In CONCUR 2009, number
5710 in LNCS, pages 211–228, 2009.

14

13. T.-C. Chen and K. Honda. Specifying stateful asynchronous properties for distributed pro-
grams. (to appear in CONCUR), 2012.

14. M. Coppo and M. Dezani-Ciancaglini. Structured communications with concurrent con-
straints. In TGC, pages 104–125, 2008.

15. M. Dam. CTL* and ECTL* as fragments of the modal mu-calculus. TCS, 126(1):77–96,
1994.

16. P.-M. Deniélou and N. Yoshida. Dynamic multirole session types. In POPL, pages 435–446,
2011.

17. E. W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of programs.
Commun. ACM, 18:453–457, August 1975.

18. T. Freeman and F. Pfenning. Refinement types for ML. SIGPLAN Not., 26(6):268–277,
1991.

19. M. K. Ganai. Efficient decision procedure for bounded integer non-linear operations. In
HVC ’08, pages 68–83. LNCS, 2009.

20. K. Honda, N. Yoshida, and M. Carbone. Multiparty Asynchronous Session Types. In
POPL’08, pages 273–284. ACM, 2008.

21. K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous session types. In G. C.
Necula and P. Wadler, editors, POPL, pages 273–284. ACM, 2008.

22. C. Jones. Abstraction for concurrency. In SEFM, LNCS, 2012. to appear.
23. G. Nelson and D. C. Oppen. A simplifier based on efficient decision algorithms. In POPL’78,

pages 141–150. ACM, 1978.
24. Ocean Observatories Initiative (OOI). http://www.oceanleadership.org/

programs-and-partnerships/ocean-observing/ooi/.
25. W. Pugh. The omega test: a fast and practical integer programming algorithm for dependence

analysis. In Supercomputing ’91, pages 4–13, New York, NY, USA, 1991. ACM.
26. N. Yoshida, P.-M. Deniélou, A. Bejleri, and R. Hu. Parameterised multiparty session types.

In FoSSaCs’10, volume 6014 of LNCS, pages 128–145. Springer, 2010.

15

A OOI case study: Instrument Command

To demonstrate our framework, we use a scenario based on the Instrument Command
(IC) Usecase from the Ocean Observatories Initiative (OOI) [24]. The OOI is an NSF
program to provide long-term infrastructure for delivering scientific data from a large
network of ocean sensor systems to on-shore research stations around the US. Through
the paper we will show how to validate process, engaging in multiple simultaneous
instances of the type of session illustrated below. In the IC usecase, a user U obtains

User
[credit:Nat]

Register
[load:Nat]

 xi : InterfaceId

more(xc : Command)

Instrument
[-]

μt<xn>(y)

xr : Response

xn : Nat

t<y-1>

A1

A2

⊕

load:=load +1
y ≥ 0

credit:=credit-COST

load:=load-1

more()

quit()

A1 = xn > 0 ∧ (load > 10 ⊃ xn = 1)

A2 = y > 0 ∧ credit ≥ COST

quit()

Fig. 5. Instrument control: an example of stateful specification

capabilities to use a particular instrument I from the service registry R. U initiates the
session sending R an InterfaceId message which states the desired measurement
type. R replies with the maximum number of measurements that U is permitted to make
in this session. The process enters the main session loop; in each recursion step U has the
choice of sending I the next Command via the more branch case, or to end the session via
the quit case. The global specification declares that roles U and R must have credit

and load state variables, respectively. credit is used to meter the usage of instruments
by each principal, and load records the total current load of the instruments, which
serves multiple users concurrently. Predicate A1 ensures that R permits U to make xn ¡
0 commands; however, if the current load is greater than a certain threshold (fixed as
10 in this example), then U is only permitted to make a single command. The subsequent
update increments the load counter. Next, the recursion µt is annotated with a “loop
counter” y, initialised to xn, and the invariant predicate y ¥ 0. The idea is that one
command can be issued in each recursion step and C should not issue more than the
permitted number of commands; the nested recursion variable t is accordingly annotated
with y � 1. Within the recursion, the more message from U to I is guarded by the
predicate that y ¡ 0 and credit ¥ COST, where COST is the constant number of credits
needed to perform one command; the associated update is to decrease credit by COST.
The quit message to R at the end of the session has the effect of decrementing load.

16

A.1 Global assertion

GIC is the global assertion for the protocol illustrated in Figure 5.

GIC � CÑ R : pxi : InterfaceIdq.
RÑ C : pxn : intqtxn ¡ 0^ pR.load ¡ 10 � xn � 1quxR.load :� R.load� 1y.
µtxxnypy : intqty ¥ 0u.CÑ I : t
morepxc : Commandqty ¡ 0^ C.credit ¥ COSTuxC.credit:= C.credit� COSTy.Gcom,
quitpq.Gendu

Gcom � IÑ C : pxr : Responseqttrueu.IÑ R : morepq.txy � 1y
Gend � IÑ R : quitpqxR.load :� R.load� 1y.end

GIC specifies non-trivial dependencies between message behaviour and virtual state,
which reflect the past and concurrent behaviours of the principal in other sessions. In the
following discussion we focus on role R, hence we ignore the branch morepxc : Commandq
which only concerns roles C and I.

A.2 Local assertion for R

LR is the projection of GIC in A.1 on role R. The projection makes use of a standard
branch mergeability, which is an extension following e.g. [26].

LR � C ?pxi : InterfaceIdq.L1
R

L1
R � C ! pxn :Natqtxn ¡ 0^ pload ¡ 10 � xn � 1quxload :� load� 1y.L2

R

L2
R � µtxxnypy : Natqty ¥ 0u.I ?tmorepq.txy � 1y, quitpqxload :� load� 1y.endu

Notice that the recursion invariant in L2
R would actually be, by definition, tD.C.credit.y ¥

0^ C.credit ¥ COSTu.

A.3 Process

Process PR accepts a request to engage in a session specified by global specification
GIC with the role of R. PR is implementing the registry. The other roles involved in the
session are user C, and instrument I. We omit the updates when empty, and the labels
when there is only one branch.

PR � apzrRs : GICq.P
1
R P1

R � zrC, Rs?pxidq;P
2
R

P2
R � zrR, Cs!ttload ¡ 10u ÞÑ x1ypx1qxload :� load� 1y.P2

R,1

tload ¤ 10u ÞÑ x2ypx2qxload :� load� 1y.P2
R,2

P2
R,n � pµXpyq.zrI, Rs?tmorepq.txy � 1y, quitpqxload :� load� 1y.0uqxxny

In P1R, R receives the identifier xid from C, and tests if state variable load is greater
than the threshold of 10. If so, it sends the value 1; otherwise it sends 2. For brevity, we
have parameterised the definitions of P2R and P3R by n P t1, 2u, with n used to initialise
the later recursion parameter y. Each guarded-case leads to the appropriate P2R,n, which
increments load. R then enters the recursion, following I through the command-loop.
R uses a branching inside the recursion: if more is received enters another recursion;
otherwise, load is decremented.

17

A.4 Validation of two threads

We show selected extracts from the validation of a principal executing two parallel
threads, each behaving as PR in A.3. We set Γ � a : GIC, namely the principal can
receive invitations to act in GIC. We set Ipσpq (I for short) as load ¥ 0 and C initially
true. We illustrate the validation of rPR | PRsσp proceeding top-down and using the
proof rules in Figure 4. The first rule to be applied is tN1u:

σp, σa |ù load ¥ 0 load ¥ 0^ true;Γ $ PR | PR �H

true;Γ $ rPR | PRsσp � rHsσa

The process can be validated under the assumption that it runs in a state which satisfies
the invariant load ¥ 0 (e.g., σpploadq � σaploadq � 3). Next we apply tPARu which
decomposes the derivation into the derivation of two identical threads: load ¥ 0;Γ $
PR �H. We show only the derivation of one thread. The rule would apply in the same
way even if the two parallel processes engaged in different types of conversations. Next
we apply rule tMACCu:

I;Γ $ P1R � zrRs : LR

I;Γ $ arRspzq.P1R �H

The premise is equivalent to I;Γ $ zrC, Rs?pxid : InterfaceIdq.P2R � zrRs : LR.
After the application of rule tBCHu we derive:

I ^ load ¡ 10 � pA^ E � E ^ I afterEqr1{xns I; true;Γ $ P2R,1 � zrRs : L2
R

I ^ load ¤ 10 � A^ E � E ^ I afterEqr2{xns I; true;Γ $ P2R,2 � zrRs : L2
R

I;Γ $ zrA, Cs!ttload ¡ 10u ÞÑ x1ypxnqxEy.P2R,1, tload ¤ 10u ÞÑ x2ypxnqxEy.P2R,2u � zrRs : L1
R

where we recall A is defined as txn ¡ 0 ^ pR.load ¡ 10 � xn � 1qu and E is
xload :� load� 1y. Each branch in the premise can rely on the condition load ¡ 10
or pload ¡ 10q. In the case load ¡ 10 it is necessary that xn takes value 1; this is
checked in the first premise for the first branch.

B Auxiliary Definitions

Definition 1 (Refinement). A binary relation R over pΓ,∆, σq is a refinement relation
if pΓ1, ∆1, σ1qRpΓ2, ∆2, σ2q implies one of the following conditions holds

– xΓ1; r∆1sσ1y
`
ÝÑ xΓ1; r∆

1
1sσ

1
1ywith ` being a selection action then xΓ2; r∆2sσ2y

`
ÝÑ

xΓ2; r∆2sσ
1
2y with pΓ1, ∆

1
1, σ

1
1qRpΓ2, ∆

1
2, σ

1
2q.

