
A multiparty multi-session logic

Laura Bocchi1, Romain Demangeon2, and Nobuko Yoshida3

1University of Leicester, 2Queen Mary, University of London, 3Imperial College London

Abstract. Recent work on the enhancement of typing techniques for multiparty
sessions with logical annotations enables, not only the validation of structural
properties of the conversations and on the sorts of the messages, but also prop-
erties on the actual values exchanged. However, specification and verification of
mutual effects of multiple cross-session interactions are still an open problem.
We introduce a multiparty logical proof system with virtual states that enables
the tractable specification and validation of fine-grained inter-session correctness
properties of processes participating in several interleaved sessions. We present a
sound and relatively complete static verification method.

1 Introduction

In extensively distributed computing environments, application scenarios often centre
around structured conversations among multiple distributed participants. A fundamen-
tal challenge is to establish an effective specification and verification method to en-
sure safety in distributed software, where correctness depends on the state of individ-
ual participants and span over multiple conversations and applications. This require-
ment emerged from our ongoing collaboration with the Ocean Observation Initiative
OOI [21], an NSF program to develop a long-term computational infrastructure for en-
vironmental ocean observation. The principals within the OOI infrastructure perform
interactive activities involving distributed resources, e.g., remote instruments, off-shore
sensors, data. It is important to: (1) ensure that the principals carry out each activity
(session) in a way that conform a well-defined protocol, (2) express properties that span
the single activities (e.g., associate each principal with a credit for resource usage, and
ensure that this will always be non negative across sessions1).

A promising direction is the logical elaboration of types for programming lan-
guages [16]. Types offer a stable linkage between the fundamental dynamics of pro-
grams and their mathematical abstractions, serving as a highly effective basis for safety
assurance. In the context of process algebras, approaches like [5, 13, 18] allow tractable2

(e.g., with respect to model checking techniques) validation of properties such as ses-
sion fidelity, progress, and error freedom. Furthermore, they enable the specification of
global properties of multiparty interactions, yet enabling modular local verification of
each principal. The key idea is that conversations are built as the composition of units
of design called sessions which are specified from a global perspective (i.e., a global
session type). Each global type is then projected, making the responsibilities of each

1 This example is taken from the OOI Instrument Control case study and is illustrated in the Appendix of
the online report [4].

2 In [13, 18] verification is decidable and has linear complexity.



endpoint explicit. Validation guarantees that when each endpoint conforms to its pro-
jected specification(s), the resulting conversation conforms to the corresponding global
specification(s).

These approaches require to build applications starting from a set of global types
that have to be agreed upon by the principals in the network. This assumption, which
poses some limitations to the flexibility with which the single local processes are mod-
elled, is reasonable in many scenarios, provided that local processes can be built as the
composition of multiple, possibly interleaved, types of sessions. However, one limita-
tion of these approaches is that the properties that they verify are confined to the single
multiparty sessions and do not treat stateful specifications incorporating mutual effects
of multiple sessions run by a principal.

This paper presents a simple but powerful extension of multiparty session specifi-
cations, by enriching the assertion language studied in [5] with capability to refer to
virtual states local to each network principal. The resulting protocol specifications are
called multiparty stateful assertions (MPSAs), and model the skeletal structure of the
interactions of a session, the constraints on the exchanged messages and on the branches
to be followed, and the effects of each interaction on the virtual state. We use invariants
to express properties, on the state of each principal, that must hold even when several
sessions are executed in parallel. Principals in a network hence serve as units of ver-
ification: static validation ensures that principals behave as prescribed by MPSAs and
their invariants are satisfied.

To see the kind of properties we are interested in, consider the following fragment
of specification for the dialogue between a ticket allocation server (S) and its client
(C), where the server allocates numbered tickets of increasing value to each client in
consecutive, separate sessions:

S Ñ C : py :intqty � S.xuxS.x++y

The protocol between the server and each client is the single message-passing action
where S sends C a message of type int. The description of this simple distributed
application implies behavioural constraints of greater depth than the basic communi-
cation actions. The (sender-side) predicate and effect for the interaction step, ty �
S.xuxS.x++y, asserts that the message y sent to each client must equal the current value
of S.x, a state variable x allocated to the principal serving as S; and that the local effect
of this message send is to increment S.x. In this way, S is specified to send incremental
values across consecutive sessions.

The behaviour described above cannot be encoded by only using the primitives
in [5]. In fact, in order to ensure inter-session properties one must discipline concurrent
state updates with some mechanism of lock/unlock or atomic access/update, but lock-
/unlock and atomic access/update can only be described as properties that span over
multiple sessions.

Contribution We present a sound and relatively complete validation method for
MPSAs, based on statically-verifiable proof rules. The most distinctive feature with re-
spect to [5] is the possibility of expressing properties that span several sessions. The
decidability/complexity of verification depends on the decidability/complexity of pred-
icate evaluation in the logic that is chosen to express constraints and invariants (Proposi-
tion 10). We prove that our analysis is sound (Theorem 13) and complete (Theorem 14)

2



w.r.t. the semantical satisfaction relation induced by the two labelled transition systems
for processes and specifications.

Synopsis In § 2 we present MPSAs, that is the language for (stateful) protocol spec-
ifications, and their consistency criteria (i.e., well-assertedness). In § 3 we present the
calculus for networks of principals, each running a process. In § 4 we give the validation
rules of networks against MPSAs; their properties are presented in § 5. Related work is
discussed in § 6. Use cases from [21], auxiliary definitions, and full proofs can be found
in the online report [4].

