
CO3120 Final Report submitted to the University of Leicester in Partial Fulfilment for the

degree of Bachelor of Science

.

CChheemmiiccaall RReeaaccttiioonn RRaattee AAnnaallyyssiiss

UUssiinngg GGrraapphh TTrraannssffoorrmmaattiioonnss

CO3120 Computer Science Project

Final Report

May 2009

Mayur Bapodra

Mayur Bapodra i
CO3120 Final Report

Contents

Contents i

Tables and Figures iii

Declaration 1

Abstract 2

1. Introduction 3
Motivation 3
Aims 4
Objectives 4
Outcomes 5

2. Background – Chemistry 6
Literature survey 6
The rate constant, k 7
A simple one-step reaction 9
More complex reaction mechanisms 10
Use of a stoichiometric matrix 11

3. Background – Graph Transformations 13
Literature survey 13
Graphs and type graphs 16
Graph transformations 18
Critical pairs 19
Stochastic graph transformations & reaction networks 21

4. Molecular Representation Using Graphs 24
1st attempt 24
2nd attempt 26
3rd attempt 28

5. Methodology 31
Use of critical pairs 31
Step 1: Specification of reaction rules and starting materials in AGG 32
Step 2: Application of reaction rules to the start graph to obtain intermediates 32
Step 3: Execution of first pass critical analysis 33
Step 4: Removal of structurally equivalent overlappings 33
Step 5: Manual observation of results and instantiation of rules 34
Step 6: Disabling of original general rules, and renaming of all rules 35
Step 7: Execution of critical pair analysis with fully instantiated rules 35
Step 8: Removal of structurally equivalent overlappings for instantiated rules 36
Step 9: Execution of ODE extraction program 37
Step 10: Solving ODE’s using a 3rd party math solver 37

6. Implementation 39
Tools that implement the methodology 39
The AGG API 42
Critical Pair Analysis 43
Structural Equivalence Testing 45
ODE Extraction 46

Mayur Bapodra ii
CO3120 Final Report

Running the Kinetic Analysis 47

7. Case Study 1 – Esterification 50
Step 1 50
Step 2 53
Step 3 53

8. Case Study 2 – SN1 Reaction 54
Step 1 54
Step 2 58
Step 3 59
Step 4 61
Step 5 61
Step 6 63
Step 7 63
Step 8 64
Step 9 65
Brief Analysis of results 66

9. Planning and Timescales 67
Tasks 67
Challenges and Rsks 70
Deliverables 71
Gantt Chart 71
Appraisal of Plan 73

10. Critical Appraisal 75
Summary of completed work 75
Self-assessment 75
Suggestions for further work 77

Bibliography 79

Appendix 1 – Career Plan 81

Appendix 2 – Weekly Diaries 83

Mayur Bapodra iii
CO3120 Final Report

Tables and Figures

Figure 1 – energy profile depiction of activation energy 8

Figure 2 - simple SN2 reaction (hydrolysis of ethyl chloride to ethanol) 9

Figure 3 - example of complex reaction mechanism 10

Figure 4 – stoichiometric matrix for example reaction 11

Figure 5 - rate law matrix for example reaction 12

Figure 6 - example type graph 17

Figure 7 - example typed graph 17

Figure 8 - definition of a graph transformation (DPO) 18

Figure 9 - definition of graph transformation with match 18

Figure 10 - example rule 1 18

Figure 11 - rule 1 applied to example graph in figure 7 19

Figure 12 - parallel independence of rules [4] 19

Figure 13 - double pushout depiction of parallel independence [9] 20

Figure 14 - double pushout depiction of sequential independence [9] 20

Figure 15 - example Q-matrix 22

Figure 16 - esterification type graph, 1st attempt 24

Figure 17 - esterification start graph, 1st attempt 25

Figure 18 - atomic constraint for 1st attempt type graph 26

Figure 19 - hyperedge representation of CH4 27

Figure 20 - bipartite graph representation of CH4 27

Figure 21 - esterification type graph, 2nd attempt 28

Figure 22 - esterification start graph, 2nd attempt 28

Figure 23 - esterification type graph, final version 29

Figure 24 - esterification start graph, final version 29

Figure 25 - example bond node constraint for final type graph 30

Figure 26 - structural representation of ethanoic acid 32

Figure 27 - example of chemically equivalent structural overlappings 34

Figure 28 - double pushout construction depicting instantiation of rule 35

Figure 29 - AGG critical pair conflicts summary example 36

Figure 30 - AGG critical pair conflicts summary example after structural equivalence
reduction 37

Figure 31 - main layout of AGG 39

Figure 32 - kinetic analysis program, steps 2 and 3 40

Figure 33 - critical pair analysis GUI module of AGG 41

Figure 34 - result of running complete kinetic analysis suite 42

Figure 35 - critical pair analysis package structure 43

Mayur Bapodra iv
CO3120 Final Report

Figure 36 - step 1 of esterification reaction [3] 50

Figure 37 - step 1 of esterification reaction, GT rule 50

Figure 38 - step 2 of esterification reaction [3] 51

Figure 39 - step 2 of esterification reaction, GT rule 51

Figure 40 - step 3 of esterification reaction [3] 51

Figure 41 - step 3 of esterification reaction, GT rule 51

Figure 42 - step 4 of esterification reaction [3] 52

Figure 43 - step 4 of esterification reaction, GT rule 52

Figure 44 - step 5 of esterification reaction [3] 52

Figure 45 - SN1 type graph 54

Figure 46 - constraint limiting number of bonds allowed 55

Figure 47 - constraint designating direction of edges in bonds 55

Figure 48 - constraint limiting C and C+ connection to same bond node 55

Figure 49 - SN1 starting materials 56

Figure 50 - step 1 of SN1 reaction 56

Figure 51 - step 1 of SN1 reaction, GT rule 56

Figure 52 - step 2 of SN1 reaction 57

Figure 53 - step 2 of SN1 reaction, GT rule 57

Figure 54 - step 3 of SN1 reaction 57

Figure 55 - step 3 of SN1 reaction, GT rule 57

Figure 56 - reaction of CH3OH with CH3
+ 62

Figure 57 - instantiation of step2 for reaction with water 62

Figure 58 - instantiation of step2 for reaction with methanol 62

Figure 59 - NAC for step2 general rule to create instantiated rule 63

Table 1 - delete-use overlapping information for esterification - conflicts 53

Table 2 - preliminary intermediates in SN1 reaction 59

Table 3 - summary of conflict overlappings from critical pair analysis (first pass) 60

Table 4 - summary of dependency overlappings from critical pair analysis (first pass) 60

Table 5 - delete-use overlapping information for SN1 - conflicts 61

Table 6 - delete-use overlapping information for SN1 - dependencies 61

Table 7 - summary of conflict overlappings from critical pair analysis (final pass) 64

Table 8 - summary of dependency overlappings from critical pair analysis (final pass) 64

Table 9 - summary of conflict overlappings after structural equivalence analysis 65

Table 10 - - summary of dependency overlappings after structural equivalence analysis 65

Code 1 - CPAnalysisSetup, setUpRules method 43

Code 2 - MB294ExcludePairContainer, fillContainers method 44

Mayur Bapodra v
CO3120 Final Report

Code 3 - MB294DependencyPairContainer, computeCritical method 44

Code 4 - MB294ComputeCriticalPairs, use of MB294ParserFactory 45

Code 5 - structural equivalence testing package structure 45

Code 6 - ODE extraction package structure 46

Code 7 - ODEExtraction, outputODEs method 47

Code 8 - StructuralEquivalenceAnalysis, main method demonstrating use of exit codes 48

Code 9 - MB294CriticalPairAnalysis, main method 48

Code 10 - Windows batch script demonstrating use of Java system exit codes 49

Mayur Bapodra 1
CO3120 Final Report

Declaration

All sentences or passages quoted in this report, or computer code of any form whatsoever

used and/or submitted at any stages, which are taken from other people‟s work have been

specifically acknowledged by clear citation of the source, specifying author, work, date and

page(s).

Any part of my own written work, or software coding, which is substantially based upon

other people‟s work, is duly accompanied by clear citation of the source, specifying author,

work, date and page(s).

I understand that failure to do this amounts to plagiarism and will be considered grounds for

failure in this module and the degree examination as a whole.

Name: Mayur Bapodra

Signed:

Date:

Mayur Bapodra 2
CO3120 Final Report

Abstract

The following report documents the outcome of a yearlong project aimed at the derivation of

ordinary differential equations for a chemical reaction, using graph transformation techniques.

While some articles have described the application of graph transformation techniques to

biochemical reactions, and the use of stochastic systems to predict the kinetic profiles of

reactions, very few have tried to derive these linear differential equations.

The report first describes the original motivation, aims and objectives for the project. Then, a

background in chemistry is included, which describes the manual derivation of ordinary

differential equations for a reaction. A summary of relevant graph transformation theory used

in the project is also presented. The report briefly describes here some of the research done

last term into stochastic graph transformation systems, which provide a foundation to the

method eventually developed.

The project core follows, which describes in detail, our developed methodology used to

generate the ordinary differential equations for a specific finite reaction network, the

adaptation of existing tools that facilitates the application of this methodology, and two case

studies to demonstrate this application.

In the final section of the report, there is a discussion of how functional and useful the

original project plan was, finding many difficulties in the precise projection of timescales for

an open-ended problem such as this. Finally, a critical appraisal focuses on the limitations of

the project, such as the limited applicability of the developed methodology, problems with

the software used and many suggestions for areas of further work. The project has successful

results for one simple reaction (unimolecular nucleophilic substitution, SN1) with very small

starting molecules, but limitations in 3
rd

 party analysis tools rendered it useless for testing

larger reaction networks and larger molecules. Further work is necessary to investigate how

to make analysis faster and more efficient if it is to be of any widespread use for chemists.

Nevertheless, the successful case study demonstrates the soundness of the methodology in

principle.

Mayur Bapodra 3
CO3120 Final Report

1. Introduction

Motivation

The kinetics of any chemical reaction is important for many areas of research, whether it is

deducing the reactivity of certain reagents in the lab, or for planning large scale industrial

chemical synthesis. The speed at which reactions occur is vital knowledge for any such

undertaking. Traditionally, chemists are able to conduct experiments in the lab that ascertain

this information. The findings of such experiments relate to the observer important facets of

the underlying reaction, such as the stabilities of any chemical species involved or the steps

that might have occurred from the starting molecule to the product molecule. This process

can however be reversed – by proposing a reaction mechanism and comparing it to

experimental data, chemists can gauge the accuracy of their proposals. This offers a way of

gaining a deeper understanding of the elemental chemistry behind any complex reaction.

This project aims to derive the ordinary differential equations that describe the kinetics of any

reaction using graph transformation techniques. While these equations can be derived by

hand, it becomes extremely difficult for unbounded and complex reaction networks.

Automation of this process would make it more widely applicable and therefore more useful.

Related work in this field has mainly focused on stochastic graph transformation simulations

to produce quantitative data rather than the derivation of these linear algebraic equations. The

results of such simulations are affected by hardware capabilities (specifically in the number

of starting molecules allowed in the system). Ordinary differential equations however, are an

alternative level of abstraction with a reproducible result. This result should be utilisable

under different conditions to predict the progress of a reaction, whereas the simulation results

are specific to the conditions and probabilistic circumstances under which it was run. The two

approaches should be used together however to determine their congruence and therefore the

accuracy of the proposed reaction mechanism.

While others, such as Cardelli [2], have derived these ordinary differential equations using

alternative methods ([2] uses process algebra), these are not intuitive for chemists to use due

to their technical content. Graph transformations remain relatively unexplored in this area,

despite their visual attractiveness and simplicity. Chemists already used to using graphs (i.e.

structural formula) to represent molecules would be more comfortable with an approach that

bears some resemblance to this application domain. If a computer science method of deriving

ordinary differential equations were to be widely applicable, graph transformation systems

seem to be the most promising. Furthermore, Cardelli‟s process calculus approach requires

the establishment of reaction rules that describe involved reactants in their entirety. Graph

transformations allow the specification of rules based on functional groups i.e. only the atoms

and bonds directly affected by a reaction. This more general specification makes reaction

rules reusable in many molecules based on local context.

This task is not trivial, however. The first obstacle is a representation of molecules and

reactions in graphs that retains as much of the real chemistry as possible while not

complicating the computational analysis. The eventual balance requires an understanding of

both the underlying chemistry and the computer science theory. Secondly, the derivation of

ordinary differential equations by hand is a complex procedure that could require a number of

sequential or repetitive steps. Such a procedure may not only be unappealing to computer

scientists to replicate, but also difficult to do so in an uncomplicated way. This project aims

to take the first steps towards such a methodology. This methodology once evolved and

Mayur Bapodra 4
CO3120 Final Report

improved upon further will aid the automated derivation of ordinary differential equations for

simple finite systems, and more importantly, for open infinite reaction mechanisms too, such

as polymerisation.

Aims

The project aims to develop a methodology to analyse the quantitative dynamics of chemical

reactions, namely in determining the ordinary differential equations (ODE‟s) which define

the rate of reaction. This rate is usually determined as the rate of change of concentration of

one of the chemical species (which can be reactants or products) with respect to time. These

differential equations will be extracted from a specification of reaction rules as local

structural transformations in molecules represented as graphs. The methodology will be

verified against actual case studies using appropriate tools.

Objectives

1. To develop a methodology to model chemical reaction networks and derive ordinary

differential equations for these reactions using graph transformation theory

This will be the major challenge of the project as the application of graph

transformation theory in finding ordinary differential equations for reactions is not

well documented.

2. Case Study 1 – application of methodology derived in 1 to a simple reaction such as

esterification

This will be an essential step in verifying the model derived in 1 and the subsequent

ordinary differential equations against established empirical data. Esterification (the

reaction of a carboxylic acid and an alcohol to form an ester) is a fairly simple

reversible reaction which can be modelled quite easily. The network is also finite,

meaning there are few intermediate steps between reactants and products. Alternate

reaction pathways (causing a deviation from expected products) are limited. This,

combined with a wealth of existing experimental data, will provide enough

information to check our model.

3. Case Study 2 – application of methodology derived in 1 to a complex reaction such as

condensation and hydration of glucose

The glucose molecule can be seen as a monomer unit in this reaction, which can

combine with other glucose molecules (or existing chains) to form larger and larger

polymers. As the ways in which these monomers and polymers can combine are

numerous, the reaction network can be immensely large. Adapting our methodology

to such large and complicated networks will make this part of the project especially

challenging.

4. Implementation in AGG and other tools

Mayur Bapodra 5
CO3120 Final Report

The graph transformation rules and an initial graph representing the reactant

molecules can be implemented in AGG [19]. AGG is a programming tool commonly

used by the graph transformation community as it has a natural, user-friendly

interface. AGG can apply constructed rules to input graphs in order to test whether

they produce the proper results, which is a fundamental step towards deriving ODE‟s.

Some additional work using the AGG API will be necessary to adapt the software to

our needs, and to automate certain steps in our analysis.

There is also a secondary personal learning objective outlined below:

5. To gain a thorough understanding of graph transformation theory

As well as revising the background knowledge from the fields of Chemistry and

Physics needed for the project, research into graph transformation theory will be

necessary. This will include basic theory, stochastic theory, and also ways in which

graph transformation theory can be applied to chemical reaction networks.

The aims and objectives of the project have changed somewhat since the initial inception

phase (see original project description form) as understanding of the problem has become

clearer through extensive reading and consultation with supervisors. In particular, the

following modifications have been made:

 Universal rules governing the general reactivity of functional groups as influenced by

intramolecular factors and the availability of other reacting species will not be

implemented. This in itself is a large task that bears little relation to the more

specialized main aim of defining reaction kinetics. Furthermore, such reaction

predicting systems have already been successfully implemented by others. Therefore,

only the rules directly affecting the case studies will be investigated and implemented.

 The development of an interface specifically designed for chemists constructing graph

transformation systems has been abandoned as this has also been accomplished by

others. In addition, development of such a system would be independent of the other

major objectives of the project. In order to plan a more coherent and self-contained

project, and to leave time for other more important parts of the project, existing tools

(such as AGG) will be used without adapting them to a chemistry-related paradigm.

Outcomes

The project produced a methodology to derive ordinary differential equations for multistep

reaction mechanisms. An implementation of the methodology was also developed to test its

practicality. This was verified against a simple case study of the SN1 reaction. The

methodology has some deficiencies and limits to its universal applicability as discussed in the

critical appraisal. Specifically, it currently focuses on reaction networks with a finite number

of rules. Due to scalability limitations in the 3
rd

 party tools used, the implementation only

works for reaction mechanisms involving molecules of bounded size and with reaction rules

where local context in the left hand side of the rule is limited to a few atoms and bonds.

Nevertheless the project is a useful and successful first step towards achieving our aims.

Mayur Bapodra 6
CO3120 Final Report

2. Background – Chemistry

This chapter outlines first the literature survey conducted as part of the “Project Plan” and

provides an overview of the main ideas from Chemistry pertaining to the project. A more

detailed treatment then follows explaining methodically how ordinary differential equations

for a reaction can be extracted from its mechanism.

Literature survey

Before the analysis of kinetics can take place for chemical reactions, an understanding of how

molecules react must be gained. Any basic course or text book in Organic Chemistry is useful

here but [13] provides a thorough university-level description of reaction kinetics. In

particular, it is useful because it derives formulas commonly associated with kinetics from

first principles. An appreciation of this may prove fundamental when developing our model

of reaction networks and especially when deriving differential equations.

In the simplest terms, chemical reactions occur when the bonds in molecules break and/or

form. Some reactions are fairly simple and involve only one or very few steps. The rate laws

for these reactions can be predicted fairly easily. Others however involve numerous steps,

each step known as an elementary step in the overall reaction mechanism. Predicting,

deriving or interpreting experimental data for such reactions can be complicated and may

involve approximations and assumptions which reduce the validity of results. The mechanism

is also not entirely deterministic. At any step, there may be several choices for subsequent

steps. These steps may not be equally likely but probable nonetheless and could lead to by-

products.

Reaction between two molecules can be prompted by collision with each other where the

collision is energetic enough to cause the breaking of a bond and the formation of another

bond. The minimum energy needed for reaction (provided by the collision) is denoted by the

Activation Energy (this is an important concept as this energy is directly related to the rates

of elementary reactions). The activation energy is greater than or equal to the difference in

the stable energies of the reactants and products. In reactions where the reactants are

particularly stable compared to the products, collision between the reactant molecules is often

the determining factor of whether a reaction can take place or not. The collision step is

known as the rate determining step in this case. Reactions do not always occur through

collision however. If a molecule has an extremely reactive leaving group (a group in a

molecule which can accept electrons from a carbon and break away) it may leave before

collision. The resulting positively charged carbocation is extremely reactive and will usually

react straight away. The rate determining step in this case is the leaving of the leaving group.