– xΓ2; r∆2sσ2y
`
ÝÑ xΓ2; r∆

1
2sσ

1
2ywith ` being a branching action, then xΓ1; r∆1sσ1y

`
ÝÑ

xΓ1; r∆
1
1sσ

1
1y with pΓ1, ∆

1
1, σ

1
1qRpΓ2, ∆

1
2, σ

1
2q.

If pΓ1, ∆1, σ1qRpΓ2, ∆2, σ2q for some refinement relation R, we say pΓ1, ∆1, σ1q is a
refinement of pΓ2, ∆2, σ2q (written pΓ1, ∆1, σ1q � pΓ2, ∆2, σ2q).

18

Definition 2 (Projection). Assume p, q, r P G and p �� q. The projection of G on
r P G, written G æ r, is defined as follows.

p1q ppÑ q : tlipxi : UiqtAiuxEiy.GiuiPIq æ r �$'&
'%
q!tlipxi : UiqtAiuxEi æ ry.pGi æ pquiPI if r � p �� q,

p?tlipxi : UiqtAi æ ruxEi æ ry.pGi æ qquiPI if r � q �� p,

G1 æ r if r �� q, p

p2q pG1 | G2q æ r �

#
Gi æ r if r P Gi and r R Gj , i �� j P t1, 2u

end if r R G1 and r R G2.

p3q pµtxy : A1ypx : SqtAu.Gq æ r �

#
µtxy : A1 æ rypx : SqtA æ ru.G æ r if r P G
end if r R G

p4q txy : A1y æ r � txy : A1 æ ry

B.1 Congruence, Reduction and Labelled Transitions

Figure 6 presents the full congruence rules for networks and processes, where the asyn-
chronous messages are considered upon permutation. Figure 7 and Figure 9 illustrate
the full transition rules for networks and specifications. Figure 7 models silent actions
as reductions from Figure 8. In the paper we have represented silent actions explicitly
in the LTS for a more concise presentation.

N | H � N N1 | N2 � N1 | N2 pN1 | N2q | N3 � N1 | pN2 | N3q if a R fnpNq

pνsqH � H pνsqpνs1qN � pνs1qpνsqN pνsqN | N 1 � pνsqpN | N 1q if s R fnpNq

s : h1 � pp1, p2, lxvyq � pq1, q2, l
1xv1yq � h2 � s : h1 � pq1, q2, l

1xv1yq � pp1, p2, lxvyq � h2

�if p1 �� q1 or p2 �� q2

P | 0 � P P | Q � Q | P pP | Qq | R � P | pQ | Rq

pµXpxq.P qxey � P rµXpxq.P {Xsre{xs where Xxe1yrµXpxq.P {Xs def
� pµXpxq.P qxe1y

Fig. 6. Structural congruence for networks (top) and processes (bottom)

C Well-formed environments, kinding and typing

C.1 Well-formed environments

�
H $ Env tENULu

Γ $ U � Type x R dompΓ q
Γ, x : U $ Env tESORTu

Γ $ S � Type tΓ $ Li � Typeui�1..n X R dompΓ q
Γ,X : pSqL1@p1, . . . ,Ln@pn $ Env tERECu

Γ $ G � Type a R dompΓ q
Γ, a : G $ Env tESHAREDu

19

rarnspyq.P sσ
arnsxsy
ÝÝÝÝÝÑ rP rs{yssσ rarispyq.P sσ

arisxsy
ÝÝÝÝÝÑ rP rs{yssσ ps R fnpP qq

rsrp, qs!tei ÞÑ lixe
1
iypxiqxEiy;PiuiPI sσ

srp,qs!ljxvy
ÝÝÝÝÝÝÝÝÑ rP rv{xjssσ

1

pj P I σ |ù e1j Ó v ^ ej σ1 � σ afterEjrv{xjsq

rsrp, qs?tlipxiqxEiy.PiuiPI sσ
srp,qs?ljxvy
ÝÝÝÝÝÝÝÝÑ rPjrv{xjssσ

1 pj P I σ1 � σ afterEjrv{xjsq

N ÝÑ N 1

N
τ
ÝÑ N 1

rP sσ
`
ÝÑ rP 1sσ ps R fnpP q

rErP ssσ `
ÝÑ rErP 1ssσ

N � N0 N0
`
ÝÑ N 1

0 N 1
0 � N 1 fnp`q R bnpEr sq

ErNs `ÝÑ ErN 1s

Fig. 7. Labelled transition for networks

rarnspyq.P1 | Q1sσ1 |
±

2¤i¤nrarispyiq.Pi | Qisσi ÝÑ pνsqps :H |
±

1¤i¤nrPirs{yis | Qisσiq

j P I σ |ù ej σ |ù e1j Ó v σ1 � σ afterEjrv{xjs

rsrp, qs!tei ÞÑ lixe
1
iypxiqxEiy;PiuiPI | Qsσ | s : h ÝÑ rPjrv{xjs | Qsσ

1 | s : h � pp, q, ljxvyq

j P I σ1 � σ afterEjrv{xjs

rsrp, qs?tlipxiqxEiy.PiuiPI | Qsσ | s : pp, q, ljxvyq � h ÝÑ rPjrv{xjs | Qsσ
1 | s : h

P � P0 P0 ÝÑ P 1
0 P 1

0 � P 1

P ÝÑ P 1
N � N0 N0 ÝÑ N 1

0 N 1 � N 1
0

ErNs ÝÑ ErN 1s

Fig. 8. Reduction for networks

C.2 Kinding system

Type
Γ $ Env
Γ $ Type tKBASEu

Value Types
Γ $ L � Type ftvpLq � H

Γ $ xLy � Type tKMARu

Γ $ Env
Γ $ int � Type tKINTu Γ $ Env

Γ $ bool � Type tKBOOLu

Γ $ Env
Γ $ string � Type tKSTRu Γ $ Env

Γ $ nat � Type tKNATu

Session Types (global)

tΓ $ i : nat Γ, xi : Ui $ Gi, Ai, Ei, Ui � Type xi R dompΓ q Γ $ li : stringuiPI
li �� lj if i �� j for all i, j P I

Γ $ pÑq : tlipxi : UiqtAiuxEiy.GiuiPI � Type tKGSNDu

Γ $ G1 � Type Γ $ G2 � Type
Γ $ G1 | G2 � Type tKGPARu

Γ $ A1, A, S � Type Γ, x : S $ L � Type
Γ $ µtxy : A1ypx : SqtAu.L � Type

tKRECu

Γ $ A1 � Type Γ $ Env
Γ $ txy : A1y � Type

tKGCALLu Γ $ Env
Γ $ end � Type tKGENDu

20

xΓ ;Σ1y
`
ÝÑ xΓ ;Σ1

1y

xΓ ;Σ1, Σ2y
`
ÝÑ xΓ ;Σ1

1, Σ2y

xΓ ;Σ2y
`
ÝÑ xΓ ;Σ1

2y

xΓ ;Σ1, Σ2y
`
ÝÑ xΓ ;Σ1, Σ

1
2y

tTR-CTX1/TR-CTX2u

xΓ ;Σy
τ
ÝÑ xΓ ;Σy tTR-TAUu

xpa : G, Γ q; r∆sσy arnsxsy
ÝÝÝÝÝÑ xpa : G, Γ q; r∆, sr1s : G æ 1sσy tTR-A-MREQu

xpa : G, Γ q; r∆sσy arisxsy
ÝÝÝÝÝÑ xpa : G, Γ q; r∆, sris : G æ isσy tTR-A-MACCu

tTR-A-BCHu

j P I σ |ù Arn{xjs σ1 � σ afterEjrn{xjs

xΓ ; r∆, srps : q?tlipxi : UiqtAiuxEiy.LiuiPI sσy
srq,ps?ljxny
ÝÝÝÝÝÝÝÝÑ xΓ ; r∆, srps : Ljrn{xjssσ1y

tTR-A-SELu

j P I σ |ù Arn{xjs σ1 � σ afterEjrn{xjs

xΓ ; r∆, srps : q!tlipxi : UiqtAiuxEiy.LiuiPI sσy
srp,qs!ljxny
ÝÝÝÝÝÝÝÑ xΓ ; r∆, srps : Ljrn{xjssσ1y

tTR-A-DELBCHu

j P I σ |ù Aj σ1 � σ afterEj Uj � xLy

xΓ ; r∆, srps : q?tlipxi : UiqtAiuxEiy.LiuiPI sσy
srq,ps?ljxtrrsy
ÝÝÝÝÝÝÝÝÝÑ xΓ ; r∆, srps : Lj , trrs : Lsσ1y

tTR-A-DELSELu

j P I σ |ù Aj σ1 � σ afterEj Uj � xLy

xΓ ; r∆, srps : q!tlipxi : UiqtAiuxEiy.LiuiPI , trrs : Lsσy
srp,qs!ljxtrrsy
ÝÝÝÝÝÝÝÝÝÑ xΓ ; r∆, srps : Ljsσ1y

