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Abstract. Design by Contract (DbC) promotes reliable software development
through elaboration of type signatures for sequential programs with logical pred-
icates. This paper presents an assertion method, based on the wt-calculus with full
recursion, which generalises the notion of DbC to multiparty distributed inter-
actions to enable effective specification and verification of distributed multiparty
protocols. Centring on global assertions and their projections onto endpoint as-
sertions, our method allows clear specifications for typed sessions, constraining
the content of the exchanged messages, the choice of sub-conversations to follow,
and invariants on recursions. The paper presents key theoretical foundations of
this framework, including a sound and relatively complete compositional proof
system for verifying processes against assertions.

1 Introduction

This paper introduces an assertion method for specifying and verifying distributed mul-
tiparty interactions, drawing ideas from a framework known as Design-by-Contract
(DbC), which is widely used in practice for sequential computation [13, 18]. DbC [25]
specifies a contract between a user and a sequential program by elaborating the type
signature of the program with pre/post-conditions and invariants. Instead of saying “the
method fooBar should be invoked with a string and an integer: then it will return (if
ever) another string”, DbC allows us to say “the method fooBar should be invoked with
a string representing a date d between 2007 and 2008 and an integer n less than 1000
then it will (if ever) return a string representing the date n days after d”. A type signature
describes a basic shape of how a program can interact with other programs, stipulating
its key interface to other components, which may be developed by other programmers.
By associating signatures with logical predicates, DbC enables a highly effective frame-
work for specifying, validating and managing systems’ behaviour, usable throughout all
phases of software development [21, 23, 28]. As a modelling and programming practice,
DbC encourages engineers to make contracts among software modules precise [14, 25],
and build a system on the basis of these contracts.

The traditional DbC-based approaches are however limited to type signature of se-
quential procedures. A typical distributed application uses interaction scenarios that are
much more complex than, say, request-reply. To build a theory that extends the core
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Fig. 1. The assertion method

idea of DbC to distributed applications, we consider a generalised notion of type signa-
ture for distributed interactions centring on abstraction units, called sessions. A session
consists of a structured series of message exchanges among multiple participants. Each
session follows a stipulated protocol, given as a type called session type [3,19,20],
which prescribes a conversation scenario among its participants. Two or more sessions
can interleave in a single endpoint. For example, a session for an electronic commerce
will run interleaved with one for a financial transaction for payment. The communica-
tions in a distributed application are articulated as a collection of such sessions.

On this basis, we introduce a theory of assertions for distributed interactions cen-
tring on global assertions. A global assertion specifies a contract for participants in
a multiparty session by elaborating a session type with logical predicates. A session
type only specifies a skeletal protocol: it does not, for example, refer to constraints on
message values except their types. Just as in the traditional DbC, the use of logical pred-
icates allows us to specify more refined protocols, regarding, among others, content of
messages, how choice of sub-conversations is made based on preceding interactions,
and what invariants may be obeyed in recursive interactions. The key ideas are pre-
sented in Figure 1, which we illustrate below.

(0,1) A specification for a multiparty session is given as a global assertion G, namely a
protocol structure annotated with logical predicates. A minimal semantic criterion,
well-assertedness of G (§ 3.1), characterises consistent specifications with respect
to the temporal flow of events, to avoid unsatisfiable specifications.

(2) G is projected onto endpoints, yielding one endpoint assertion (‘I;) for each partic-
ipant, specifying the behavioural responsibility of that endpoint (§ 4). The consis-
tency of endpoint assertions are automatically guaranteed once the original global
assertion is checked to be well-asserted.

(3) Asserted processes, modelled with the nt-calculus! annotated with predicates (§ 5.1),
are verified against endpoint assertions (§ 5.2) through a sound and relatively com-

! For the sake of a simpler presentation, the present paper does not treat name passing in full
generality, except for private channel passing in session initiation. The theory however can
incorpoate these elements, as explained in Section 7.
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Fig. 2. Global assertion for the protocol.

plete compositional proof system (§ 6). Completeness, proved through generation
of principal formulae, yields a relative decision procedure for satisfiability.

Our contributions include an algorithmic validation of consistency of global assertions
(Prop. 3.2 and 4.3); semantic foundations of global assertions through labelled transi-
tions (Prop. 6.4 and 6.3); a compositional proof system for validating processes against
assertions (Theorem 6.5), leading to predicate error freedom (Theorem 6.6) which en-
sures that the process will meet its obligations assuming that the remaining parties do
so. Theorem 6.7 is completeness. § 7 concludes with further results and related work.

