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Abstract 
 

 

The following report documents the outcome of a yearlong project aimed at the derivation of 

ordinary differential equations for a chemical reaction, using graph transformation techniques. 

While some articles have described the application of graph transformation techniques to 

biochemical reactions, and the use of stochastic systems to predict the kinetic profiles of 

reactions, very few have tried to derive these linear differential equations.  

 

The report first describes the original motivation, aims and objectives for the project. Then, a 

background in chemistry is included, which describes the manual derivation of ordinary 

differential equations for a reaction. A summary of relevant graph transformation theory used 

in the project is also presented. The report briefly describes here some of the research done 

last term into stochastic graph transformation systems, which provide a foundation to the 

method eventually developed. 

 

The project core follows, which describes in detail, our developed methodology used to 

generate the ordinary differential equations for a specific finite reaction network, the 

adaptation of existing tools that facilitates the application of this methodology, and two case 

studies to demonstrate this application.  

 

In the final section of the report, there is a discussion of how functional and useful the 

original project plan was, finding many difficulties in the precise projection of timescales for 

an open-ended problem such as this. Finally, a critical appraisal focuses on the limitations of 

the project, such as the limited applicability of the developed methodology, problems with 

the software used and many suggestions for areas of further work. The project has successful 

results for one simple reaction (unimolecular nucleophilic substitution, SN1) with very small 

starting molecules, but limitations in 3
rd

 party analysis tools rendered it useless for testing 

larger reaction networks and larger molecules. Further work is necessary to investigate how 

to make analysis faster and more efficient if it is to be of any widespread use for chemists. 

Nevertheless, the successful case study demonstrates the soundness of the methodology in 

principle.  
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1. Introduction 

Motivation 

The kinetics of any chemical reaction is important for many areas of research, whether it is 

deducing the reactivity of certain reagents in the lab, or for planning large scale industrial 

chemical synthesis. The speed at which reactions occur is vital knowledge for any such 

undertaking. Traditionally, chemists are able to conduct experiments in the lab that ascertain 

this information. The findings of such experiments relate to the observer important facets of 

the underlying reaction, such as the stabilities of any chemical species involved or the steps 

that might have occurred from the starting molecule to the product molecule. This process 

can however be reversed – by proposing a reaction mechanism and comparing it to 

experimental data, chemists can gauge the accuracy of their proposals. This offers a way of 

gaining a deeper understanding of the elemental chemistry behind any complex reaction.  

 

This project aims to derive the ordinary differential equations that describe the kinetics of any 

reaction using graph transformation techniques. While these equations can be derived by 

hand, it becomes extremely difficult for unbounded and complex reaction networks. 

Automation of this process would make it more widely applicable and therefore more useful. 

Related work in this field has mainly focused on stochastic graph transformation simulations 

to produce quantitative data rather than the derivation of these linear algebraic equations. The 

results of such simulations are affected by hardware capabilities (specifically in the number 

of starting molecules allowed in the system). Ordinary differential equations however, are an 

alternative level of abstraction with a reproducible result. This result should be utilisable 

under different conditions to predict the progress of a reaction, whereas the simulation results 

are specific to the conditions and probabilistic circumstances under which it was run. The two 

approaches should be used together however to determine their congruence and therefore the 

accuracy of the proposed reaction mechanism.  

 

While others, such as Cardelli [2], have derived these ordinary differential equations using 

alternative methods ([2] uses process algebra), these are not intuitive for chemists to use due 

to their technical content. Graph transformations remain relatively unexplored in this area, 

despite their visual attractiveness and simplicity. Chemists already used to using graphs (i.e. 

structural formula) to represent molecules would be more comfortable with an approach that 

bears some resemblance to this application domain. If a computer science method of deriving 

ordinary differential equations were to be widely applicable, graph transformation systems 

seem to be the most promising. Furthermore, Cardelli‟s process calculus approach requires 

the establishment of reaction rules that describe involved reactants in their entirety. Graph 

transformations allow the specification of rules based on functional groups i.e. only the atoms 

and bonds directly affected by a reaction. This more general specification makes reaction 

rules reusable in many molecules based on local context.   