Fig. 9. Labelled transition for specifications

Session Types (local)

tΓ $ i : nat Γ, xi : Ui $ Li, Ai, Ei, Ui � Type xi R dompΓ q Γ $ li : stringuiPI
li �� lj if i �� j for all i, j P Iq

Γ $ p!tlipxi : UiqtAiuxEiy.LiuiPI � Type tKLSNDu

tΓ $ i : nat Γ, xi : Ui $ Li, Ai, Ei, Ui � Type xi R dompΓ q Γ $ li : string
li �� lj if i �� j for all i, j P Iq uiPI

Γ $ p?tlipxi : UiqtAiuxEiy.LiuiPI � Type tKLRCVu

Γ $ A1, A, S � Type Γ, x : S $ L � Type
Γ $ µtxy : A1ypx : SqtAu.L � Type

tKLRECu

Γ $ A1 � Type Γ $ Env
Γ $ txy : A1y � Type

tKLCALLu Γ $ Env
Γ $ end � Type tKLENDu

Specifications

Γ $ G � Type L � G æ p Γ $ Env s R dompΓ q Γ $ ∆� Type
Γ $ ∆, srps : L � Type tDSESu

Γ $ Env
Γ $ H � Type tDNULLu

21

Predicates, expressions, updates

Γ $ Env
Γ $ true, false � Type tPBASICu

Γ $ A � Type
Γ $ A � Type tPNEGu

i � 1, 2 Γ $ Ai � Type
Γ $ A1 ^A2 � Type tPANDu

Γ, x : S $ A � Type
Γ $ Dx.A � Type tPEXu

Γ $ Env i � 1, 2 Γ $ ei : int{nat
Γ $ e1 ¡ e2 � Type tEXP1u

Γ $ Env i � 1, 2 Γ $ ei : int psame for nat{string{boolq
Γ $ e1 � e2 � Type tEXP2u

Γ $ Env i � 1, 2 Γ $ ei : bool op P t^,_u
Γ $ e1op e2 � Type tEXP3u

Γ $ Env i � 1, 2 Γ $ ei : int op P t�,�u
Γ $ e1op e2 � Type tEXP4u

Γ $ Env
Γ $ H � Type tNOUPDu

Γ $ Env Γ $ E � Type Γ $ x : S Γ $ e : S
Γ $ x :� e;E � Type tUPDu

D Complexity of well-assertedness and proof rules

D.1 Checking History Sensitivity

History-sensitivity can be checked by inductive rules (see 10). The syntactic checker
uses the environment E defined by the following grammar:

E :� H | E , x@p | E , x@L | E , t : x@L

Expressions of the form y@p assign a state variable y to a role, and y@L assigns an
interaction variable or recursion parameters to a location L. A location is a set tp, p1u
of the two roles who know x. The checker relies on the annotation of the recursion
parameters with their locations and we assume recursion parameter to be known by
only two roles. We denote the domain of E with dompEq. We write E $ x@p when
p � Epxq, p P Epxq, or Eptq � x@L and p P L.

@i P I, E, xi@tp, qu $ Gi @y P pvarpAiq Y varpEiqqzxi, E $ y@p @y P varpEiqzxi, E $ y@q

E $ pÑ q : tlipxiqtAiuxEiy.GiuiPI

E $ G E $ G1

E $ G,G1 E $ end
@y P varpeq, @r P L, E $ y@r

E, t : x@L $ txey
E, t : x@L $ G dompEq � varpAqzx

E $ µtxeypx@LqtAu.G

Fig. 10. Syntactic checker for history-sensitivity

The rules in Figure 10 enforce well-assertedness by restricting the set of variables
that can be used in each predicate and update. The first rule requires that each role
knows all the interaction variables of the predicate to be checked at its side. The other
rules are straightforward.

22

D.2 Proof of Proposition 5

We recall the statement of Proposition 5. Given a global assertion G, let m be the
size of the syntactic tree of G, n be the maximum number of variables occurring in
each predicate in G, and evalpAq be the complexity of predicate evaluation. History-
sensitivity for G can be checked in Opm�nq. Temporal-satisfiability for G is decidable
if predicate evaluation is decidable; if decidable temporal-satisfiability can be checked
in Opmq � evalpAq.

The size m of G is defined by the following function, by induction:

– sizeppÑq : tlipxi : UiqtAiuxEiy.GiuiPIq � 1�
°n
i�1 sizepGiq

– sizepG1 | G2q � 1� sizepG1q � sizepG2q
– sizepµtxy : A1ypx : SqtAu.Gq � 1� sizepGq
– sizeptxy : A1yq � 1
– sizependq � 1

Proof. For history-sensitivity, the size of a proof tree for G obtained using the rules in
Figure 10 has the same order of magnitude of the size of the syntactic tree of G, hence
Opmq, and at each point of the proof tree only a purely syntactic check on the vari-
ables appearing in the current predicate will occur, which are at most n. For temporal-
satisfiability, the number of invocation of ts is Opmq and at each invocation at most
one predicate must be evaluated with complexity evalpAq (if decidable).

D.3 Proof of Proposition 10 (complexity of proof rules)

We recall the statement of Proposition 10. The proof of C;Γ $ N � Σ is decidable if
predicate evaluation is decidable.

Proof. The typing rules in [20] enable decidable validation. The proof rules in Figure 4
have the same structure (i.e., they decompose the validation in the same way) as the
rules in [20], to which they add the evaluation of (a linear number of) predicates. If
predicate evaluation is decidable, the proof tree has depth linear with respect to the
syntactic tree of P .

E Message Assertions

We introduce the definitions for processes with queues. The aim is to take into account,
in the proof of soundness of the validation rules, the mechanisms of message exchange
of runtime processes. We use message assertions which abstract messages in queues.

Definition 15 (Message Assertions). The syntax of endpoint assertions is extended as
follows:

L ::� . . . |M |M;L M ::� p!lxvy |M;M1

We call M a message assertion.

In Definition 15, p!lxvy represents a label/value lxvy in the queue for participant p,
and M;M1 represents a queue with multiple elements.

Figure 11 presents the additional validation rules for runtime processes (to extend
the rules in Figure 4).

Figure 12 presents the additional transition rules for message assertions.

23

C;Γ $ N � r∆1, sr1s : L1sσ1, . . . , r∆n, srns : Lnsσn tsris : Liu1¥i¥n coherent
C;Γ $ pνsqN � r∆1sσ1, . . . , r∆nsσn

tCRESu

C;Γ $ s :H� tsris :Hu1¥i¥n tQNILu

C;Γ $ s :h� r∆, srps : Lsσ,Σ
C;Γ $ s : h � pp, q, lxvyq � r∆, srps : q!lxvy;Lsσ,Σ tQVALu

Fig. 11. Additional Proof Rules for Runtime Networks and Processes

�

xΓ, r∆, srps : q!lxvy;Lsσy srp,qs!lxvy
ÝÝÝÝÝÝÝÑ xΓ, r∆, srps : Lsσy

tT1u

j P I σ |ù Ajrn{xjs Ó true σ1 � σ afterEjrn{xjs

xΓ ; rsrps : q!tlipxi : UiqtAiuxEiy.LiuiPI sσy
τ
ÝÑ xΓ ; rsrps : q!ljxny;Ljrv{xjssσ1y

tT2u

j P I σ |ù Ajrn{xjs Ó true σ2 � σ1 afterEjrn{xjs

xΓ ; rsrps : q!ljxny;Lsσ, rsrqs : p?tlipxi : UiqtAiuxEiy.LiuiPI sσ1y
τ
ÝÑ xΓ ; rsrps : Lsσ, rLjrn{xjssσ2y

tT3u

j P I σ |ù Aj Ó true σ1 � σ afterEj Uj � xLy
xΓ ; rsrps : q!tlipxi : UiqtAiuxEiy.LiuiPI , trrs : Lsσy

τ
ÝÑ xΓ ; rsrps : q!ljxtrrsy;Ljsσ1y

tT4u

j P I σ |ù Aj Ó true σ2 � σ1 afterEj Uj � xLy
xΓ ; rsrps : q!ljxvy;L1, trrs : Lsσ, rsrqs : p?tlipxi : UiqtAiuxEiy.LiuiPI sσ1y

τ
ÝÑ xΓ ; rsrps : L1sσ, rLj , trrs : Lsσ2y

tT5u

Fig. 12. Labelled transition for message assertions

24

F Soundness

F.1 Auxiliary Lemmas

This section contains auxiliary lemmas for soundness. The proofs of Lemma 1, Lemma 2
can be found below. The proofs of Lemma 3 and Lemma 4 are similar to the ones in [6]
(hence omitted) as the stated properties do not directly involve the state.

Substitution The substitution lemma uses the following lemma saying that any substi-
tution of a free variable with a value in a local assertion preserves well-assertedness.

Lemma 16. Let L be a well-asserted local assertion (and well-typed wrt the underlying
typing discipline), x : U be an interaction variable, v : U be a value of the same type
as x. If Crv{xs admits solutions then Lrv{xs is well-asserted.

Proof. History sensitivity is clearly not affected by the substitution of an interaction
variable with a value, as it is based on the notion of knowledge and a value is obviously
known by any participant. For invariant stability, assume Lrv{xs. Since L is temporal
satisfiable, by hypothesis the checker will return false for Lrv{xs because of the oth-
erwise case is met in (1) or (2). In both cases, if the predicate pAinv ^ Abag ^ Ai �
Ainv afterEiqrv{xs is false then also the its (stronger) unsubstituted version is false,
which makes L not invariant stable contradicting the hypothesis.

