
BPMN Modelling of Services with
Dynamically Reconfigurable Transactions?

Laura Bocchi1, Roberto Guanciale2, Daniele Strollo3, and Emilio Tuosto1

1 Department of Computer Science, University of Leicester, UK
2 Department of Computer Science, University of Pisa, Italy

3 Istituto di Scienza e Tecnologie dellInformazione “Alessandro Faedo”, CNR, Pisa, Italy

Abstract. We promote the use of transactional attributes for modelling business
processes in the service-oriented scenario. Transactional attributes have been in-
troduced in Enterprise JavaBeans (EJB) to decorate the methods published in Java
containers. Attributes describe “modalities” that discipline the reconfiguration of
transactional scopes (i.e., of caller and callee) upon method invocation.
An original element of our research programme is the definition and study of
modelling and programming mechanisms to control dynamically reconfigurable
transactional scopes in Service-Oriented Computing (SOC). On the one hand we
give evidence of the suitability of transactional attributes for modelling and pro-
gramming SOC transactions. As to a proof of concept we show how BPMN can
be enriched with a few annotations for transactional attributes. On the other hand,
we show how the results of a theoretical framework enable us to make more ef-
fective the development of transactional service-oriented applications.

1 Introduction

In this paper we promote the use of transactional attributes for modelling transactional
business processes in service-oriented systems. An original element of our research
programme is the definition and study of modelling mechanisms for dynamically re-
configurable transactional scopes in SOC.

The long-lasting and cross-domain nature of activities in service-oriented systems
contributed in characterising a novel powerful paradigm but, on the other hand, imposed
to re-think a number of classic concepts. Among these concepts, the notion of transac-
tion had to be adapted in order to fit the requirements imposed by the of the Service-
Oriented Computing (SOC) paradigm. SOC transactions, which are often referred to
as long-running transaction, ensure a weaker set of properties (e.g., no atomicity nor
isolation) with respect to the classic ACID transactions used in database systems; on
the other hand they do not require to lock resources.

The investigation of formal semantics for SOC transactions has been a topic of
focus in the last few years (see § 5 for a non-exhaustive overview). Central to this in-
vestigation is the notion of compensation, a weaker and “ad hoc” version of the classic
rollback of database systems. Most of the research on long-running transactions has

? This work has been partially sponsored by the project Leverhulme Trust Award ”Tracing Net-
works”.



been focusing on providing suitable (formal) semantics of compensations while not
much attention has been reserved to the inter-dependencies of failure propagation and
dynamic reconfiguration. This is a very critical issue in SOC, where dynamic reconfig-
uration is one of the key characteristics. In fact, the configuration of a service-oriented
system can change at each service invocation to include new instances of invoked ser-
vices in the ongoing computation. Notably, the reconfiguration affects the relationships
between existing and newly created transactional scopes.

To the best of our knowledge, these issues have been first considered in [2, 3, 1]
where it was proposed a process calculus featuring transactional attributes (or attributes
for short), inspired to the transactional mechanisms of EJB [14, 12]. The theoretical
framework in [2, 3, 1] aims to analyse different semantics of transactional scope recon-
figuration, the observable behaviour of service-oriented system, failure propagation,
and transactional scope reconfiguration.

We contend that transactional attributes represent a useful conceptual device also
in the modelling phases and during the development of transactional SOC applications.
This paper proposes a methodology based on the features of transactional attributes and
the theoretical framework of [2, 3, 1] to enable software architects and engineers to de-
sign and develop distributed applications with transactional properties in the service-
oriented scenario. In this paper, we highlight the benefits of using transactional at-
tributes for modelling and programming transactional service-oriented processes. As a
proof of concept, we show how the Business Process Modelling Notation (BPMN) [8]
can be enriched with transactional attributes and, through the use of a simple case study,
we illustrate the suitability of an attribute-aware process modelling.