 

This task is not trivial, however. The first obstacle is a representation of molecules and 

reactions in graphs that retains as much of the real chemistry as possible while not 

complicating the computational analysis. The eventual balance requires an understanding of 

both the underlying chemistry and the computer science theory. Secondly, the derivation of 

ordinary differential equations by hand is a complex procedure that could require a number of 

sequential or repetitive steps. Such a procedure may not only be unappealing to computer 

scientists to replicate, but also difficult to do so in an uncomplicated way. This project aims 

to take the first steps towards such a methodology. This methodology once evolved and 
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improved upon further will aid the automated derivation of ordinary differential equations for 

simple finite systems, and more importantly, for open infinite reaction mechanisms too, such 

as polymerisation. 

Aims 

The project aims to develop a methodology to analyse the quantitative dynamics of chemical 

reactions, namely in determining the ordinary differential equations (ODE‟s) which define 

the rate of reaction. This rate is usually determined as the rate of change of concentration of 

one of the chemical species (which can be reactants or products) with respect to time. These 

differential equations will be extracted from a specification of reaction rules as local 

structural transformations in molecules represented as graphs. The methodology will be 

verified against actual case studies using appropriate tools. 

Objectives 

 

1. To develop a methodology to model chemical reaction networks and derive ordinary 

differential equations for these reactions using graph transformation theory 

 

This will be the major challenge of the project as the application of graph 

transformation theory in finding ordinary differential equations for reactions is not 

well documented. 

 

 

2. Case Study 1 – application of methodology derived in 1 to a simple reaction such as 

esterification 

 

This will be an essential step in verifying the model derived in 1 and the subsequent 

ordinary differential equations against established empirical data. Esterification (the 

reaction of a carboxylic acid and an alcohol to form an ester) is a fairly simple 

reversible reaction which can be modelled quite easily. The network is also finite, 

meaning there are few intermediate steps between reactants and products. Alternate 

reaction pathways (causing a deviation from expected products) are limited. This, 

combined with a wealth of existing experimental data, will provide enough 

information to check our model.  

 

 

3. Case Study 2 – application of methodology derived in 1 to a complex reaction such as 

condensation and hydration of glucose 

 

The glucose molecule can be seen as a monomer unit in this reaction, which can 

combine with other glucose molecules (or existing chains) to form larger and larger 

polymers. As the ways in which these monomers and polymers can combine are 

numerous, the reaction network can be immensely large. Adapting our methodology 

to such large and complicated networks will make this part of the project especially 

challenging. 

 

 

4. Implementation in AGG and other tools 
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The graph transformation rules and an initial graph representing the reactant 

molecules can be implemented in AGG [19]. AGG is a programming tool commonly 

used by the graph transformation community as it has a natural, user-friendly 

interface. AGG can apply constructed rules to input graphs in order to test whether 

they produce the proper results, which is a fundamental step towards deriving ODE‟s. 

Some additional work using the AGG API will be necessary to adapt the software to 

our needs, and to automate certain steps in our analysis.  

 

 

There is also a secondary personal learning objective outlined below: 

 

5. To gain a thorough understanding of graph transformation theory 

 

As well as revising the background knowledge from the fields of Chemistry and 

Physics needed for the project, research into graph transformation theory will be 

necessary. This will include basic theory, stochastic theory, and also ways in which 

graph transformation theory can be applied to chemical reaction networks. 

 

 

The aims and objectives of the project have changed somewhat since the initial inception 

phase (see original project description form) as understanding of the problem has become 

clearer through extensive reading and consultation with supervisors. In particular, the 

following modifications have been made: 

 

 Universal rules governing the general reactivity of functional groups as influenced by 

intramolecular factors and the availability of other reacting species will not be 

implemented. This in itself is a large task that bears little relation to the more 

specialized main aim of defining reaction kinetics. Furthermore, such reaction 

predicting systems have already been successfully implemented by others. Therefore, 

only the rules directly affecting the case studies will be investigated and implemented.  

 

 The development of an interface specifically designed for chemists constructing graph 

transformation systems has been abandoned as this has also been accomplished by 

others. In addition, development of such a system would be independent of the other 

major objectives of the project. In order to plan a more coherent and self-contained 

project, and to leave time for other more important parts of the project, existing tools 

(such as AGG) will be used without adapting them to a chemistry-related paradigm.  