[13] also describes how reactions take place over potential energy minima, taking the lowest

energy pathway from reactant to products. There is a potential energy maximum along these

reaction coordinates, which corresponds to the activation energy. When reactant molecules

overcome this maximum, they become products. However, the reverse is also true. Products

can become reactants if they have enough energy to overcome the maximum from the

opposite direction. As this energy is higher (remembering that products have a lower energy

than reactants overall) fewer molecules have enough energy to overcome this barrier. The

distribution of molecular energies within a species is given by the Boltzmann distribution,

which takes the very approximate shape of a natural distribution. In a sense, all reactions are

Mayur Bapodra 7
CO3120 Final Report

therefore reversible, but some are not viable as the stabilization of products over reactants is

so great that the reverse reaction is extremely unlikely. However, in many cases, we need to

consider the reverse of elementary steps to create a more accurate model. [13] also describes

the form of the rate law and its dependence on rate constants (which can be calculated using

the Arrhenius equation) and concentrations of reactants and intermediate products. The rate

law is synonymous with the ordinary differential equations we wish to derive. Its exact form

depends on the details of reaction. It will be this project‟s objective to abstract these details to

form a general graph transformation model. [13] is comprehensive in the information needed

to do this.

As well as the difficulty and setbacks in analysing experimental data for more complex

reactions, there are several other reasons why we may wish to model reactions rather than

conduct them in a lab. A deeper understanding of exact mechanisms can be gained by

simulating reactions. For example, in [5] the citric acid cycle is modelled and analysed using

graph transformations (with tool support from AGG). As individual nodes are typed and can

have attributes such as an ID, the movement of nodes can be traced. This led to a more in-

depth knowledge of exactly where certain CH2COO
-
groups are consumed in the cycle.

Reactants may be extremely hazardous (such as radioactive material) and reactions explosive

or otherwise dangerous. Modelling therefore provides a much safer alternative. Reactants or

the equipment necessary for reaction may be costly, so once a model is developed, it can be

very cost efficient to run. Some reactions may be too fast ([6] explains methods used in their

implementation of a simulation tool that change the algorithm used in the simulation so that it

is most suitable for the speed of reaction) or too slow to conduct in the lab. [13] describes

some experimental methods for conducting fast reactions in the lab and still obtain

meaningful results but many of these techniques are complex, require specialized equipment

and can be wasteful of reactants.

What follows is a more detailed consideration of some of the more relevant theory pertaining

to the project. A general example of how reaction rate laws are derived for reaction

mechanisms consisting of a number of steps is given here (essentially a summary of the

information from [13]).

The rate constant, k

As noted in the literature survey a reaction involving two molecules usually occurs on their

collision. For a simple one step reaction involving two molecules the rate of reaction depends

on two factors – the concentration of the reacting molecules and the inherent reactivity of the

two reactants.

As the concentration of a species increases, the no. of molecules of that species within a

particular volume increases. Intuitively (i.e. without an explicit treatment of the formal

collision theory), this increases the probability of a collision between this molecule and the

other, and therefore the rate of reaction increases. The inherent reactivity of a reaction

depends on the rate constant, k, for a given reaction. As discussed in the literature survey, this

depends on the activation energy of the reaction between the two reactants. The rate constant

can be expressed in the following way:

Mayur Bapodra 8
CO3120 Final Report

RT

E
expA)T(k a equation 1

where k is the rate constant at temperature T, A is the pre-exponential factor (unique to each

reaction), Ea is the activation energy of the reaction, R is the gas constant, and T is the

temperature at which the reaction is being considered.

Consider the following generalized example of a bimolecular reaction:

A + B C + D equation 2

A and B collide and react to form C and D. The energy profile for these reactants is given in

figure 1. Even though the energy of the products is lower than the reactants, there is still an

energy expenditure barrier to overcome before the reaction can proceed. This usually

corresponds to the overcoming of mutual electronic repulsion as negatively charged orbitals

of electrons approach each other in order to reconfigure and become the highly unstable

transition state. The higher the activation energy the more difficult it is to reach this short-

lived transition state. As we can see from equation 1, the higher the activation energy the

lower k becomes and therefore the lower the rate of reaction.

Figure 1 – energy profile depiction of activation energy

The exponential factor in equation 1 describes the Boltzmann distribution which states that

the proportion of molecules with energy Ea in a mixture is proportional to:

RT

E
exp a

If the temperature of the system is increased, this entire exponential factor becomes larger. As

the temperature is increased energy is introduced to the system. Therefore, the proportion of

Mayur Bapodra 9
CO3120 Final Report

molecules now possessing the energy Ea is increased. In determining the value of k, this

means that more molecules have sufficient energy to overcome the minimum energy barrier;

k increases, and as a result so does the rate of reaction. The pre-exponential factor A also has

some minor temperature dependence, but this is often ignored due to the swamping effect of

the temperature dependence in the exponential part.

The value of A can be derived purely through the application of collision theory (as outlined

in [13]) but this ignores steric factors (such as the size and orientation of molecules) which

reduce the proportion of collisions that lead to reaction and therefore leads to an

overestimation of the proportion of collisions leading to reaction. Often the value of A

derived from collision theory is substituted for a value of A extracted through experiment.

A simple one-step reaction

We will consider the following SN2 reaction (nucleophilic substitution involving 2

molecules) as an example:

CH3

ClNa OH Na Cl

CH3

OH

Figure 2 - simple SN2 reaction (hydrolysis of ethyl chloride to ethanol)

In this example, the negatively charged electrons on the OH group from NaOH attack the

carbon atom connected to the chlorine atom in our target molecule. The carbon is slightly

positively charged because the chlorine has a higher electronegativity and draws electrons in

the mutual bond towards itself. The attack leads to a high energy transition state in which

both OH and Cl are partially connected to the carbon atom in question. This is however

incredibly short-lived and cannot be isolated as an intermediate in the reaction. Therefore, the

reaction immediately proceeds to the products where the C-Cl partial bond is broken and the

C-OH bond is completely formed. Combining the concentration dependence and k factor

dependence, the differential rate of reaction can be expressed as:

]NaOH][ClCHCH[k
dt

]ClCHCH[d
23

23 equation 3

Here the rate of reaction is written as the rate of change of the concentration of one of the

starting reactants. The negative sign indicates that the reaction speeds up if there is more of

the starting material but this leads to a quicker depletion of CH3CH2Cl. We include the

concentration of both CH3CH2Cl and NaOH because there must be a collision between these

for the reaction to proceed. The rate of change of concentration could also be written in terms

of the other chemical species as follows:

]NaOH][ClCHCH[k
dt

]NaOH[d
23 equation 4

]NaOH][ClCHCH[k
dt

]OHCHCH[d
23

23 equation 5

Mayur Bapodra 10
CO3120 Final Report

]NaOH][ClCHCH[k
dt

]NaCl[d
23 equation 6

Equation 4 has the same form as that of equation 3 as both are starting reactants. Equations 5

and 6 are also the same but this time we are considering the rate of change of concentration of

products with time. As the concentrations of starting materials increase (and hence the

likelihood of a collision leading to a possible reaction) the reaction speeds up resulting in a

greater rate of production of products, hence the sign of k is now positive. No matter how the

rate is expressed the form of the rate law is the same and is a product of the rate constant, k,

and the concentrations of the molecules involved in the reaction. If the reaction involves 2 of

the same molecule, it appears twice in the rate law, leading to a square of the concentration of

that species. The rate law therefore informs us about the mechanism behind an elementary

reaction. Conversely, the mechanism immediately gives us the rate law.

More complex reaction mechanisms

The above treatment is for a simple one-step mechanism. For a more complex reaction

network involving several steps from reactants to products, a differential equation for the

reaction rate can still be derived in this way, but the overall reaction needs to be broken down

into a series of elementary steps, bearing in mind the reversibility of any steps. Each

elementary reaction will have its own energy profile and hence its own activation energy.

Each reaction therefore has a unique value of k. Even for the same energy profile, a reverse

reaction going from products to reactants must overcome a different energy barrier (see

figure 1). Consider the following example reaction mechanism where A and B are molecules

which can react to form C and D, D can then react with B to form G, or E to form F. The

double headed arrows indicate reversible reactions:

k1

k-1

A + B C + D

k3

FD + E

k2

GB + D

Figure 3 - example of complex reaction mechanism

Reaction 1 is reversible, reaction 2 forms a bi-product G which removes D from the system

and reaction 3 forms our desired product F. Ideally, the overall rate of reaction should be

expressed in the concentrations of known species which can be measured, such as the

reactant molecules, or any terminal molecules such as G or F. In order to do this, we need to

first formulate the rate of reaction with respect to each species in the system. The first step is

deciding which elementary reactions produce or consume the species in question. For

example, B is consumed in both reaction with rate constant k1 and k2, but is produced by the

reverse reaction with rate constant k-1. We would formulate the differential equation as

follows:

]D][B[k]D][C[k]B][A[k
dt

]B[d
211 equation 7

Mayur Bapodra 11
CO3120 Final Report

Similarly, the rate can be formulated for the other species as follows:

]][[]][[
][

11 DCkBAk
dt

Ad
 equation 8

]][[]][[
][

11 DCkBAk
dt

Cd
 equation 9

]][[]][[]][[]][[
][

3211 EDkDBkDCkBAk
dt

Dd
 equation 10

]][[
][

3 EDk
dt

Ed
 equation 11

]][[
][

3 EDk
dt

Fd
 equation 12

]][[
][

2 DBk
dt

Gd
 equation 13

The combination of all of the above differential reactions can then give a picture of how the

rate of reaction looks with respect to a specific species (e.g. a particular reactant or product).

Passing all of these individual equations to a computer math solver could then yield a single

differential equation in terms of one or a few species only, perhaps those of interest or those

that can be easily measured. This differential equation could also be presented graphically,

showing a prediction of the kinetic profile for the reaction, or could be compared against

empirical results to validate or invalidate our proposed reaction mechanism. Slight variations

in the match between the two sets of results could expose overlooked details in our proposed

elementary reactions or perhaps even an entire step. Our methodology will aim to produce

these individual differential equations for a particular reaction.

Use of a stoichiometric matrix

Cardelli [2] proposes a method of deriving these individual ordinary reactions without

explicit knowledge of the elementary reaction mechanisms, via a stoichiometric matrix. If it

is known for each reaction, how many molecules of each chemical species is created or

destroyed, we can build up a matrix as follows:

 A B C D E F G

k1 -1 -1 1 1 0 0 0

k-1 1 1 -1 -1 0 0 0

k2 0 -1 0 -1 0 0 1

k3 0 0 0 -1 -1 1 0

Figure 4 – stoichiometric matrix for example reaction

Mayur Bapodra 12
CO3120 Final Report

Each entry in the matrix corresponds to the aggregate number of molecules produced or

consumed in a reaction, negative for consumption and positive for production. For example,

if reaction with rate constant k5 consumed 3 molecules of X but produced 2, the entry for k5

and X in the matrix would be -1.

From this matrix, we can build the rate laws for the elementary reaction steps if we assume

that all reactions are initiated either by collision and subsequent reaction of molecules which

lead to their destruction, or by disintegration of one molecule into several. In both cases, the

reaction occurs through the destruction/alteration of a molecule. If a molecule is involved in

the initiation of an elementary step but is not consumed this method does not work. However,

this is very rare, and even for catalysts (which are never used up by a complex reaction when

considering the overall outcome) there is usually a change in form at the level of elementary

reaction. Each row of the matrix informs us of the molecules involved for a particular

reaction. If we multiply the rate coefficient for each row by the concentration of those species

which are destroyed in the reaction we can define rate laws for our example reaction as:

k1[A][B] for the first reaction

k-1[C][D] for the reverse of the first reaction

k2[B][D] for the second reaction

k3[D][E] for the third reaction

If one molecule of a species is involved as reagents to an elementary reaction multiple times,

it would be treated as another species and that species would be multiplied that many times

e.g. if k5 had a coefficient of -2 for X, it would appear as k5[X][X] or k5[X]
2
. The derivation

of the rate law matrix from the stoichiometric one is not in Cardelli‟s methodology and he

finds the rate laws in a different way, which no doubt avoids the problem specified above in

assuming elementary reactions occur via the alteration of molecules. Appreciation of this

method would be invaluable for further work and an enhancement of the current

methodology, which has limited universal applicability.

Now we have a rate law matrix and a stoichiometric matrix, the rate law matrix taking the

following form with only one row:

k1 k-1 k2 k3

k1[A][B] k-1[C][D] k2[B][D] k3[D][E]

Figure 5 - rate law matrix for example reaction

A simple matrix multiplication of Rate Law Matrix by Stoichiometric Matrix then gives us a

1x7 matrix with the elementary ODE‟s (equations 7 to 13).

Mayur Bapodra 13
CO3120 Final Report

3. Background – Graph Transformations

This section provides parts of the literature survey conducted for the “Project Plan” as a

summary of existing related work in the use of graph transformations to model chemical

reactions.

Literature survey

[8] gives an excellent overview of basic graph transformation theory. It consists of an easy-

to-follow description of graph transformation systems including the representation of systems

as graphs (type and instance graphs), rules and transformations, constraints and application

conditions. To explain its most basic functionality, a rule first looks for a pattern match for

the left side of the rule in the input graph. Then, edges and nodes that are not in the right hand

side of the rule are deleted, while edges and nodes that are newly created in the right hand

side are placed into the graph. This paper will be invaluable as a reference to basic concepts

throughout the project.

Modelling molecules and reaction networks using graphs is described as a very natural

application by much of the literature [1,13]. [1] and [17] discuss how a form of graphs is

already a fundamental part of organic chemistry, when depicting molecules by their structural

formula. Atoms can naturally be seen as nodes in a graph, with the bonds between them

represented as bi-directional edges. Double bonds and triple bonds could be modelled as two

edges and three edges respectively (as represented in [1]) but this would only be useful if a

reaction involved the breaking of one of the double bonds in one or more of its elementary

steps (this may be useful for the esterification case study).

The problem with this basic approach, however, is a loss of information about spatial

configurations i.e. cis and trans isomers and chirality. Furthermore, the valencies of

individual atoms (the no. of other atoms it can bond to) are not automatically conserved. [5]

offers an alternative approach that should be much more intuitive for chemists. By modelling

the atoms as hyperedges and the bonds between them as nodes, valency and chirality can both

be incorporated into the model. Each hyperedge is typed by atom, allowing for different

numbers of joined nodes, therefore the concept of valency is preserved. The outgoing „bond‟

nodes from a hyperedge are labelled in order to show the three-dimensional ordering (related

to D-glyceraldehyde), and preserving chirality. This is particular important for reactions

where one enantiomer is more reactive in an elementary step, or where only one enantiomer

binds with a particular substrate. This is more prominent in biochemical systems. The

example of Citrate binding with Aconitase is given in [5]. In our two case studies chirality

does not need to be considered as it has no bearing on the outcome of reaction. Therefore the

simpler model may prove sufficient.

From the representation of molecules as graphs, envisioning reactions between molecules as

graph transformations is not a big step. Both [17] and [18] describe how reactions involve the

breaking and creation of bonds in a molecule to transform it into a different molecule. In the

graph, this would mean an elementary reaction step would involve the deletion of edges

(bonds) and nodes not appearing in the right hand side of the rule, and the creation of edges

and nodes that appear on the right hand side of the rule. As nodes and edges can have

attributes, attributes may also be updated during the transformation. Such attributes could

indicate energies of bonds, valencies or other useful information. Another reason why graph

Mayur Bapodra 14
CO3120 Final Report

transformation representations are so natural is their “inherent concurrency” [5]. This is the

ability for these systems to allow simultaneous reactions of different reactants, which is

obviously what happens in real chemistry. Causal dependencies can be monitored along with

conflicts, using critical pair analysis. [17] attributes the strength of graph transformations in

this field to their “pattern handling power”. In any chemical reaction network, involving an

arbitrarily large number of molecules, a multitude of simultaneous reactions are possible.

However, graph transformation rules define the standard reactivity of certain functional

groups. Pattern matching provides a powerful search method for where these rules can be

applied within the network. This will be explored in both our case studies and a more

thorough explanation is giving in later sections of this report.

[5] explains how graph transformations work in detail, by summarising the so-called double-

pushout approach. The left side and right side of the rule span show how the molecule will

change, whereas the gluing graph between the left and right hand side simply indicates which

elements are involved (“read”) in the rule, but not consumed. In the “toy” model of artificial

chemistries given in [1] the essential idea is the same, but the gluing graph is labelled the

context. The visualisation is also much more attuned to the structural formula representation

used by chemists – atomic/group nodes are just labelled by element symbols and the edges

replaced by standard bond representations (with double and triple bonds preserved). Although

this may be more intuitive for chemists, it does not allow us to easily show attributes of nodes

or edges, and also may seem alien to the way the graphs will look in their eventual

implementation using tools such as AGG. Using standard graph representations should be

easy enough to understand so the further simplifications in the toy model are not necessary.

[5] suggests 3 types of rules in any graph transformation system. Symmetry rules are useful

for the hyperedge model. Although chiral molecules cannot rearrange their spatial

configuration with respect to the other groups around the chiral carbon centre, the bond

connected to this carbon can itself rotate, meaning the groups can change position. So that

this is not considered a separate molecule, equivalence rules can be set up. Expansion rules

allow us to expand atoms grouped together in one node/hyperedge (usually for simpler

representation) into their full expanded graph. This is necessary if at some point in the graph

the details of the group become important e.g. one of the atoms is involved in a reaction.

Again, this contracted representation is familiar for chemists, who often contract large groups

in structural formula when their exact spatial details are not contextually important. Reaction

rules define the change of groups. Our model should definitely incorporate the second and

third types of rules, and consider the symmetry rules if the chirality preserving hyperedge

model is used. [5] provides some other invaluable information about how graph

transformation theory can be applied to reactions, and how atoms can be traced throughout

the reaction and will serve as good reference material throughout the project.

Stochastic graph transformation systems and rates of reaction

[10] and [11] are excellent references explaining the extension of a graph transformation

system to a stochastic graph transformation system. Given a start graph and a graph

transformation system, a labelled transition system can be deduced which shows all the

possible states (graphs) possible. Applied to a reaction network, each state would represent

all the species (reactants, products, by-products and intermediates) that would result from

applying the graph transformation rules. Labels from state to state can be assigned attributes

such as a probability of reaction. This is analogous to the rate of the transformation from one

step to the next, hence essential to our derivation of the overall rate of reaction. [10] provides

all the necessary definitions and procedures needed to convert a stochastic graph

Mayur Bapodra 15
CO3120 Final Report

transformation system to a Continuous Time Markov Chain, which then allows the

application of stochastic temporal logic to deduce long-term non-functional stochastic

properties of the system. Equivalence rules can be set up which check for certain properties

of the system at any point during the progress of the simulation, thereby allowing us to

monitor the presence of molecules for example. Querying the system at regular intervals can

then allow us to effectively measure properties proportional to the concentration of chemical

species. Paper [10], demonstrates the application of stochastic graph transformations to P2P

networks. Although the model is simpler (in that the rates are more easily assigned) the

example will be invaluable in understanding how stochastic systems are applied. As the

theory behind stochastic graph transformations (Continuous Time Markov Chains, Q-

incidence matrices, Stochastic Temporal Logic) can be quite difficult to grasp, both of these

papers will be useful to return to.