At design time, the software architect typically abstracts from the distribution of
the activities, the communication mechanisms and the technologies that will implement
each activity. Also, a BPMN specification can describe a distributed workflow and its
transactional properties both from local and global points of view; as a matter of fact,
developers can create service-oriented applications from BPMN models by exploiting
different strategies. One strategy consists of modelling a service-oriented process by
means of an (e.g. BPEL4WS) orchestrator by assembling tasks each representing a call
to either a local or outsourced functionality (i.e., service). The orchestrator is a cen-
tral entity that drives the interaction among services and manages their execution order.
The other strategy has a more collaborative flavour and requires processes of BPMN
designs to act as an ensemble that separately describe the role played by each partic-
ipant. In this case there is no single “controlling” process managing the interactions
and the activity of each process consists of both invocations to other services and to an
interactive conversation with them.

In this paper we illustrate how the development from abstract BPMN designs can
be improved by the usage of transactional attributes. Intuitively, attribute-aware designs
give information on the transactional support required from the different tasks; note-
worthy, such information can be exploited when developing applications distributively.
In fact, transactional attributes provide a useful set of preconditions which helps in pre-
venting what is commonly known as defensive programming for those functionalities to
be developed internally to an organisation1. The use of transactional attributes let pro-

1 In defensive programming the code is filled with unnecessary controls to validate data.

2



grammers to rely on a set of preconditions and assumptions on the transactional context
in which the task will be executed thus (s)he is relieved form the burden of consider-
ing all possible cases. For functionalities provided by external parties, attribute-aware
designs provide a useful set of non-functional requirements that allow to select the best
match among the available services.

As a second contribution, we illustrate how the extension of BPMN (e.g., with con-
structs for service invocation/instantiation associated to transactional attributes and con-
structs for representing distributed transactions) allows to define, at design time, enough
information for controlling the run-time reconfiguration of transactional scopes and to
model all the possible scope configurations allowed by EJB.

Finally, we show how the results of a recently published theoretical framework [2,
3, 1] enable us to make more effective some common development activities of service-
oriented applications. Actually, in [1] it has been proved that, under certain conditions,
some of the proposed transactional attributes may be considered equivalent; this can be
used to deduce that some scenarios may be ignored in during the development.

Structure of the paper In § 2 we summarise the key ingredients of our paper, namely
BPMN, EJB attributes, and our case study. The description of our methodology and
the use of attributes in BPMN designs is given in § 3. The extension of BPMN to
incorporate service invocation and distributed transactional scope handling is reported
in 4. Concluding remarks and considerations on future work are given in § 5.

2 Background

In this section we provide the background information which is used in the rest of
the paper. In 2.1 we give a brief introduction of the BPMN notation. In 2.2 we give
an intuition of the semantics of scope reconfiguration featured by EJB. Finally, in 2.3
we introduce the case study that will be used in this paper to illustrate the proposed
approach.

2.1 The Business Process Modeling Notation

The Business Process Modeling Notation [8] (BPMN) allows us to describe business
processes through a graphical notation. The main building blocks of a BPMN design
are flow objects, which represent activities and events involved in a business process.
As illustrated in Figure 1, BPMN processes involve two special events: the starting
point of the business process graphically represented by an empty single-edge circle,
and its termination point drawn as an empty double-edge circle; rounded-corner boxes
represent tasks to be executed.

Exploiting LRTs abstraction, each BPMN task can be equipped with a compensa-
tion that is responsible to partially recover the task effects if the execution of the whole
process cannot be completed. BPMN compensations are represented by tasks connected
to the exception events by dotted dashed lines. For example, the process in Figure 2 de-
scribes that the compensation CompA can rectify the effects produced by the task A.
Dashed arrows are used link a task with its corresponding compensation.

3



A

Fig. 1: BPMN process with one task

A

CompA

Fig. 2: A BPMN task with compensation

Arrows connecting flow objects represents their dependencies, usually referred to as
forward-flow. Standard arrows describe the temporal order of execution of the business
process as opposed to the backward-flow, that is the order of execution of compensa-
tions. In literature, the order in which compensation must be executed is referred as
is usually takes as “the inverse order” of the forward-flow. If the execution of a task
fails, the forward-flow is stopped and the backward-flow started by executing first the
compensation of the most recent successfully executed task back to the initial one. The
BPMN process in Figure 3 describes the usage of arrows to compose tasks and defin-

A

CompA

B

CompB

Fig. 3: Sequential composition of BPMN tasks

ing the forward-flow. The process models a sequence of two tasks: the task B can be
executed only after the successfully termination of A.