2 Multiparty assertions with virtual states

In the proposed framework, applications are built as the composition of units of de-
sign called sessions. Each type of session is specified as a MPSA, that is an abstract
description of the interactions of the roles of a multiparty session.

The syntax of MPSAs is given in Figure 1. Global assertions (G,G1, . . .) describe a
multiparty session from a global perspective; and local assertions (L,L1, . . .) describe
it from the perspective of one role. U are types of the message contents, which can be
sorts S or local assertions xLy (i.e., for delegation).

A ::� true | false | e1 � e2 |  A | A1 ^A2 | Dx.A, U ::� S | xLy, S ::� bool | int | ..

G ::� pÑq : tlipxi : UiqtAiuxEiy.GiuiPI (G-int)
| G1 | G2 (G-par)
| µtxy : A1ypx : SqtAu.G (G-def)
| txy : A1y (G-call)
| end (G-end)

L::� p!tlipxi : UiqtAiuxEiy.LiuiPI (L-sel)
| p?tlipxi : UiqtAiuxEiy.LiuiPI (L-bra)
| µtxy : A1ypx : SqtAu.L (L-def)
| txy : A1y (L-call)
| end (L-end)

Fig. 1. Global and local MPSAs

For expressing constraints we use predicates (A,A1, . . .) with the syntax illustrated
in Figure 1, although we may use other predicates than equality in examples. Predicates
are defined on interaction variables, modelling the content of a message exchanged by
the roles in the session, and on state variables, which are variables of the virtual state
local to one role.

Global Assertions Interaction (G-int), pÑq : tlipxi : UiqtAiuxEiy.GiuiPI , models a
message exchange where role p sends q one of the branch labels li and an interaction
variable xi, with xi binding its occurrences in Ai, Ei, and Gi. Ai is the predicate which
needs to hold for p to select li, and which may constrain the values to be sent for xi.
Note that Ai is at the same time an assumption for the receiver q and a constraint for
the sender p (i.e., if Ai is violated then the blame is on p). Ei is the update prescribed
on the virtual states of p and q, modelling the persistent effects (i.e., with respect to the
lifetime of the single session) of that interaction. An update is a vector of assignments
of the form x :� e, where x is updated by the result of evaluating e in the current state.

3



We assume E does not contain two assignments to the same state variable, and is an
atomic action. Assertion (G-par) is for parallel composition. The recursive definition
(G-def) is the guarded recursion definition and defines a recursion parameter x initially
set equal to a value satisfying the initialisation predicate A1, with A being an invariant
predicate. Global assertions are unfolded implicitly, following an equi-recursive view
on types. (G-call) is the recursive instantiation and (G-end) is the termination.

Hereafter we omit true predicates, empty vectors of variables/updates, and labels of
single branches.

Example 1. Consider a session with two roles, C and S. C makes an offer x to S for
buying a ticket; S either accepts or refuses the offer. In the former case C spends x credits
and receives a ticket, and S earns x credits. Tickets are modelled as serial numbers; they
must all be increasing numbers not exceeding 1000. GT below specifies this scenario:

GT � C Ñ S : px : intqtx ¥ 0^ C.credit ¥ xuxC.credit :� C.credit� xy.
S Ñ C : tokpy : intqtS.count   1000^ y � S.countuxEoky.end,

koxC.credit :� C.credit� xy.end u
Eok � S.credit :� S.credit� x, S.count :� S.count� 1

C has state variable credit, and S has state variables credit and count (a counter
for serial numbers). The first interaction requires that the offer x does not exceed C’s
credit, and decrements the credit by x. S selects one of the two branches by either label
ok or ko. The former branch can be selected only if S.count   1000.

We denote with varpGq the set of (interaction/state) variables and recursion param-
eters in G, and with varpAq the free variables of A (same for e). The set of variables
that p P G knows, written varpGq æ p, consists of: (i) the state variables of the form
p.x for some x, (ii) the interaction variables sent or received by p in G, and (iii) the
parameters of the recursive definitions µtxy : A1ypx : SqtAu.G1 in G such that p knows
all the free variables in initialisation A1, and all free variables in A2 for all txy : A2y in
G1 (we assume each recursion parameter known by exactly two participants).

Well-assertedness Our theory relies on two consistency principles: history-sensitivity
and temporal-satisfiability. These principles were first introduced in [5]; we discuss
them here as their adaptation to our stateful scenario requires non-trivial extensions.

By history-sensitivity each role must have enough information to fulfil the specified
obligations, namely it requires that: (1) each role p knows all free variables in the pred-
icates that p must guarantee, and (2) each role has enough information to perform the
prescribed updates, that is (i) when to make an update, and (ii) which values to assign.

Definition 2 (History-sensitivity). G is history-sensitive if for each interaction, of the
form pÑ q : tlipxi : UiqtAiuxEiy.GiuiPI , occurring in G, for all i P I:

1. varpGq æ p � varpAiq (i.e., p knows all variables in varpAiq),
2. for all r.x :� e in Ei: (i) either r � p or r � q, and (ii) varpGq æ r � varpeq.