Outcomes 

The project produced a methodology to derive ordinary differential equations for multistep 

reaction mechanisms. An implementation of the methodology was also developed to test its 

practicality. This was verified against a simple case study of the SN1 reaction. The 

methodology has some deficiencies and limits to its universal applicability as discussed in the 

critical appraisal. Specifically, it currently focuses on reaction networks with a finite number 

of rules. Due to scalability limitations in the 3
rd

 party tools used, the implementation only 

works for reaction mechanisms involving molecules of bounded size and with reaction rules 

where local context in the left hand side of the rule is limited to a few atoms and bonds. 

Nevertheless the project is a useful and successful first step towards achieving our aims.  
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2. Background – Chemistry 
 

 

This chapter outlines first the literature survey conducted as part of the “Project Plan” and 

provides an overview of the main ideas from Chemistry pertaining to the project. A more 

detailed treatment then follows explaining methodically how ordinary differential equations 

for a reaction can be extracted from its mechanism.  

Literature survey 

Before the analysis of kinetics can take place for chemical reactions, an understanding of how 

molecules react must be gained. Any basic course or text book in Organic Chemistry is useful 

here but [13] provides a thorough university-level description of reaction kinetics. In 

particular, it is useful because it derives formulas commonly associated with kinetics from 

first principles. An appreciation of this may prove fundamental when developing our model 

of reaction networks and especially when deriving differential equations.  

 

In the simplest terms, chemical reactions occur when the bonds in molecules break and/or 

form. Some reactions are fairly simple and involve only one or very few steps. The rate laws 

for these reactions can be predicted fairly easily. Others however involve numerous steps, 

each step known as an elementary step in the overall reaction mechanism. Predicting, 

deriving or interpreting experimental data for such reactions can be complicated and may 

involve approximations and assumptions which reduce the validity of results. The mechanism 

is also not entirely deterministic. At any step, there may be several choices for subsequent 

steps. These steps may not be equally likely but probable nonetheless and could lead to by-

products. 

 

Reaction between two molecules can be prompted by collision with each other where the 

collision is energetic enough to cause the breaking of a bond and the formation of another 

bond. The minimum energy needed for reaction (provided by the collision) is denoted by the 

Activation Energy (this is an important concept as this energy is directly related to the rates 

of elementary reactions). The activation energy is greater than or equal to the difference in 

the stable energies of the reactants and products. In reactions where the reactants are 

particularly stable compared to the products, collision between the reactant molecules is often 

the determining factor of whether a reaction can take place or not. The collision step is 

known as the rate determining step in this case. Reactions do not always occur through 

collision however. If a molecule has an extremely reactive leaving group (a group in a 

molecule which can accept electrons from a carbon and break away) it may leave before 

collision. The resulting positively charged carbocation is extremely reactive and will usually 

react straight away. The rate determining step in this case is the leaving of the leaving group. 

 

[13] also describes how reactions take place over potential energy minima, taking the lowest 

energy pathway from reactant to products. There is a potential energy maximum along these 

reaction coordinates, which corresponds to the activation energy. When reactant molecules 

overcome this maximum, they become products. However, the reverse is also true. Products 

can become reactants if they have enough energy to overcome the maximum from the 

opposite direction. As this energy is higher (remembering that products have a lower energy 

than reactants overall) fewer molecules have enough energy to overcome this barrier. The 

distribution of molecular energies within a species is given by the Boltzmann distribution, 

which takes the very approximate shape of a natural distribution. In a sense, all reactions are 
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therefore reversible, but some are not viable as the stabilization of products over reactants is 

so great that the reverse reaction is extremely unlikely. However, in many cases, we need to 

consider the reverse of elementary steps to create a more accurate model. [13] also describes 

the form of the rate law and its dependence on rate constants (which can be calculated using 

the Arrhenius equation) and concentrations of reactants and intermediate products. The rate 

law is synonymous with the ordinary differential equations we wish to derive. Its exact form 

depends on the details of reaction. It will be this project‟s objective to abstract these details to 

form a general graph transformation model. [13] is comprehensive in the information needed 

to do this.  

 

As well as the difficulty and setbacks in analysing experimental data for more complex 

reactions, there are several other reasons why we may wish to model reactions rather than 

conduct them in a lab. A deeper understanding of exact mechanisms can be gained by 

simulating reactions. For example, in [5] the citric acid cycle is modelled and analysed using 

graph transformations (with tool support from AGG). As individual nodes are typed and can 

have attributes such as an ID, the movement of nodes can be traced. This led to a more in-

depth knowledge of exactly where certain CH2COO
- 
groups are consumed in the cycle. 