Lemma 1 (Substitution). Let I; C;Γ $ P �∆ with ∆ well-asserted and x : U be an
interaction variable and v : U be a value. If x P fnpP q then Crv{xs;Γ $ P rv{xs �
∆rv{xs and ∆rv{xs is well-asserted.

Proof. The proof is by on the validation rules. We proceed by case analysis o the rules
in Figure 4.

Case tSELu. We set P � srp, qs!tei ÞÑ lixe
1
iypxiqxEiy;PiuiPI and ∆ � ∆1, srps :

q!tljpxj : UjqtAjuxEjy.LjujPJ . We first assume x : S. By tSELu:

@i P IDj P J li � lj C ^ ei � pAj ^ pEi � Ejq ^ C afterEiqre1i{xis
C ^ ei;Γ $ Pire

1
i{xis �∆

1, srps : Ljre1i{xjs
C;Γ $ P �∆1, srps : q!tljpxj : UjqtAjuxEjy.LjujPJ

(1)

Without loss of generality we assume x R txjujPJ . The first premise of (1) entails the
following predicate

pC ^ ei � pAj ^ pEi � Ejq ^ C afterEiqre1i{xjsqrv{xs (2)

since the free occurrences of x (if any) in the first premise of (1) are supposed to be
universally quantified. By definition, (2) is equivalent to

pC ^ eiqrv{xs � pAj ^ pEi � Ejq ^ C afterEiqre1i{xjsrv{xs (3)

Moreover, by inductive hypothesis, we have

Crv{xs;Γ $ Pire
1
i{xisrv{xs � p∆

1, srp1s : Ljqrv{xs (4)

By applying tSELu with premises (3) and (5) we obtain the thesis. If x : xLy the case is
similar except x does not need to be substituted to the predicates.

25

Case tBCHu. We set P � srp, qs?tlipxiqxEiy.PiuiPI and ∆ � ∆1, srp2s : p1?tlipxi :
UiqtAiuxEiy.LjuiPI . By rule tBCHu (we omit the case for delegation acceptance as it is
similar) and assume x : S1:

C ^Ai;Γ $ Pi �∆, srp2s : Li C ^Ai � C afterEi
C;Γ $ P �∆1, srp2s : p1?tlipxi : UiqtAiuxEiy.LjuiPI

Without loss of generality we assume x R txiuiPI . By induction

pC^Aiqrv{xs;Γ $ Pirv{xs�p∆
1, srp2s : p1?tlipxi : SiqtAiuxEiy.LjuiPIqrv{xs (5)

Furthermore (proceeding as in (3)):

C ^Airv{xs � C afterEirv{xs (6)

By applying (6) and (5) as a premise for tBCHu we obtain the thesis.

Case tMREQu (resp. tMACCu). This case follows straightforwardly by induction. The case
for tMACCu is similar.

Case tVARu. We set P � Xxey. By tVARu

L1re{ys...Lnre{ys well-asserted
C;Γ,X :py : S1qL1 @ p1..Ln@ pn $ Xxey �∆1, srp1s : L1re{ys, .., srpns : Lnre{ys

Without loss of generality we assume x �� y. Since L1re{ys...Lnre{ys are well-typed
wrt the underlying typing discipline, x : S, y : S1 and v : S then L1re{ysrv{xs...Lnre{ysrv{xs
are also well-typed. L1re{ysrv{xs...Lnre{ysrv{xs are well-asserted by Lemma 16. By
applying L1re{ysrv{xs...Lnre{ysrv{xs as a premise of tVARu we obtain the thesis.

Remaining Cases The other case are straightforward.

Evaluation

Lemma 2 (Evaluation). If C;Γ $ P peq�∆peq and σ |ù e Ó v for a σ s.t. σ |ù C then
we have C;Γ $ P re{vs �∆re{vs.

Proof. The proof is by induction on the validation rules. We proceed by case analy-
sis. By decidability of underlying logic, we can write σ |ù Are{xs Ó true when a
closed formula Are{xs evaluates to true. Note that if we further have e Ó then we have
Arv{xs Ó true.

26

Case tSELu. IfP peq � srp, qs!tei ÞÑ lixe
1
iypxjqxEjy;PjpequiPJ thenP pvq � srp, qs!tei ÞÑ

lixe
1
iypxjqxEjy;PjpvquiPJ and

∆peq � ∆ � ∆1peq, srp1s : p2!tlipxi : SiqtAipequxEipeqy.LjpequiPI
with and C ^ ei � pAj ^ pEi � Ejq ^ C afterEiqre{xjs. Notice that C ^ ei �
pAj ^ pEi � Ejq ^ C afterEiqre{xjs is equivalent to

C ^ ei � pAj ^ pEi � Ejq ^ C afterEiqrv{xjs (7)

By inductive hypothesis

C;Γ $ P 1rv{es �∆1rv{es, srps : Lrv{es (8)

By applying (7) and (8) to the validation rule tSELu the lemma holds for this case.

Recursion Invocation If P peq � Xxey (since P peq is well-formed against ∆ by hy-
pothesis) then P pvq � Xxvy. Since the substituted specification is still well-asserted
(as it does not contain expressions) then P pvq is well-formed against ∆rv{xs by rule
tVARu.

Remaining cases The remaining cases are similar to the previous ones or straightfor-
ward by induction.

Other lemmas

Lemma 3 (Assertion Reduction and Coherence). If ∆ is coherent and xΓ ; r∆sσy τ
ÝÑ

xΓ 1; r∆1sσ1y then ∆1 is again coherent.

Lemma 4 (Subject Congruence). If C;Γ $ P1�∆ and P1 � P2 then C;Γ $ P2�∆

F.2 Soundness Proof

Theorem 13 (Soundness for Initial Networks) follows immediately from Lemma 6
(Soundness for open Networks), via Lemma 5. Lemma 5 shows there is a conditional
simulation between the closing substitution of each single open validated located pro-
cess and its corresponding specification. Recall that in the derivation of an open located
process C may not be true, and we take a closing substitution consistent with C and Γ).

Lemma 5. Let R be a relation collecting all pairs of the form prPσ̃sσp; xΓ σ̃; r∆σ̃sσayq
such that C;Γ $ P �∆ where:

1. rP sσp is a sub-term of a multi-step `
ÝÑ-derivative of a located process,

2. r∆sσa is an assertion assignment with state,
3. p qσ̃ is a closing substitution of interaction variables consistent with C, Γ and ∆,
4. σp |ù Ipσpq and σa |ù Ipσpq

Then R is a conditional stateful simulation.

Proof. We show that R is a conditional stateful simulation by induction on the depth of
the validation tree. We proceed by case analysis of the last rule applied.

27

Case tMREQu (resp. tMACCu). In this case P is defined as arnspyq.P 1. The last derivation
rule for P is tMREQu where Γ � Γ 1, a : G

C;Γ $ P 1 � yr1s : G æ 1, ∆
C;Γ $ arnspyq.P 1 �∆

(9)

The only possible transition of Pσ̃ � arnspyq.P 1σ̃ is by tTR-MREQu in Figure 3.
Notice that by σa |ù Ipσpq (condition (4) in the hypothesis).

By tTR-MREQu:

rarnspyq.P 1σ̃sσp

arnsxsy
ÝÝÝÝÑ rP 1σ̃rs{yssσp

xΓ σ̃; r∆σ̃sσay can move by tTR-A-MREQu in Figure 9:

xΓ σ̃; r∆σ̃sσay
arnsxsy
ÝÝÝÝÑ xΓ σ̃; r∆σ̃, sr1s : Lσ̃sσay

prP 1σ̃sσp; xΓ σ̃; r∆σ̃, sr1s : Lσ̃sσayq P R by applying Lemma 1 to the premise of (9),
observing that the conditions (1�4) are preserved. R is a conditional stateful simulation
by induction. The case for tMACCu is similar.

Case tBCHu. In this case P is defined as s?tlipxiqxEiy.PiuiPI . The last derivation rule
for P is tBCHu:

@i P I C ^Ai;Γ $ Pi �∆1 C ^Ai � C afterEi
if Ui � xLy then ∆1 � ∆, srqs : Li, xi : L otw ∆1 � ∆, srqs : Li

C;Γ $ srp, qs?tlipxiqxEiy.PiuiPI � ∆1, srqs : p?tlipxi : UiqtAiuxEiy.LiuiPI
(10)

The possible transitions of Pσ̃ are with label srp, qs?ljxvy for some v by tTR-BCHu

in Figure 3:

rsrp, qs?tlipxiqxEiσ̃y.Piσ̃uiPI sσp
srp,qs?ljxvy
ÝÝÝÝÝÝÝÑ rPj σ̃rv{xjssσ

1
p σ1p � σp afterEj

By the shape of the specification in (10), srqs : p?tlipxi : UiqtAiuxEiy.LiuiPI is able
to make a move at subject s?. By definition of conditional simulation we are inter-
ested in inspecting only the case in which the specification can make a step with label
srp, qs?ljxvy. If the specification moves with label srp, qs?ljxvy we have two cases:

– Case Uj � S. Hence, by tTR-A-BCHu in Figure 9:

xΓ σ̃; rsrqs : p?tlipxi : UiqtAiσ̃uxEiσ̃y.Liσ̃uiPI sσay
srp,qs?ljxvy
ÝÝÝÝÝÝÝÑ xΓ σ̃; rsrqs : Lj σ̃sσ1ay

with
σ1a � σa afterEj (11)

prPj σ̃sσ
1
p; xΓ σ̃; x∆σ̃, srqs : Lj σ̃yσ1ayq P R holds observing that the conditions

(1�4) are preserved. Notice that condition (4) follows by the second premise of
(10). R is a conditional stateful simulation by induction.