In deciding the rates of elementary steps, paper [1] provides a very good starting point. As

discussed earlier, the Arrhenius equation relates the change in energy between reactants and

products with a rate of reaction. [1] discusses a refinement where instead of entire molecules,

just the energy of hybridised orbitals involved in the reaction are considered. For complex

reactions such as case study 2 we can follow the methodology described in [1] and automate

the procedure of assigning energies by looking at recurring sections of molecules

(characterised by different hybridised orbitals) rather than entire molecules. This

generalisation step would avoid having to manually determine and assign energies for the

high number of possible species involved in the reaction (i.e. chains of many different

lengths). It can incorporate more complicated electronic distributions accurately into the

model, such as π-stabilisation where adjacent π-bonding orbitals can overlap in a molecule,

lowering their overall energy and making them more resistant to breaking and therefore

reaction. [1] also describes how this method accounts for regioselectivity within a molecule

i.e. if there are two places where a rule can be applied, calculating energies would force the

rate of reaction at one site to be realistically higher than the other. [1] actually goes on to

suggest that the calculation of energies could be used for stochastic simulations of reaction

networks using the Gillespie algorithm. The background theory and ideas presented in this

paper could be utilised in the project, possibly for future iterations.

There are other methods in the literature that are used to model stochastic systems. [2] and

[14] both use process languages to specify the reaction rules and to derive useful properties.

Cardelli‟s paper [2] is particularly useful as it sets out to achieve what this project does using

stochastic process algebra, namely CCS and CGF. While this approach is probably more

intuitive and precise for computer scientists, it loses its appeal for chemists due to its

technical complexity. The visual graph representation is much more useful in this respect

because the components are easily recognisable to chemists. The content of the paper is quite

technical and without a background in logic and automata course requires substantial

background reading to understand fully. The paper is therefore currently of limited use.

Nevertheless, it would be highly advisable to understand Cardelli‟s approach, in order to note

his assumptions and the way in which he assigns rates to elementary reaction steps. For this

reason, a quick overview of π-calculus (provided by [15]) and subsequent research into CCS

still needs to be undertaken.

Implementation tools

AGG [19] is widely used by the graph transformation academic community. A brief

description of its utilisation to a chemical reaction setting is given in [5]. AGG does have

several limitations for our purposes though. Firstly, it cannot be used for stochastic

Mayur Bapodra 16
CO3120 Final Report

simulations. To obtain stochastic data, a combination of PRISM and GROOVE (as described

in [10] and [11]) could be used. [6] also provides a very thorough presentation of FERN, a

Java framework that can be used for stochastic simulation. The API seems fairly

straightforward. It does not however provide its own visualisation module. AGG also has its

own Java API and a combination of the two tools could be coordinated to fit the project‟s

needs. Further investigation of [6] and [19] will be necessary to achieve this. An appealing

feature of [6] is that it provides implementations of several stochastic simulation algorithms,

namely the Gillespie algorithm, extended Gillespie algorithm and a tau-leaping algorithm.

The framework applies the most appropriate algorithm depending on the speed of the reaction,

and can even change dynamically during runtime.

Other limitations of the software should also be considered before using AGG such as

minimum requirements, known bugs and elements of graph transformation theory that are not

implemented (such as the ability to input hyperedges). The user manuals, bug reports and

examples which can be found at [19] should be reviewed before/while using the tool.

Consideration for more complete modelling

Despite being an overview paper that has little relevant technical content, [18] does

illuminate some interesting points to consider if we are to progress to a more complete model

of real chemistries. In particular, “Global Context Sensitivity” is discussed. This states that

physical properties play an important role in chemical reactions, such as temperature, solvent,

viscosity, catalysts and radiation to name just a few. A graph transformation model may be

limited in its ability to incorporate such factors. This should be taken into account in the final

stages of the project. “Local Context Sensitivity” considers for example the “three

dimensional conformation of reactive groups” of a molecule and how this affects reactivity.

Large groups for example may block collision with incoming molecules, thereby hindering

reaction rates.

While a complete and accurate model is impossible for the scope of this project, it would be

interesting to consider some of these factors, in particular temperature as the Arrhenius

Equation is temperature dependent. The quality of results from the model compared to

empirical results may prompt further investigation into these factors towards the end of the

project, time permitting. We will return to this paper for background knowledge at this stage.

Graphs and type graphs

The graph transformation theory covered in this section provides a non-technical overview of

the theory necessary to understand our methodology. For a richer, more mathematical

discussion of the theory presented here, with formal definitions, please refer to [4], [5] and

[8], of which the following is a summary.

Graphs are composed of a set of nodes and a set of directed edges. Each edge has a source

and target node. Formally, a graph can be represented as:

G = (V, E, s, t) equation 14

…where G is a graph, V is the set of vertices (or nodes), E is the set of edges, and s and t are

the source and target functions respectively (s,t : E V).

Mayur Bapodra 17
CO3120 Final Report

A typed graph is much like a UML class diagram, in that it specifies the allowed types

(analogous to classes) of nodes and edges, and also the allowed relations between different

nodes and edges. A type graph can also be formulated in the same way as equation 14:

TG = (VTG, ETG, sTG, tTG) equation 15

A graph is typed if it conforms to the specification laid out in the type graph, and is

represented formally as:

G
T
 = (G, type) equation 16

… which specifies that a typed graph consists of a graph and a graph morphism, which is

essentially a function, which maps the graph to the type graph, type : G TG. A graph

morphism is a combination of two functions; one that maps all vertices from one graph to

another, and one that maps the edges in the same way. All nodes and edges must be instances

of the node types and edge types specified in the type graph. The graph as a whole may be

considered an instance of a type graph, just as in UML an object is an instance of a class. As

an example, consider the following simple type graph:

Figure 6 - example type graph

This specifies that the red node can only connect to a black node via a purple edge, and the

blue node can only connect to a red node via a green edge (note the direction of the edges).

Just like UML class diagrams, cardinalities can be specified on relations between nodes

through their edges. Every blue node must have 1 or 2 red nodes connected to it. Every red

node must have 1 blue node connected to it. The relation between the black and red node is

unconstrained, i.e. there is a zero to many cardinality. As there is no edge between the blue

and black node, the blue node must never be connected to the black one. A red node can be

connected to no more than one other red node (including itself). An example of a valid typed

graph over this type graph is given in figure 7:

Figure 7 - example typed graph

Mayur Bapodra 18
CO3120 Final Report

Graph transformations

A graph transformation (also known as a rule or production) is a graph morphism that is used

to specify how a graph can change. It is usually specified in the following way:

Figure 8 - definition of a graph transformation (DPO)

This is known as the double pushout approach (DPO) construction. L is the left-hand side of

the rule and specifies the preconditions for the application of a rule. It is itself a graph which

contains nodes and edges. K is the gluing (or sometimes called the context) graph. This

specifies which nodes and edges in L are unchanged by the rule (i.e. “read” only). R is the

right-hand side of the rule and specifies the postconditions for the application of the rule.

Nodes and edges in L have an identity and these are mapped to nodes and edges in K and R,

unless of course R introduces a new node or edge, in which case it will not have an identity.

In order to perform a transformation on a given graph, there must be a match for the nodes

and edges in L within the graph i.e. there must be an injective morphism (every member in L

must be mapped to a unique member in the graph). There can be more than one such match,

in which case one is non-deterministically chosen for the transformation (AGG allows

interactive matching which allows you to select which match to perform the transformation

with). Once a match is found, i.e. a copy of L is found in the graph, the nodes and edges not

in K are deleted, and the new nodes and edges in R are copied into the graph. This can be

represented pictorially as:

Figure 9 - definition of graph transformation with match

m, k and n all depict the embedding (injective morphism) of L, K and R respectively into G,

D and H, the instance graphs. G is the graph before the transformation, D is the graph after

the non-preserved nodes have been deleted, and H is the graph after the new elements in R

have been copied over.

The subgraphs that constitute the left and right hand sides of a rule must also conform to type

graph specifications. An example rule for the type graph given in figure 6 is:

Figure 10 - example rule 1

L K R

G D H

L K R l
 l

r

 l

 l
 l

r

 l

m

 l

k

 l
f

 l

g

 l
 l

n

 l

Mayur Bapodra 19
CO3120 Final Report

Figure 10 shows only the left and right hand side of the rule. These diagrams were produced

using AGG (a graph transformation tool), which does not require the input of a gluing graph,

as this is inferred from the left and right hand sides. The gluing graph here would be the red

node (1), which is the only node preserved by the rule. This rule essentially just deletes a

black node, and its corresponding edge, connected to a red node. If this rule is applied to the

graph in figure 7, we would get the following:

Figure 11 - rule 1 applied to example graph in figure 7

While there are three matches for the left hand side of the rule, there is only one valid match.

Deletion of the second black node, connected to two red nodes, would lead to a violation of

the dangling condition. The two remaining matches select either one of the red nodes with the

black node. For either of these, if the black node and one edge are deleted, another edge is

left without a target node, hence a dangling edge. There are two ways to overcome this, either

to delete the dangling edge, or disallow transformations that lead to a dangling edge (AGG

allows the setting of this as an option). In our case, we do not delete dangling edges, hence

there is only one valid match.

Critical pairs

The theoretical background presented here is a summary of the chapter on critical pairs in [4].

A critical pair refers to a pair of rules where one rule could potentially affect the application

of another. There are two main types of critical pairs: conflicts and causal dependencies.

Conflicts refer to parallel dependent pairs of rules, where the application of one rule could

disable the application of another. Consider a graph, G, with the possible application of rule

p1 or rule p2:

Figure 12 - parallel independence of rules [4]

Mayur Bapodra 20
CO3120 Final Report

If the above confluence is possible, rules p1 and p2 are parallel independent. However, if the

transformation p1 on graph G creates a graph H1 such that p2 can no longer be applied, or p2

on graph G creates a graph H2 such that p1 can no longer be applied, the two rules are parallel

dependent and in conflict. We can check for such a conflict by depicting the double pushout

construction for each rule.

Figure 13 - double pushout depiction of parallel independence [9]

For parallel independence, each rule must not delete nodes and edges needed in the left hand

side of the other rule. In other words, D2 (the gluing graph which specifies which nodes and

edges are not deleted by rule p2) must contain L1, and D1 must contain L2. Another way of

considering this is to look at the union of the left hand side of both rules. There will be a

number of graphs satisfying this union, each graph depending on exactly how the union takes

place. If in any one of these unions, the intersection of the two left hand sides is not in the

gluing graph of both rules (K1 and K2) the rules are in conflict.

For sequential dependence, we consider the following construction:

Figure 14 - double pushout depiction of sequential independence [9]

Rule p1 has been reversed. If the order in which p1 and p2 are applied affects the overall

outcome of the application of both rules, there is sequential dependence. Here we consider if

D2 contains R1 instead of L1. If we have a reaction rule p1 such that it creates the graph in the

LHS of p2, L2 will be in R1 but will not be in D1. Since p1 creates L2, L2 should not exist in

this gluing graph (i.e. before p1 is applied). This is identical to saying that for some

intersection of R1 and L2, K1 will not contain this intersection as some nodes and elements in

L2 will not have been produced yet. The intersection of R1 and L2 should be in both K1 and K2

for sequential independence. Therefore, in this case, we have a critical pair denoting

sequential dependence.

R1 K1 L1 L2 K2 R2

H1 D1 G D2 H2

p1 p2

L1 K1 R1 L2 K2 R2

G D1 H D2 G’

p1 p2

Mayur Bapodra 21
CO3120 Final Report

Stochastic graph transformations & reaction networks

Although stochastic techniques were not utilised in this project, considerable time was spent

studying and understanding their application to chemical kinetics in the first term. As such, a

very brief summary of their use is given here, gathered from [10] and [11]. As mentioned in

the introduction, stochastic simulation is an alternative and better studied approach to

producing reaction kinetic data. There are a number of differences between this approach and

ours. While ours aims to produce equations, simulations produce quantitative data. This

quantitative data depends on the circumstances under which the simulation was run, and also

chance. Simulations consider every possible change from one molecule to another by a

reaction in an atomic way, considering each one a unique transformation. Differential

equations, however, essentially average all of these unique transformations into one overall

rate law for that reaction. The stochastic simulation technique described below requires the

input of a reaction mixture (many of each molecule) as the first state of a labelled transition

system. There are scalability issues here in the number of instances of each molecule possible

before the simulation can no longer run efficiently. Differential equations overcome this as

generally only one instance of each molecule involved in each elementary reaction is

necessary. Both of these approaches should be considered as complementary and further

work would look at the connection between them. Therefore, an understanding of the theory

behind stochastic graph transformation systems is very useful for the project.

While a graph transformation system describes the functional, behavioural aspects of a

system, adaption of this to a stochastic graph transformation system can inform us of non-

functional properties of the same system. The speed at which reactions occur is one such non-

functional property. To derive kinetic information about a particular complex reaction, we

would first need the rules that make up the elementary reactions for the system, and a type

graph to which all rules and graphs must conform to. We can derive a labelled transition

system from these rules if a start graph is used to apply these rules to. The start graph

describes the initial state of the system. In our case the start graph would be the starting

material molecules for the reaction.

We can describe the resulting labelled transition system as a labelled transition graph, where

each graph is reachable from the start graph through the consecutive application of rules,

starting at the start graph. Each transition is labelled with the rule name. This system now

describes the entire reaction network, with intermediates as graphs in the labelled graph

system and rules as the transitions between these graphs.

To progress from this transition system to a stochastic graph transformation system we need

the notion of a Q-matrix and Continuous Time Markov Chains (CTMC‟s). A Q-matrix

(without formal mathematical notation, which can be found in [10]), is a transition rate matrix

which describes essentially the probability that a particular transition will occur in the

labelled transition system, transforming one graph to another. In chemistry, this is analogous

to the rate constant, k, for an elementary reaction, which transforms one set of molecules to

another. Just as the Q-matrix value describes some inherent probability of transition from one

graph to another, k is an inherent probability of reaction for a particular elementary reaction.

The usual concentration dependence that the speed of reaction has is incorporated into the

transition system model elsewhere; the more molecules there are of a particular type required

in a reaction, the more likely a transition of that type will fire in any given interval if we look

at the system as a whole.

Mayur Bapodra 22
CO3120 Final Report

Each entry in the Q-matrix describes the transition rate from one state to another. The rows

and columns are both elements from the set of possible states for the system to be in. Each

row must sum to 0 (a necessary normalisation prerequisite for Q-matrices). If a transition

from one state to another is impossible, the Q-matrix entry where they intersect is 0. The rate

from one state to the same state is usually where a negative value is inserted to normalise the

matrix. For example, if A, B and C are intermediate states in a reaction, the Q-matrix might

look as follows:

 A B C

A -5 5 0

B 3 -11 8

C 1 0 -1

Figure 15 - example Q-matrix

Here we see that A can go to B but cannot go to C. B can go to A, but is more likely to go to

C. C can go to A, although it is not very likely, but not B.

From the labelled graph system and the Q-matrix, we can define a Continuous Time Markov

Chain (CTMC). The CTMC is a random process, which describes the state of a system

indexed by some t. In our case, t is time, since we are considering the progress of a reaction

with time. If t is from a continuous set (as it is with time), we are describing a continuous

time process as opposed to a discrete time process. The “continuous time” in CTMC refers to

this. The CTMC is discrete-state since the intermediate graphs are the result of concrete,

finite rule applications. The current state in the CTMC only depends on the previous state.

The Q-matrix, along with the finite states provided by the labelled graph system, defines a

CTMC in the following way. If the Q-matrix entry is greater than zero for any 2 sets of states,

s and s‟ (provided s ≠ s‟), then a transition from s to s‟ occurs. So in our example Q-matrix

above, if we start with A, A can progress to B. If there is more than one possible transition,

however, a “race” between the possible transitions occurs, with the probability of any

transition winning and therefore firing being the value of that entry in the Q-matrix divided

by the total non-negative values in that particular row of the matrix (also given by the

negative of the value for the s,s entry in the matrix). For example, once at B, we can return to

A (with a value of 3) or progress to C (more likely, with a value of 8). The probability that B

 A occurs is 3/11, and the probability that B C occurs is 8/11.

Another important note about the CTMC is that the transition delay is exponentially

distributed with rate –Q(s,s) i.e. the probability that a state, s, will change within time t is the

same at any time and depends on the sum of the entries for any row (i.e. state) of the Q-

matrix. The memoryless property of exponential distributions is particularly suited for

chemical reactions, as it indicates that the proportion of molecules to undergo a particular

elementary reaction in time interval, t, is constant. Again, this indicates an inherent reactivity

of the molecules involved in an elementary reaction. As the sum of the rate constants for all

outgoing reactions determines how fast a particular intermediate molecule will react and be

used up, this is intuitively correct. These same rate constants determine the values in the Q-

matrix. The changing concentration of species needed for a reaction to occur will have an

Mayur Bapodra 23
CO3120 Final Report

effect on the overall speed of reaction, but the rate constant and inherent reactivity of the

molecules needed for a reaction should never change (assuming a constant temperature).

The stochastic graph transformation system then, attributes to each rule (i.e. transition in the

labelled graph system) “an exponentially distributed delay of its application” [10], which is

derived from the Q-matrix (details of how to do this are given in [11]). In chemical reactions,

this is proportional to the value of the rate constant for a particular reaction. Such a system

can be implemented using a tool chain such as AGG for rule specification, and GROOVE and

PRISM for specifying the Q-matrix and running the stochastic simulation. Continuous

Stochastic Logic (CSL) can then be used to query the stochastic system. This involves setting

up atomic propositions which question the probability of certain events occurring (e.g. is the

probability that there are 1000 molecules of intermediate molecule C present after 20 time

units 0.1?) either throughout the time of the simulation or at long-term steady state (i.e. the

end of the reaction). Using appropriately designed queries, a value (actually a probability)

proportional to the number of molecules of each species can be ascertained throughout the

simulated reaction. If we assume a constant volume, this is proportional to the concentration

of each species. A graph of concentration against time for each species can then be plotted

and checked against empirical lab results.

This was a very brief and non-mathematical overview of stochastic graph transformation

systems. More details can be found in [10] and [11].

As stochastic simulations give us numerical, quantitative data that can be directly compared

to existing experimental data, it may be reasonable to ask why ODE‟s are necessary at all.

The ODE‟s give us a direct insight into the overall reaction mechanism for a complex

reaction. A plot of the combined ODE‟s compared to experimental data may reveal drastic

differences, which may be due to an inadequately proposed mechanism (i.e. omissions or

inclusion of reactions that never occur), or highlight interesting physical properties of a

reaction e.g. temperature dependence or dependence on molecular size or spatial

configuration. While the methodology developed in this project does not come anywhere

close to incorporating such physical influences on a reaction, the knowledge of their presence

alone is invaluable.