A checker for history-sensitivity can be found in the online report [4]. Consider the
assertions:

G � pÑ q : px :intq. qÑ r : py :intq. rÑ s : pz :intqtz ¡ xu
G1 � pÑ q : py :intq. qÑ r : tokpw :intqxr.x1 :� y, p.x2 :� yy, kou

4



G violates (1) because r has to send a value for z that is greater than x without knowing
x. G1 violates both clauses of (2): (i) because p must update x2 not knowing whether
and when the update should be done, and (ii) because in the second interaction r has to
update x1 with y without knowing y.3

By temporal-satisfiability, for each participant p P G, whenever it is p’s turn to
send a value, p can find at least one selection branch and one value which satisfies
the specified constraint. Temporal satisfiability is defined (and checked) using a func-
tion tspG, Aq which returns true only if G always allows a path of interactions going
through G in any possible state. Considering all possible states makes the specifica-
tion robust with respect to arbitrary interactions the same principal may be engaged in
through other sessions. Predicate A is incrementally built as a conjunction of the pred-
icates that appear in G in all the recursive invocations and models the current set of
assumptions.

Definition 3 (Temporal-satisfiability). Let G be a global specification, and A a predi-
cate. tspG, Aq is given by:

1. tsppÑq : tlipxi : UiqtAiuxEiy.GiuiPI , Aq �

#�
iPI tspGi, A^Aiq if A �

�
iPI Dxi.Ai

false otherwise

2. tspG1 | G2, Aq � tspG1, Aq ^ tspG2, Aq

3. tspµtxeypx :SqtA1u.G1, Aq �

#
tspG1, A^A1q if A � pA1re{xsq

false otherwise

4. tsptA1pxqxey, Aq �

#
true if A � A1re{xs

false otherwise

5. tspend, Aq � true

G satisfies temporal satisfiability if tspG, trueq � true.4

In (1) the first condition for “if” demands that there exists at least one branch for which
it is possible to find a value for xi that satisfies the current predicate Ai. The function
is called recursively extending the set of preconditions A with with the closure Ai of
predicate Ai (see Remark 4 below). (2) demands both parts of the composition are
satisfiable. (3) and (4) check recursion, the latter relying on the annotation of recursive
calls with the invariants of the corresponding recursive definitions.

Remark 4. The closure of a predicate A in G, written A, is the predicate obtained
by closing with existential quantifiers the free state variables of G in A. Whereas the
values of interaction variables in a session do not change after they are introduced5,
state variables can be updated a number of times in a number of different ways. Hence

3 [6] proposes algorithms to amend assertions that violate history-sensitivity and temporal-satisfiability as
in [5]. No such algorithms have yet been investigated for the definitions introduced in this paper. Although
relevant, the issue of amending inconsistent assertions is out of the scope of the current work.

4 This property can be relaxed by starting from a stronger precondition A as long as A is then implied by
the principal invariants (which are defined in § 4).

5 Actually, interaction variables in a recursion body are reused at each iteration. However, their values are
due to follow the same constraints at each iteration.

5



a predicate on state variables may be true at a certain time, and become false at a later
time. Hereafter we use A when we want to to ‘keep’ only the persistent assumptions
(those on interaction variables) of A.

The following global specification violates temporal satisfiability

pÑ q : px : intqtx ¡ 0u.qÑ p : py : intqty � x^ y ¡ 100u

In fact, in the first interaction p is allowed to choose any positive value for x, for instance
10. In this case, q cannot find any value for y such that y � 10^ y ¡ 100.

Proposition 5. Given a global assertion G, letm be the size of the syntactic tree of G, n
be the maximum number of variables occurring in each predicate in G, and evalpAq be
the complexity of predicate evaluation (if decidable). History-sensitivity can be checked
in Opm � nq. Temporal-satisfiability is decidable if predicate evaluation is decidable
and, if decidable, it can be checked in Opmq � evalpAq.

Hereafter, we assume assertions to be well-asserted.

Local Assertions Each local assertion L refers to a specific role. Syntax is given in
the right part of Figure 1. Selection (L-sel) p!tlipxi : UiqtAiuxEiy.LiuiPI models an
interaction where the role sends p a branch label li and a message xi. Ai and Ei are the
predicate and update respectively. (L-bra) is the dual branching. The others are as in
the global assertions, except that a local assertion cannot be multi-threaded.

Given a global assertion G, we can automatically derive the local assertions for
each role p P G by projection. The projection rules rely on a few auxiliary definitions:
projection of a predicate, and projection of an update. The projection of a predicate A
on p in G, written A æ p, is defined as Dx̃.A where x̃ � varpAqzpvarpGq æ pq (i.e., the
existential closure of the variables that p does not know). The projection of an updateE
on p in G, written E æ p is the update E1 containing only the assignments pj .xi :� ej
such that pj � p.

The projection rules for global assertions are as in [5], except that updates are now
considered; their detailed presentation is not necessary to understand the results in this
paper, hence we only give an illustration through Example 6. Henceforth, in G æ p we
shall omit the p. prefix when referring to p’s state variables.

Example 6. LC (resp. LS) is the projection of GT from Example 1 on C (resp. S).

LC � S ! px : intqtx ¥ 0^ credit ¥ xuxcredit :� credit� xy.L1
C

L1
C � S ?tokpy : intqtDS.count.S.count   1000^ y � S.countu.end,

koxcredit :� credit� xy.endu

LS � C ?px : intqtDC.credit.x ¥ 0^ C.credit ¥ xu.L1
S

L1
S � C ! tokpy : intqtcount   1000^ y � countu

xcredit :� credit� x, count :� count� 1y.end,
ko.endu

The projection of the first interaction of GT on sender C (resp. receiver S) is a send/select
(resp. a receive/branch). The predicates/updates of the projections on a role are the pro-
jections of the predicates/updates on that role.6 The continuation is projected similarly,

6 Note that by well-assertedness (clause 1) the projection of a predicate on the sender of an interaction is
always the predicate itself.