28

– Case Uj � xLy. In this case v � trrs. This case is similar to the previous one
except ∆ moves by tTR-A-DELBCHu in Figure 9:

xΓ σ̃; rsrqs : p?tlipxi : UiqtAiσ̃uxEiσ̃y.Liσ̃uiPI sσay
srp,qs?ljxtrrsy
ÝÝÝÝÝÝÝÝÑ

xΓ σ̃; rsrqs : Lj σ̃, trrs : Lsσ1ay

with
σ1a � σa afterEj (12)

Case tSELu. In this case P is defined as srp, qs!tei ÞÑ lixe
1
iypxiqxEiy;PiuiPI . The last

derivation rule for P is tSELu:

@i P IDj P J s.t. xi � xj li � lj C ^ ei � pAj ^ pEi � Ejq ^ C afterAjqre
1
i{xis

C ^ ei;Γ $ P re1i{xis �∆
1, srps : Ljre1i{xis

if Ui � xLy then ∆ � ∆2, e1i : L1
i and ∆1 � ∆2 otw ∆1 � ∆

C;Γ $ srp, qs!tei ÞÑ lixe
1
iypxiqxEiy;PiuiPI �∆, srps : q!tljpxj : UjqtAjuxEjy.LjujPJ

(13)

The only possible transition is by tTR-SELu in Figure 3. Assume first that the value
sent is of type S. By tTR-SELu then Pσ̃ performs the following transition

rsrp, qs!lipxiqxEiσ̃y.Piσ̃sσp

srp,qs!lixvy
ÝÝÝÝÝÝÝÑ rPiσ̃rv{xissσ1

p
σ1p � σp afterEi

Notice that
σa |ù Aj σ̃rv{xis (14)

following by xi � xj , σa |ù Ipσpq (condition (4) in the hypothesis), C^ei � Ajrv{xis
(second premise of (13) above), and the fact that σ̃ is consistent with C (condition (3)
in the hypothesis).

By (14) as premise of rule tTR-A-SELu in Figure 9:

xΓ σ̃; r∆σ̃, srps : q!tljpxj : UjqtAj σ̃uxEj σ̃y.Lj σ̃ujPJ sσay
srp,qs!ljxvy
ÝÝÝÝÝÝÝÑ xΓ σ̃; r∆σ̃, srps : Ljsσ1ay

with li � lj and
σ1a � σa afterEj σ̃ (15)

prPiσ̃sσp ; xΓ σ̃; r∆σ̃, srps : Lj σ̃sσ1ayq P R, observing that the conditions (1�4) are
preserved. Notice that case (4) holds by invariant stability. R is a conditional stateful
simulation by induction.

This case in which xj is a session channel is similar to the previous one, except
transition tTR-A-SELu of P has a corresponding tTR-A-DELSELu of xΓ σ̃; r∆σ̃sσay.

Case tEMPTYu. We can set P � 0; the property holds since there are no transitions.

Case tPARu. A parallel process P � P1 | P2 can only make either independent actions or
reductions involving only either P1 or P2 (no reductions due to communication between
P1 and P2 as only one role can be played by one principal in each session instance).
This case is direct from the induction hypothesis.

29

Case tVARu. We set P to be Xxey with Γ pXq � px : SqL1 @ p1..Ln@ pn. Pσ̃ is a
process such that Cσ̃;Γ σ̃ $ Pσ̃re{xs�∆σ̃ where∆σ̃ � ∆0σ̃, sr1s : L1re{xs, ..., srns :
Lnre{xs is the closure of the endpoint assertion of P . The property follows from the
cases for the other process types.

Cases tRECu. This case is proved by the standard syntactic approximation of a recursion.
We can assume, in all derivations for processes in P , the application of tRECu only occurs
in (the last steps of) a derivation. Assume that we have

C;Γ,X : px : SqL1@p1..Ln@pn |ù P � srp1s : L1..srpns : Ln (16)

Further we also assume

C;Γ,X : px : SqL1@p1..Ln@pn |ù Q�∆ (17)

Let y range over interaction names and session channels. In the following we of-
ten use the notation for the substitution QrpyqR{Xs which replaces each occurrence
of Xxey with Rre{ys. Using well-guardedness of process variables in [21], we first
approximate the recursion by the following hierarchy:

P 0 def� P 1 � 0 P 1 def� P rpxqP 0{Xs . . . Pn�1 def� P rpxqPn{Xs

Above P 0 is chosen as the process which is typed by the same typing as P and
which has no visible action. For example, choosing a and s to be fresh, P 0 def

� pνa :
Gqpar2spyq.P 1q then P 0 � 0. We also set Pω � µXxyypxq.P 1 to be the recursively
defined agent itself.

In the conclusion of tRECu we abstract the process variable X by the µ construct.
Instead, we replace each X in Q with pyqP 0, pyqP 1, . . . , pyqPn, and finally pyqPω .
We call the result Q0, Q1, . . . Qn, and Qω , where Qω is nothing but the term in the
conclusion (after one-time unfolding which does not change the behaviour).

Now suppose that C;Γ $ S�∆ is derivable and that C0;Γ0 $ S0�∆0 occurs in its
derivation, hence S0 occurs in S. Suppose that also C0;Γ0 $ S10 �∆0. We can replace
the occurrence of S0 in S by S10, with the result written S1, such that C;Γ $ S1 �∆ is
derivable.

Using property, we first note that, for any xΓ ; r∆sσay and C, we have C;Γ |ù P 0 �
∆. Thus we apply this to (16) and replace X in P by pxqP 0:

C;Γ |ù P 1 � srp1s : L1, . . . , srpns : Ln

This can again be used for (16) (noting the environment Γ can always be taken as
widely as possible in tVARu): C;Γ |ù P 2 � srp1s : L1, . . . , srpns : Ln. In this way we
know that for an arbitrary n: C;Γ |ù Pn � srp1s : L1, . . . , srpns : Ln.

By applying this to (16) , we obtain:

C;Γ |ù Qn �∆

30

for an arbitrary n. Now assume, for simplicity, that there are no free variables in Q
(hence in Qn) and therefore C � true (the reasoning is precisely the same by apply-
ing a closing substitution). We can then construct a relation taking each node in the
transitions from Qω and relating it to the derivative of xΓ ; r∆sσay, by observing that
assertions transitions are always deterministic for the given process and its transition
derivatives. Let the resulting relation be R . Since any finite trace of Qω is in some Qn,
the conditions of conditional simulation hold at each step.

Lemma 6 (Soundness for Open Networks). LetN be a network. Then C;Γ $ N�Σ
implies C;Γ |ù N �Σ

Proof. Let R be a relation collecting all pairs of the form pN ;Σq such that C;Γ $

N � Σ where: (i) N is a sub-term of a multi-step `
ÝÑ-derivative of an initial network,

(ii) Σ is a specification. Proceeding by induction on the length of the derivation tree.
We proceed by case analysis of the validation rules for networks in Figure 4 and in
Figure 11. Subject reduction for silent actions (Lemma 9)

Case tN1u. If tN1u is applied then N � rPisσa, Σ � r∆1sσp, and

C;Γ $ P �∆

This case follows by Lemma 5, observing that by premise fourth condition (σa |ù Ipσpq
and σp |ù Ipσpq) holds by premise of tN1u.

Case tN2u. This case follows by definition of refinement.

Case tN3u. This case is immediate since N � H thus cannot make any transition.

Case tN4u. A parallel network N � N1 | N2 can make either independent actions or
reductions. The case for independent actions is direct from the induction hypothesis. If
the reduction takes place by interaction, then we use Lemma 9.

Cases tQNILu, tQVALu. Queues do not have transitions. The behaviours of queues are taken
into account as part of τ -actions in the case for tN3u above.

Case tCRESu. This case follows by Lemma 3.

G Subject Reduction Proofs

Lemma 7. If N ÝÑ N 1 then one of the following cases hold:

1. N � Er±iPt1..nurPisσis with P1 � arnspy1q.P
1
1 | Q1 and Pi � arispyiq.P

1
i | Qi

s.t.
rP1sσ1

arnsxsy
ÝÝÝÝÑ rP 1

1 | Q1sσ1 rPisσi
arisxsy
ÝÝÝÝÑ rP 1

i | Qisσi

and N 1 � Erpνsqps :H |
±
iPt1..nurP

1
i | Qisσiqs

31

2. N � ErrP sσ | s : hs s.t. rP sσ
srp,qs!lxvy
ÝÝÝÝÝÝÑ rP 1sσ and

N 1 � ErrP 1sσ | s : h � pp, q, lxvyqs

3. N � ErrP sσ | s : pp, q, lxvyq � hs s.t. rP sσ
srp,qs?lxvy
ÝÝÝÝÝÝÑ rP 1sσ

and N 1 � ErrP 1sσ | s : hs

Proof. Immediate from the corresponding reduction rules.