 

Reactants may be extremely hazardous (such as radioactive material) and reactions explosive 

or otherwise dangerous. Modelling therefore provides a much safer alternative. Reactants or 

the equipment necessary for reaction may be costly, so once a model is developed, it can be 

very cost efficient to run. Some reactions may be too fast ([6] explains methods used in their 

implementation of a simulation tool that change the algorithm used in the simulation so that it 

is most suitable for the speed of reaction) or too slow to conduct in the lab. [13] describes 

some experimental methods for conducting fast reactions in the lab and still obtain 

meaningful results but many of these techniques are complex, require specialized equipment 

and can be wasteful of reactants. 

 

 

What follows is a more detailed consideration of some of the more relevant theory pertaining 

to the project. A general example of how reaction rate laws are derived for reaction 

mechanisms consisting of a number of steps is given here (essentially a summary of the 

information from [13]).  

The rate constant, k 

As noted in the literature survey a reaction involving two molecules usually occurs on their 

collision. For a simple one step reaction involving two molecules the rate of reaction depends 

on two factors – the concentration of the reacting molecules and the inherent reactivity of the 

two reactants.  

 

As the concentration of a species increases, the no. of molecules of that species within a 

particular volume increases. Intuitively (i.e. without an explicit treatment of the formal 

collision theory), this increases the probability of a collision between this molecule and the 

other, and therefore the rate of reaction increases. The inherent reactivity of a reaction 

depends on the rate constant, k, for a given reaction. As discussed in the literature survey, this 

depends on the activation energy of the reaction between the two reactants. The rate constant 

can be expressed in the following way: 
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RT

E
expA)T(k a   equation 1 

 

where k is the rate constant at temperature T, A is the pre-exponential factor (unique to each 

reaction), Ea is the activation energy of the reaction, R is the gas constant, and T is the 

temperature at which the reaction is being considered. 

 

Consider the following generalized example of a bimolecular reaction:  

 

A + B  C + D equation 2 

 

A and B collide and react to form C and D. The energy profile for these reactants is given in 

figure 1. Even though the energy of the products is lower than the reactants, there is still an 

energy expenditure barrier to overcome before the reaction can proceed. This usually 

corresponds to the overcoming of mutual electronic repulsion as negatively charged orbitals 

of electrons approach each other in order to reconfigure and become the highly unstable 

transition state. The higher the activation energy the more difficult it is to reach this short-

lived transition state. As we can see from equation 1, the higher the activation energy the 

lower k becomes and therefore the lower the rate of reaction.  

 

 

Figure 1 – energy profile depiction of activation energy 

 

 

The exponential factor in equation 1 describes the Boltzmann distribution which states that 

the proportion of molecules with energy Ea in a mixture is proportional to: 

 








 

RT

E
exp a  

 

If the temperature of the system is increased, this entire exponential factor becomes larger. As 

the temperature is increased energy is introduced to the system. Therefore, the proportion of 
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molecules now possessing the energy Ea is increased. In determining the value of k, this 

means that more molecules have sufficient energy to overcome the minimum energy barrier; 

k increases, and as a result so does the rate of reaction. The pre-exponential factor A also has 

some minor temperature dependence, but this is often ignored due to the swamping effect of 

the temperature dependence in the exponential part.  

 

The value of A can be derived purely through the application of collision theory (as outlined 

in [13]) but this ignores steric factors (such as the size and orientation of molecules) which 

reduce the proportion of collisions that lead to reaction and therefore leads to an 

overestimation of the proportion of collisions leading to reaction. Often the value of A 

derived from collision theory is substituted for a value of A extracted through experiment.  

A simple one-step reaction 

We will consider the following SN2 reaction (nucleophilic substitution involving 2 

molecules) as an example: 

CH3

ClNa OH Na Cl

CH3

OH

 

Figure 2 - simple SN2 reaction (hydrolysis of ethyl chloride to ethanol) 

 

In this example, the negatively charged electrons on the OH group from NaOH attack the 

carbon atom connected to the chlorine atom in our target molecule. The carbon is slightly 

positively charged because the chlorine has a higher electronegativity and draws electrons in 

the mutual bond towards itself. The attack leads to a high energy transition state in which 

both OH and Cl are partially connected to the carbon atom in question. This is however 

incredibly short-lived and cannot be isolated as an intermediate in the reaction. Therefore, the 

reaction immediately proceeds to the products where the C-Cl partial bond is broken and the 