6



proceeding point-wise for each branch. Sometimes the projected predicate includes in-
formation about constraints of interactions between third parties (without however re-
vealing the actual values exchanged by the third parties), e.g., DS.count.S.count  
1000^ y � S.count provides C with precondition y   1000.

Well-assertedness is easily extended to local assertions.

3 Multiparty networks with local states

We consider networks of interactional entities called principals linked by a common
global transport, modelled as queues. Each principal runs a located process, that is a
process with multiparty session primitives [1, 18] (to enable rigorous representation of
conversation structures) and with a local state.

Syntax The syntax of networks and processes is given in Figure 2 and is a refined
version of the multiparty session π-calculus from [1, 10] with local states. A local state
σ maps a signature rx̃ : S̃s of typed pairwise disjoint state variables x̃ to their sorts. We
use the injective function idpσq to map each local state to an identifier.

A network can be an empty network H, a located process rP sσ, a parallel compo-
sition of networks N1 | N2, a new session name pνsqN which binds s in N , or a queue
s : h where h are messages in transit through session channel s. A network is initial
if it has no new session names and queues, otherwise it is runtime. We denote the free
session channels in N with fnpNq, similarly for P with fnprP sσq � fnpP q.

(network) N ::� H | rP sσ | N1|N2 | pνsqN | s : h

(state/queue/value) σ ::� rx̃ : S̃s ÞÑ S̃ h ::� H | pp, q, lxvyq � h v ::� n | srps

(process) P ::� arnspyq.P (P-req)
| arispyq.P (P-acc)
| krp, qs!tei ÞÑ lixe

1
iypxiqxEiy;PiuiPI (P-sel)

| krp, qs?tlipxiqxEiy.PiuiPI (P-bra)

| P |Q (P-par)
| pµXpxq.P qxey (P-def)
|Xxey (P-call)
| 0 (P-idle)

(channel/update/exp) k ::� y | s E ::� H | E; x :� e e ::� v | e op e

x, y, . . . interaction variables x, y, . . . state variables X,Y, . . . process variables
a, b, . . . shared name s, s1, . . . session name n, n1, . . . constants

Fig. 2. Syntax of networks and processes

Session request (P-req) multicasts a request to each session accept process (P-acc),
e.g., arispyq.P with i P t2, .., nu, by synchronisation through a shared name a and con-
tinuing as P . (P-sel) is Dijkstra’s guarded command [15] and (P-bra) is the branching
process; they represent communications through an established session k. (P-sel) acts
as role p in session k and sends role q one of the labels li. The choice of the label
is determined by boolean expressions ei, assuming _iPIei � true and i �� j implies

7



ei ^ ej � false. Each label li is sent with the corresponding expression e1i which spec-
ifies the value for xi, assuming e1i and xi have the same type.7 (P-bra) plays role q

in session k and is ready to receive from p one of the labels li and a value for the
corresponding xi, then behaves as Pi after instantiating xi with the received value. In
guarded command (resp. branching), the local state of the sender (resp. receiver) is up-
dated according to update Ei; in both processes each xi binds its occurrences in Pi and
Ei.

Example 7. Processes PS and PC implement LS and LC, respectively, from Example 6.

PS � ar2spzq.zrC, Ss?pxq;P 1
S Eok � count :� count� 1, credit :� credit� x

P 1
S � zrS, Cs!ttcount   1000^ x ¥ 10u ÞÑ okxcountypyqxEoky.0,

tcount ¥ 1000_ x   10u ÞÑ ko.0u

PC � ar2spwq.wrC, Ss!x8ypxqxcredit :� credit� xy;P 1
C

P 1
C � wrS, Cs?tokpyq.0, koxcredit :� credit� xy.0u

We let C � 1 and S � 2. PS accepts a request to participate to a session specified by
GT (assuming a has type GT ) on channel z as role 2. In the established session z, the
principal receives an offer x from the co-party. It follows a guarded command with two
cases; if count has not reached its maximum value for serial numbers and the offer is
greater than 10 then the first branch (ok) is taken and count is sent as y, otherwise the
second branch (ko) is taken. Dually, PC sends a request to participate to one instance of
session GT as the role 1. A principal may repeatedly execute a process using recursion,
or run concurrent instances of the same type of session (e.g., rPS | PSsσ) or different
types of session (e.g., rPS | PCsσ) as discussed in Example 9.

Operational semantics The LTS is generated from the rules in Figure 3 using the fol-
lowing labels: ` ::� arnsxsy | arisxsy | srp, qs!lxvy | srp, qs?lxvy | τ . We denote with
σ afterE the state σ after the update E. We write σ |ù e Ó v for a closed expression
e when it evaluates to v in σ.
The first and second rule are for requesting and accepting a session initialisation. The
guarded command checks if condition ej is satisfied in the current state σ, and sends a
message consisting of one of the labels lj and an expression e1j (which is evaluated to
a value v in state σ), updates σ according to Ej , and behaves as P rv{xjs. Branching
is symmetric. The synchronous session initialisation creates a new queue. We omit the
standard context/structural equivalence rules.