Mayur Bapodra 24
CO3120 Final Report

4. Molecular Representation Using Graphs

So far this report has focused on background and related work done in this field. The

following is an account of how this was used in this project. First we focus on the use of

graphs to represent molecules and their reactions, and then describe the step by step

derivation of ordinary differential equations for a reaction, using the concept of critical pairs.

This is followed by a description of the implementation of this methodology using 3
rd

 party

and newly developed tools. Our two case studies test the methodology and its implementation

for a finite reaction mechanism.

A type graph is extremely important when representing molecules using graph

transformations. A type graph captures the necessary rules to restrict the bonding of atoms,

their valencies (the total number of bonds a particular atom is allowed to have) and any other

idiosyncrasies of molecular chemistry. During the initial stages of the project, several type

graphs were experimented with. This section gives an account of the evolution of these

approaches through three main stages.

1
st
 attempt

Because molecules consist of atoms and bonds that connect two atoms, a first intuitive

representation of molecules might consist of atoms as nodes and bonds as edges that directly

connect them. A first approach followed this intuition and produced the following type graph

(for all atoms in the esterification example):

Figure 16 - esterification type graph, 1st attempt

The structure of the type graph is quite complex. Just as with UML class diagrams, we can

see the use of inheritance in this type graph. All of the atoms are subtypes of the “atom”

supertype. C, H and H
+
 are all subtypes of “R” (used in organic chemistry to designate an

arbitrary hydrocarbon chain), which in turn is a subtype of “atom”. A bond between atoms

must consist of a pair of edges, one in each direction. As edges are directed, making each

bond a pair of oppositely directed edges avoids the added complication of specifying a

direction between each pair of atoms, and allows the use of a supertype, generic atom to

Mayur Bapodra 25
CO3120 Final Report

specify all allowed connections. This is why all bond edges are directed to the central “atom”

supertype. The cardinalities of the bond edges specify the valencies for each atom. For

instance, the O type must have 2 outgoing edges to other atoms, and 2 incoming edges,

therefore specifying that each O atom must have 2 atoms connected to it at all times. The

“atom” supertype has a connection to itself. This is to allow connections between atoms.

While the edges from the subtype atoms to the supertype “atom” should already assume this

possibility, AGG did not allow it unless the “atom” to “atom” edge was added. Charged

atoms were included separately as they have different valencies to their non-charged

counterparts. O
+
 can have 3 connections for example, whereas neutral O can only have 2.

In producing a graph over the type graph above, in AGG the type graph must be enabled.

There are two options for enabling the type graph – with both minimum and maximum

cardinalities enabled, or just the maximum. With the minimum enabled, this minimum is in

effect throughout the lifetime of the graph, even when rules are being applied, and as most

rules involve deletion of an edge before re-adding another, this minimum may be violated

making the rule inapplicable. Therefore, for all type graphs, we only enable the maximum

cardinalities of the type graph. Figure 17 shows an example of a graph that conforms to the

type graph of figure 16. These are the starting materials in the esterification reaction studied

in this project:

Figure 17 - esterification start graph, 1st attempt

The leftmost molecule is a carboxylic acid, ethanoic acid. Between the C on the right and the

upper O, there are 4 edges in total, therefore 2 bonds. Under this type graph, this is how a

double bond is represented. The small molecule is TsOH, an acid catalyst in the reaction.

Here, we have encapsulated the complicated internal structure of p-Toluenesulfonic acid as a

single TsO node, as this internal structure is not important to the reaction; only the attached H

atom has any significance. The molecule on the right is the alcohol (ethanol) which reacts

with the ethanoic acid to eventually form an ester.

As the minimum cardinalities are disabled for the graph, it is entirely possible that through

the course of the reaction certain required conditions may become violated, in particular the

fact that each bond must consist of two edges. This is particularly important for critical pair

analysis, which we will discuss later, where we look for critical overlappings of nodes and

edges between a pair of rules. When we specify rules, we can carefully control their outcome

through the left and right hand sides. Critical overlappings however are extracted from all

Mayur Bapodra 26
CO3120 Final Report

possible permutations of an embedding of the two rules into one graph. To ensure all of these

permutations conform to rules not specified in the type graph, we can use constraints.

Constraints are specified for an entire graph grammar (rules and start graph). An atomic

constraint consists of an atomic proposition, and one or more conclusions that must be true if

the proposition is true. For example:

Atomic proposition: Atomic conclusion:

Figure 18 - atomic constraint for 1st attempt type graph

This atomic constraint states that whenever one atom is connected to another by an edge,

there must be an accompanying edge in the opposite direction. A constraint can be

formulated from many individual atomic constraints using Boolean logic. Constraints

specifying the necessary presence of a situation can be expressed by leaving the atomic

proposition empty and specifying an atomic conclusion. This means that the conclusion must

always be true. To specify required absence, a constraint that falsifies such an atomic

constraint must be defined.

While this was an extremely intuitive type graph, which could easily be understood by both

chemists and computer scientists, there are some drawbacks because of its simplicity.

Primarily, the dangling condition (described earlier) can easily be violated in the specification

of a rule unless extended local context is given in that rule. For example, if a rule specified

that one of the bonds of the C=O double bond in ethanoic acid (figure 17) should break to

leave a single bond, with C becoming C
+
, we would need to break the other bonds this C has

and reform them with the C
+
. If the rule only included the C which actually changes, and left

out the local context, the rule would become inapplicable as the dangling condition would be

violated when C changed to C
+
. Generally, to specify reactivity that is as general and widely

applicable as possible, rules should include only the functional groups that are affected by

rules, and avoid local context. A way around this for this particular type graph, would be to

split rules (as can be seen for rules entitled Step4a and Step4b, in file

“esterification_attempt1.ggx”), but this adds unnecessary complication to the grammar.

2
nd

 attempt

A second attempt looked at incorporating a hyperedge treatment. AGG does not allow the use

of hyperedges. However, they can be simulated using bipartite graphs, as carried out in [5]. A

hyperedge is an edge that connects more than two nodes. The nodes that a central hyperedge

connects can be ordered thereby some semblance of 3-dimensional spatial configuration is

preserved. This is an extremely useful property for the reactions of chiral molecules where

only certain enantiomers (3-dimensional configurations) undergo reactions. For our case

studies, chirality was not relevant. However, this representation also enables an easy way of

limiting the number of bonds each atom is allowed, hence establishing valency maximums.

CH4 (methane) would have the following hyperedge representation:

Mayur Bapodra 27
CO3120 Final Report

Figure 19 - hyperedge representation of CH4

Contrary to the 1
st
 model, atoms are now (hyper)edges, and bonds are nodes. The green

hyperedge is the central carbon atom, and the blue hyperedges are the bonded hydrogen

atoms. The black nodes represent a bond. Hyperedges of carbon type can connect four such

nodes and hydrogen only one. This restriction information would be in the type graph for this

hypergraph. The bipartite graph simulation of this would have the following form:

Figure 20 - bipartite graph representation of CH4

The hyperedges are simply represented as a special type of node in AGG. The resulting form

of the graph is very similar in appearance to the hyperedge approach.

The type graph for esterification in this model is given in figure 21. The corresponding

starting materials (analogous to figure 17) are given in figure 22. The type graph in figure 21

is considerably simpler than the type graph in figure 16, for the previous model. However,

there are again drawbacks with this model. While the number of bond nodes each atom node

can connect to is appropriately limited, the opposite is not true. From the type graph it is clear

that each bond node could have several atoms nodes attached, a maximum of 2 for C, 2 for O,

2 for O
+

, 2 for H etc. To prevent this, a great number of constraints would need to be added to

the grammar, ensuring every possible combination of atoms at a bond node is accounted for.

This would increase the complexity of the grammar, and we can speculate that checking this

many constraints could make critical pair analysis or rule applicability analysis perform much

less efficiently. In addition, the generic bond nodes that are used throughout each molecule

would increase potential inclusions to check for during critical pair analysis. Embedding one

v1
v2

v3

v4

Mayur Bapodra 28
CO3120 Final Report

rule into another, both of which use these nodes heavily, equates to far more possible

embeddings to check through.

Figure 21 - esterification type graph, 2nd attempt

Figure 22 - esterification start graph, 2nd attempt

3
rd

 attempt

After many experiments and modifications of the two type graphs given above, a final type

graph was settled upon. This extends the bipartite graph idea, but solves the problem of

spurious connections to each generic bond node, by introducing more detail to this node.

Each generic bond node is now a pair of atom-specific bond nodes. Each atom node can have

a certain no. of atom-specific bond nodes (thereby introducing valency in the same way as the

bipartite graph system), and each atom-specific bond node can only be connected to one other

atom-specific bond node. This is specified through a combination of the type graph and

additional constraints. As edges are directed, there must be a simple way of determining the

allowed direction between each possible pair of atom-specific bond nodes. It was decided that

the relative electronegativities (the ability of an atom to draw electronic charge towards it) of

each atom would determine this direction. As O is more electronegative than C, the direction

of the edge would go from the C bond node to the O bond node. The final type graph used in

Mayur Bapodra 29
CO3120 Final Report

our case studies is given in figure 23. An instance of this, esterification starting materials as

per the two previous examples, is given in figure 24.

Figure 23 - esterification type graph, final version

Figure 24 - esterification start graph, final version

Although the graph is much bigger, involving far more nodes, this representation solves

many problems. As mentioned in the appraisal of the plan (see page 73), many changes to the

representation came about through problems with the case study or implementation. This

representation led to far fewer inclusions at the critical analysis stage (explained in

“Methodology”) due to the lack of generic or non-atom-specific nodes and was therefore

selected for the project. A slight modification of this type graph was used for the second case

Mayur Bapodra 30
CO3120 Final Report

study, but this will be covered in more detail when describing that case study. Note that the

C-C bond in both of the larger molecules has two edges (in opposite directions) between the

bond nodes. This is because the C-C bond is symmetric in terms of electronegativity, so this

added convention is useful. This can be enforced using a constraint in the same way that all

bonds had to consist of two edges in the first attempt type graph (see figure 18).

As explained, additional constraints were also necessary to limit the number of edges each

bond node could have. Each bond node should only have 2 connections (except for

symmetric bonds). Atomic constraints took the following form and had to be specified for

each permutation of 3 atoms, and then these had to be declared to be false in an overall

constraint:

Atomic proposition: Atomic conclusion:

(empty)

Figure 25 - example bond node constraint for final type graph

As expected, this was very cumbersome and led to a total of over 40 such atomic conclusions.

For a more complicated reaction system involving more varied elements these constraints

would grow to be extremely difficult to define by hand. This was a major drawback of the 2
nd

attempt, and now this one. However, this drawback is fixed in the revised iteration of this

type graph used for the second case study, using inheritance in the type graph and constraints.

When the esterification type graph above was designed, after some discouraging results, it

was unclear as to the effects of inheritance on AGG‟s implementation of critical pair analysis

and was therefore avoided. Later, whilst working on the second case study, we speculated

that inheritance should only cause problems with the critical pair analysis if generic

supertypes were used in the definition of rules, and not in type graphs or constraints, as these

are merely checking mechanisms for the validity of a graph. If inheritance is used in a rule, at

critical pair analysis, the supertype node can be substituted for every subtype in the concrete

overlapping graph, leading to a possible explosion in the number of inclusions to check. It is

not even clear as to how inheritance in rules is treated by the critical pair analysis engine of

AGG.

While the improved revision is discussed in more detail later, the type graph above gives the

general idea of our approach, using two bond nodes for each bond. This is still a very

intuitive molecular representation for chemists. The two bond nodes could even be visualized

as the pair of electrons needed to form a directed bond between two atoms.

Mayur Bapodra 31
CO3120 Final Report

5. Methodology

A background on critical pairs was given in “Background – Graph Transformations”. The use

of critical pairs for deriving ODE‟s presented below is adapted from [9].

Use of critical pairs

The concept of critical pairs can be used to determine which molecules are consumed by

which reactions within a network of reactions. To do this, first we need to establish the

reactions as one set of graph transformation rules and the molecules (starting materials and

intermediates in the reaction) as another set of identity (or identic) rules and check for critical

pairings between members of these two sets. An identity rule is one in which the left hand

side (LHS) of the rule and the right hand side (RHS) are identical. Hence, it can only be

applied to a graph if the LHS of the rule is present within that graph, and its application does

not change this graph. As such, identity rules are generally used to check for the presence of

certain subgraphs within a graph.

Consider a reaction rule p1 which defines a transformation that breaks bonds (i.e. in our graph

representation of molecules, deletes edges and bond nodes) that are present in a molecule, m.

Let us create an identity rule for m, called m1. If we were to check for critical pairs between

p1 and m1, all overlappings (or unions) of the LHS of rule p1 and LHS of m1 would need to be

constructed. If in any of these overlappings, the nodes and edges that are deleted by p1 are

also in m1, we have a critical pair as the application of p1 at this particular match would mean

m1 could no longer be applied, since the molecule would be changed by p1. Notice that we do

not need to consider the gluing graph for m1 as per the construction in figure 13 because for

an identity rule, the LHS, gluing graph and RHS are all identical. Checking the LHS alone is

sufficient. What the check actually equates to however, is the fact that the intersection of the

LHS of m1 and p1 is not in the gluing graph of p1, since p1 deletes some of these nodes and

edges. In summary then, a critical pair consisting of a particular reaction rule and molecular

identity rule signifies that that reaction consumes that particular molecule.

In a similar fashion, the concept of sequential dependence (see figure 14) can be utilised to

find which reactions produce molecules. If we have a reaction rule p1, and a molecular

identity rule, m1, such that p1 creates the molecule in the LHS of m1 at some stage of the

reaction mechanism, for some overlappings of R1 (from p1) and L2 (from m1), some nodes

and edges in L2 will not be in the gluing graph of p1, since this reaction rule creates L2. All

nodes and edges in R1 however will be in L2, and therefore D2 (since L2, D2 and R2 are

identical). In other words, for a reaction p1 that produces a molecule in the LHS of m1, p1 can

be applied before m1, but m1 cannot be applied before p1. This is the condition for sequential

dependence.

These two categories of critical pairs give us the crucial elements necessary to derive ODE‟s,

since to do this, all we need is information regarding in which elementary reactions chemical

species are produced or consumed. Parallel conflicts and sequential dependencies between

reaction rules and molecular identity rules give us this information.

What follows is an account of how this theory is incorporated into an overall methodology in

deriving ODE‟s. There are 10 steps, each of which is covered in detail. To test the

methodology, these steps were implemented with the aid of the critical pair analysis tools of

Mayur Bapodra 32
CO3120 Final Report

AGG with some additional classes/modifications for added efficiency, automation, and the

eventual output of ODE‟s. The details of how this was achieved are given in the next section,

“Implementation”.

Step 1: Specification of reaction rules and starting materials in AGG

Using AGG, and a suitable graph representation of molecules, specify all general

reactivity as graph transformation rules, including all relevant reverse reactions.

Define the starting reactants as the start graph for the grammar. Each starting

chemical species should also be added as the LHS and RHS of identity rules.

At this stage, the reaction rules must be as general as possible, possibly at the level of

functional groups only. A functional group is the part of a molecule that undergoes a reaction.

For example, in acid-catalysed esterification, the C=O double bond undergoes protonation at

the start of the reaction. For a general reaction rule, we would only include the C=O part of

the molecule in the LHS of the rule. The reason for this is so that the rule can be applied at a

later stage in the reaction, for a possibly unknown intermediate. If the rule is too specific at

this stage, the reactivity of this intermediate is missed, and the ODE‟s will not be accurate.

This is particularly important for chaining reactions, where the intermediates are essentially

too numerous to define or even count. The reactivity of each of these needs to be considered

in an automated way.

Reaction rules should be labelled Step1, Step2 etc. while molecular identity rules should be

named by the molecule they represent in the textual form of the structural formula of the

molecule. For example, ethanoic acid with the following form, would be CH3COOH:

O

O
H

H

H

H

Figure 26 - structural representation of ethanoic acid

This is a convention that is necessary for the extraction of ODE‟s in recognized chemical

forms at a later stage.

Step 2: Application of reaction rules to the start graph to obtain intermediates

With the graph grammar defined in step 1, attempt to apply all general reaction

transformations to the start graph. For each resulting graph, add any new

chemical species as new identity rules. Repeat for the resulting graphs until all

rules have been applied to all possible graphs in the reaction mechanism.

Mayur Bapodra 33
CO3120 Final Report

This step attempts to find all possible reaction intermediates so that they can be included in

the critical pair analysis in the next stage. If, however, not all intermediates are captured at

this stage, the critical pair analysis in the next stage should achieve the same results. However,

running the critical pair analysis and examining the results to find all possible intermediates is

less efficient than completing this step, especially as we are aided by AGG‟s GUI here.

For larger reaction networks, this step would be difficult to accomplish in its entirety. As

such, for added efficiency, this iterative application of reaction rules and subsequent

definition of identity rules should be automated if possible. This is discussed further in the

“Critical Appraisal”.

Step 3: Execution of first pass critical analysis

Using AGG’s critical pair analysis engine, conduct a first pass critical pair

analysis between the set of general reaction rules and set of identity rules.

This step gives an indication of which general reaction rules are applicable to which

molecules. Both, parallel conflict analysis (to determine which reactions consume which

molecules) and sequential dependence analysis (to determine which reactions produce which

molecules) should be conducted.

Step 4: Removal of structurally equivalent overlappings

Reduce the number of critical overlappings found for each pairing of reaction

rule and identity rule, so that only chemically different overlappings remain.

This stage is not compulsory, but makes the next step (which requires manual interaction)

much easier. Due to the nature of our molecular representation, some of the critical

overlappings returned from step 3 may be spurious overlappings. Consider the example of

two critical overlappings for the same rule pair obtained from the critical pair analysis of the

SN1 reaction, given in figure 27. Structurally, these two overlappings are identical. There are

six such similar overlappings in total, arising from the nature of our molecular representation,

which requires two atom-specific bond nodes and an edge between them to represent a bond.

In the two overlappings shown, the identities of the H bond nodes (17, 19 and 14) and C-H

bond node edges (20, 23 and 25) connected to the central C bond nodes (3, 4 and 5) are

rotated around. Six such overlappings arise because there are 6 configurations these identities

can be in. In real chemistry, however, these configurations have no significance to the

selection of a reaction or to the outcome of the reaction. As no configuration is unique, they

should all be treated as one. This step therefore removes spurious overlappings such that only

one unique overlapping remains for each set of chemically equivalent overlappings.

Mayur Bapodra 34
CO3120 Final Report

Figure 27 - example of chemically equivalent structural overlappings

Step 5: Manual observation of results and instantiation of rules

View the critical overlappings resulting from Steps 3 and 4, and instantiate the

general rules to concrete rules to make their application specific to one match

within one molecule. These rules are then added to the graph grammar.