Figure 4 models a concurrent process. After the termination of the task A, both the
tasks B and C can be executed independently, the crossed box on the left is used to reg-
ulate their parallel activation. The crossed box on the right represents a synchronization
barrier, waiting for the termination of all elements connected by an incoming arrow
before to propagate the forward-flow execution.

BPMN permits to design nested transactions, as depicted in Figure 5. A double
edge box represents a transactional scope. Intuitively, this scoping mechanism allows
transactional scopes to hide any fault of a contained task to external processes.

4



A

CompA

B

CompB

C

CompC

D

CompD

Fig. 4: BPMN concurrent tasks

A

CompA

Fig. 5: BPMN sub-transaction

BPMN exploits “pools” to represent interactive participant in a Business to Busi-
ness design. A pool can contain a process, which must be fully contained within the
pool itself. Namely, forward-flow dependencies cannot cross pool (participant) bound-
aries. Interaction between participants is modeled via the Message flow (e.g. Figure 6).
Similarly, transactional boxes cannot cross their pools.

Bu
ye

r

Receive... ...

Se
lle

r

Send... ...

order

PO Message

Fig. 6: BPMN pools

5



2.2 EJB Transactional Attributes

In EJB, objects can be assembled in a specialised run-time environment called con-
tainers, which can be thought of as configuration tools to set up a few characteristics
of distributed applications at deploy time. A Java bean can be thought of as on object
amenable to be executed in a container (see e.g., [14, 12]). An EJB container supports
typical functionalities to manage e.g. the life-cycle of a bean and to make components
accessible to other components by binding it to a naming service2.

EJB containers feature a number of transactional features, namely Container Man-
aged Transactions (CMT), whereby a container associates each method of a bean with
a transactional attribute specifying the modality of reconfiguring transactional scopes.
Namely, a transactional attribute determines:

– the transactional modality of the method calls. The modality expresses a require-
ment the invoking party must satisfy (e.g., “calling the method fooBar from out-
side a transactional scope throws an exception”),

– how the scope of transactions dynamically reconfigures (e.g., “fooBar is always
executed in a newly created transactional scope”).

We denote the set of EJB transactional attributes as

A def
= {requires, requires new, not supported, mandatory, never, supports}.

The intuitive semantics of EJB attributes A is illustrated in table below, where each
row represents the behaviour of one transactional attribute and shows how the transac-
tional scope of the caller and callee behave upon invocation. Scopes are represented by
a box, callers by •, callee by ◦, and failed activities by⊗. Each row shows the behaviour
of one attribute. The first two columns show, respectively, invocations from outside and
from within a scope.

invoker outside a scope invoker inside a scope callee supports

(1) • =⇒ • ◦ • =⇒ • ◦ requires

(2) • =⇒ • ◦ • =⇒ • ◦ requires new

(3) • =⇒ • ◦ • =⇒ • ◦ not supported

(4) • =⇒ ⊗ • =⇒ • ◦ mandatory

(5) • =⇒ • ◦ • =⇒ ⊗ never

(6) • =⇒ • ◦ • =⇒ • ◦ supports

More precisely, (1) a callee supporting requires is always executed in a transac-
tional scope which happens to be the same as the caller’s if the latter is already running
in a transactional scope; (2) a callee supporting requires new is always executed in
a new transactional scope; (3) a callee supporting not supported is always executed
outside a transactional scope; (4) the invocation of a method supporting mandatory

2 http://docs.sun.com/app/docs/doc/819-3658/ablmw?a=view

6



fails if the caller is not in a transactional scope (first column of the fourth row in the
table, otherwise the method is executed in the transactional scope of the caller; (5) the
invocation of a method supporting never is successful only if the caller is outside a
transactional scope, and it fails if the caller is running in a transactional scope (in this
case an exception is triggered in the caller); (6) a method supporting supports is exe-
cuted inside (resp. outside) the caller’s scope if the caller is executing in (resp. outside)
a scope.