2 DbC for Distributed Multiparty Interactions

The theory we present centres on the notion of global assertion. A global assertion uses
logical formulae to prescribe, for each interaction specified in the underlying session
type, what the sending party must guarantee, and dually what the receiving party can
rely on. Concretely:

1. Each message exchange in a session is associated with a predicate which constrains
the values carried in the message (e.g., “the quantity on the invoice from seller to
buyer equals the quantity on the order”);

2. Each branch in a session is associated with a predicate which constrains the selec-
tion of that branch (e.g., “seller chooses the ‘sell” option for a product if the ordered
quantity does not exceed the stock™);

3. Each recursion in a session is associated with an invariant representing an obliga-
tion to be maintained by all parties at each repetition of the recursion (e.g., “while
negotiating, seller and buyer maintain the price per unit about a fixed threshold”).

As an illustration, Figure 2 describes a simple multiparty session among the participants
Buyer, Seller, and Bank exchanging messages whose content is represented by the
interaction variables v,, v, (of type Int) and v, (of type Bool). Buyer asynchronously
sends an offer v,, then Seller selects either to recursively start negotiating (hag) or
to accept the offer (ok). In the latter case, Buyer instructs Bank to make a payment v,,.
Finally, Bank sends Seller an acknowledgement v,. The recursion parameter p_v, is
initially set to 100 and, upon recursive invocation, it takes the value that v, had in the
previous recursive invocation. This allows us to compare the current content of v, with



the one of the previous recursion instance (cf. A2 below). In Figure 2, the recursion
invariant A states that p_v, is always greater or equal than 100; Buyer guarantees Al
which, dually, Seller relies upon; by A2, Buyer has to increase the price during ne-
gotiations until an agreement is reached; the value of the (last) offer and the payment
must be equal by A3, while A4 does not constrain v,,.

3 Global Assertions

We use the syntax of logical formulae, often called predicates, as follows.
AB i=¢e =e | e1>ex | Oler,...,en) | AANB | —A | Iv(A)

where e; ranges over expressions (which do not include channels) and ¢ over pre-
defined atomic predicates with fixed arities and types [24, §2.8]. We denotes the set
of free variables of A with var(A), similarly for var(e). We fix a model of the predi-
cates, called underlying logic, for which we assume the validity of closed formulae to
be decidable.

Global assertions (ranged over by G, G’,...) elaborate global session types in [20]
with logical formulae. The syntax is given below:

G = p—p:k(¥:85){A}.G | &) - p,pl’7 .. are participants,
| p _)p/: k{{AJ}lj gj}jel | g’ g, - k,k 5o are.channe.ls, .
N u,v,.. are interaction variables,
| @)V 5){A}.G | end - 8,5, .. are sorts.
Interaction p — p': k (¥: §){A}.G describes a communication between a sender p and
a receiver p’ via the k' session channel (k is a natural number), followed by G. The
variables in the vector ¥ are called interaction variables and bind their occurrences in
A and G; interaction variables are sorted by sorts S (Bool, Int, ...) that denote types for
first-order message values. The predicate A constrains the content of ¥: the sender p
guarantees A and the receiver p’ relies on A (like in the rely-guarantee paradigm [22]).

Branching p —p’: k{{A;j}lj: G;j}jcs allows the selector p to send to participant p’,
through £, a label /; from {I j} jes (J is a finite set of indexes) if p guarantees A; (upon
which p’ can rely). Once /; is selected, G; is to be executed by all parties.

Recursive assertion ut(&y(v: §){A}.G (cf. [11], tis an assertion variable) specifies
how a recursive session, which may be repeated arbitrarily many times, should be car-
ried out through interactions among participants. The formal parameters ¥ are a vector
of pairwise distinct variables sorted by a vector of sorts S of the same length (each v; in
7 has sort S; of S); ¥ binds their free occurrences in A. The initialisation vector & denotes
the initial values for the recursion, each e; instantiating v; in v. The recursion invariant
A specifies the condition that needs be obeyed at each recursion instantiation; recursion
instantiation, of the form t{é), is to be guarded by prefixes, i.e. the underlying recursive
types should be contractive. A recursive assertion can be unfolded to an infinite tree, as
in the equi-recursive view on recursive types [30].