At this stage, we derive instantiated rules from the general ones by limiting the application of

each instantiated rule to one particular situation i.e. one part of one molecule. Further details

about the instantiation of rules are given in [7] and [16]. We do this because the application

of a general rule to two different molecules, or even two different parts of the same molecule

will have a different rate constant, and should be considered a different elementary reaction

in the overall mechanism. Small factors such as local context (even the presence of an

attached carbon rather than a hydrogen) can have an effect on the reactivity of a site, and

hence the rate constant.

For each unique critical overlapping, to gain the LHS of the instantiated rule, the LHS of the

reaction rule is embedded within the LHS of the molecular identity rule, using the match

given by the critical overlapping. To gain the RHS of the instantiated rule, we complete the

morphism by copying the RHS of the general reaction rule to the embedded LHS, after

deleting the unpreserved nodes and edges. Essentially, we have applied the general reaction

rule to the molecule graph and taken the result as the RHS of a new rule. The result (i.e. RHS

of the newly instantiated rule) should also now be added as a new molecular identity rule if it

does not already exist. Figure 28 gives a construction that summarises the process. Lmol is the

LHS of the molecular identity rule. The instantiated rule, pinstantiated is constructed from Lmol,

Dins and Hins, after commutation of Lmol with the LHS (Lgen), gluing graph (Kgen) and RHS

(Rgen) of the general rule, pgeneral.

Mayur Bapodra 35
CO3120 Final Report

Figure 28 - double pushout construction depicting instantiation of rule

If upon examining the results of the critical pair analysis, it is clear that each general rule is

only applicable to one situation, there is no need to instantiate a new rule and the unmodified

general rule can be used.

If new molecular identity rules do arise at this stage, we must repeat steps 3 to 5, as the newly

discovered intermediates may also undergo general reactions such that even more

intermediates can be determined. Only when no new intermediates arise can we deem that the

reaction network is fully defined in terms of the chemical species possible (based on our

definition of the general reactivity allowed in the system).

Step 6: Disabling of original general rules, and renaming of all rules

For general rules that have been instantiated, the general rules they were derived

from should be disabled. All rules should now be renamed with the rate constant

to which the elementary reaction should be associated.

This is to ensure results are not duplicated for instantiated rules, since the reactivity proposed

by the general rule should now be assumed by a set of more specific instantiated rules. As

rules are now specific to a set context, all rules (instantiated ones and general ones that did

not need to be instantiated) should be renamed as a rate constant, e.g. k1, k2 etc., preferably

with the numbering representing the order that reactions take place in the reaction mechanism.

Reverse reactions should be labelled with a negative number, corresponding to the forward

reaction it reverses e.g. if a rule is the reverse reaction of k1, it should be renamed k-1. This

convention ensures ODE‟s that include the rate constant at step 9.

Step 7: Execution of critical pair analysis with fully instantiated rules

Run the critical pair analysis once more, between the set of instantiated rules

(that now have rate constants associated to them) and the complete set of

molecular identity rules.

This will finally yield a stoichiometric matrix informing us of the elementary reactions that

produce or consume each chemical species. One major drawback of the current methodology,

which originates with this step however, is that reactions that consume or produce more than

Kgen Lgen Rgen

Lmol Dins Hins

pgeneral

pinstantiated

m k n

Mayur Bapodra 36
CO3120 Final Report

one of a certain molecule cannot yet be ascertained. This is discussed in more detail in the

“Critical Appraisal” section. It is a flaw that should be solvable given more time.

If we view the resulting “.cpx” file in AGG, we are presented with a table that already closely

resembles the stoichiometric matrix that we need to derive ODE‟s. The following is the

conflicts analysis summary table for the SN1 reaction (after rule instantiation):

 Figure 29 - AGG critical pair conflicts summary example

Only the upper right corner of the table is useful since the other rule pairings are not

necessary for kinetic analysis.

Step 8: Removal of structurally equivalent overlappings for instantiated rules

The critical overlappings obtained from Step 7 are passed through the Structural

Equivalence analysis program to remove spurious pairs so that only unique

overlappings remain.

The logic behind this step was presented in step 4. After performing this step, we are finally

presented with the stoichiometric matrix needed for the derivation of ODE‟s. The table in

figure 29 is reduced to that in figure 30.

Mayur Bapodra 37
CO3120 Final Report

Figure 30 - AGG critical pair conflicts summary example after structural equivalence reduction

Step 9: Execution of ODE extraction program

Run the ODE extraction program with the output “.cpx” file from Step 8 as input.

This will generate the ODE’s from the stoichiometric matrix and output them in

string format in a text file.

This stage uses the theory set out in “A Chemistry Background” of the “Relevant Background

Information” section. The output currently is in string format. However, the output can be

modified to any format necessary (e.g. XML). Integration with step 10 requires knowledge of

the specific math solver to be used and its input format. As step 10 was not fully realised in

the timescale of the project, it was decided that the output would simply be in string format,

to demonstrate that output is possible. Currently, it has the following format:

d[CH3+]/dt = -k-1[CH3+][Cl-] +k-2[CH3O+H2] +k1[CH3Cl] -k2[CH3+][H20]

d[CH3Cl]/dt = +k-1[CH3+][Cl-] -k1[CH3Cl]

There is one such line for each chemical species in the reaction network.

Step 10: Solving ODE’s using a 3
rd

 party math solver

Pass the ODE’s extracted in Step 9 into a suitable math solver software. A single

equation defining the progress of the reaction should be returned, in terms of the

change in concentration of one interesting species with time.

Although this step was not completed for the project, it is included for completion. In the

final stage, a 3
rd

 party math solver allows us to use the results of the kinetic analysis to

generate quantitative data and a graph representing the kinetic profile of the reaction. For this,

the values of all of the rate constants for the reaction need to be known. These can be derived

by numerous small experiments or gathered from existing sources. While these sources have

Mayur Bapodra 38
CO3120 Final Report

not been investigated, further research should reveal libraries (perhaps online) where such

information on reactions is maintained.

The results of this final stage can be used to validate our reaction mechanism. If the extracted

graph does not have the same form as established data for a particular reaction, it is clear that

the reaction rules were not complete or perhaps implemented incorrectly.

Mayur Bapodra 39
CO3120 Final Report

6. Implementation

The implementation of our methodology involved three distinct newly constructed

components. Each of these was implemented as a self-contained Java module and had the

following functions:

1. Critical pair analysis

2. Structural equivalence testing

3. ODE extraction

These were combined into a simple command line user interface (using shell and batch

scripting) which we shall call the kinetic analysis suite. This section will first cover how this

suite, along with AGG, can be used to apply our methodology to a concrete example,

specifically which steps in the methodology each tool/module relates to. A description of the

Java coding that was needed to implement each of the three modules is then given, along with

an account of the developed batch/shell script.

Tools that implement the methodology

Steps 1 and 2: AGG

To input rules, start graph and type graph AGG is used:

Figure 31 - main layout of AGG

List of components of
grammar, i.e. start graphs,
type graphs, rules,

constraints etc.

Left and right hand side of currently
highlighted rule (also the area used to

define constraints)

Nodes and
edge types
defined for
current

grammar

Area for defining start graph and type
graph, and shows results of rule
application

Mayur Bapodra 40
CO3120 Final Report

The red area can be used in step 2 to see which new chemical species occur as the result of

applying rules to previous graphs. Further documentation on the use of AGG can be found at

[19].

Steps 3 and 4: Kinetic Analysis Script

Here the prepared shell scripts need to be run. Initially the user is presented with an option of

whether they wish to run the full suite or component programs. For steps 2 and 3, the user

should choose “no”. Next, they are presented with an option for which program they wish to

run. For step 2, option 1 (“Critical Pair Analysis”) should be chosen. For step 3, when the

user has started the program for a second time, option 2 (“Structural Equivalence Analysis of

Pairs”) should be chosen. In both cases, they will be asked to input the location of the input

file.

Figure 32 - kinetic analysis program, steps 2 and 3

Step 5: AGG Critical Pair GUI

Critical pairs can be examined using AGG‟s critical pair GUI (figure 33). This is accessed

from the main AGG window by selecting “Analyzer > Critical Pair Analysis > Load > In

This Window” from the menu bar.

A summary table of the total conflicts and dependencies is given initially. By clicking a

square in this table the actually critical overlappings along with the 2 conflicting rules can be

examined for a rule pair. The top half of figure 33 shows the two conflicting rules. The graph

in the bottom right corner shows the critical overlapping. The nodes highlighted in green

show the graph objects that are responsible for the conflict. Mapping identities allow the user

to relate these to the same nodes and edges in the rules.

For this step, each critical overlapping should be examined to see if this rule needs to be

instantiated (i.e. more context introduced to the rule to make it more specific). If it does, the

main AGG window should be returned to, and the new rule added. The rule should then be

applied to the molecule for which the critical overlapping was found, and the new molecule

added as a new identity rule.

Mayur Bapodra 41
CO3120 Final Report

Figure 33 - critical pair analysis GUI module of AGG

Step 6: AGG

This step requires AGG once more. Once the rules have been instantiated, the old rules

should be disabled, by right clicking them in the grammar components list and selecting

“disabled”.

Steps 7, 8 and 9: Kinetic Analysis Script

The script should be run once more. This time, the full analysis suite option should be chosen.

Once the analysis is complete, the user is presented with the message in figure 34, which tells

them the filename which contains the generated ODE‟s. These are also printed to the system

output during the analysis.

Step 10: Third Party Algebra Solver

This part was not completed in time, partially due to the very simple nature of the case study

used, which did not require quantitative verification of results. Several commercial

applications were researched however. The majority of these were not freeware, especially

the most suitable for solving differential equations.

Mayur Bapodra 42
CO3120 Final Report

Figure 34 - result of running complete kinetic analysis suite

The AGG API

This API (for version 1.6.4) is included on the software CD for the project. Details of how to

access it are included on the readme file. AGG is an open source graph transformation tool

that is available at [19]. It is widely used to implement graph grammars and contains a depth

of functionality that can be accessed through its API, allowing low-level access to and the

opportunity to extend what is presented in its GUI. Because of the ease with which rules, type

graphs, and graphs can be implemented in AGG, it was a natural choice for the

implementation of the project. There are very few free open source graph transformation

tools like it. More information on its development and evolution can be found at [19].

In order to adapt what the software does to our needs, several classes needed to be extended,

and others were required for low-level functionality. At times, this proved extremely difficult.

The software itself has some depth and not all classes have complete Javadoc comments. This

is perfectly understandable for a non-commercial piece of software. Fortunately, the source

code was available which allowed us to deduce each method‟s purpose from its code and also

included some non-Javadoc comments. This was partially written in German, but use of

online translators helped translate parts of this. Nevertheless, the complexity of understanding

the API was a great technical challenge. With perseverance, and many hours of investigation,

however, much of the functionality required was attained. When it was felt that progress was

not being made at all (see the section on structural equivalence testing), help was available

directly from a member of the AGG development team.

The critical pair analysis part of AGG was the bottleneck in the methodology as it was

extremely memory intensive and time-consuming. Certain grammars actually had to be

abandoned (e.g. the esterification case study) because the Java virtual machine eventually ran

out of heap space. This is a limitation of the software that members of the AGG staff are

currently looking into. For future work, it would be extremely helpful if this problem was

resolved. In the meantime, alternative software that can carry out critical pair analysis for

graph transformation systems should be researched.

Mayur Bapodra 43
CO3120 Final Report

Critical Pair Analysis

The classes needed for this part are arranged in the following package structure:

 agg.parser

 MB294ComputeCriticalPairs

 MB294DependencyPairContainer

 extends DependencyPairContainer

 MB294ExcludePairContainer

 extends ExcludePairContainer

 MB294ParserFactory

mb294

 CPAnalysisSetup

Figure 35 - critical pair analysis package structure

As can be seen from this package structure, many of the classes are extensions of existing

AGG classes. MB294ComputeCriticalPairs is an almost exact copy of ComputeCriticalPairs,

with minor changes. This class could not be extended as certain methods that needed to be

overridden in the subclass required copying code from the superclass, and this contained

some private data members.

The main purpose of the modification to AGG‟s own critical pair analysis program is that this

conducts an analysis of critical pairs between every possible pairing of rules. Kinetic analysis

only requires the analysis of pairs where one member is a reaction rule and the other is a

molecular identity rule. CPAnalysisSetup loads and analyses a grammar, separating the rules

into two lists, one for reaction rules and the other for molecular identity rules. The crucial

code segment is given below:

Code 1 - CPAnalysisSetup, setUpRules method

This method extracts all of the enabled rules from its associated grammar as a list. Then using

a list iterator, checks each rule. If the LHS and RHS of the rule are identical, it is an identity

054 private void setUpRules() {

055 System.out.print("Sorting rules...");

056 long start = System.currentTimeMillis();

057 List<Rule> allRules = gragra.getListOfEnabledRules();

058 ListIterator<Rule> itr = allRules.listIterator();

059 while (itr.hasNext()) {

060 Rule tmp = itr.next();

061 if (tmp.getLeft().compareTo(tmp.getRight())) {

062 identityRules.add(tmp);

063 } else {

064 reactionRules.add(tmp);

065 }

066 }

067 long elapsedTimeMillis = System.currentTimeMillis() - start;

068 System.out.println("Finished sorting rules in " + elapsedTimeMillis

069 + " milliseconds");

070 }

Mayur Bapodra 44
CO3120 Final Report

rule and is added to this object‟s identity rules list data member, else it is assumed to be a

reaction rule and is added to this object‟s reaction rules list.

The scheduling of rule pairs for critical pair analysis takes place in AGG‟s

ExcludePairContainer class for conflicts. MB294ExcludePairContainer extends this class and

overrides the fillContainers method (responsible for scheduling pair analysis). Its constructor

creates a new CPAnalysisSetup object, passing in as a parameter the graph grammar for

which it is being used. MB294ExcludePairContainer then has two extra data members – a list

of identity rules and a list of reaction rules.

Code 2 - MB294ExcludePairContainer, fillContainers method

Some of this code is copied from the superclass‟ method. Lines 51-62 are the crucial part

which carries out the scheduling. For every reaction rule, every member of the identity rules

list is paired with it and scheduled for computing critical overlappings (line 59).

scheduleForComputing is a method of the superclass.

Similarly, for DependencyPairContainer, which computes sequentially dependent pairs,

MB294DependencyPairContainer extends this and overrides the following crucial method.

 Code 3 - MB294DependencyPairContainer, computeCritical method

34 @Override

35 protected synchronized void computeCritical(Rule r1, Rule r2){

36 if (reactionRules.contains(r1) && identityRules.contains(r2)){

37 super.computeCritical(r1, r2);

38 }

39 else {

40 //do nothing

41 }

42 }

40 @Override

41 protected void fillContainers() {

42

43 if (useHostGraph && grammar != null) {

44 grammar.getApplicableRules(testGraph, strategy);

45 }

46

47 if (!useHostGraph) {

48 isComputed = false;

49 }

50

51 ListIterator<Rule> itr1 = reactionRules.listIterator();

52

53 while (itr1.hasNext()) {

54 Rule r1 = itr1.next();

55

56 ListIterator<Rule> itr2 = identityRules.listIterator();

57 while (itr2.hasNext()) {

58 Rule r2 = itr2.next();

59 this.scheduleForComputing(r1, r2);

60 }

61

62 }

63

64 if (!useHostGraph) {

65 isComputed = true;

66 }

67 }

Mayur Bapodra 45
CO3120 Final Report

In the original superclass, all rule pairs are automatically scheduled for computing. In order to

restrict the pairs that are actually computed, we override the computeCritical method and

check whether the rule 1 parameter is a reaction rule and rule 2 is an identity rule. If they are,

the superclass‟ original computeCritical method is called. Otherwise, the method does

nothing, thereby successfully bypassing the computation of unnecessary pairs.

In the original ComputeCriticalPairs class, the analysis engine retrieves and uses

ExcludePairContainer and DependencyPairContainer objects (used to calculate and store

critical pairs) from a ParserFactory object. MB294ParserFactory is a copy of this class, which

instead returns MB294ExcludePairContainer and MB294DependencyPairContainer objects

(see lines 37, 47 and 51 of the source code). MB294ComputeCriticalPairs then simply

retrieves the new customised PairContainer objects using MB294ParserFactory wherever

ParserFactory was originally used, as in the following code segement:

Code 4 - MB294ComputeCriticalPairs, use of MB294ParserFactory

This ensures that this program only calculates the pairs needed, and is a first attempt at a

more efficient and optimized analysis.

Structural Equivalence Testing

To reduce structurally equivalent overlappings (in terms of Chemistry) a program was

developed that could accept the “.cpx” XML file output from the critical pair analysis,

perform the reduction, and save the new pairs in a new file (with the suffix

“_structuremod.cpx”). The package structure for this program is as follows:

mb294

 StructuralEquivalenceAnalysis

Code 5 - structural equivalence testing package structure

The source code for this class is heavily commented so only a summary of our method is

presented here. The constructor uses API methods to load critical pair information from a file

(identified by filename supplied through the command line). The method

reduceStructurallyEquivalentOverlappings then extracts all the overlapping information and

performs the reduction. For each rule pair, all overlappings are tested for uniqueness. It was

decided that the best way to do this would be to apply the reaction rule to the molecular graph

represented by the LHS of the identity rule, using the match provided by the critical

overlapping of the two rules. The result of the application should be checked for isomorphism

:

:

357 if (excludePairContainer == null)

358 excludePairContainer = MB294ParserFactory

359 .createEmptyCriticalPairs(gragra,

360 CriticalPairOption.EXCLUDEONLY, cpOption

361 .layeredEnabled());

362

:

:

Mayur Bapodra 46
CO3120 Final Report

with all other unique overlappings for this rule pair. If it is isomorphic to any of them, it

should be discarded, else it should be added as a unique overlapping. Applying the rule is a

sufficient check for structural uniqueness.

The help of Olga Runge (an AGG developer) should be greatly acknowledged here. Although

the method presented above was recognised as the best way to test for structural uniqueness,

a way to apply the rule using the match information from the critical pair could not be

deduced from the API without affecting the original XML file. A method was designed, but it

led to nodes and edges in the critical overlapping being deleted when written back to file.

Also, the method of reversing a rule and applying it (necessary for checking for uniqueness in

dependency pair overlappings, see the construction in figure 14) could not be deduced. Olga

Runge‟s help and advice at this stage through numerous emails was invaluable and very

greatly appreciated. Code that she helped with is noted in comments within the source code.

The makeStep method in its entirety was provided by Olga.

ODE Extraction

The classes needed for this part are arranged in the following package structure:

 mb294

 ODEArray

 ODEExtraction

 RateLawArray

 StoichiometricMatrix

 Code 6 - ODE extraction package structure

ODEExtraction is the program with a main method that produces the ODE‟s. It has an object

of each of the other 3 classes listed above as data members. All of these classes are heavily

commented so only a summary of their main functions are presented here.