Lemma 8. 1. If rP sσ
arnsxsy
ÝÝÝÝÑ rP 1sσ and C;Γ $ rP sσ�Σ thenΣ � r∆sσ1 for some

∆, σ1, and C;Γ $ rP 1sσ � r∆, sr1s : Lsσ1

2. If rP sσ
arisxsy
ÝÝÝÝÑ rP 1sσ and C;Γ $ rP sσ �Σ then Σ � r∆sσ1 for some ∆, σ1, and

C;Γ $ rP 1sσ � r∆, sris : Lsσ1

3. If rP sσp
srp,qs!lxvy
ÝÝÝÝÝÝÑ rP 1sσ1p and C;Γ $ rP sσp | s : h � Σ then Σ � r∆sσa for

some ∆, σa and C;Γ $ rP 1sσp | s : h � pp, q, lxvyq � r∆1sσ1a s.t. xΓ ; r∆sσay
τ
ÝÑ

xΓ ; r∆1sσ1ay

4. If rP sσp
srp,qs?lxvy
ÝÝÝÝÝÝÑ rP 1sσ1p and C;Γ $ rP sσ | s : pp, q, lxvyq � h � Σ then

Σ � r∆sσ1 for some ∆, σ1, and either
– Σ can move at subject s?rp, qs but cannot move with label srp, qs?lxvy
– C;Γ $ rP 1sσp | s : h� r∆

1sσa s.t. xΓ ; r∆sσay
τ
ÝÑ xΓ ; r∆1sσ1ay.

Proof. (1) and (2) are immediate. Below we show the cases (3) and (4).

Case (3) Suppose we have Ipσpq;Γ $ P | s : h �∆. We safely assume the last rule
applied is tPARu, thus we can assume ∆ � ∆0, ∆1 for some ∆0 and ∆1, and

Ipσpq; C;Γ $ P �∆0 (18)

Now consider the transition rP sσp
srp,qs!lixvy
ÝÝÝÝÝÝÝÑ rP 1sσ1p, by (18) we observe ∆0 has the

shape
∆0 � srps : q!tljpxj : UjqxEjytAju;LjujPJu, ∆00

and that P 1 can be typed by ∆1
0 such that:

∆1
0 � srps : Ljrv{xis, ∆00 (19)

Now the assertion ∆1 for the queue has the shape, omitting the vacuous “end”: ∆1 �
s : M hence the addition of the values to this queue, s : h�pp, q, lixvyq, must have the
endpoint assertion:

∆1
1 � srps : q!lixvy;M (20)

Setting ∆1 � ∆1
0, ∆

1
1, we know Ipσpq;Γ $ P 1 | s : h�pp, q, lixvyq �∆1. By (19) and

(20) we obtain
∆1

0, ∆
1
1 � srps : q!lixvy;Ljrv{xis, ∆00, ∆1

and
xΓ ;∆0, ∆1y

τ
ÝÑ xΓ ;∆1

0, ∆
1
1y

and the only change is at the assertion assignment at srps, as required.

32

Case (4). Suppose we have Ipσpq;Γ $ P | s : h�pp, q, lixvyq �∆. Again we safely
assume the last rule applied is tPARu. Thus we can assume, for some ∆0 and ∆1:

Ipσpq;Γ $ s : h�pp, q, lixvyq �∆1

with ∆ � ∆0, ∆1, and
Ipσpq;Γ $ P �∆0 (21)

Now consider the transition

rP sσp
srp,qs?ljxvy
ÝÝÝÝÝÝÝÑ rP 1sσ1p (22)

As before, we can infer, from (21) and (22) the shape of ∆0 as follows,

∆0 � srqs : p?tljpxi : UiqxEiytAiu;LiuiPI , ∆00

for some p; and that P 1 can be validated against ∆1
0 given as

∆1
0 � srqs : Lrv{xjs, ∆00 (23)

Now the assertion ∆1 for the queue has the shape (again omitting “end”-only asser-
tions):

∆1 � srqs : p?ljxvy;M (24)

which, if we take off the values (hence for the queue s : h), we obtain:

∆1
1 � srqs : M (25)

Note this is symmetric to the case (1) above. As before, setting∆1 � ∆1
0, ∆

1
1, we know:

I; C;Γ $ P 1 | s : h� ∆1. By (23) and (25) we obtain

∆1
0, ∆

1
1 � srqs : Ljrv{xjs, ∆00, ∆1
τ
Ð∆0, ∆1

The only change from ∆ to ∆1 is at the type assignment at srqs, as required.

For convenience of the case analysis we explicitly write P τsÝÑ P 1 if P τ
ÝÑ P 1 is

derived by the reduction rules for free session channels.

Lemma 9 (Subject Reduction for Silent Actions). Suppose Γ $ N �Σ.

1. if N τ
ÝÑ N 1 then Γ $ N 1 �Σ again

2. if N τsÝÑ N 1 then there exists Σ1 s.t. xΓ,Σy τ
ÝÑ xΓ,Σ1y and Γ $ N 1 �Σ1.

Proof. If N τ
ÝÑ N 1 then each of the cases of Lemma 7 are possible, we inspect them

one by one.

33

Case (1): Session Initiation. By Lemma 7 (1) and (2) we setN � rP1sσ1 |
±

2¥i¥nrPisσi
where P1 � arnspy1q.P

1
1 | Q1 and Qi � arispyiq.P

1
i | Qi. As given in Lemma 7 (2)

the actions of Pi compensate each others and correspond to reduction N ÝÑ pνsqps :
H |
±

1¥n¥nrP
1
i rsris{yis | Qisσiq by the first rule in Figure 8.

Since Er s is a reduction context we can safely set

Γ $ rarispyiqtAiu.Pisσi � r∆isσ
1
i

so that r∆1sσ
1
1, ..., r∆nsσ

1
n � Σ.

Hence, by premise of validation rule tMACCu we have, with Γ paq � G,

Γ $ rPisσi � r∆i, sris : Lisσ1i

with G æ i � Li (similarly for role 1).
Since tG æ iuiPI is obviously coherent then Γ $ pνsqp

±
i P

1
i rsis{ys | Qiq �∆ as

required.

Case (2): Select. By Lemma 7 (3) we set N � ErrP sσp | s : hs with

rP sσp

srp,qs!lxvy
ÝÝÝÝÝÝÑ rP 1sσ1

p
. As above we can safely set Ipσpq;Γ $ rQsσ1

p
| s : h̃ �

∆. By Lemma 8 we can infer Ipσpq;Γ $ rP 1sσ1

p
| s : h̃ � pp, q, lxvyq � ∆1 such

that xΓ, r∆sσay
τ
ÝÑ xΓ, r∆1sσ1ay. Since N reduces to N 1 by τ -transition rather than τs

transition, we know that s is hidden in N . Assume therefore without loss of generality

N � CrpνsqprP sσ | s : h |Mqs Ipσpq;Γ $ rP sσ | s : h |M �Σ1

with Σ1 coherent and Σ1 � Σ,Σ01. By Lemma 3 and Σ1 ÝÑ Σ1, Σ01 we know
Σ1, Σ01 is also coherent, hence done.

Case (3): Branch. The argument exactly follows case (2) above except using Lemma 7
(3) and Lemma 8 (4) instead of Lemma 7 (2) and Lemma 8 (3), respectively.

Case τs. Proceeds as above but without restricting s.

Lemma 10. If C;Γ $ P � ∆ and rP sσp
`
ÝÑ rP 1sσ1p for some `, P 1, σp and σp s.t.

σp |ù Ipσpq then:

– if ` is a branching action then xΓ ; r∆sσpy is able to move at subject of `, and if

xΓ ; r∆sσpy
`
ÝÑ xΓ ; r∆1sσ1ay then we have Ipσpq;Γ $ P 1 �∆1.

– if ` is not a branching nor a τ action then xΓ ; r∆sσay
`
ÝÑ xΓ ; r∆1sσ1ay then we have

Ipσpq;Γ $ P 1 �∆1.

Proof. The proof is by induction on the validation rules .We proceed by the case anal-
ysis depending on the last rule used for deriving this judgement. We assume processes
are closed. Further below notice C in the conclusion of each rule should be true by our
assumption.

34

Case tSELu. In this case, we derive Ipσpq;Γ $ P �∆ with:

P � srp, qs!tei ÞÑ lixe
1
iypxiqxEiy;PiuiPj and ∆ � ∆0, srps : q!tljpxj : UjqtAjuxEjy;LjujPJ

(26)
P can move only by tTR-SELu in Figure 3: rP sσp

`
ÝÑ rPirv{xissσ

1
p with ` � srp, qs!lixvy,

σ1p � σp afterEi, and
σp |ù ei Ó v (27)

since P is closed the only free variables in ei are state variables defined in σp. By the
first premise of validation rule tSELu we have:

I � Ajre
1
i{xjs (28)

By (27) and (28) we infer I � Ajrv{xjs.
From I � Arv{xjs, since σa |ù I we have σa |ù Arv{xjs hence xΓ ; r∆sσay can

move by tTR-SELu:

xΓ ; r∆sσay
`
ÝÑ xΓ ; r∆0, srps : Ljrv{xjssσ1ay

with σ1a � σa afterEi
By the third premise of validation tSELu we have

Ipσpq;Γ $ Pjre
1
i{xis �∆0, srps : Ljre1i{xjs (29)

By Evaluation Lemma, (29) immediately gives I; true;Γ $ Pjrv{xjs � ∆0, srps :
Lrv{xjs as required. This case holds by induction observing that σ1p |ù I and σ1a |ù I
by invariant stability.