4 Proof system for multiparty session logic with virtual states

In this section we outline how to obtain the syntactic validation of networks, written
Γ $ N � Σ, assuming processes typable, following [5]. The proof rules rely on the
following environments:

Γ ::� H | Γ, a : G | Γ,X : px : SqL1 @ p1, . . . ,Ln@ pn, ∆ ::� H | ∆, srps : L,
Σ ::� H | Σ, r∆sσ

7 Guarded command can be implemented using selection, if-then-else and lock-unlock. Although our theory
is applicable to these primitives, we choose to make these low-level steps atomic for minimising the syntax.

8



rarnspyq.P sσ
arnsxsy
ÝÝÝÝÝÑ rP rs{yssσ rarispyq.P sσ

arisxsy
ÝÝÝÝÝÑ rP rs{yssσ ps R fnpP qq

rsrp, qs!tei ÞÑ lixe
1
iypxiqxEiy;PiuiPI sσ

srp,qs!ljxvy
ÝÝÝÝÝÝÝÝÑ rP rv{xjssσ

1

pj P I σ |ù e1j Ó v σ |ù ej σ1 � σ afterEjrv{xjsq

rsrp, qs?tlipxiqxEiy.PiuiPI sσ
srp,qs?ljxvy
ÝÝÝÝÝÝÝÝÑ rPjrv{xjssσ

1 pj P I σ1 � σ afterEjrv{xjsq

rP1sσ1
arnsxsy
ÝÝÝÝÝÑ rP 1

1sσ1 rPisσi
arisxsy
ÝÝÝÝÝÑrP 1

i sσi p2 ¤ i ¤ nq

rP1sσ1 | � � � | rPnsσn
τ
ÝÑ pνsqps :H | rP 1

1sσ1 | � � � | rP
1
nsσnq

rP sσ
srp,qs!ljxvy
ÝÝÝÝÝÝÝÝÑ rP 1sσ1

rP sσ | s : h
τ
ÝÑ rP 1sσ1 | s : h � pp, q, ljxvyq

rP sσ
srp,qs?ljxvy
ÝÝÝÝÝÝÝÝÑ rP 1sσ1

rP sσ | s : pp, q, ljxvyq � h
τ
ÝÑ rP 1sσ1 | s : h

Fig. 3. Labelled transition for networks

Γ maps shared names to global assertions and process variables to their parameters.
If Γ $ a : G then a session specified by G can be initiated by processes (via session
request or accept) using a. By the standard kinding rules, we check if the same free
variable appears in different global types in Γ , then they have the same sort. The map-
ping of process variables is for the validation of recursive assertions. ∆ maps session
channels/roles to local assertions. If ∆ $ srps : L then a session is active (i.e., it has
been initialized) on channel s for role p; L specifies the (part of the) session that has
still to be executed. Σ is the specification of a network; each r∆sσ is the specification
of a located process with the respective virtual state.

We also use an assertion environment C, which is incrementally built by conjunction
of the predicates and boolean expressions (i.e., the conditions of a guarded commands)
occurring in the processes being validated, and models their assumptions. Hereafter,
given a predicate A and an update E, we define A afterE to be the predicate obtained
by substituting, for each assignment x :� e in E, each occurrence of x in A with e.

Modelling cross-session properties: the principal invariant Given a located process
rP sσ in a network, we want to allow the architect to model stable properties (i.e., in-
variant) over the variables in σ on across multiple sessions. We call these properties
principal invariant of rP sσ, that is a predicate (following the syntax for A in Figure 1)
over the state variables of σ. Hereafter we assume there exists a function Ipσq that given
a local state σ returns the principal invariant for σ. Principal invariants depend from the
application domain, and the architect should define them prior to the verification.

Example 8. Consider a located process rPC | PSsσp with PC and PS from Example 7.
Assume we want to require that the credit is always non-negative (i.e., the principal
does not contracts debts) and that the counter does not exceed the maximum number of
tickets which is 1000. We can enforce these constraints by setting the principal invariant
Ipσpq to be credit ¥ 0^ 0 ¤ count ¤ 1000.

Proof rules Figure 4 illustrates the proof rules for initial networks and processes.

9



idpσpq � idpσaq σp, σa |ù Ipσpq Ipσpq ^ C;Γ $ P �∆
C;Γ $ rP sσp � r∆sσa

tN1u

pΓ 1,∆1, σ1q � pΓ,∆, σq C � C1 C1;Γ 1 $ N � r∆1sσ1

C;Γ $ N � r∆sσ
tN2u

�
C;Γ $ H�H

C;Γ $ N �Σ C;Γ $ N 1 �Σ1

C;Γ $ N | N 1 �Σ,Σ1 tN3/N4u

C;Γ, a : G $ P � yris : G æ i,∆
C;Γ, a : G $ arispyq.P �∆

tMACCu

@i P I, C ^Ai;Γ $ Pi �∆, krqs : Li C ^Ai � pC afterEiq

C;Γ $ krp, qs?tlipxiqxEiy.PiuiPI � ∆, krqs : p?tlipxi : UiqtAiuxEiy.LiuiPI
tBCHu

@i P IDj P J, li � lj C ^ ei;Γ $ Pire
1
i{xis �∆, krps : Ljre1i{xjs

C ^ ei � pAj ^ pEi � Ejq ^ pC afterEjqqre
1
i{xis

C;Γ $ krp, qs!tei ÞÑ lixe
1
iypxiqxEiy;PiuiPI �∆, krps : q!tljpxj : UjqtAjuxEjy.LjujPJ

tSELu

C;Γ $ P1 �∆1 C;Γ $ P2 �∆2

C;Γ $ P1 | P2 �∆1,∆2

∆ end only
C;Γ $ 0�∆ tPAR/ENDu

L1re{xs, . . . ,Lnre{xs well-asserted
C;Γ,X : pxqL1 @ p1, . . . ,Ln@ pn $ Xxey � srp1s : L1re{xs, . . . , srpns : Lnre{xs