ODEArray contains a Hashtable that stores these ODE‟s. For each identity rule key in the

Hashtable (i.e. chemical species), there is a string representation of its corresponding ODE as

the object. StoichiometricMatrix takes the overlappings data from the XML output file of the

structural equivalence component and discards superfluous information making it easier for

other methods to process. The stoichiometric matrix data is stored as a Hashtable, with

reaction rules as keys, and another Hashtable as objects. This second Hashtable has the

identity rules as keys and Integers as objects. These integers represent the entry in the

stoichiometric matrix for each reaction-identity rule pairing. The RateLawArray object is

created using information from a StoichiometricMatrix object (as described in “Relevant

Background Information”). The rate laws for each elementary reaction are stored as an array

of pairs. Each pair in the array consists of a reaction rule, and a string representing its rate law.

ODEExtraction loads overlappings data in the same way that the structural equivalence

module does, using API methods. Once loaded, this class instantiates an

ExcludePairContainer and a DependencyPairContainer object to store conflict and

dependency overlapping information respectively. This occurs in the constructor. The main

method calls this constructor and then calls the following method:

Mayur Bapodra 47
CO3120 Final Report

Code 7 - ODEExtraction, outputODEs method

The first task is population of the StoichiometricMatrix object (line 102). The method that

does the work within the private populateStroichiometricMatrix method is the fillMatrix

method of StoichiometricMatrix, which takes the no. of critical conflict overlappings for each

reaction-identity rule pair (the no. of molecules consumed by a reaction) and minuses it from

the no. of dependency overlappings for the same pair (the no. of molecules produced by the

reaction). This gives the overall effect a reaction has on a particular chemical species. This

number is added to the stoichiometric matrix for this reaction-identity rule pair.

When the stoichiometric matrix is filled, the rate law array is extracted from it (line 104).

This is done by the fillArray method in the RateLawArray class. For each elementary

reaction, we look for negative entries in the stoichiometric matrix. By assuming that negative

entries mean involvement in initiation of a reaction, we can extract the rate law for that

reaction.

generateODEs (line 106) then calls the generateODEArray method of ODEArray. This

simulates the matrix multiplication of the rate law array by the stoichiometric matrix and

stores the results. This class also contains a method that returns all the ODE‟s as a String

object. Lines 108 to 118 in code 7 show how the ODE‟s are output to console and to a text

file using this String.

Running the Kinetic Analysis

The classes described above were all compressed into a JAR file entitled

“kinetic_analysis_in_agg.jar” and placed in the agg root directory, where the JAR files that

hold AGG‟s other classes are also located. A batch file (for Windows) and a shell script (for

Linux) were created labelled “kinetics.bat” and “kinetics.sh” respectively. These scripts are

the GUI through which many steps in the methodology can be performed, guiding the user

through input and output of the 3 programs described above. There are some variables which

must be changed in these files to allow them to run on a specific machine (such as

JAVA_HOME). A “maxheap” variable also specifies the maximum heap memory allowed by

the Java virtual machine. As mentioned previously, the critical pair analysis is extremely

memory intensive and can fail if not supplied with enough heap space. This variable should

be set as large as possible. An additional argument is supplied to the Java virtual machine,

100 public void outputODEs() throws Exception {

101 System.out.println("\n");

102 populateStoichiometricMatrix();

103 getStoichiometricMatrix().printStoichiometricMatrixInfo();

104 populateRateLawMatrixFromStoichiometricMatrix();

105 getRateLawArray().printRateLawArray();

106 generateODEs();

107

108 String output = getODEArray().odeEquationsToString();

109 System.out.println("\n\nPRINTING ODEs:\n" + output + "\n");

110 System.out.println("Writing ODEs to text file with name " + newfilename

111 + " ...");

112 // write the ODEs string to file

113 BufferedWriter out = new BufferedWriter(new FileWriter(newfilename));

114 out.write(output);

115 out.flush();

116 out.close();

117 // System.out.println("Done.");

118 }

Mayur Bapodra 48
CO3120 Final Report

namely “XX:-UseGCOverheadLimit”. This ensures that OutOfMemory errors are not thrown

if the virtual machine spends too much time in garbage collection. This was necessary for

larger grammars which led to many such errors. However, Sun Microsystems deem this an

unstable option, and it should possibly be removed in future iterations when AGG‟s critical

pair analysis engine is improved for efficiency (see

http://java.sun.com/javase/technologies/hotspot/vmoptions.jsp for more details).

The scripts enable the user to run all three programs described above to run consecutively

without any need for user interaction. In order to prevent subsequent programs from running

when an exception occurs in an earlier program, system exit codes were utilised. For the

structural equivalence analysis and ODE extraction, if an exception occurred, the main

method returns a -1 exit code, else 10 is returned (highlighted in red):

Code 8 - StructuralEquivalenceAnalysis, main method demonstrating use of exit codes

This is not possible for the main method of MB294CriticalPairAnalysis however.

Code 9 - MB294CriticalPairAnalysis, main method

Line 416 initiates a thread. While this thread is running the main method continues to execute

its next line in its own thread of execution. Any system exit code would immediately cause

this program to end. Therefore, for this program, we use the default system exit code (of

value 0) which is automatically returned when all threads are finished. In the event of an

exception however, -1 can still be returned.

The Windows script uses these codes as shown in code 10. If an error is returned the control

is forwarded to the printing out of an error message and then the end of the script. Otherwise,

the next program is started with the output file of the last program as input.

413 public static void main(String[] args) {

414 try {

415 MB294ComputeCriticalPairs mcp = new MB294ComputeCriticalPairs();

416 mcp.run(args);

417 }catch (Exception e){

418 System.err.println("An error occurred during critical pair analysis!");

419 e.printStackTrace();

420 System.exit(-1);

421 }

422 }

379 public static void main(String[] args) {

380

381 try {

382 StructuralEquivalenceAnalysis sea = new StructuralEquivalenceAnalysis(

383 args[0]);

384 sea.processFileForStructuralEquivalence();

385 System.exit(10);

386 } catch (ArrayIndexOutOfBoundsException e) {

387 System.err

388 .println("There was an error loading your specified file - please try

again!");

389 e.printStackTrace();

390 System.exit(-1);

391 }

392

393 }// end of main method

Mayur Bapodra 49
CO3120 Final Report

Code 10 - Windows batch script demonstrating use of Java system exit codes

:section1command

 java -Xmx%MAXHEAP%m -XX:-UseGCOverheadLimit agg.parser.MB294ComputeCriticalPairs %file%

 IF ERRORLEVEL 0 goto :section1-1

 IF ERRORLEVEL -1 goto :section1-1error

:section1-1

 set nextfile=%file:.ggx=_out.cpx%

 java -Xmx1000m mb294.StructuralEquivalenceAnalysis %nextfile%

 IF ERRORLEVEL 1000 (goto :section1-2) ELSE (goto :section1-2error)

:section1-2

 set lastfile=%nextfile:_out.cpx=_out_structuremod.cpx%

 java -Xmx1000m mb294.ODEExtraction %lastfile%

 IF ERRORLEVEL 1000 (goto :section1complete) ELSE (goto :section1-3error)

:

:

:

:section1-1error

 echo There was a problem running the critical pair analysis.

 goto :eof

Mayur Bapodra 50
CO3120 Final Report

7. Case Study 1 – Esterification

As mentioned previously, this case study was intended as a simple example of a finite and

closed reaction network, which would allow the testing of our methodology. Unfortunately,

due to the bottleneck in the implementation created by the AGG critical pair analysis module,

and its associated memory errors, we could not proceed past step 3 for this reaction. However,

it is still useful to document steps 1 and 2, and also discover for which rule pair the memory

problem occurs. The grammar for this case study is on the software CD in the graphs folder

as “esterification_general.ggx”.

Esterification is the reaction of an alcohol and a carboxylic acid to create an ester and give off

water. The reaction can be catalysed by acid or alkali. The acid catalysed reaction was chosen

as it made the example more complex and interesting. The mechanism for the reaction was

verified with that found at [3].

Step 1

The first step is to define a type graph, which includes all the elements possible in the

reaction. This was presented in figure 23 (see “Molecular Representation Using Graphs”).

The next step is to define the starting materials as a graph typed over this type graph. This is

given in figure 24. Here, we have the carboxylic acid, alcohol and acid catalyst.

Then we define as much general reactivity as possible. This can be done by examining the

reaction mechanism and determining what happens to functional groups in the molecules

throughout the reaction. To illustrate this, the chemical representations of the five forward

steps in the reaction are presented along with their corresponding general graph rewriting

rules.

Figure 36 - step 1 of esterification reaction [3]

Figure 37 - step 1 of esterification reaction, GT rule

Mayur Bapodra 51
CO3120 Final Report

As can be seen in figure 37, the whole molecule is not presented in the rule, only the part that

undergoes reaction. This makes the rule applicable to any molecule that might have this

functional group, which is exactly what is required. This reaction is reversible, so the C=O

double bond can be deprotonated once it is protonated. This is represented in the grammar by

a rule labelled step-1, where the LHS and RHS of step1 are simply switched.

Figure 38 - step 2 of esterification reaction [3]

Figure 39 - step 2 of esterification reaction, GT rule

Step 2 of the reaction is the attack of the negatively charged oxygen in the alcohol on the now

positively charged (due to the protonation in step 1) central carbon atom in the carboxylic

acid. This results in the joining of the two large molecules into one. This step is also

reversible and is represented by step-2 in the grammar.

Figure 40 - step 3 of esterification reaction [3]

Figure 41 - step 3 of esterification reaction, GT rule

Mayur Bapodra 52
CO3120 Final Report

This reaction is the simple change in the location of a proton (H atom) within the newly

formed large molecule. The reverse of this reaction is labelled step-3 in the grammar.

Figure 42 - step 4 of esterification reaction [3]

Figure 43 - step 4 of esterification reaction, GT rule

Here, the protonated OH group leaves the larger molecule as water, allowing the C=O double

bond to reform. The reverse of this step is labelled step-4. The representation of the positively

charged C=O
+
 in the RHS of the graph transformation rule is identical to that presented in

figure 42. Here, the electrons in the O-C=O
+
 structure are delocalised over all 3 bonds, and

the positive charge can also be spread over all three atoms.

Figure 44 - step 5 of esterification reaction [3]

The final step in the reaction (also reversible) is deprotonation of the reformed C=O double

bond. However, this was not added as a general rule, as this reactivity is already captured by

step-1. Step 5 and 6 of the methodology would see two instantiations of the step-1 reaction

rule, one for the initial deprotonation (as a reverse of step1) and one for the final

deprotonation. Each would be assigned their own rate constant.

Mayur Bapodra 53
CO3120 Final Report

Step 2

Step 3 was carried out before step 2 to check that the critical pair analysis gave correct results

for the consumption of the starting materials. As step 3 failed, it was felt there was little point

in returning to and completing step 2. Therefore, the complete set of intermediates in the

reaction is not present as molecular identity rules in the grammar.

Step 3

As already mentioned, step 3 failed due to OutOfMemory errors from the Java virtual

machine. The critical pair analysis reached the testing of the step2 reaction rule against

Acid_Identity when it could progress no further. The LHS of the rule for step2 is a rather

large graph as it describes the coming together of the two large starting materials. The alcohol

molecule is itself quite large. The number of possible overlappings for which to calculate

critical overlappings (i.e. possible unions of the two graphs) grows as the size of the graphs in

the LHS of both rules grows. Therefore, this particular pairing exceeded the calculable limit.

In fact, the number of possible overlappings was so large that the program did not even get as

far as outputting exactly how many overlappings there were, but instead froze at this point for

many hours until an OutOfMemory error occurred.

To give an indication of the scalability problem, the following table shows how many total

overlappings and eventual critical overlappings occurred for each rule pair. Those rule pairs

that came after the step2, acid-identity pair have been omitted since the program did not

progress past this point.

 Acid_Identity Alcohol_Identity TsOH_Identity

 Total Critical Total Critical Total Critical

step1 1558 2 1558 0 30 1

step-1 - 0 - 0 - 0

step2 Not calculable

 Table 1 - delete-use overlapping information for esterification - conflicts

Mayur Bapodra 54
CO3120 Final Report

8. Case Study 2 – SN1 Reaction

SN1 stands for unimolecular nucleophilic substitution. It involves the replacement of a good

leaving group on a carbon atom (e.g. a chlorine atom) with a group that is less able to support

negative charge (e.g. a hydroxyl, OH, group). Unimolecular refers to the fact that the rate

determining step involves only one molecule, the halocarbon. The reaction occurs once the

Cl
-
 group leaves the molecule. There is also an SN2 reaction which is bimolecular in its rate

determining step. The substituting group and the halocarbon must collide for reaction to

occur. A transition state where the new group and leaving group are both partially bonded to

the central carbon atom occurs, before the leaving group leaves. There is one less step in the

SN2 reaction, so SN1 was chosen to make the example more testing of the methodology.

This reaction is very simple and its selection was prompted by the memory problems that

occurred in the esterification example. The reactant molecules are quite small, so the number

of possible overlappings for each reaction rule during critical pair analysis is reduced. Despite

this, the analysis still took up to 80 minutes on some occasions for the instantiated grammar

using 2.6GB of heap memory on a Linux machine.

The general grammar can be found in the graphs folder of the software CD as

“SN1_general.ggx”. The instantiated grammar has filename “SN1_instantiated.ggx”.

Step 1

The type graph for this reaction is given below:

Figure 45 - SN1 type graph

The individual connections between different types of bond nodes present in the esterification

type graph are replaced with an inheritance relationship. To ensure every bond node is only

connected to one other bond node, the supertype BondNode has a 1 to 1 relation to itself. It is

now much easier to solve the problem described in “Molecular Representation Using Graphs”

where numerous constraints were needed to restrict multiple bond node connections. These

numerous constraints can be replaced by just one atomic constraint which must always be

false:

Mayur Bapodra 55
CO3120 Final Report

Atomic proposition: Atomic conclusion:

(empty)

Figure 46 - constraint limiting number of bonds allowed

However, as the connections between each type of bond node are no longer explicit, this type

graph has lost bond direction conventions. For example, there is no indication that if a C bond

node is connected to an O bond node, the edge should go from the C to the O. To solve this,

additional bond direction atomic constraints are added to the grammar. For the C-O example,

we have the following atomic constraint, which is developed into a graph constraint where

this atomic constraint is designated as always being false:

Atomic proposition: Atomic conclusion:

(empty)

Figure 47 - constraint designating direction of edges in bonds

In this type graph, O
+
 and C

+
 no longer have their own bonding nodes. This was an

experiment to determine whether limiting the types of nodes made the grammar any more

efficient. Unfortunately, the results were inconclusive, as each time the grammar was run, the

time taken fluctuated greatly without any pattern. Nevertheless, the simpler type graph was

kept. This does however necessitate two further constraints that prevent both a C and C
+

connecting to a single C bond node (and similarly for O and O
+
). The atomic constraint is

given below, and again this is developed into a graph constraint where it must always be

false:

Atomic proposition: Atomic conclusion:

(empty)

Figure 48 - constraint limiting C and C
+
 connection to same bond node

The starting materials are defined as follows:

Mayur Bapodra 56
CO3120 Final Report

Figure 49 - SN1 starting materials

The molecule on the left is water. The OH group of this is what will attack the positively

charged central carbon atom of the molecule on the right, chloromethane (or methyl chloride).

There are three steps in the reaction which we can assume are reversible. Whether these

reactions are actually viable at all are determined by the rate constant that will eventually be

assigned to their instantiated forms. As it turns out, these reactions are not very reversible at

all particularly for the size of the hydrocarbon molecule we are considering (only one carbon).

For the time being, however, they are included as possible reactions. The reverse of the

reactions below are not given explicitly, but can be viewed in the grammar file on the

software CD. The reverse rule just switches the LHS and RHS of the forward rule.

CH3 Cl CH3

+
Cl

-

Figure 50 - step 1 of SN1 reaction

Figure 51 - step 1 of SN1 reaction, GT rule

This is the initial step of the reaction where the chlorine leaves the hydrocarbon. The central

carbon is left positively charged and therefore unstable. An atom with lone pairs of electrons

(electrons not involved in bonding and in the outer electronic orbital of the atom) can attack

this carbon centre to form a new bond. This can be chlorine (i.e. the reverse of the reaction is

possible) or the oxygen of a water molecule as in figure 52. Note that the C bond nodes must

Mayur Bapodra 57
CO3120 Final Report

be included in the definition of the general rule in figure 51. This is because the central C

atom changes to a C
+

atom. This is a deletion of the C followed by creation of the C
+
. During

the deletion, if the C bond nodes are not explicitly shown in the rule, a violation of the

dangling rule occurs (see “Molecular Representation Using Graphs”).

O

H

H

C
+

H

H

H

CO
+

H

H

HH

H

Figure 52 - step 2 of SN1 reaction

Figure 53 - step 2 of SN1 reaction, GT rule

The final step of the reaction is deprotonation of the positively charged O to leave the alcohol

(methanol in this case). The Cl
-
 generated from step 1 co-ordinates with the H

+
 that is

released, to give hydrochloric acid (HCl).

CO
+

H

H

HH

H

Cl
-

CO

H

H

H

H

ClH

Figure 54 - step 3 of SN1 reaction

Figure 55 - step 3 of SN1 reaction, GT rule

Mayur Bapodra 58
CO3120 Final Report

Step 2

Applying the rules to the start graph non-deterministically yielded the following preliminary

intermediates and products. Each one was added as a molecular identity rule. The molecules

in the start graph (CH3Cl and H2O in figure 49) were also added as identity rules.

Chemical
Formula

Structural Formula Graph Representation

CH3Cl C Cl

H

H

H

H2O O
HH

CH3
+

C
+

H

H

H

Mayur Bapodra 59
CO3120 Final Report

Cl- Cl
-

CH3O
+H2 CO

+

H

H

HH

H

HCl Cl H

CH3OH O

H

H

HH

Table 2 - preliminary intermediates in SN1 reaction

Step 3

The AGG screenshot below shows the exact results obtained from the first pass critical pair

analysis.

Mayur Bapodra 60
CO3120 Final Report

Table 3 - summary of conflict overlappings from critical pair analysis (first pass)

Table 4 - summary of dependency overlappings from critical pair analysis (first pass)

To give an indication of the scalability of the critical pair analysis, the following tables show

how many total overlappings and eventual critical overlappings occurred for each rule pair at

this stage (as shown for the esterification example).

As can be seen from this, a total of over 32,500 inclusions need to be checked for certain rule

pairs. These correspond to the combination of the reaction rules consisting of most nodes in

the LHS graph, and identity rules describing the largest molecules, namely step2 and

CH3O+H2. Adding even one more node to the LHS of the rule takes the no. of overlappings

to check to over 100,000. This is a serious limitation of the AGG tool to handle more

complex molecular structures and reactions, particularly if a reaction rule requires slightly

more local context than that represented in the reaction rules of this case study.