2.3 The Car Repair Case Study

A car manufacturer offers a service that supports the driver in case his/her car breaks
down. Figure 7 illustrates a BPMN process modelling the car repair service.

The process is included in a transactional scope. Once the user’s car breaks down,
the system attempts to locate a garage, a tow truck and a rental car service so that the
car is towed to the garage and repaired, and meanwhile the car owner may continue his
travel.

First, before any service lookup is made, the credit card of the driver is charged
with a security amount. Second, the process searches for a garage. The outcome of the
search for the garage poses additional constraints to the candidate tow trucks. Third,
a tow truck is called. If the search for a tow truck fails, the garage appointment must
be revoked. The interdependencies between the bookings made by the service make it
necessary to equip the orchestration with compensations. Fourth, a car rental (which
must in a reasonable proximity with respect to the garage) is arranged. If renting a car
succeeds and finding either a tow truck or a garage appointment fails, the car rental
must be redirected to the broken down car actual location. We model OrderRentalCar
inside a nested transactional scope because its failure should not affect the tow truck
and garage appointments.

Charge
Credit Card

RevokeCharge

Order Garage
Appointment

Cancel Garage
Appointment

Order Tow Truck

Cancel Tow Truck

Order Rental Car

Redirect Rental Car

Fig. 7: The BPMN process for the Car Repair Scenario

The BPMN design in Figure 7 models the car repair case study by using a sin-
gle BPMN pool. In fact, all activities and compensations are executed within a BPMN
transactional scope, which can involve activities of only one participant. Namely, the

7



design describes an orchestration that, whenever executed by a leader participant, reg-
ulates the execution of partner services. In the following section we extend the BPMN
model in order to simplify modeling more collaborative approaches.

3 Modelling Transactional Processes with BPMN and Attributes

We propose a methodology for designing distributed transactions in BPMN consisting
of the following phases:

phase 1 definition of the design of the system
phase 2 specification of (compensation and) transactional attributes
phase 3 refinement of transactional aspects of the design.

Before clarifying our methodology, it is worth emphasizing that, in phase 1, designs are
supposed to provide a local view of the system where activities are supposed to reside
within a same pool and the coordination strategy relies on an orchestrator (which is
specified by the design). For example the design in Figure 7 yields such a local view for
the car repair scenario. The methodology could also be applied by using a diagram like
the one in Figure 7 as high level model for a global distributed process with no central
orchestrator, abstracting form the mechanisms used by the participants to coordinate.
This would require further extensions of BPMN; for instance, instead of using forward-
flow connectors, a new kind of connector subsuming both message and sequence flows.
Such model could be then transformed into a global, more detailed, design where tasks
are partitioned into pools and their coordination explicitly represented. In the next sec-
tion we discuss global designs where service invocations and distributed scope handling
are introduced.

A key element of transactional attributes is the separation of concerns they provide;
EJB programmers, in fact, may develop their code independently of the transactional
behaviour because attributes do not directly affect the behaviour of an object. Likewise,
our methodology capitalises on this separation of concerns and makes attributes largely
independent of other aspects of designs. In other words, transactional attributes can be
specified once the software architect has designed the system. In a certain sense, we ex-
tend the design strategy that BPMN enables on compensations to attributes; indeed the
BPMN architect could in principle give an initial model of a system without considering
transactional aspects and introduce compensations at a later stage. Similarly, phase 2 of
our methodology allows us to decorate designs with attributes as well as refine them (if
necessary) subsequently.

For the moment, we just decorate BPMN designs with attributes assuming their
intuitive semantics (cf. 2.2); in § 4 we extend BPMN so to illustrate the semantics of
each attribute in a more precise way.