tVARu

C;Γ,X : pxqL1 @ p1, . . . ,Ln@ pn $ P � srp1s : L1, . . . , srpns : Ln
C;Γ $ pµXpxq.P qxey � srp1s : L1re{xs, . . . , srpns : Lnre{xs

tRECu

Fig. 4. Proof rules for networks (top) and proof rules for processes (bottom)

tN1u decomposes the validation of a network into the validations of each located
process against its corresponding specification ∆. The correspondence between prin-
cipal and specification in checked by the clause idpσpq � idpσaq. Furthermore, local
and virtual states must satisfy the principal invariant Ipσpq. P is then validated in the
assertion environment extended (i.e., in conjunction with) the principal invariant.

tN2u is the rule for refinement. This rule is useful to validate processes even if they do
not match exactly a given assertion as long as they implement a behaviour that is ‘more
refined’ than the one prescribed. Refinement is also necessary to prove completeness
of these rules (Theorem 14). We use the following refinement relation between spec-
ifications: pΓ 1, ∆1, σ1q � pΓ,∆, σq if pΓ 1, ∆1, σ1q specifies a more refined behaviour
than pΓ,∆, σq, in that it poses more restrictions on the output actions and poses less
restrictions on the input actions. tN2u allows to refine the assertion environment C by
considering, in the premise, a weaker set of assumptions C1.

tN3u is for empty networks and tN4u is for decomposing the validation of networks.
tMACCu validates a session accept on a shared channel a as role i provided that a is

in the domain of Γ , and that the continuation P is validated against the specification ∆
extended with the new session yris. In the (now active) session yris, P must behave as
Γ paq projected on role i. The rule for session request is similar hence omitted.

tBCHu validates the branching process. ∆ must include an active session krqs on
session channel k for the receiver role q. In the premise, the continuation for each
branch i is required to be still valid in the assertion environment extended with Ai. In

10



the second clause of the premise, for each branch i the update Ei must not invalidate
C; this ensures that the update does not invalidate the principal invariant. The invariant
is not mentioned explicitly (to keep the proof rules concise), but it is implied by C.
In fact, C is the conjunction of (1) the principal invariant (by tN1u), (2) possibly some
interaction predicates (by tBCHu), and (3) possibly some boolean expressions (by tSELu).
Since predicates (2), (3) and Ai do not contain free state variables8, then Ei can only
invalidate the principal invariant (1); on the other hand (2), (3) and Ai are necessary
premises (i.e., C^Ai before the implication) as they may constrain interaction variables
used by Ei.

In tSELu each branch i of the process must correspond to a branch j of the specifica-
tion (li � lj). The continuation must be validated in assertion environment C extended
with the closure ei of the condition of the branch ei. The closure of boolean expression
ei is defined as the closure for predicates (see Remark 4). The clause at the bottom of
the premise requires that, under the assumption C^ei: (1) expression e1i satisfiesAj , (2)
assertion and process have the same effects/updates on the states, (3) update Ej does
not invalidate the principal invariant. 9

tPARu is similar to tN2u but for parallel processes. tENDu validates the idle process
provided that each active session in the specification ∆ is of the form yrps : end.

tVARu validates recursive call given that the active sessions in ∆ correspond to the
roles and local assertions associated to process variable X in Γ and that each Li is still
well-asserted when the recursion parameter is substituted with e. tRECu is the standard
rule for recursion definition. The validation of recursive processes is handled in a sim-
ilar way to [5]; it uses a refinement rule for processes, similar to tN2u and omitted for
simplicity, and the fact that assertions are refined by their unfolding. See [4] for more
details.

Example 9. Consider the located process rPS | PCsσp from Example 8 that executes
two parallel threads: one selling a ticket and the other one buying another kind of ticket
from another principal (the other principal is not modelled here). We show the validation
of true;Γ $ rPS | PCsσp � rHsσa proceeding top-down using the rules in Figure 4.

The global specification rHsσa is initially empty since there are no active sessions.
The active sessions will be added upon session request/accept by PS and PC. We assume
σp � σa � tcount : int, credit : intu ÞÑ t10, 500u and initially C � true.

We first apply tN1u with Ipσpq � credit ¥ 0 ^ 0 ¤ count ¤ 1000 from Ex-
ample 8. For readability we will write I instead of Ipσpq in this example. Note that I
is satisfied by the local and virtual state. Next we apply rule tPARu that decomposes the
derivation of two threads for PS and PC. We omit the illustration of the latter thread.

Below we illustrate the application of rule tMACCu and tBCHu to the former thread:

I ^ tDC.credit.C.credit ¥ xu;Γ $ P 1
S � zrSs : L1

S

I ^ tDC.credit.C.credit ¥ xu � pI afterHq
tBCHu

I;Γ $ zrC, Ss?pxq.P 1
S � zrSs : C?px : NatqtDC.credit.C.credit ¥ xu.L1

S
tMACCu

I;Γ $ PS �H

8 By history-sensitivity Ai does not include any free state variable.
9 tBCHu/tSELu can be extended to delegation adding the following clause for Ui � xLy: (tBCHu) C ^
Ai;Γ $ Pi �∆, krqs : Li, xi : L, and (tSELu) C ^ ei;Γ $ P re1i{xis �∆1, krps : Ljre1i{xjs with
∆ � ∆2, ei : L1

i and ∆1 � ∆2.