Composition G, G’ represents the parallel interactions specified by G and G, while
end represents the termination. Sorts and trailing occurrences of end are often omitted.

We write p € G when p occurs in G. For the sake of simplicity we avoid linearity-
check [3] by assuming that each channel in G is used (maybe repeatedly) only between
two parties: one party for input/branching and by the other for output/selection.



Example 3.1 (Global Assertions). The protocol described in § 2 is modelled by
Greg = ut{100)(p_v, : Int){A}. Buyer — Seller: ki (v, : Int){A1}.
Seller — Buyer: kx{{A2}hag: t{v,), {true}ok: G}
Gok = Buyer — Bank: k3 (v, : Int){A3}. Bank — Seller: k4 (v, : Bool){A4}. end
where k1, k», k3, and k4 are channels and the recursion parameter p_v, (initially set to
100) denotes the offer of Buyer in the previous recursion instance.

3.1 Well Asserted Global Assertions

When setting up global assertions as a contract among multiple participants, we should
prevent inconsistent specifications, such as those in which it is logically impossible
for a participant to meet the specified obligations. Below we give two constraints on
predicates of global assertions that guarantee consistency.

Let I(G) be the set of variables occurring in G; a participant p knows ve I(G) if v
occurs in an interaction of G involving p (this relation can be computed effectively, see
[31]). I(G) | p denotes the set of variables of G that p € G knows.

History-sensitivity A predicate guaranteed by a participant p can only contain those
interaction variables that p knows.

Temporal-satisfiability For each possible set of values satisfying A and, for each pred-
icate A’ appearing after A, it is possible to find values satisfying A’.

Consider the following examples:

pa —pa: ki (v:Int){true}. pg — pc: k2 (V' : Int){true}. pc — pa: k3 (z: Int){z > v}. end
pa—pe: ki (v:Int){v <10} pg = pa: k2 (z: Int){v > z Az > 6}. end.

The first global assertion violates history-sensitivity since p¢ has to send z such that
z > v without knowing v. The second global assertion violates temporal-satisfiability
because if py sends v = 6, which satisfies v < 10, then pg will not be able to find a value
that satisfies 6 > z Az > 6.

Assertions satisfying history-sensitivity and temporal-satisfiability are called well-
asserted assertions. For the formal definitions, including inductive rules to check well-
assertedness, see [31].

Proposition 3.2 (Well-assertedness). Checking well-assertedness of a given global
assertion is decidable if the underlying logic is decidable.

4 Endpoint Assertions and Projection
Endpoint assertions, ranged over by 7,7’ , .., specify the behavioural contract of a ses-
sion from the perspective of a single participant. The grammar is given as follows.

T u= K SART | i@ SALT | k&liAibl: Thier
| KI:S{ALT | Ke) | k@ {{A;};: Ti}jer | end

In k!(¥: S){A}; T, the sender guarantees that the values sent via k (denoted by S-sorted
variables ¥) satisfy A, then behaves as 7'; dually for the receiver k?(¥: S){A}; 7.



In k@ {{A;}l;: Tj} e the selector guarantees A; when choosing /; on k; dually
k&{{A;}l;: T;}ics states that A; can be assumed when branching at k on a label ;. As-
sertion ut(&y(v: §){A}.T constrains parameters ¥ of type S which initially take values
&; the invariant of the recursion is A.

The projection of predicate A on participant p, written A | p, existentially quantifies
all the variables of A that p does not know, and is defined as 3V, (A) where V,,, =
var(A)\\I(G) | p. Also, € | p are the expressions in & including only such that var(e;) S
I(G) | p. The projection function in Definition 4.1 maps global assertions, predicates
and participants to endpoint assertions.

Definition 4.1 (Projection). Given G and A, the projection of G for a participant p wrt
A is denoted by (G) l‘g and, assuming pj # py, recursively defined as follows.