Mayur Bapodra 61
CO3120 Final Report

 CH3Cl H20 CH3+ Cl- CH3O+H2 CH3OH HCl

 Total Critical Total Critical Total Critical Total Critical Total Critical Total Critical Total Critical

step1 663 6 - 0 8 0 - 0 89 0 89 0 4 0

step-1 - 0 - 0 27 6 4 1 - 0 - 0 - 0

step2 - 0 63 2 135 6 - 0 - 0 - 0 504 1

step-2 445 0 26 0 40 0 - 0 32593 12 6448 0 - 0

step3 - 0 32 0 - 0 4 1 1531 2 208 0 - 0

step-3 100 0 45 0 - 0 - 0 - 0 315 1 29 1

 Table 5 - delete-use overlapping information for SN1 - conflicts

 CH3Cl H20 CH3+ Cl- CH3O+H2 CH3OH HCl

 Total Critical Total Critical Total Critical Total Critical Total Critical Total Critical Total Critical

step1 - 0 - 0 27 6 4 1 - 0 - 0 - 0

step-1 663 6 - 0 8 0 - 0 89 0 89 0 4 0

step2 445 0 26 0 40 0 - 0 32593 12 6448 0 - 0

step-2 - 0 63 2 135 6 - 0 - 0 504 1 - 0

step3 100 0 - 0 - 0 - 0 - 0 315 1 29 1

step-3 - 0 32 0 - 0 4 1 1531 2 208 0 - 0

Table 6 - delete-use overlapping information for SN1 - dependencies

Step 4

Step 4 (structural equivalence testing of results of step 3) was bypassed for this case study as

the overlappings were quite easy to study without doing this step. For more complex

mechanisms though with larger molecules (and hence more critical overlappings with the

same structure) or more rules, this step would make manual analysis in step 5 far easier.

Step 5

Examination of the results from step 3 yields a necessary instantiation of the general rule,

step2. Step2 consumes H2O and CH3
+
 (deduced from the conflicts table), but also seems to

consume CH3OH. This suggests that the following reaction is also possible:

Mayur Bapodra 62
CO3120 Final Report

C
+

H

H

H

C OH

H

H

H CH3

O
+

CH3

H

Figure 56 - reaction of CH3OH with CH3
+

In other words, the alcohol product, as well as water, can react with the carbocation. In fact,

this may even be a stronger reaction, as the CH3 group attached to the oxygen is very slightly

electron donating, meaning the push of the lone pair to the carbocation is made easier. This

intermediate would have been discovered at stage 2 of the methodology had the product

alcohol molecule been added to the start graph as a possible reactant.

The general rule, step2, therefore needs to be instantiated twice; once for the reaction with

water and once for the reaction with methanol. These new rules are shown in figures 57 and

58.

 Figure 57 - instantiation of step2 for reaction with water

Figure 58 - instantiation of step2 for reaction with methanol

Notice that it is sufficient to replace one of the hydrogen atoms in the attacking molecule in

figure 57 with a single carbon. This introduces enough local context to make this rule apply

only to the product methanol, and not water. This is preferable to adding the entire molecule

as this increases the time taken for critical pair analysis, because more nodes equates to more

overlappings to check through. The reverse rules were also instantiated here.

Mayur Bapodra 63
CO3120 Final Report

At this stage, the new intermediates and instantiated rules were added to the grammar. With

the general rules still in place (in case they are applicable to the new intermediates) a second

critical pair analysis pass was tried. This led to OutOfMemory problems however. It seemed

that the new large molecule created by the reaction in figure 56 passed the threshold for

allowed analysis. As this was quite late in the project, a decision was made to ignore the

possibility that this reaction occurs, disabling the instantiated rule that represents it, and any

molecular identity rules of intermediates that arise from it. The verification of overall results

and extracted ODE‟s would take this omission into account.

After doing this, the critical pair analysis was reattempted. Once again an OutOfMemory

error occurred which prevented the analysis from completing. This was now due to the

instantiated rule set up for water (figure 57). It seemed that even two nodes and one edge

more than the number present in the general rule is enough to prevent the analysis engine

from completing successfully. Another strategy was needed that would use the general rule as

the instantiated rule for water then, but disallow the reaction with methanol. A negative

application condition (NAC) was employed to achieve this. NAC‟s are preconditions to rules.

They constitute a graph which if it occurs in the match for the LHS of the rule, prevents the

application of the rule for that match. The following NAC was added to the general rule for

step 2 (rule shown in figure 53).

Figure 59 - NAC for step2 general rule to create instantiated rule

The NAC specifies that a carbon bond node must not be connected to the oxygen bond node

with mapping identity 7, therefore disallowing the reaction of methanol with the carbocation.

Water is still able to react.

This simpler grammar that ignores the full reactivity of the system can be found on the

software CD in the graphs folder, with name “SN1_instantiated_simpler.ggx”. This grammar

was used for all subsequent steps in the methodology.

Step 6

Once the rules are instantiated and no further intermediates are found the general rules are

usually disabled. In our case, the instantiated rules which allowed the reaction with methanol

had to be disabled. In the end, the original general rules were used (one with an added NAC).

All reaction rules were renamed as rate constants. The “step” prefix in the name of every

general rule was replaced with a “k”. Hence, step1 became k1 and step-1 became k-1 etc.

Step 7

The critical pair analysis was run once again, yielding the following results:

Mayur Bapodra 64
CO3120 Final Report

Table 7 - summary of conflict overlappings from critical pair analysis (final pass)

Table 8 - summary of dependency overlappings from critical pair analysis (final pass)

As can be seen from table 4, the reaction of step2 (now k2) no longer consumes the methanol

product (CH3OH). These results are found in the file “SN1_instantiated_simpler_out.cpx” in

the results folder on the software CD.

Step 8

Running the structural equivalence analysis reduced the number of critical overlappings in

tables 4 and 5 to those in tables 6 and 7. All of the entries were reduced to 1, indicating that

all of the original overlappings were the same. This was verified to be the case by manually

examining the overlapping information produced in step 7.

These results are found in the file “SN1_instantiated_simpler_out_structuremod.cpx” in the

results folder on the software CD.

Mayur Bapodra 65
CO3120 Final Report

Table 9 - summary of conflict overlappings after structural equivalence analysis

Table 10 - - summary of dependency overlappings after structural equivalence analysis

Step 9

Finally, running the ODE extraction program yields the following ODE‟s:

d[CH3+]/dt = -k-1[CH3+][Cl-] +k-2[CH3O+H2] +k1[CH3Cl] -k2[CH3+][H20]

d[CH3Cl]/dt = +k-1[CH3+][Cl-] -k1[CH3Cl]

d[CH3O+H2]/dt = -k-2[CH3O+H2] +k-3[CH3OH][HCl] +k2[CH3+][H20] -k3[CH3O+H2][Cl-]

d[CH3OH]/dt = -k-3[CH3OH][HCl] +k3[CH3O+H2][Cl-]

d[Cl-]/dt = -k-1[CH3+][Cl-] +k-3[CH3OH][HCl] +k1[CH3Cl] -k3[CH3O+H2][Cl-]

d[H20]/dt = +k-2[CH3O+H2] -k2[CH3+][H20]

d[HCl]/dt = -k-3[CH3OH][HCl] +k3[CH3O+H2][Cl-]

Mayur Bapodra 66
CO3120 Final Report

Brief Analysis of results

The ODE‟s derived in step 9 do in fact agree with the ODE‟s derived by hand for the SN1

reaction, taking into account the omission of certain reactivity at steps 5 and 6. This is a

positive result that shows the methodology (and its implementation) are capable of deriving

ODE‟s for simple reactions. While the wider applicability of this methodology is limited (as

discussed earlier in “Methodology”), this is a substantial first step in developing a more

universally applicable method.

The SN1 reaction in reality is a very simple one and is often quoted as having a rate of:

][
][

3

3 ClCHk
dt

ClCHd

This is because the reaction k1 in our grammar, the departure of the Cl
-
 group from CH3Cl, is

considered to be the rate determining step i.e. the only step of any significance to the rate.

Subsequent reactions occur very quickly once this step occurs. The equation above can

actually be derived from our ODE‟s from step 9. If all other elementary reactions do not

occur at all or are assumed to be very rare (particularly the reverse ones) k1 is the only rate

constant that doesn‟t have negligible value. For reactions that occur extremely quickly once

the rate determining step does, intermediates are immediately consumed so their

concentration throughout the reaction can be approximated to zero. If these approximations

are taken into account, the differential reaction for the rate of change of concentration of

CH3Cl approximates to the equation given above. Once concrete rate constants are found, any

arbitrary system of reactions will be reduced down in this way so that only significant

reactions remain. Our methodology ensures all possible reactivity is taken into account before

this simplification occurs.

Mayur Bapodra 67
CO3120 Final Report

9. Planning and Timescales

Tasks

The following is a preliminary account of the expected tasks of the project, as presented in

the Project Plan document. As predicted, these underwent significant changes as the project

progressed, new understanding came to light and new problems or challenges occurred. Due

to the open nature of the project, it would have been unwise to continually update and modify

the plan. This would have been time-consuming. It was discovered that any attempt to adhere

to a concrete plan limited further exploration in a particular area of interest and failed to

incorporate significant changes to the direction of the project. Therefore, the plan is presented

here unaltered, and a discussion of the deviations that occurred follow it.

1. Further background research

1.1 Stochastic graph transformation theory

This is fundamental to the project and therefore must be understood

clearly. In addition to what has already been read, other sources will be

investigated. Papers [10] and [11] will be thoroughly revised to ensure

complete familiarity with the process of creating stochastic graph

transformation systems.

1.2 Example stochastic graph transformation system

To ensure understanding, a simple example will be constructed in AGG,

with supporting tools for stochastic simulation. The major challenge here

may be tool support, as PRISM and GROOVE have not been

encountered yet. However, this stage will also allow us to gain

familiarity with these tools and AGG.

1.3 Research into CCS and π-calculus

In order to understand and learn from the methodology in [2], a quick

study of [15] will be undertaken. Some lecture notes from the

department‟s course on Communicating and Concurrent processes will

also be reviewed. [15] covers an extensive and technically involved

subject. The challenge here will be not to dwell on an area of computer

science that won‟t be used extensively in the final project. It will be

important to restrict the time given to this task.

2. Developing a Methodology

2.2 Deriving ordinary differential equations

This is the most important and possibly time-consuming part of the

project, and has been scheduled accordingly. This part will involve

formulating the methodology behind defining a stochastic graph

Mayur Bapodra 68
CO3120 Final Report

transformation from reactant molecules and how to assign rates to

transitions between graphs. This part of the project cannot be broken

down any further at this stage because of its theoretical nature – the

particular details of how the derivation will occur are not known at this

time. This stage will draw from all of the research conducted in part 1 of

the project, as well as additional chemistry research needed at this stage,

such as kinetics, thermodynamics, reaction mechanisms, and molecular

orbital theories. As already mentioned this is a highly theoretical and

challenging part of the project. There is substantial risk here if a suitably

accurate methodology cannot be formed. In this case, an iterative process

of simpler models (incorporating less and less real chemistry) will be

adopted in order to get some kind of methodology. Additionally, the

level of automation in the process of assigning rates can be lowered if

necessary. If finding the rates by checking the change in the molecular

orbital makeup of a molecule presents itself as too difficult and time-

consuming, the rate constant assignment can be reverted to a manual

process. Simplifying our case study subjects may also be an option if the

eventual methodology is deemed unsuitable for the existing ones.

Technical help will be requested from members of the Chemistry

department and from Prof. Heckel and Dr. Fer-Jan de Vries if necessary.

3. Tool Investigation

3.1 Tool investigation

AGG cannot be used for stochastic simulation despite being extremely

good for testing the application of transformation rules. At this stage

other tools such as PRISM, GROOVE and FERN should be investigated

to see how they can aid the project. Although these tools have not been

used before, [6], [10] and [11] outline their use in stochastic simulation.

Prof. Heckel has used [10] and [11] before and may be able to help at

this stage in case of difficulties.

3.2 Tool development

This step may not be necessary if existing tools are readily available.

However, if work needs to be done to develop a stochastic simulation

tool or integration with AGG, some time will be reserved for this. AGG

is implemented in Java and is supplied with an API for just such an

integration task. FERN may prove to be an ideal candidate for the

stochastic part of the overall tool chain, as it is also developed in Java

and designed to be easily integrated.

4 Case Study 1- esterification

4.1 Background research

The reaction mechanism will be investigated using standard chemistry

textbooks, journals and websites. Peculiarities of the reaction will be

Mayur Bapodra 69
CO3120 Final Report

noted. Empirical data on the reaction rate and form of the rate law will

be gathered using textbooks, journal and online databases. The challenge

here may be access to this empirical data. If empirical data is lacking, the

Chemistry department will be contacted for help, and possibly to set up

an actual experiment.

4.2 Rule generation

The reaction mechanism found in 4.1 will be implemented in AGG as a

start graph and transformation rules. This step should not prove

challenging.

4.3 Rate calculations

Using the methodology developed in part 2, probabilities of graph

transformations will be applied to the mechanism input in 4.2. Again,

once the methodology is in place, this step should be fairly simple.

4.4 Simulation

Using the tool decided upon in part 3, the complete case study will be

implemented and the stochastic simulation will be run to gain the

ordinary differential equation for the reaction. The challenges for this

section are limited to the challenges in part 3, unless there are some

particular peculiarities in the reaction mechanism which are not

implementable. We do not foresee this happening.

5 Case Study 2 – condensation and hydration of glucose

The subtasks will follow the same format as part 4. More time will be dedicated

to part 5 however, as the reaction mechanism is more extensive (making 5.1 and

5.2 more time-consuming). The polymerisation aspect of the case study also

makes the implementation of automatic rule calculation (5.3) a little more

complex. These two factors combined may make 5.4 a lengthier process.

6 Review

6.1 Verification of results

The differential equations from the empirical data gained in 4.1 and 5.1

will be compared to the derived differential equations gained in 4.4 and

5.4 respectively.

6.2 Refinements and amendments

This will be a necessary step in critically evaluating the methodology

designed in the project. Depending on the results of 6.1 and the

availability of time, the methodology may be changed to incorporate

improvements outlined in this part of the project. The project may then

Mayur Bapodra 70
CO3120 Final Report

undergo an iterative process whereby part 5 and 6 are repeated until

there is not enough time, or satisfactory results are obtained.

7 Final Deliverables

7.1 Final deliverables

The final part of the project will include the write-up of the final report,

as well as preparation for the viva. Due to the theoretical nature of the

project the final report document may be quite large and there may not

be sufficient time at the end of the project to complete it. Therefore,

preparation of this should occur incrementally throughout the project,

with the time allocated at the end for refinement and review. Some

tools/plugins which allow the easy input of stoichiometric equations,

chemical structural formulae and graphs should be found early on in the

project, as without them the preparation of this document could be

slower than necessary.

Challenges and Risks

As outlined above, the two main challenges we can envision with the project are the

theoretical nature of the project and adequate tools to implement the methodology. Measures

to reduce the effects of risk from these two areas have been outlined in the “Tasks” section

above.

If however, success in deriving a methodology is not forthcoming by the end of January 2009,

the goals of the project may be reassessed. A meeting with Dr. Fer-Jan de Vries will be

scheduled to monitor progress and the likelihood of success.

Another challenge is the scope of the project. It may appear that the project is not viable due

to the amount of work needed and time constraints, particularly for a 30 credit module. This

term in particular is restrictive in that only 10 credits have been assigned to the project, with

55 other credits for 3 other modules (including a management module that requires extensive

reading and an involved piece of coursework). As such, fruitful results this term may be

limited. However, time will be reserved over the holidays for project work and a weekly

meeting will be scheduled with available supervisors to keep the input into the project

flowing. There is more time next term with only one computer science and one management

module other than the project. In anticipation of time needed for the project, some of the

background reading for the management module was conducted over the summer. Time for

the project over the summer was limited due to a 3 month fulltime industrial placement.

Some time during the winter vacation will be lost due to Christmas & New Year, January

examinations and a 3-day computer science conference.

Bugs within AGG also need to be considered. [19] will be reviewed regularly and bug fixes

will be downloaded frequently to avoid any serious risk to the implementation. In case a

particular bug does affect the project, the AGG team can be emailed directly with suggestions.

The source code can also be scrutinised ourselves to attempt a bug fix. In the event that AGG

becomes unusable for our needs, other tools such as PRISM will be kept in reserve. Other

tools should also be searched between now and the implementation stage.

Mayur Bapodra 71
CO3120 Final Report

Deliverables

The deliverables for the project are outlined below. These are marked on the Gantt chart

which follows, but time is not specifically allocated to their preparation. This must be

undertaken in a timely and responsible manner, and incorporated into the overall structure of

the project naturally.

 Weekly SVN uploads:

o 30
th

 November

o 14
th

 December

o 1
st
 February

o 22
nd

 February

o 15
th

 March

o 3
rd

 May

 Project plan presentation

o 1
st
 – 5

th
 December

 1
st
 Interview

o 2
nd

 – 6
th

 February

 2
nd

 Interview

o 17
th

 March

 Final report and Implementation

o 14
th

 May

 Viva

o Date Unknown

Gantt Chart

The approximate allocation of time for each task is given in the following Gantt chart. Again,

these timings are approximate and are subject to changes as the project progresses.

Dates for assessed deliverables are given at the top of the chart as milestones. Other

intermediate milestones are interspersed with the tasks described above. Weekly meetings

with supervisors and the weekly discussion group session with PhD students have been

omitted for the sake of simplicity.

Mayur Bapodra 72
CO3120 Final Report

Mayur Bapodra 73
CO3120 Final Report

Appraisal of Plan

Section 1 of the plan, entitled “Further Background Research” provided a very useful

background in the existing use of graph transformation theory in determining reaction rates.

However, as it turned out, the stochastic simulation elements of the theory would not be as

prominent in our methodology as initially thought. As much of the first semester was spent

researching and understanding this, there was less time in the second term to concentrate on

our eventual methodology. It would probably have been wiser to restrict the time spent on

this research. Due to the open nature of the project however, the changing aims, and

unfamiliar theoretical territory this was largely unavoidable and the appreciation of stochastic

techniques should not be considered wasteful.

Due to exam and coursework pressure, 1.2 (the implementation of an example stochastic

system) and 1.3 (background research in CCS and π-calculus) could not be completed. Not

spending time on 1.2 was in fact a benefit as this would not have been useful to the project in

the end. Completing 1.3 however would have been useful, but was perhaps an unrealistic goal

due to the scope of the subject matter and the necessary time to understand such an involved

field, particularly when it was scheduled during a time when there were other heavy

academic obligations.

The time allocated to developing a methodology was also unrealistic. Again, because of the

open, challenging nature of the project and the unfamiliar territory more time should have

been afforded to this part. Initially several weeks over the vacation were allocated to this, but

many of these were spent on Christmas holidays and examination revision. A major

shortcoming of the proposed plan was the assumption that there would be any time at all over

the vacation to focus on the project. Preparation for three exams made this largely untenable.