An attribute-aware design is simply a design where forward-flow arrows are labelled
with a finite number of attributes. The idea is that if two activities T and T ′ are con-
nected by a forward-flow arrow decorated with a set of attributes A = {a1, . . . ,an}, the
control is passed from T to T ′ if the latter “supports” at least one of the attributes in A.
In other words, T and T ′ explicitly “agree” on their combined transactional behaviour;
T requires T ′ to behave according to the set of transactional behaviours specified by

8



Charge
Credit Card

RevokeCharge

Order Garage
Appointment

Cancel Garage
Appointment

Order Tow Truck

Cancel Tow Truck

Order Rental Car

Redirect Rental Car

Logging

Statistics

supports

requires

requires new

not supported

never

supports

mandatory

Fig. 8: Extended Car Rental with Attributes Annotations

A and, dually, T ′ guarantees that it is supporting some of such behaviours. Put in other
terms, T ′ is aware of the transactional requirements of T and T is aware that the possible
transactional behaviours of T ′ are included those specified by a1, . . . ,an.

We illustrate our methodology and the use of how to add transactional attributes to
BPMN designs considering the car repair scenario described in § 2.3. First, we extend
the design of Figure 7 to incorporate the invocation of a new logging service which
outsources the calculations of some statistics; such extension allows us to explain the
utility of the attributes not supported and never. The idea is that, upon completion
of the transaction, some logging information are sent to a logging service which also
calculates some statistics by means of an external service.

The extended design is given in Figure 8 together with the transactional attributes.
The BPMN design stays the same as in § 2.3 except for the newly added tasks and the
attributes decorating the connectors. For simplicity, we assign a single attribute to each
arrow except to the connector for invoking the tow truck which has three attributes.

The assignment exploits all the attributes.

– The attribute on the connector between the credit card check and garage activities
is supports; it stipulates that the latter activity should be capable of engaging in
the same transaction (if any) of the former one. In our scenario, since the credit
card check is executed in a transactional scope, the garage endpoint will be part of
the transaction of the check task.

– Once the garage is fixed, a car rental able to start a new transaction is invoked;
the attribute requires new specifies that the rental endpoint will be activated in
new transaction whose failure will not cause the failure of the main transaction.
Notice that in the global view, this correspond to confine the rental service in a sub-
transaction however, in the local view, the car rental will be a remote transactional
transactional scope (this issue will be considered in § 4).

– in parallel to the car rental activity, a two truck is searched; such service is required
to support either of the attributes mandatory, supports, or requires; in fact,
the expected behaviour is that a failure of the tow truck order has to trigger the
failure of the whole transaction and such attributes will let the tow truck endpoint
to be added in the scope of the transaction. Hence, a service supporting any of the
remaining attributes should be ruled out.

9



– The logging service, on the other hand, is specified to support the not supported
attribute that will execute the logging endpoint outside any transaction as its failure
is not crucial and should not affect the other transactional activities.

– The attribute never assigned to the statics service is instead specifying that the
statistics service should never be invoked from a transaction.

It is worth to remark that, if an orchestrator were due to realise the workflow, it will
also take into account possible failures of services and react according to the attributes
assign to the invocation; in other words, the orchestrator will also act as (or liaise with
the) transaction manager.

Once attributes have been assigned to a design, the phase 3 of our methodology
would allow some refinement both at the design level and at later stages of the de-
velopment. This refinements hinge on the theoretical framework of [1] where it has
been proved that, in certain contexts, some attributes exhibit the same observational
behaviour. Again we illustrate this on our running scenario.

Since an external observer cannot distinguish services supporting mandatory,
supports, or requires when they are invoked from transactional scopes, the design
of Figure 8 can be refined into one where only one of the attributes is assigned to the
invocation of the tow truck service. Notice that this may provide a great simplification
in the realisation of the design. For instance, the team developing the tow truck order
may avoid to consider testing cases corresponding to the different attributes and chose
the attribute that guarantees the smoother development.

Also, in a more complex scenario an activity may be invoked from many different
other activities with different transactional requirements. The equivalences proved in [1]
may again help in the refinement phase as the developers may factor out the invocations
with equivalent attributes so limiting the development efforts.