) KI(7: 8){AL(G)) Lo ifp=pi
(1) (p1—p2: k(7:8){A}.G") 1" = { K2(5: ){(A A Ap) 1P}(G)) 13" ifp=1)
(6') 1" otw
k@ {{A}li: (G) Lo ™ Yier ifp=rpi
(2) (p1— pa: k{{Ai}li: Gilier) 157 = k&{{(ﬁi/\AP)ATP}lii (Gi)i?iAAP}fz ifp=ps
(G1) Lo Vet (= (G 1am M VEAY otw
ar_ J(G) 15" ifpe Giandpg Gji# je{1,2}
&) (G1.62)tp {end ifp¢ Grandp¢ G
(4) (ut((7: 8){A}.G) Lor =t 1 p)(7 Ip: S){A 1p}.(G) 13"
(5) (K2) lp"=z ) (6) (end) 1A= end

If no side condition applies, (G) |2 is undefined. The projection of G on p, denoted
G I'p,is given as (G) v,

In (1), value passing interactions are projected. For a send, the projection of a predicate
A consists of A itself. Notice that if G is well-asserted then p; knows all variables in
A (i.e., A [ p1 = A). For a receive, it is not sufficient to verify the non-violation of the
current predicate only. Consider the following well-asserted global assertion:

Seller — Buyer: kj (cost : Int){cost > 10} .Buyer — Bank: k; (pay : Int){pay = cost}.end

The predicate pay = cost is meaningless to Bank since Bank does not know cost; rather
the projection on Bank should be k,?(pay : Int){3cost(cost > 10 A pay > cost)}, which
incorporates the constraint between Buyer and Seller. Thus (1) projects all the past
predicates while hiding incorporating the constraints on interactions p, does not partic-
ipate through existential quantification. This makes (1) the strongest precondition i.e. it
is satisfied iff p, receives a legal message, avoiding the burden of defensive program-
ming (e.g. the programmer of Bank can concentrate on the case pay < 10).

In (2), the “otw” case says the projection should be the same for all branches. In
(3), each participant is in at most a single global assertion to ensure each local assertion
is single threaded. In (4), the projection to p is the recursive assertion itself with its
predicate projected on p by existential quantification, similarly in (5).



Example 4.2 (Projection). The projection of Gy, (Example 3.1) on Seller is

Tyer = ut{100)(p_v, : Int){p_v, = 100};k1?(v, : Int){B}; T
D =k @{{vo > p-vothag: t(v,),{true}ok: T}
Tor = G | Seller = ky4?(v, : Bool){B'}

where B = p_v, = 100 Av, > 100 and B’ = 3p_vy.B AV, = V).

Below well-assertedness can be defined on endpoint assertions as for global assertions,
characterising the same two principles discussed in §3.1.

Proposition 4.3 (Projections). Let G be a well-asserted global assertion. Then for
eachp € G, if G | p is defined then G !p is also well-asserted.

5 Compositional Validation of Processes

5.1 The w-Calculus with Assertions

We use the wt-calculus with multiparty sessions [20, §2], augmented with predicates for
checking (both outgoing and incoming) communications.
The grammar of asserted processes or simply processes (P,Q,...) is given below.

P ::=ar2.n](5).P request | s <\{A};P select Py =P | (V§)Py
| atp1 (5).P accept | s> {{A;};: Pi}ier  branch | s:h
| (va)P hide |P|Q parallel | errH | errT
| si&Y(D){A}; P send | uX{ety(vs5).P rec def e=nlene..
| s2(P){A}; P receive | X{é§) rec call n :=a|true | false
| if e then P else Q  conditional | 0 idle hoo=1|7

On the left, we define programs. di2.n)(8).P multicasts a session initiationrequest to
each app] (§).P (with 2 < p < n) by multiparty synchronisation through a shared name
a. Send, receive, and selection, all through a session channel s, are associated with a
predicate. Branch associates a predicate to each label. Others are standard.

Runtime processes Py, given in the third column in the grammar, extend programs
with runtime constructs. Process s: h..h, represents messages in transit through a ses-
sion channel s, assuming asynchronous in-order delivery as in TCP, with each &; denot-
ing either a branching label or a vector of sessions/values. The empty queue is written
s: . Processes errH and errT denote two kinds of run-time assertion violation: errH
(for “error here”) indicates a predicate violation by the process itself; and errT (“error
there”) a violation by the environment.

Example 5.1 (Seller’s Process). We set Buyer, Seller, Bank to be participants 1,2,3
and define a process implementing the global assertion G, in Examples 3.1 and 4.2 as
Preg = a12,31(8).P1 | ai21(5).P | ai31(5).P3. Let us focus on the Seller

Py = pX{100,5)(p-vo,5).517(vo){B}; 02
0, = if ethen (s, <thag; X{v,,5)) else (s <10k; P,;) where Py =s542(v4){B'};0

where B and B’ are as in Example 4.2, § = s1,..,54, and O, uses a policy e to select a
branch (e.g., e = {v, > 200 A v, > pv,}).