11



For readability we will simplify I ^ tDC.credit.C.credit ¥ xu with the equivalent
predicate I. Next, by tSELu, setting e � count   1000^ x ¥ 10, and Eok � count :�
count� 1, credit :� credit� x:

I ^ e � pcount   1000^ y � count^ Eok � Eok ^ I afterEokqrcount{ys I;Γ $ 0� zrSs : end
I ^ e � true I;Γ $ 0� zrSs : end

I;Γ $ zrS, Cs!te ÞÑ okxcountypyqxEoky.0, e ÞÑ ko.0u
$ zrSs : C!tokpy : Natqtcount   1000^ y � countuxEoky.end, ko.endu

where each line in the premise refers to a branch (i.e., ok and ko). The most delicate
clause is I^e � pcount   1000^y � count^Eok � Eok^I afterEokqrcount{ys
which requires: (1) the interaction predicate to be satisfied under the current assump-
tions, and in fact pcount   1000 ^ y � countqrcount{ys is implied by e, (2) the
updates to be consistent, and in fact trivially Eok � Eok, and (3) the update to not
invalidate the invariant, and in fact credit � x ¥ 0 ^ 0 ¤ count � 1 ¤ 1000 is true
under the assumptions credit ¥ 0, x ¥ 10 and 0 ¤ count. Finally we apply tENDu to
the second premise of each branch.

The effectiveness of the proof rules depends on the logic chosen for the predi-
cates, which depends on the application scenario. An example which fits these crite-
ria is the Presburger arithmetic, which is often sufficiently expressive: practical uses
of multiplication are encodable [17], and formulae with quantifiers may be calculated
efficiently [20, 22].

Proposition 10. The proof of C;Γ $ N � Σ is decidable if predicate evaluation is
decidable.

5 Soundness and completeness of the validation rules

We define a labelled transition relation for specifications xΓ,Σy using the same labels
as for networks. The main difference with the rules for networks is that predicates must
be satisfied for the transition to occur. We illustrate below the most remarkable rules
(see [4] for the other rules). The rule for session request:

xpa : G, Γ q; r∆sσy arnsxsy
ÝÝÝÝÝÑ xpa : G, Γ q; r∆, sr1s : G æ 1sσy

extends ∆ with the new session, given that a : G in Γ and the current state satisfies
assertion invariant A. The rule for session accept is dual. The rule for selection/send:

j P I σ |ù Ajrn{xjs σ1 � σ afterEjrn{xjs

xΓ ; r∆, srps : q!tlipxi : UiqtAiuxEiy.LiuiPI sσy
srp,qs!ljxny
ÝÝÝÝÝÝÝÑ xΓ ; r∆, srps : Ljrn{xjssσ1y

moves to the continuation Lj of the selected branch with the updated state σ1, given
that the sent value n satisfies predicate Aj for branch j in the current state σ.

Semantic conformance is defined using conditional simulation [5] to relate net-
works N to specifications xΓ ;Σy.

Definition 11 (Conditional Simulation). A binary relation R over N and xΓ ;Σy is a
conditional simulation if, for each pN, xΓ ;Σyq P R, if N `

ÝÑ N 1 with ` being:
(1) a branching then xΓ ;Σy is capable to move at the subject of `, and if xΓ ;Σy `

ÝÑ

12



xΓ ;Σ1y then pN 1, xΓ ;Σ1yq P R;
(2) a select, session request/accept, τ then xΓ ;Σy `

ÝÑ xΓ ;Σ1y and pN 1, xΓ ;Σ1yq P R.
We write N À xΓ ;Σy if there exists a conditional simulation R s.t. pN, xΓ ;Σyq P R.

Conditional simulation is like standard simulation for all types of actions except for
branching, for which it requires N to be simulated only for legal values/labels (i.e., a
process must conform to a given specification as long as its environment does so).

Definition 12 (Satisfaction). N satisfies Σ in Γ and C, written C;Γ |ù N � Σ, if for
all closing substitutions σ̃ over N and Σ respecting Γ and C, Nσ̃ À xΓ ;Σσ̃y.

We write Γ |ù N � Σ when C is true (e.g., for initial networks). Soundness and
completeness for initial networks are stated below.

Theorem 13 (Soundness of Proof Rules). Let N be an initial network. Then Γ $
N �Σ implies Γ |ù N �Σ.

Theorem 14 (Completeness of Proof Rules). Let N �
±
iPI rPisσpi be an initial

network and Σ �
±
iPI r∆isσai be a specification. Assume that for all i P I: (1)

idpσpiq � idpσaiq, (2) dompσpiq � dompσaiq, and (3) Ipσpiq equivalent to true. If
Γ |ù N �Σ then Γ $ N �Σ.

(1-2) are for symmetry between N and Σ. (3) is necessary since the principals in N
can make updates that differ from those made by the corresponding specifications inΣ;
this may not compromise the observable behaviour of N with respect to Σ, but N may
invalidate some principal invariant which would make the thesis false.

6 Related work and further topics

The preceding integrations of session types with logical constraints include [13], based
on concurrent constraints ensuring bi-linear usage of channels, and [5], based on logical
annotations on interactions, do not treat stateful properties. The combination of types
and logical assertions referring to local state newly proposed in this paper enable fine-
grained specifications and validation, which are not possible in [5, 13].