Case tBCHu. In this case the conclusion is Ipσpq;Γ $ P �∆ with:

P � srp, qs?tlipxiqxEiy.PiuiPI and ∆ � ∆0, srps : q?tlipxi : UiqtAiuxEiy.LiuiPI
(30)

By the shape of P we can set ` � srq, ps?ljxvy. P can move only by tTR-BCHu, obtaining

rP sσp
`
ÝÑ rPjrv{xjssσ

1
p, with σ1p � σp afterEj . By the shape of∆ from the validation

rule tBCHu we have that ∆ is able to move at subject of `. In case xΓ ; r∆sσay can move
with label ` we have by tTR-BCHu:

xΓ, r∆sσay
`
ÝÑ xΓ ; r∆0, srps : Lrv{xjssσ1ay

with σ1a � σa afterEj . for which σa |ù Arv{xjs. Now the premise of validation rule
tBCHu:

Ipσpq ^Aj ;Γ $ Pj �∆0, srps : L
By Substitution Lemma we obtain

Ipσpq ^Ajrv{xjs;Γ $ Pjrv{xjs �∆0, srps : Lrv{xjs

Since by history sensitivity Aj does not contain free state variables the it is possible
to evaluate it. By Ajrv{xjs Ó true and by validation rule tBCHu we obtain Ipσpq;Γ $
Pjrv{xjs�∆0, srps : Lrv{xjs as required. This case holds by induction observing that
σ1p |ù Iand σ1a |ù I by invariant stability.

35

Case tMREQu. In this case we have Ipσpq;Γ $ P � ∆ such that, combining with the
premises of the rule tMREQu we have: P � arnspyq.Q and Ipσpq;Γ $ Q �∆, sr1s : L
where

Γ paq � G and G æ1� δtAu.L and I � A (31)

By the shape of P we can set ` � arnsxsy and P `
ÝÑ Q. By (31) we have I � A and

by hypothesis σa |ù I hence σa |ù A. Therefore the following transition is possible
using tTR-A-MREQu: xΓ, r∆sσpy

`
ÝÑ xΓ, r∆, sr1s : Lsσay as required.

Case tMACCu. Similar to the case tMCASTu above.

Case tPARu. Immediate, since the visible transition for P | Q is reducible to the same
action by either P or Q, and because the resulting assertion environments (one result
of the visible transition) can again be composed, because linear compatibility only de-
pends on channel names and participant names.

CasetRECu. This case follows from applying induction on the unfolding of P and folding
it back after the transition.

Other cases. In each case, direct from the induction hypothesis.

Case tVARu. Immediate since in this case there is no reduction from P .

Lemma 11. If true;Γ $ N � Σ and N `
ÝÑ N 1 and xΓ ;Σy `

ÝÑ xΓ ;Σ1y where ` �� τ ,
then we have true;Γ $ N 1 �Σ1

Proof. The proof is by induction on the validation rules. The case for tN1u follows by
Lemma 11. The cases for tN2u and tN3u are straightforward. We show below the case for
tN4u.

Suppose the conclusion is true;Γ $ N � r∆sσ which is derived from

true;Γ0 $ N � r∆0sσ0 (32)

with Γ0, ∆0, σ0 � Γ,∆, σ. Now first suppose the concerned visible action ` is neither
a receive action nor a branching. Now suppose N `

ÝÑ N 1. By induction hypothesis and
by (32), xΓ0; r∆0sσ0y

`
ÝÑ xΓ 1

0; r∆
1
0sσ

1
0y for some Γ 1

0, ∆1
0 and σ10 for which we have, by

induction hypothesis

true;Γ 1
0 $ N 1 � r∆1

0sσ
1
0 (33)

Since the assertion transition is deterministic and by definition of refinement Γ 1
0, ∆

1
0, σ

1
0 �

Γ 1, ∆1, σ1, by (33) we can use tN4u to reach the thesis.

36

H Completeness

We give here the outline proof for completeness. Assuming Γ |ù rP sσp � r∆0sσa, we
introduce generation rules to obtain a formula ∆ parametric with respect to a number
of predicate variables. Then we show that there exist a substitution ξ of the predicate
variables in ∆ such that: (1) true;Γ $ rP sσp � r∆ξsσa (i.e., provability of validation
rules), and (2) ∆ξ � ∆0 (completeness via refinement). The thesis is a consequence of
(2) and of validation rule tN4u. The full proofs and related definitions are long, so that
we post them in the link with the related materials [5].

I HML Embedding

Embedding We use a standard HML with the first-order predicates as in [1]. These
predicates, denoted by A in the following are to the ones appearing in assertions, de-
fined in Figure 1. The LTS associated to our HML consider as actions, denoted by `,
both the communications of the process and the updates of the state. As a consequence
P, σ

`
ÝÑ P 1, σ1 if either P `

ÝÑ P 1 and σ1 � σ or P � P 1 and σ1 � σ after `. We use φ
to denote HML-formulae, which are built from predicates, implications, universal quan-
tifiers, conjunctions and must modalities. We remark that the logic used in this safety
embedding is positive: if we remove the implication symbol, there is no negation, no
existential quantifier, no disjunction and no may modality. Additionally, the implication
will always appear asAñ φmeaning that modalities never appear in the negative side.

φ ::� true | φ^ φ | φñ φ | r`sφ | A | @x : S.φ ` ::� srp, qspxq | srp, qspxq | E

P, σ |ù φ1 P, σ |ù φ2

P, σ |ù φ1 ^ φ2 P, σ |ù true

if P, σ |ù φ1 then P, σ |ù φ2

P, σ |ù φ1 ñ φ2

For all P 1, σ1 s.t. P, σ `
ÝÑ P 1, σ1, P 1, σ1 |ù φ

P |ù r`sφ

σ $bool A

P, σ |ù A

For all values v of type T, P, σ |ù φrv{xs

P, σ |ù @x : T.φ

Fig. 13. Logical rules

The satisfactions rules (Figure 14) are fairly standard, for a pair P, σ to satisfy a
predicate A, A has to hold w.r.t. to σ, denoted by σ $bool A, meaning that σpAq is a
tautology for the boolean logic.

37

P, σ |ù φ1 P, σ |ù φ2

P, σ |ù φ1 ^ φ2 P, σ |ù true

if P, σ |ù φ1 then P, σ |ù φ2

P, σ |ù φ1 ñ φ2

For all P 1, σ1 s.t. P, σ `
ÝÑ P 1, σ1, P 1, σ1 |ù φ

P |ù r`sφ

σ $bool A

P, σ |ù A

For all values v of type T, P, σ |ù φrv{xs

P, σ |ù @x : T.φ

Fig. 14. Logical rules

The embedding of local types we propose is parametrised with a session channel
srps. Assertions appearing in input prefixes are embedded as premises in implications,
and assertions in output prefixes have to be satisfied, yielding:

}q!tlipxi : SiqtAiuxEiy.LiuiPI}srps �
�
iPI @xi : Si, rsrp, qspxiqspAi ^ rEis}Li}srpsq

}q?tljpxj : SjqtAjuxEjy.LjujPJ}srps �
�
jPJ @xj : Sj , rsrq, pspxjqspAj ñ }Lj}srpsq

The embedding of selection, is a conjunction of formulae corresponding to the branches:
for each value sent on the session channel, predicates should be satisfied and, if the state
is updated, the embedding of the continuation should hold. For branching types, the as-
sertion is used as an hypothesis and no update appear.

Soundness To obtain soundness for typing judgements involving specifications, we
have to introduce interleavings of formulae, treating the fact that one process can play
several roles in several sessions. As a simple example both srp1, p2s?pxq.k!rq1, q2s
x10y and k!rq1, q2sx10y.srp1, p2s?pxq can be typed with srp2s : p1?px : Natq.end,
krq1s : q2!py : Natq.end.

Interleaving is not a new operator per se and can be seen as syntactic sugar, describ-
ing shuffling of must modalities. The main rule for interleaving is: r`1sφ1 � r`2sφ2 �
r`1spφ1�r`2sφ2q^r`2spr`1sφ1^φ2q. When interleaving two or more formulae contain-
ing modalities, we obtain a conjunction of formulae, each one representing a different
way of organising all modalities in a way preserving their initial orders. Informally,
the interleaving of r1sr2s and rAsrBs is r1sr2srAsrBs ^ rAsrBsr1sr2s ^ r1srAsr2srBs ^

rAsr1srBsr2s ^ r1srAsrBsr2s ^ rAsr1sr2srBs.
We encode a pair ∆,Γ into a complex formula Interp∆,Γ q, defined as the inter-

leaving of the formulae obtained by encoding the local types of ∆ on their correspond-
ing channels and the formulae corresponding to Γ , built as follows: for each channel
a : IpGq, if some srps is received on a, the resulting process should satisfy the encoding
on srps of the projection of G on p:
Interps1rp1s, . . . , snrpns; a1 : IpG1q, . . . , am : IpGmqq

� }T1}
s1rp1s � . . .� }Tn}

snrpns � φ1 � . . .� φm

where φi � @s1i.@p
1
i.raips

1
irpisqs}Gi æ p1i}s

1

irp
1

is.