@120 (5).Py | a21(5).Ps | . |a[n]()P—>(Vs)(P1|P2| APl s1:D | |sn: @) [Reiink]

sWEY(P){AY;P | s:h— P[/v] | s:h-@ (el nA[f/v] | true) [R-sEND]
s?(V){A}; P | s:f-h— P[a/V] | s:h (A[7/¥] | true) [R-RECV]
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s<<{A} :P—errH (A] false) [R-SELECTERR]

Fig. 3. Reduction: non-error cases (top) - error cases (bottom)

The reduction rules with predicate checking are given in Figure 3, which generate
— by closing the induced relation under | and v and taking terms modulo the standard
structural equality? [20]. The satisfaction of the predicate is checked at each commu-
nication action: send, receive, selection and branching, where we write A | true (resp.
¢ | n) for a closed formula A (resp. expression &) when it evaluates to true (resp. ).
When initiating a session, [R-LINK] establishes a session through multiparty synchro-
nisation, generating queues and hiding all session channels. The remaining rules are
standard, modelling communications in a session via queues [3, 20].

5.2 Validation Rules

For validation, we use judgements of the form C;I" -+ P> A, which reads: “under
C and T, process P is validated against A”. Here, C is an assertion environment,
which incrementally records the conjunction of predicates; hereafter, I' - P> A ab-
breviates true;I" - P=>A. T is a global assertion assignment that is a finite function
mapping shared names to well-asserted global assertions and process variables to the
specification of their parameters (we write I' - a : G when I" assigns G to a and
I'-X:(v:5)7 @p;...7, @p, when I" maps X to the vector of endpoint assertions
7, @p,... 7, @p, using the variables ¥ sorted by S). A is an endpoint assertion as-
signment which maps the channels for each session, say §, to a well-asserted endpoint
assertion located at a participant, say 7 @ p.

The validation rules are given in Figure 4. In each rule, we assume all occurring
(global/endpoint) assertions to be well-asserted. The rules validate the process against
assertions, simultaneously annotating processes with the interaction predicates from
endpoint assertions. We illustrate the key rules.

Rule [SND] validates that participant p sends values é on session channel k, provided
that é satisfy the predicate under the current assertion environment; and that the con-

2 The structural equality includes uX{&)(¥5.. ) P = P[ (v§1 ...81).P/X][é/7] where
X&' Y[uX (V5] ...5,).P/X] is defined as uX{&'§ )(17 §n).P
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[MCAST]

[MAcc]

[HIDE]

[VAR]

[REC]

Fig. 4. Validation rules for program phrases

tinuation is valid, once ¥ gets replaced by é. Dually, rule [Rcv] validates a value input
against the continuation of the endpoint assertion under the extended assertion envi-
ronment C A A (i.e., the process can rely on A for the received values after the input).
Rules [SEL] and [BRA] are similar. Rules [Macc] and [McasT] for session acceptance
and request validate the continuation against the projection of the global assertion onto
that participant (n is the number of participants in G and p is one of them).

Rule [IF] validates a conditional against A if each branch is validated against the
same A, under the extended environment C Ae or C A —e, as in the corresponding rule
in Hoare logic. As in the underlying typing [20], rule [CONC] takes a disjoint union of
two channel environments, and rule [IDLE] takes A which only contains end as endpoint
assertions. Rule [HIDE] is standard, assuming a is not specified in C.

Rule [CONSEQ] uses the refinement relation D on endpoint assertions. If 7 3 77,
T specifies a more refined behaviour than ‘T, in that 7 strengthens the predicates for
send/selection, so it emits/selects less; and weakens those for receive/branching, so it
can receive/accept more. Example 5.2 illustrates this intuition.

Example 5.2 (Refinement). Below, endpoint assertion 7 refines 7, (i.e., Z; D 7,,):

Ty = ki!(v:Int){v > 10}; kr?(z: Int){z > 0}; k3&{{true}I1: 71, {v > 100}12: T}
Ty = ki!(v:In){v > 0}; kx?(z: Int){z > 10}; k3&{{v > 100}11: T}

7, has a stronger obligation on the sent value v, and a weaker reliance on the received
value z; while Z; has a weaker guarantee at 11 and offers one additional branch.