4 Modelling Attribute-Based Services Invocation and Instantiation

An important feature in the service-oriented scenario is to allow invokers to specify
their own requirements on the invoked method. In fact, a service invocation does not
target a specific service but is resolved at run-time by selecting one of the available
implementations matching a given description. Typically, both the service requester
and the service provider express a set of requirements that need to be matched when
defining the Service Level Agreement (SLA) for an invocation.

We consider a generalisation of the EJB mechanism for managing scope reconfigu-
ration allowing both service requester and service provider to specify the transactional
modality of each service instantiation. Namely, a service-oriented system is described
as follows:

1. a process can contain a number of service invocations. Each service invocation
specifies an abstract reference s3. Furthermore, service invocations specify a set of
acceptable attributes, say A ⊆ A . The execution of the invocation triggers, at run-
time, the discovery/selection/binding of a service matching with s and A. Figure 9

3 The service reference s can be thought as a service description that specifies the desired func-
tional properties. Hereafter we refer to s simply as a service.

10



Ca
lle

r P
+

invoke s

Q
+

s = 
Service Repository

end-point s (collapsed pool)

A

a

C

Fig. 9: Invocation of end-point s

(left-hand side) represents the process “caller” consisting of a transactional scope.
The scope includes task invoke s, associated to compensation C, followed by sub-
process P.

2. each provider can publish a number of services. The provider associates each ser-
vice s to an implementation (e.g., a process) and a transactional attribute (e.g.,
a ∈ A). In Figure 9 the provider, represented by the repository o the right-hand
side, implements s as a process that consisting of a sub-process Q, and associates it
to attribute a.

3. upon service invocation, the matching/binding between caller and callee on s hap-
pens only if a ∈ A. In this case, the invocation of s triggers a (possibly remote) new
instance s.

In other words, we threat attributes as non-functional properties that can be included as
part of the SLA.

We present below a few examples of service invocation with attributes using a
smooth extension of BPMN and following the semantics of EJB attributes. The BPMN
extension will be described in more detail in the second part of this section. Intuitively,
the system in Figure 9 may evolve to a number of different configurations depending on
which attribute a the provider associates to s4. The possible configurations follow from
the semantics of transactional attributes illustrated in Section 2.2, when the invocation
occurs inside a transactional scope.

– If a = not supported then the new instance of s is be executed “as it is” outside
any additional transactional scope. In this case the provider, by associating s with
a specifies that no transactional support i provided and, reversely, the requester
accepts such condition by including not supported in A. Figure 10a shows the
reached configuration where the activity Q is executed outside any transactional
scope.

– If a = requires new then the new instance of s is executed in a different, newly
created scope. In this case both provider and requester agree on the fact that the
service will be executed in a newly created scope. Figure 10b shows the reached
configuration where the activities P and Q are executed in different transactional
scopes.

4 Recall that the reconfiguration semantics, according to EJB, is decided by the provider through
the definition of attribute a. We allow also the service requester to specify the desired semantics
by defining the set A.

11



C
al

le
r

P
+

en
d-

po
in

t s

Q
+

(a) s executed as it is

C
al

le
r

P
+

en
d-

po
in

t s

Q
+

(b) s executed in a new scope

C
al

le
r

P
+

en
d-

po
in

t s

Q
+

(c) s executed in the caller’s scope

Ca
lle
r

C

(d) The invocation triggers the
execution of the compensation

Fig. 10: Scope reconfigurations following from the invocation of s in Figure 9

– If a = requires or a = mandatory or a = supported then the caller and the
callee are executed in the same scope of the caller. Namely, caller and callee partic-
ipate to the same distributed transaction. In Figure 10c both activities P and Q are
executed in the same scope.

– If a= never then the invocation raises an exception which causes the execution of
the compensation C.

Notice that teach alternative is desirable under certain circumstances, and has an im-
pact on failure propagation. The configurations deriving from the invocation of s from
outside a transactional scope can be defined similarly.

As mentioned before we used a smooth extension to BPMN to represent attribute
aware service instantiation and distributed transactions.