38

The preliminaries lemmas concerning logics need to be proved. Lemma 12 states
that a process cannot perform an action on a channel that does bot appear in its type.
Lemma 13 observes that parallel composition with processes that does not perform any
action does not change the set of formulae a process satisfies. Lemma 14 states that
satisfaction of assertion is stable by reduction and Lemma 15 enforces the stability of
satisfaction judgement by well-typed substitutions.

Lemma 12 (Type safety). If C;Γ $ P : ∆ and srps R ∆Y Γ , then there is no P 1 s.t.

P, σ
`sÝÑ P 1, σ for any action `s of the form s!rp, qsxl.vy or s!rq, pslpxq.

Similarly, if a : IpGq R Γ , there is no P 1, srps s.t. P, σ
apsrpsq
ÝÝÝÝÑ P 1, σ.

The direct corollary that will be used later is that a process typed with an empty ∆
cannot make any action.

Lemma 13 (Trivial Composition). If P1, σ |ù φ and P2 cannot make any action, then
P1 | P2, σ |ù φ.

Lemma 14 (Stability of assertions). If P, σ |ù A and P `
ÝÑ P 1, then P 1, σ |ù A.

Lemma 15 (Satisfaction substitution). If P, σ |ù φ and x : S, v : S are not bound in
P, σ and φ, then P rv{xs, σ |ù φrv{xs.

We state, thanks to the previous lemmas, the following ’simple’ soundness, for sim-
ple local types:

Proposition 1 (Simple Soundness). If C,H $ P � srps : L, then pP, σq |ù C ñ
}L}srps.

Unasserted types are built from:

L ::� p?tlipxi : UiqEi.LiuiPI | p!tlipxi : SiqEi.LiuiPI | end

The multiplicative parallel rule is given as:

C;Γ1 $ P1 : ∆1 C;Γ2 $ P2 : ∆2

C;Γ1, Γ2 $ P1 | P2 : ∆1, ∆2

Proposition 2 (Simple Completeness). For all L, if $ P : srps : ErpLq and P, σ |ù
C ñ }L}srps then C;$ P � srps : L.

Here are additional definitions for interleaving:

r`1sφ1 � pφ2,1 ^ φ2,2q � r`1spφ1 � φ2,1q ^ r`1spφ1 � φ2,2q

φ� true � φ φ� pφ1 ^ φ2q � pφ� φ1q ^ pφ� φ2q

pφ1 ^ φ2q � φ � pφ1 � φq ^ pφ2 � φq @x : T.φ1 � φ2

pAñ φ1q � φ2 � Añ pφ1 � φ2q

The following Lemmas are used in the proofs of soundness and completeness to
handle interleavings.

39

Lemma 16 (Shuffling correctness).
Let P1, P2, φ1, φ2, if P1 |ù φ1 and P2 |ù φ2 and if freepφ1q X freepP2q �

freepφ2q X freepP1q � freepP1q X freepP2q � freepφ1q X freepφ2q � H, then
P1 | P2 |ù φ1 � φ2.

Conversely, if P1 | P2 |ù φ1�φ2, freepφ1qXfreepP2q � freepφ2qXfreepP1q �
freepP1q X freepP2q � freepφ1q X freepφ2q � H, freepφ1q � freepP1q and
freepφ2q � freepP2q.

Lemma 17 (Description of free names). If C, Γ $ P : ∆ then freepP q � freep∆qY
freepΓ q

Lemma 18 (Nature of an interleaving).

Let ∆ � tskrpks : qk
!
?
t
lipxiq
ei ÞÑ lixe

1
iypxiq

tAiuxEiy.Tk,iuiPIuk and Γ � taj :

IpGjquj be well-formed, then the formula Interp∆,Γ q is equivalent to a formula
guarded by several @ operators guarding a conjunction of formulae, each one starting

with a modality, and this modalities are in bijection with the pairs of pskr
pk, qk
qk, pk

s, lk,iq

and paj ,Hq.

Proposition 3 (Soundness). If C;Γ $ P �∆, then: P, σ |ù pC ñ Interp∆,Γ qq.

Completeness The erasing operator ErpLq, which translates an asserted type into its
unasserted counterpart is straightforwardly defined: we remove every assertion A from
the local types. Unasserted typing rules for the judgements$ P �∆ are easily deduced
from the proof rules. Our completeness result is:

Proposition 4 (Completeness).
If $ P �Erp∆q and P, σ |ù pC ñ Interp∆,Γ qq then C;Γ $ P �∆.

Embedding to Pure HML We are able to embed a stateful satisfaction relation P, σ |ù
φ into a satisfaction relation P 1 |ù φ1 of a standard π-calculus with first-order values,
by encoding the σ into a π-process:

}x1 ÞÑ v1, . . . , xn ÞÑ vn}p � a1pv1q | . . . | anpvnq |
!x1peq.a1py1q . . . anpynq.pa1pevalpery1 . . . yn{x1 . . . xnsqq | a2py2q | . . . | anpynqq | . . . |
!xnpeq.a1py1q . . . anpynq.pa1py1q | . . . | an�1pyn�1q | anpevalpery1 . . . yn{x1 . . . xnsqqq

For each variable xi in the domain of the stateσ, we add an output prefix emitting its
content on the channel ai and we add a replicated module that waits for an update e
at xi, then capture the value of all variables of the current state, replace the variable
xi by evaluating e by eval, and then makes available the other ones. Soundness and
completeness allow us to state that HML formulae for pairs state/process can be seen
as pure HML formulas on the π-processes.

Embedding for state σ is given by the following:

}x1 ÞÑ v1, . . . , xn ÞÑ vn}p � a1pv1q | . . . | anpvnq |
!x1peq.a1py1q . . . anpynq.pa1pevalpety1 . . . yn{x1 . . . xnuqq | a2py2q | . . . | anpynqq |

. . .
!xnpeq.a1py1q . . . anpynq.pa1py1q | . . . | an�1pyn�1q | anpevalpety1 . . . yn{x1 . . . xnuqqq

40

For each variable xi in the domain of the stateσ, we add an output prefix emitting its
content on the channel ai and we add a replicated module that waits for an update e at
xi, then capture the value of all variable of the current state, replace the variable xi by
evaluating e w.r.t. the values of the state, and then makes available the other variables.

The embedding for the formula is given by the following:

}rEsφ}p � r}E}ps}φ}p }A}p � rx1pv1qs . . . rxnpvnqsAtv1, . . . , vn{

x1, . . . , xnu where the state variables of A are x1, . . . , xn

The following theorem ensures that the encoding is sound and complete.

Proposition 5 (Preciseness).
If P, σ |ù φ, then }P }p | }σ}p |ù }φ}p.
If }P }p | }σ}p |ù }φ}p then P, σ |ù φ

Embedding Recursion Recursion is absent from the previous embeddings, but can
actually be encoded, at the cost of much technical details, we give here a brief sketch of
how we proceed. For this purpose, we add to our HML syntax the recursion operators,
µX.φ and X (similar to the one present in the µ-calculus [15]).

The main difficulty lies in the interaction between interleaving and recursion: loops
coming from different sessions can be interleaved in many different way, and the diffi-
cult task is to compute the finite formula which is equivalent to this interleaving.

As a small example consider the following session environment (interactions are
replaced by integer labels): s1rp1s : µX.1.2.X, s2rp2s : µY.3.4.Y . The simplest HML
formula describing all possible interleavings is:

µA.pr1sµB.pr2sA^ r3sµC.pr4sB ^ r2spr1sC ^ r4s.Aqqq^
r3sµD.pr4s.A^ r1sµE.pr2sD ^ r4spr2sA^ r3sEqqqq

We use the following method to obtain a matching HML formula. We use a transla-
tion through finite automata. Here is a sketch of the method, which takes as arguments
a set session environment ∆:

1. Encode every session judgement sirpis : Ti of ∆ independently into a formula φi,
conforming to previous embedding and the definitions }µX.T }srps � µX}T }srps.

2. Translate every formula φi into a finite automata Ai, one state corresponds to a
point between two modalities or a µX in the formula, one transition correponds to
either r`spA ^ rEs�q (output) or r`spA ñ �q (input). Every automata is directed
with a source state corresponding to the head of the formula and leaf states corre-
sponding to recursion variables (or end of protocols).

3. Compute the automata A, the parallel composition of all the Ai, which is still
directed.

4. Expand the automata A, in order to obtain an equivalent branch automata, that is,
an automata such that there is a root (the starting state) and transitions form a tree
(back transitions are allowed but only on the same branch). This could be done by
recursively replacing sub-automata with several copies of this sub-automata.

41

5. Translate back the automata into a formula, every state with more than two incom-
ing transition is encoded as a recursion operator.

One our example, step 1 gives the formulas µX.r1sr2s.X and µY.r3sr4s.Y . Step 2
gives for each formula an automata with 2 states (initial and between r1s (resp. r3s) and
r2s (resp. r4s)). Step 3 gives an automata with 4 states: the inital one, one after r1s, one
after r3s, one after both r1s and r3s. This automata is diamond-shaped, and, as a result,
not tree-shaped. Step 4 yields an automata with 7 states, which is then translated in the
formula described above.

The preciseness proof relies on the fact that the operation described in 3. and 4. give
equivalent automata, and that two formulas translated to two equivalent automata are
equivalent for the HML satisfaction relation.

42