The formal definition is in [31], where we also show that the refinement relation is
decidable if we restrict the use of recursive assertions so that only those in identical
shapes are compared, which would suffice in many practical settings.



Rule [VAR] validates an instantiation of X with expressions against the result of per-
forming the corresponding substitutions over endpoint assertions associated to X (in
the environment). In [REC], a recursion is validated if the recursion body P is validated
against the given endpoint assertions for its zero or more sessions, under the same end-
point assumptions assigned to the process variable X. The validity of this rule hinges
on the partial correctness nature of the semantics of the judgement.

Example 5.3 (Validating Seller Process). We validate the Seller part of Py, in Ex-
ample 5.1 using Zy; from Example 3.1. We focus on one branch of Q> in P, and
associate each s1,...,54 of Py, to a channel ki,...,ks of T, respectively. Recall that
B=pwv,=2100Av,>100,A1 =v, > p_v,,and A2 =Fv,.p_v, =100 Av, =100 AV, =
vp. Below Qur = 54?(v4){B'};0.
(BA—eAB),THO0>t:end@2
(BA—e),TH 542vy){B'};0>5: ky?(vy : Int){B'};end @ 2
(BA—e)DAl (BA—e),'FQu>§: T @2
B A —e, T 57 <10K; Qi =5 : kp @ {{true}ok : Tpi,{Al}hag: t{v,)} @2
B,T I if e then (so <thag; X{v,,5)) else (s; <10K;54?(v){B'};0)=5: T, @2
true,I' - 512(v5){B}; Q2 =5 : k1 2(vo : Int){B}; T, @2

[IDLE]

[Rcv]

(substituting)

[SEL]
[IF]

[Rcv]

The ... on the premise of [IF] indicates the missing validation of the first branch. The
interested reader may refer to [31] for a complete validation example with recursion.

6 Error-Freedom and Completeness

6.1 Semantics of Assertions

The semantics of asserted processes is formalised as a labelled transition relation that
uses the following labels
o= a[2.n](8) | a[i](8) | s\E | s | | sl | s>l |1

for session requesting/accepting, value sending/receiving, selection, branching, and the
silent action, respectively. We write P S QO when P has a one-step transition o to Q.
The transition rules are the standard synchronous ones’ except that: (i) predicates are
checked at each communication action and, if the predicate is violated, in the case of
input/branching action the process moves to errT, in the case of an output/selection the
process moves to errH with t-action, (ii) they include the reduction semantics given in
§5.1 (i.e., P— Qinduces P =5 Q).

The semantics of endpoint assertions is defined as another labelled transition rela-
tion, of form (I', A) = (I, A’), which reads: the specification (T, A) allows the action
o, with (I, A"y as the specification for its continuation. In this transition relation, only
legitimate (assertion-satisfying) actions are considered.

We define the semantic counterpart of I' - P A by using a simulation between
the transitions of processes and those of assertions. The simulation (Definition 6.1),

3 The synchronous transition suites our present purpose since it describes how a process
places/retrieves messages at/from queues, when message content may as well be checked.
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requires an input/branching action to be simulated only for “legal” values/labels, i.e. for
actions in which predicates are not violated. Intuitively, we demand conformance to a
proper behaviour only if the environment behaves properly. Below we use the predicate
erasure to show that the validation can prevent bad behaviour even without runtime
predicate checking, writing erase(P) for the result of erasing all predicates from P.
Similarly erase(I') and erase(A) erase predicates from the underlying session types,
giving the typing environments. P is closed if it is without free variables.

Definition 6.1 (Conditional Simulation). Let & be a binary relation whose elements
relate a closed process P without errH or errT and a pair of assignments {I', A) such that
erase(I) - erase(P) =erase(A) in the typing rules in [20, §4]. Then R is a conditional
simulation if, for each (P,{T',A)) € R

1. for each input/branching/session input P = P’, (I, A) has a respective move at
sbj(at) (the subject of o) and, if (I', AY 5 (I, A’) then (P, (I, A")) € R..
2. for each output/selection/t/session output move P -5 P', (I’ A % (I, A’) such that
(P (I, A))eR.
If K is a conditional simulation we write P < (I, A) for (P,<{T",A)) € R..

The conditional simulation requires P to be well-typed against erase(I") and erase(A).
Without this condition, the inaction 0 would conditionally simulate any A. This stringent
condition can be dropped, but our interest is to build an assertion semantics on the basis
of the underlying type discipline.