As it happened, the methodology was continuously evolving as case studies were tried and

tools were developed.

The first task of the tool investigation stage was research into the integration of AGG with

other tools for stochastic simulation. As stochastic simulation was no longer an aim of the

project, this part of the project instead focused primarily on studying and understanding

AGG‟s supplied API. This would be vital when adapting AGG‟s capabilities to our specific

application domain. Stages 2, 3 and 4 in fact ran concurrently and iteratively rather than

linearly. This was a necessity as limitations in AGG‟s capabilities, or the complexity of the

case study implementation highlighted defects or inefficiencies in the methodology and vice

versa.

A major change to the outcome of the project was the change in case studies midway through

the project. Esterification was originally planned as a simple introductory test case. However,

memory limitations (discussed in detail later) rendered this case study unsolvable. It was

therefore decided to try a simpler chemical reaction with fewer steps and smaller intermediate

molecules, hence the introduction of the SN1 (the symbolic representation for unimolecular

nucleophilic substitution) reaction. This was chosen as a simple example to test the

methodology and is in fact a trivial one as discussed earlier. However, this also incurred some

severe Java virtual machine memory limitations which limited the speed at which results

could be processed. The glucose condensation reaction had to unfortunately be abandoned

due to a lack of time. This is a complex reaction which requires a different methodology to

the simple closed SN1 reaction network, and would have been interesting to study. As the

whole glucose monomer is modelled as one node, the analysis would most probably have had

Mayur Bapodra 74
CO3120 Final Report

fewer memory problems associated with it (which we believe to be more likely as the number

of nodes in the rules and graph representations of intermediate molecules increases).

However, it was important to first understand and validate the methodology for the more

fundamental closed system before progressing to this, so this reaction had to be sidelined.

Subsection 4 of the case study (stochastic simulation) was naturally discarded. Instead, a suite

of Java programs was developed that produced the ODE‟s in text format.

In the end, the project involved a substantial amount of work and time was used effectively

and efficiently, but is in no way complete in producing a universally applicable methodology.

The methodology developed works well for the simple SN1 reaction, but has some

limitations that make it potentially useless for other types of reactions without further work.

This is discussed in the “Critical Appraisal” section.

Mayur Bapodra 75
CO3120 Final Report

10. Critical Appraisal

Summary of completed work

The following has been achieved during the 3
rd

 year project:

 Extensive research into graph transformation theory and stochastic modelling, as well

as a revision of some basic chemical kinetics. If the career plan in appendix 1 is

adhered to, this will prove to be an invaluable foundation for future work. The

mathematics required to understand many of the graph transformation papers and

critical pair theory also helped to fill gaps in academic knowledge (e.g. set theory that

is not covered in the “with Management” degree).

 A suitable molecular representation necessary to specify molecules and their reactions

using graph transformations. Several variations were experimented with. Finally, a

type graph, and constraint system, were decided upon, which incorporated the

necessary abstraction level and remained intuitive enough for chemists to understand.

 A prototype 10-step methodology for deriving ordinary differential equations. While

this is currently limited to simple, finite reactions, it is a good basis for researching

infinite systems such as the glucose polymerisation reaction. Also, there are

limitations in that the consumption or production of more than one of a particular type

of molecule by an elementary reaction cannot be ascertained by this method, since

each critical pair between a reaction rule and molecular identity rule only signifies

one molecule of that type being consumed in that reaction. Slight modifications to the

methodology would be necessary for more universal applicability, where the

involvement of multiple molecules in a reaction can be ascertained. This could

involve a convention whereby the molecular identity rule is duplicated, or additional

steps in the methodology for testing the occurrence of such a reaction could be

designed.

 A prototype implementation to test the methodology described above. The SN1 case

study showed that our methodology can be realised using a combination of existing

software (AGG and its critical pair analysis engine) and new Java classes.

 A simple case study testing both the methodology and the implementation, namely the

SN1 reaction. This allowed a complete run through of the methodology and revealed

limitations to the implementation, in particular, the critical pair analysis engine.

Self-assessment

While the project may not have yielded complete results, considerable progress has been

made in the direction of this goal. There are a number of shortcomings of the methodology

and implementation, many of which have been discussed already throughout this report. A

summary of these is given here.

 The methodology is not universal, in that in can only be applied to simple finite

systems where each elementary reaction only produces or consumes at most one of

each molecule. While this is disappointing, it does not render the methodology useless.

Rather, a modification or enhancement to the existing idea is most likely required,

Mayur Bapodra 76
CO3120 Final Report

rather than a complete overhaul. Solving the universal applicability problem would

have exceeded the time deadline for the project.

 The implementation can only be tested for very simple systems, and even then some

elementary reactions had to be disabled. This is a problem with AGG‟s memory

intensive critical pair analysis engine. It might be avoided by altering our type graph,

but currently it has not been discovered how to achieve this. In order to reduce the

number of possible overlappings for each rule pair, the idea of linking and therefore

fixing the nodes peripheral to a central carbon atom was tested, but this did not solve

the problem. Perhaps more research should have been done into alternatives to AGG.

 The problems with the critical pair analysis rendered both of our initially planned case

studies untenable. This was disappointing as the glucose condensation and hydration

example in particular would have been interesting to study. Also, esterification, which

has a fairly complex reaction network, was replaced with the SN1 reaction which in

reality is not very complex. Complexity was artificially introduced to make the

example more interesting. Finding rate constant data for all of the unviable

elementary reactions in SN1 would therefore be quite difficult, so this may have been

a poor choice of simple reaction.

 Integration with an algebra solver (step 10 of the methodology) was not completed,

partly due to a lack of importance to the core of the project, and partly because the

algebra solver was not really needed for the SN1 reaction, since the generally quoted

rate law for this reaction is extremely simple. However, for completion‟s sake, this

integration should have been scheduled in. A suitable piece of freeware could have

been found time-allowing and this would have helped possible future iterations of the

project.

 The current GUI to the system (non AGG stages) is a simple command line one.

While not of central importance, a more aesthetically pleasing GUI developed in Java

would have been more satisfying. The possibility of integrating the AGG critical pair

analysis GUI (for checking the critical overlappings) and our programs into an overall

program is also appealing, allowing the user to complete the kinetic analysis through

one window. The possibility of human interaction in such a GUI to manually alter

entries in the stoichiometric matrix is a preliminary suggestion to solve the universal

applicability problem (although not an ideal one).

Most of these shortcomings came at the implementation phase of the project. While the

implementation part of the project seems quite simple with only a few classes written entirely

from scratch, navigation of the AGG API was very time-consuming. Therefore the

implementation was far from easy. Furthermore, due to the theoretical nature of the project,

the focus (particularly at early stages of the project last term) was on the methodology rather

than the software. As the theory required the majority of the time available, the opportunity to

deal with all of the shortcomings in the implementation was sparse.

In terms of organisation and time management, there were weekly PhD discussion groups,

weekly one hour meetings with Prof. Heckel (on occasion twice a week), and occasional

meetings with the project supervisor. In retrospect, perhaps more meetings with the project

supervisor should have been scheduled. However, with two or three other hours of meetings a

week, this would have put pressure on time to do work. More work should have been

Mayur Bapodra 77
CO3120 Final Report

completed in the first term, in particular research into critical pairs and their use in the project.

The realisation that stochastic simulation was not needed to derive ODE‟s came perhaps a

little late. Understanding stochasticity was useful, but a greater focus on critical pairs and

AGG may have left more time to solve some of the shortcomings described above.

Overall, however, it is felt that a sufficient amount of work was done. The disappointment in

the implementation is tempered by the fact that a working case study was developed. There

were many learning outcomes from the project too. An introduction to graph transformation

theory, certain categories of mathematics, stochasticity and a revision of chemistry were all

important by-products of the project. Finally, a deeper understanding of the research process

and how to progress with open projects was one of the main outcomes, specifically learning

to limit goals, look for alternatives, private research, use of contacts and presentation skills.

Suggestions for further work

1. Solving the shortcomings described above in “Self-assessment”, both in terms of

methodology and implementation, would be the first stage of a further iteration of the

project.

2. The development of a GUI that is attractive and easy to use for chemists so that the

methodology derived here has some actual usability. Integration of all steps of the

methodology, and finally with a library of rate constant data, would make this kinetic

analysis suite a useful tool in the lab for understanding reaction mechanisms.

3. Automation in the derivation of the molecular identity rules. Currently, rules must be

applied or several rounds of critical pair analysis must be performed, followed by

manual addition of discovered intermediates as identity rules. With an extra step in

the methodology, and use of API methods (to apply rules), automation of this step

should be possible. This would be useful for larger, or open-ended systems where the

no. of intermediates is very large, or unbounded.

4. Investigation of AGG‟s critical pair analysis engine to see if it can be made more

efficient, and if the OutOfMemory problem can be solved. This would go hand in

hand with modifications of the type graph used to study reactions (since the analysis

engine seems to handle other large grammars from other application domains well).

The source code may need to redesigned. Alternatively, other software packages that

can carry out critical pair analysis should be researched. These exist for term rewriting,

but if the molecules are represented as terms rather than graphs, we would lose much

of the rich information in graphs, such as bond order, valency, isomerism and

structural complexity. Such a representation would be less intuitive and appealing to

chemists.

5. Investigation of open ended, unbounded systems such as the polymerisation of

glucose and free radical reactions.

6. Research into how local context affects the rate constant, and to see if the value of the

rate constant can be derived automatically. This may require a lower level

representation of the molecule as molecular orbitals that store electrons. The energy

of these orbitals determines how easy it is to make or break bonds and this in turn

determines the rate constant. The molecular orbitals may not have to be represented,

but could be inferred from the atomic elements present. Other physical considerations

Mayur Bapodra 78
CO3120 Final Report

on reactivity could also be investigated, such as the importance orientation and size of

a molecule have when it reacts. In an SN2 reaction for example, nucleophilic attack

must always occur from the side opposite to that of a potential leaving group. If bulky

groups are on this side (e.g. methyl, CH3, groups instead of H atoms) the reaction is

less likely, therefore lowering the rate constant for the reaction. At first glance, the

derivation of rate constants involves a large number of variables and its difficulty

placed it outside the scope of the project.

7. The effect of temperature on rate constants and reactivity could be investigated. Each

elementary reaction gives out or takes in energy from the reaction medium. Many

such reactions would lead to a noticeable change in temperature on the macro scale.

This would affect the rate constant since it has an exponential temperature

dependence.

8. Finally, a comparison of the results obtained from this project (derivation of ODE‟s)

and the results of stochastic modelling should be carried out to see how closely the

two approaches agree if at all.

Mayur Bapodra 79
CO3120 Final Report

Bibliography

[1] Benko, G., & Flamm, C., & Stadler, P.F., A Graph-Based Toy Model of Chemistry.

Journal of Chemical Information and Computer Sciences 43 (2003): 1085-1093.

[2] Cardelli, L., From Processes to ODEs by Chemistry. IFIP International Federation for

Information Processing, Volume 273: 261-281, 2008.

[3] Clark, J., The Mechanism for the Esterification Reaction.

http://www.chemguide.co.uk/physical/catalysis/esterify.html, Chemguide, last accessed

08/04/09, last updated 2004.

[4] Ehrig, H., Ehrig, K., Prange, U., Taentzer, G. Fundamentals of Algebraic Graph

Transformation. EATCS Monographs, Springer, 2006.

[5] Ehrig, K., Heckel, R., Lajios, G., Molecular Analysis of Metabolic Pathway with Graph

Transformation. International Conference on Graph Transformations 2006, Lecture Notes in

Computer Science 4178: 107-121, 2006.

[6] Erhard, F., Friedel, C.C., Zimmer, R., FERN – a Java framework for stochastic simulation

and evaluation of reaction networks. BMC Bioinformatics 9 (2008): 356-368.

[7] Heckel, R., Embedding of Conditional Graph Transformations. Proc. Colloquium on

Graph Transformation and its Application in Computer Science. Technical Report B-19,

Universitat de les Illes Balears, 2005.

[8] Heckel, R., Graph Transformation in a Nutshell. Electronic Notes in Theoretical

Computer Science 148 (2006): 187-198.

[9] Heckel, R., Molecular Pathway Analysis: From Graph Transformation to Stochastic

Models. International Conference on Graph Transformations, presentation slides, 2006.

[10] Heckel, R., Stochastic Analysis of Graph Transformation Systems: A Case Study in P2P

Networks. International Colloquium on Theoretical Aspects of Computing 2005, Lecture

Notes in Computer Science 3722: 53-69, 2005.

[11] Heckel, R., Lajios, G., Menge, S., Stochastic Graph Transformation Systems.

International Conference on Graph Transformations 2004, Lecture Notes in Computer

Science 3256: 210-225, 2004.

[12] Heckel, R., Engel, G., Graph Transformation and Visual Modeling Techniques.

Workshop Summary and HowTo, Bulletin of the EATCS 72: 69-76, 2000.

[13] Keeler, J., 1A Chemistry – Kinetics of Chemical Reactions. University Of Cambridge,

Department of Chemistry, 1999.

[14] Kwiatkowska, M., Norman, G., Parker, D., Using Probabilistic Model Checking in

Systems Biology. ACM SIGMETRICS Performance Evaluation Review, 35(4):14-21,

Association for Computing Machinery, 2008.

http://www.informatik.uni-trier.de/~ley/db/journals/eatcs/eatcs72.html#CorradiniH00

Mayur Bapodra 80
CO3120 Final Report

[15] Milner, R., Communicating and Mobile Systems: the π-calculus. Cambridge University

Press, Cambridge, UK, 2007.

[16] Palacz, W., Practical Aspects of Graph Transformation Meta-Rules. Intelligent

Computing in Engineering, 70-77, 2008.

[17] Rossello, F., Valiente, G., Graph Transformation in Molecular Biology. Formal

Methods (Ehrig Festschrift), Lecture Notes in Computer Science 3393: 116-133, 2005.

[18] Yadav, M.K., Kelley, B.P., Silverman, S.M., The Potential of a Chemical Graph

Transformation System. International Conference on Graph Transformations 2004, Lecture

Notes in Computer Science 3256: 83-95, 2004.

[19] http://tfs.cs.tu-berlin.de/agg/, The AGG Homepage, October 2008.

Mayur Bapodra 81
CO3120 Final Report

Appendix 1 – Career Plan

1. Where do I want to go after graduation?

A large portion of the Leicester Award, which I undertook in the second year involved career

plan formulation. During this period, I performed extensive research into my skills, the kinds

of tasks I enjoy and the kind of company I would like to work for. As a result of this, by the

beginning of this academic year, I had already mapped out a career plan to become a graduate

software developer, and eventually an analyst/developer for a small to medium sized

enterprise. With this in mind, I organised a three month internship over summer to work as a

Java developer for a London company called RI3K. Due to the enjoyable and fulfilling nature

of the work, I decided this would be an ideal career for me.

As the year progressed, I had many talks with my supervisor about postgraduate studies. Due

to my age, a lack of funds and a desire to progress to industry, to which I thought I would be

more suited, I was initially quite resistant to the idea. However, as the project progressed, I

came into contact with PhD students, and began to very much enjoy aspects of the project,

particularly brainstorming sessions with Prof. Heckel. As the economic crisis also fully came

to light, it appeared there were very few satisfactory positions in the job market for

developers, in terms of salary, type of company and level of responsibility.

I believe postgraduate studies would give me an excellent chance to develop a more in depth

knowledge of a subject I greatly enjoy, be it a Masters of PhD. I believe this will appease my

desire to gain a much better, and more theoretically sound knowledge of the subject. While

this would serve my future career prospects well, it is primarily out of a personal interest in

bettering myself that I wish to pursue this. I do not want to feel that I have wasted my talents

and interest in the subject.

2. What will I do this academic year to get there?

I decided to submit some postgraduate applications to keep this route open to me. I was

accepted into a Masters course at Oxford University which I have provisionally accepted. I

have also submitted an application for the University of Leicester “University of the Year”

PhD scholarship. I hope to hear the outcome of this by the end of April. If I am accepted for

the PhD I will decline the Oxford offer. I have also kept the option to progress to industry

open, in case I am unable to acquire funding for postgraduate study. In preparation for this

route, I have prepared an updated CV and had it checked by the Careers Office. I have also

stayed in touch with the company I interned with over summer, and used Milkround and

contacts to learn more about various companies that I might want to work for. In my spare

time, I have been undertaking web design projects that use new technology, as a learning

opportunity and showcase for potential employers. On the surface, this may appear to be a

lack of commitment to one path, but I feel by cultivating both possibilities fully (study or

full-time work), I can easily decide to switch my plan to incorporate the other without having

to suddenly do missing groundwork.

To prepare myself for postgraduate study, I have attended Prof. Heckel‟s PhD group

discussion meetings every week this year. This has given me a great insight into the type of

research that others are doing, how to present work and the level of depth expected. For direct

entry into a PhD, my lack of a Masters may be brought into question. As such, I have tried

Mayur Bapodra 82
CO3120 Final Report

my best to understand highly mathematical papers and also had a look at some of the modules

I missed in the first year due to management modules.

3. How does my project contribute to my career?

My PhD project proposal would be a direct continuation of this year‟s project. As such, I will

have hopefully developed much of the background information necessary. The open,

research-style nature of the project will also prepare me for the self-disciplined approach to a

PhD. My project required the reading of many journal articles too, the understanding of

which I believe is a skill in its own right, particularly as a gap in knowledge identified by

reading one journal may prompt the reading of further articles. This kind of selective

knowledge search is very useful for self-teaching.

In addition the project has helped me to understand limitations to open projects, particularly

at the implementation stage, and how to get around these either by modifying software or by

altering ideas. I have had much contact with other academics, particularly Olga Runge of

AGG, which has improved my communication skills and methods of explanation and

cooperation. In presenting my project to PhD students and lecturers, I have also learnt

important lessons about appropriate levels of abstraction. In addition, time-keeping and

organisation skills were enhanced through the project, both of which are important for PhD

work.

If I decide instead to progress to industry, the open nature of the project has taught me

organisation and project management, how to focus on deliverables, how to be realistic about

outcomes, scaling back project depth due to lack of resources or time, and most importantly,

more complex problem solving than I have been used to before. It has also taught me how to

communicate and absorb ideas from others, as well as how to approach completely new

theoretical domains. Dealing with the complex and sometimes perplexing API used in the

implementation stage of the project is an added skill. In industry many legacy or off-the-shelf

components are often necessary for an application and knowledge of how to integrate them is

very useful.

Finally, the project has taught me diligence and the need for a great deal of hard work to

succeed in any project. While this is something everyone knows, the extremely challenging

nature of this particular project made it clear just how much dedication is needed to ensure

success in difficult undertakings.

Mayur Bapodra 83
CO3120 Final Report

Appendix 2 – Weekly Diaries

The following is a complete set of weekly diaries for the duration of the project, signed and

dated by the project supervisor, Dr. Fer-jan de Vries.