The expressiveness of the session type-based analyses has been greatly extended
these past few years. On one side, the conversation calculus [8], contracts [11] and dy-
namic multirole session types [14] have opened the way to the modelling of protocols
complex in their shapes, by describing more accurately how sessions can be joined or
left, who is allowed participate. On the other side, works such as [5, 9] improved the
way interactions inside a session are described: in [5], an assertion framework ensures
logical properties on the communicated values, in [9], a security analysis guarantees
that the coherence of the information flow is preserved. Our work improves the session
type analyses in both directions: by proposing a division of the process being tested
into separate principals that can join one or several sessions independently when condi-
tions are matched and manage their own state, and by giving a description, inside each
session, of the internal state of each participant and the property it should satisfy. A re-
cent work [12] examines conditions to ensure that a stateful specification is robust w.r.t.

13



asynchronous communications. Our work provides a complete proof system ensuring
soundness for processes, whereas [12] only addresses properties of types.

The refinement types for channels (e.g. [3]) specify value dependency with logical
constraints. For example, one might write ?px : int, !ty : int | y ¡ xuq (using the nota-
tion from [16]). It specifies a dependency at a single point (channel). Our theory, based
on multiparty sessions, can verify processes against a contract globally agreed by mul-
tiple distributed peers. [2] uses refinement types for channels to verify authentication in
multiparty session protocols, but does not consider multi-session properties.

The work [7] investigates a relationship between a dual intuitionistic linear logic and
binary session types, and shows that the former defines a proof system for a session cal-
culus which can automatically characterise and guarantee a session fidelity and global
progress. None of the above works treat either virtual states or logical specifications for
interleaved multiparty sessions.

The use of Rely-Guarantee conditions or other related methods [19] instead of a sin-
gle invariant does not increase the expressiveness of our system, but could ease proofs
for parallel composition.

A future direction is to link between our static analysis and a dynamic monitor-
based approach. Using our local specification as a monitor at each end-point, incoming
and outgoing messages can be verified and filtered. We are currently working on this
topic with [21] based on the logic developed in this paper.

References

1. L. Bettini et al. Global progress in dynamically interleaved multiparty sessions. In CONCUR,
volume 5201 of LNCS, pages 418–433. Springer, 2008.

2. K. Bhargavan, R. Corin, P.-M. Deniélou, C. Fournet, and J. Leifer. Cryptographic protocol
synthesis and verification for multiparty sessions. In CSF, pages 124–140, 2009.

3. K. Bhargavan, C. Fournet, and A. D. Gordon. Modular verification of security protocol code
by typing. In POPL, pages 445–456, 2010.

4. L. Bocchi, R. Demangeon, and N. Yoshida. A multiparty multi-session logic (extended
report). http://www.cs.le.ac.uk/people/lb148/statefulassertions.html.

5. L. Bocchi, K. Honda, E. Tuosto, and N. Yoshida. A theory of design-by-contract for dis-
tributed multiparty interactions. In CONCUR, volume 6269 of LNCS, pages 162–176, 2010.

6. L. Bocchi, J. Lange, and E. Tuosto. Three algorithms and a methodology for amending
contracts for choreographies. Scientific Annals of Computer Science, 22(1):61–104, 2012.

7. L. Caires and F. Pfenning. Session types as intuitionistic linear propositions. In CON-
CUR’10, volume 6269 of LNCS, pages 222–236. Springer-Verlag, 2010.

8. L. Caires and H. T. Vieira. Conversation types. In ESOP, volume 5502 of LNCS, pages
285–300. Springer, 2009.

9. S. Capecchi, I. Castellani, and M. Dezani-Ciancaglini. Information flow safety in multiparty
sessions. In EXPRESS, volume 64 of EPTCS, pages 16–30, 2011.

10. M. Carbone, K. Honda, and N. Yoshida. Structured interactional exceptions in session types.
In CONCUR, volume 5201 of LNCS, pages 402–417. Springer, 2008.

11. G. Castagna and L. Padovani. Contracts for mobile processes. In CONCUR 2009, number
5710 in LNCS, pages 211–228, 2009.

12. T.-C. Chen and K. Honda. Specifying stateful asynchronous properties for distributed pro-
grams. (to appear in CONCUR), 2012.

14



13. M. Coppo and M. Dezani-Ciancaglini. Structured communications with concurrent con-
straints. In TGC, pages 104–125, 2008.

14. P.-M. Deniélou and N. Yoshida. Dynamic multirole session types. In POPL, pages 435–446,
2011.

15. E. W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of programs.
Commun. ACM, 18:453–457, August 1975.

16. T. Freeman and F. Pfenning. Refinement types for ML. SIGPLAN Not., 26(6):268–277,
1991.

17. M. K. Ganai. Efficient decision procedure for bounded integer non-linear operations. In
HVC ’08, pages 68–83. LNCS, 2009.

18. K. Honda, N. Yoshida, and M. Carbone. Multiparty Asynchronous Session Types. In
POPL’08, pages 273–284. ACM, 2008.

19. C. Jones. Abstraction for concurrency. In SEFM, LNCS, 2012. to appear.
20. G. Nelson and D. C. Oppen. A simplifier based on efficient decision algorithms. In POPL’78,

pages 141–150. ACM, 1978.
21. Ocean Observatories Initiative (OOI). http://www.oceanleadership.org/

programs-and-partnerships/ocean-observing/ooi/.
22. W. Pugh. The omega test: a fast and practical integer programming algorithm for dependence

analysis. In Supercomputing ’91, pages 4–13, New York, NY, USA, 1991. ACM.

15