Definition 6.2 (Satisfaction). Let P be a closed program and A an end-point assertion
assignment. If P < (I",A) then we say that P satisfies A under T, and write I' = P =A.
The satisfaction is extended to open processes, denoted C;I" = P = A, by considering
all closing substitutions respecting I" and C over A and P.

The judgement I' = P A in Definition 6.2 states that (1) P will send valid messages
or selection labels; and (2) P will continue to behave well (i.e., without going into
error) w.r.t. the continuation specification after each valid action in (1) as well as after
receiving each valid message/label (i.e. which satisfies an associated predicate). The
satisfaction is about partial correctness since if P (is well-typed and) has no visible
actions, the satisfaction trivially holds.

6.2 Soundness, Error Freedom and Completeness

To prove soundness of the validation rules, we first extend the validation rules to pro-
cesses with queues, based on the corresponding typing rules in [3, 20].

Proposition 6.3 (Subject Reduction). Let ' P>A be a closed program and suppose
we have (T, A) "5 (I | A", Then P *“5™" P’ implies T - P A,

The proof uses an analysis of the effects of T-actions on endpoint assertions, observing
the reduction at free session channels changes the shape of the session typing [3, 20].

Let A D A’ be a point-wise extension of D (defined when dom(A) = dom(A'));
Proposition 6.4 says that a process satisfying a stronger specification also satisfies a
weaker one. Using these results we obtain Theorem 6.5.
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Proposition 6.4 (Refinement). [fT |= P>Aand AD AN thenT = P=>A.

Theorem 6.5 (Soundness of Validation Rules). Ler P be a program. Then C;I" -+
P=A implies CT|EP=A.

A direct consequence of Theorem 6.5 is the error freedom of validated processes. Below
we say (I', A allows a sequence of actions o;..0, (n = 0) if for some {I"",A”) we have

(T, A) 45 (I, A,

Theorem 6.6 (Predicate Error Freedom). Suppose P is a closed program, I' - P=>A
and P 5" P’ such that <T',AY allows 0;..0,,. Then P' contains neither ertH nor errT.

The proof system is complete relative to the decidability of the underlying logic for
processes without hidden shared names. We avoid name restriction since it allows us
to construct a process which is semantically equivalent to the inaction if and only if
interactions starting from a hidden channel terminate. Since we can simulate arbitrary
Turing machines by processes, this immediately violates completeness. In this case,
non-termination produces a dead code, i.e. part of a process which does not give any
visible action, which causes a failure in completeness.4

For each program without hiding, we can compositionally construct its “principal
assertion assignment” from which we can always generate, up to 3, any sound assertion
assignment for the process. Since the construction of principal specifications is compo-
sitional, it immediately gives an effective procedure to check |= as far as D is decidable
(which is relative to the underlying logic). We conclude:

Theorem 6.7 (Completeness of Validation Rules for Programs without Hiding).
For each closed program P without hiding, if T |= P>A then T P>A. Further T |=
P A is decidable relative to the decidability of 3.

7 Extensions and Related Work

Extensions to shared and session channel passing. The theory we have introduced in
the preceding sections directly extends to shared channel passing and session channel
passing, or delegation, carrying over all formal properties. In both cases, we have only
to add predicate annotations to channels in assertions as well as in asserted processes.
The shape of the judgement and the proof rules do not change, similarly the semanics
of the judgement uses a conditional simulation. We obtain the same soundness result as
well as completeness of the proof rules for the class of processes whose newly created
channels are immediately exported. Since the presentation of such extension would
require a detailed presentation of the notion of refinement, for space constraints and
simplicity of presentation we relegate it to [31].

Hennessy-Milner logic for the m-calculus. Hennessy-Milner Logic (HML) is an ex-
pressive modal logic with an exact semantic characterisation [17]. The presented the-
ory addresses some of the key challenges in practical logical specifications for the 7t-
calculus, unexplored in the context of HML. First, by starting from global assertions, we

4 Not all dead codes cause failure in completeness. For example a dead branch in a branching/-
conditional does not cause this issue since the validation rules can handle it.
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gain in significant concision of descriptions while enjoying generality within its scope
(properties of individual protocols). Previous work [2, 11] show how specifications in
HML, while encompassing essentially arbitrary behavioural properties of processes,
tend to be lengthy from the practical viewpoint. In this context, the direct use of HML
is tantamount to reversing the methodology depicted in Figure 1 of § 1: we start from
endpoint specifications and later try to check their mutual consistency, which may not
easily yield understandable global specifications.