Attribute-aware service instantiation. We represent the instantiation of a service as a
task invoke s that sends a message to a collapsed pool. The collapsed pool represents
the abstract reference of the service to invoke. In general, the caller process can have
an interactive conversation with the invoked services which is modelled as a message
exchange (not shown in the examples for simplicity) with the collapsed pool. We extend
BPMN message flow by annotating the messages that spawn new processes to allow the
caller to specify transactional requirements. Several implementations of a service can be
available, each of them implemented by a different sub-process and satisfying different

12



transactional properties. Upon an activation request, the callee activates only one of the
processes satisfying caller requirement inside the right transactional scope.

Distributed transactions. Even if BPMN directly supports design of transactional pro-
cesses, this features is limited to activities owned by a unique participant (e.g. confined
into a pool). Architects must care about exceptions and explicitly model interactions
performed by participants to implement distributed transactions. Moreover, BPMN pro-
vides a limited support to model service requirements and dependencies. In SOC sys-
tems participants dynamically activates partners services (e.g. processes) that must re-
spect the global transactional requirements.

To handle these issues we propose to extend BPMN to support the expressiveness
of [2, 3]. In order to represent distributed transaction, we introduce the double arrow
connection. This artifact allows to represent that two (or more) participant transactions
are confined by the same scope. Namely, a fault of one participant activity can auto-
matically start the backward-flow of the linked transactions. Equipping BPMN with the
distributed transaction artifact allows designer to statically define non functional prop-
erties of systems abstracting from the implementation details of the mechanisms for
synchronising the outcomes.

In fact, this artifact abstract from the interactions required among participant to
implement the correct behavior, that is demanded to participant SOC frameworks (e.g.
WS-Tx [11] and BTP [10]).

5 Concluding Remarks and Related Work

We proposed an approach for the modelling of transactional service-oriented business
processes that centres on the notion of transactional attribute. Our approach

1. models the EJB mechanisms for the management of transactional scopes upon in-
vocation. Notably this allows a straightforward implementation of models as Java
programs.

2. is based on a generalisation of EJB transactions, that have been adapted to the
service-oriented scenario and can be used for the development of models in differ-
ent technologies.

3. builds on the theoretical results in [2, 3] that allow to enhance and optimise software
development and testing.

4. can be adapted to a number of notations. As a proof of concept we have shown our
approach integrated with BPMN.

Service development can benefit from transactional attributes for a number of rea-
sons. In the implementation phase, transactional attributes provide the developer with a
stronger set of preconditions on the (transactional) context in which a piece of software
will be executed thus preventing defensive programming.

A service provider may want to publish different versions of the same service guar-
anteeing different transactional properties. This would allow the provider to maximise
the number of matches for his/her portfolio of services. In [1] we proved equivalence
of different transactional attributes under specific context. Starting from a registry that

13



describes service versions, each associated with one transactional attribute, our theo-
retical results allow drive the implementation of the minimum set versions required to
respect the BPMN design. Also, relying on the testing theory in [1] we can ease the test-
ing of services-oriented artifacts since under certain conditions different transactional
configuration have the same observed behaviour.

Finally we proposed an extension to the BPMN notation that focuses on service
invocation and defines how the system should reconfigure at run-time. Notice that the
structure of the transactional scopes describe the configuration of the whole execution
of the transaction but does not details on how such configuration is achieved. Anyway,
the information included in the models annotated with attributes can be used to define
a semantics for dynamically reconfiguring BPMN processes. An interesting approach,
that we leave as a future work, would be to use graph rewriting [13] to this aim.

Related Work. A number of formal models for long running transactions have been
proposed in the last years. Saga [7] is one of the earlier proposal to manage LRTs by
exploiting the notion of compensations. A recent work [9] provides a comparison of the
expressiveness of different approaches to specify compensations. A formal model for
failure propagation in dynamically reconfiguring systems has been proposed in [2] as
a CCS-like process calculus called ATc (after Attribute-based Transactional calculus).
The primitives of ATc are inspired to EJB [14] and allow to determine and control
the dynamic reconfiguration of distributed transactions so to have consistent and pre-
dictable failure propagation. In [3] it has been proposed an observational theory (based
on the theory of testing in [4]) yielding a formal framework for analysing the interplay
between communication failures and the observable behaviour of a service-oriented
system. In fact, the main result in [3] shows that the choice of different transactional
attributes causes different system’s behaviours and system’s reactions to a failure. A
comparison of the linguistic features of ATc wrt other calculi featuring distributed trans-
actions has been given in [2].

BPMN allows to statically define the transactional activities. More expressive mod-
els has been investigated. For example the dynamic recovery approach allows compen-
sations to be dynamically updated and replaced. It should be interesting evaluating ef-
fectiveness of BPMN artifacts to express dynamic recovery. A number of work tackled
the lack of a formal semantics for BPMN (e.g., [6, 16]). Our aim was rather to pro-
pose a methodology for the design of transactional processes that relies on a theoretical
framework. The methodology centres on the fact that service invocations cause a recon-
figuration of transactional scopes in a service-oriented scenario. Up to our knowledge,
such aspects have not been included by existing formal models of BPMN. A promising
approach to provide a formal account of BPMN in reconfiguring system would be to
use graph rewriting techniques [13]. Some other work address the execution of BPMN
models (e.g., [5] encodes them in executable YAWL [15] processes). We address an
orthogonal issue by proposing a general approach for attribute-aware software develop-
ment, that can be applied to many development techniques.

14



References

1. L. Bocchi and E. Tuosto. A Java Inspired Semantics for Transactions in SOC
(extended report), 2009. Available at http://www.cs.le.ac.uk/people/lb148/
javatransactions.html.

2. L. Bocchi and E. Tuosto. A Java inspired semantics for transactions in SOC. In TGC 2010,
LNCS. Springer-Verlag, 2010. To appear.

3. L. Bocchi and E. Tuosto. Testing attribute-based transactions in SOC. In FORTE 2010,
LNCS. Springer-Verlag, 2010. To appear.

4. R. De Nicola and M. C. B. Hennessy. Testing equivalences for processes. Theoretical
Comput. Sci., 34(1–2):83–133, Nov. 1984.

5. G. Decker, R. Dijkman, M. Dumas, and L. Garcı́a-Ba nuelos. Transforming BPMN Dia-
grams into YAWL Nets. In BPM ’08: Proceedings of the 6th International Conference on
Business Process Management, pages 386–389, Berlin, Heidelberg, 2008. Springer-Verlag.

6. R. M. Dijkman, M. Dumas, and C. Ouyang. Semantics and analysis of business process
models in BPMN. Information & Software Technology, 50(12):1281–1294, 2008.

7. H. Garcia-Molina and K. Salem. Sagas. In U. Dayal and I. L. Traiger, editors, SIGMOD
Conference, pages 249–259. ACM Press, 1987.

8. O. Group. Business Process Modeling Notation. http://www.bpmn.org, 2002.
9. I. Lanese, C. Vaz, and C. Ferreira. On the expressive power of primitives for compensa-

tion handling. In A. D. Gordon, editor, ESOP, volume 6012 of Lecture Notes in Computer
Science, pages 366–386. Springer, 2010.

10. Business Transaction Protocol (BTP), 2002.
11. Web Services Transaction (WS-TX), 2009.
12. D. Panda, R. Rahman, and D. Lane. EJB 3 in action. Manning, 2007.
13. G. Rozenberg, editor. Handbook of graph grammars and computing by graph transforma-

tion: volume I. foundations. World Scientific Publishing Co., Inc., River Edge, NJ, USA,
1997.

14. Sun Microsystems. Enterprise JavaBeans (EJB) technology, 2009. http://java.sun.com/
products/ejb/.

15. W. van der Aalst and A. H. M. T. Hofstede. YAWL: Yet Another Workflow Language.
Information Systems, 30:245–275, 2003.

16. P. Y. Wong and J. Gibbons. A Process Semantics for BPMN. In ICFEM ’08: Proceedings
of the 10th International Conference on Formal Methods and Software Engineering, pages
355–374, Berlin, Heidelberg, 2008. Springer-Verlag.

15