As another practical aspect, since 3 is decidable for practically important classes as-
sertions [31], the present theory also offers algorithmic validation methods for key engi-
neering concerns [32] including consistency of specifications (cf. §3.1) and correctness
of process behaviours with full recursion against non-trivial specifications (cf. Theo-
rem 6.7), whose analogue may not be known for the general HML formulae on the
n-calculus. The use of the underlying type structures plays a crucial role.

From the viewpoint of logical specifications for name passing, the present theory
takes an extensional approach: we are concerned with what behaviours will unfold start-
ing from given channels, than their (in)equality [11]. While our approach does reflect
recommended practices in application-level distributed programming (where the direct
use of network addresses is discouraged), it is an interesting topic to study how we can
treat names as data as studied in [11].

Corresponding assertions and refinement/dependent types. The work [6] combines
session-types with correspondence assertions. The type system can check that an as-
sertion end L, where L is a list of values (not a logical formula), is matched by the
corresponding begin effect.

The use of session types to describe behavioural properties of objects and compo-
nents in CORBA is studied in [33]. In another vein, the refinement types for channels
(e.g. [5]) specify value dependency with logical constraints. For example, one might
write ?(x: int,!{y : int | y > x}) using the notations from [15, 34]. It specifies a depen-
dency at a single point (channel), unable to describe a constraint for a series of inter-
actions among multiple channels. Our theory, based on multiparty sessions, can verify
processes against a contract globally agreed by multiple distributed peers.

Contract-based approaches to functions and communications and functions. Veri-
fication using theories of contracts for programming functional languages, with appli-
cations to the validation of financial contracts, is studied in [29, 35]. Our theory uses
the mt-calculus with session types as the underlying formalism to describe contracts for
distributed interactions. We observe that a contract-based approach for sequential com-
puting is generally embeddable to the present framework (noting that function types are
a special form of binary session types and that the pre/post conditions in sequential con-
tracts are nothing but predicates for interactions resulting from the embedding); it is an
interesting subject of study to integrate these and other sequential notions of contracts
into the present framework, which would enable a uniform reasoning of sequential and
concurrent processes.

In [8, 12] use c-semirings to model constraints that specify a Service Level Agree-
ment. It would be interesting to consider global assertions where the logical language
is replaced with c-semirings. This would allow global assertions to express soft con-
straints but it could affect the effectiveness of our approach. However c-semirings do
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not feature negation and the decidability of logics based on c-semrings has not been
deeply investigated.

The global consistency checking is used in advanced security formalisms. In [16]
a rely-guarantee technique is applied to a trust-management logic. The main technical
difference is that users have to directly annotate each participant with assertions because
of the the absence of global assertions. In [4] cryptography is used to ensure integrity
of sessions but logical contracts are not considered.

Theories of contracts for web services based on advanced behavioural types are
proposed, including those using CCS [7], m-calculus [10], and conversation calculus
[9]. Some of the authors in this line of study focus on compliance of client and services,
often defining compliance in terms of deadlock-freedom, e.g., in [1] a type system guar-
anteeing a progress property of clients is defined.

Our approach differs from the preceding works in its use of global assertions for
elaborating the underlying type structure, combined with the associated compositional
proof system. This permits us to express and enforce fine-grained contracts of chore-
ographic scenarios. Global/endpoint assertions can express constraints over message
values (including channels), branches and invariants, which cannot be represented by
types alone, cf. [20]. The enriched expressiveness of specifications introduces technical
challenges: in particular, consistency of specifications becomes non-trivial. The pre-
sented consistency condition for global assertions is mechanically checkable relatively
to the decidability of the underling logic, and ensures that the end-point assertions are
automatically consistent when projected. On this basis a sound and relatively complete
proof system is built that guarantees semantic consistency.

As a different DbC-based approach to concurrency, an extension of DbC has been
proposed in [27], using contracts for SCOOP [26] in order to reason about liveness prop-
erties of concurrent object-oriented systems. The main difference of our approach from
[27] is that our framework specifies focuses on systems based on distributed message
passing systems while [27] treats shared resources. The notion of pre-/post-conditions
and invariants for global assertions centring on communications and the use of projec-
tions are not found in [27]. The treatment of liveness in our framework is an interesting
topic for further study.
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