C-OH bond is completely formed. Combining the concentration dependence and k factor 

dependence, the differential rate of reaction can be expressed as: 

 

]NaOH][ClCHCH[k
dt

]ClCHCH[d
23

23    equation 3 

 

Here the rate of reaction is written as the rate of change of the concentration of one of the 

starting reactants. The negative sign indicates that the reaction speeds up if there is more of 

the starting material but this leads to a quicker depletion of CH3CH2Cl. We include the 

concentration of both CH3CH2Cl and NaOH because there must be a collision between these 

for the reaction to proceed. The rate of change of concentration could also be written in terms 

of the other chemical species as follows: 

 

]NaOH][ClCHCH[k
dt

]NaOH[d
23    equation 4 

 

]NaOH][ClCHCH[k
dt

]OHCHCH[d
23

23     equation 5 
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]NaOH][ClCHCH[k
dt

]NaCl[d
23    equation 6 

 

Equation 4 has the same form as that of equation 3 as both are starting reactants. Equations 5 

and 6 are also the same but this time we are considering the rate of change of concentration of 

products with time. As the concentrations of starting materials increase (and hence the 

likelihood of a collision leading to a possible reaction) the reaction speeds up resulting in a 

greater rate of production of products, hence the sign of k is now positive. No matter how the 

rate is expressed the form of the rate law is the same and is a product of the rate constant, k, 

and the concentrations of the molecules involved in the reaction. If the reaction involves 2 of 

the same molecule, it appears twice in the rate law, leading to a square of the concentration of 

that species. The rate law therefore informs us about the mechanism behind an elementary 

reaction. Conversely, the mechanism immediately gives us the rate law. 

More complex reaction mechanisms 

The above treatment is for a simple one-step mechanism. For a more complex reaction 

network involving several steps from reactants to products, a differential equation for the 

reaction rate can still be derived in this way, but the overall reaction needs to be broken down 

into a series of elementary steps, bearing in mind the reversibility of any steps. Each 

elementary reaction will have its own energy profile and hence its own activation energy. 

Each reaction therefore has a unique value of k. Even for the same energy profile, a reverse 

reaction going from products to reactants must overcome a different energy barrier (see 

figure 1). Consider the following example reaction mechanism where A and B are molecules 

which can react to form C and D, D can then react with B to form G, or E to form F. The 

double headed arrows indicate reversible reactions: 

k1

k-1

A + B C + D

k3

FD + E

k2

GB + D

 

Figure 3 - example of complex reaction mechanism 

 

Reaction 1 is reversible, reaction 2 forms a bi-product G which removes D from the system 

and reaction 3 forms our desired product F. Ideally, the overall rate of reaction should be 

expressed in the concentrations of known species which can be measured, such as the 

reactant molecules, or any terminal molecules such as G or F. In order to do this, we need to 

first formulate the rate of reaction with respect to each species in the system. The first step is 

deciding which elementary reactions produce or consume the species in question. For 

example, B is consumed in both reaction with rate constant k1 and k2, but is produced by the 

reverse reaction with rate constant k-1. We would formulate the differential equation as 

follows: 

]D][B[k]D][C[k]B][A[k
dt

]B[d
211     equation 7 
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Similarly, the rate can be formulated for the other species as follows: 

 

]][[]][[
][

11 DCkBAk
dt

Ad
  equation 8  

 

]][[]][[
][

11 DCkBAk
dt

Cd
  equation 9 

 

]][[]][[]][[]][[
][

3211 EDkDBkDCkBAk
dt

Dd
   equation 10 

 

]][[
][

3 EDk
dt

Ed
  equation 11 

 

]][[
][

3 EDk
dt

Fd
  equation 12 

 

]][[
][

2 DBk
dt

Gd
  equation 13 

 

The combination of all of the above differential reactions can then give a picture of how the 

rate of reaction looks with respect to a specific species (e.g. a particular reactant or product).  

Passing all of these individual equations to a computer math solver could then yield a single 

differential equation in terms of one or a few species only, perhaps those of interest or those 

that can be easily measured. This differential equation could also be presented graphically, 

showing a prediction of the kinetic profile for the reaction, or could be compared against 

empirical results to validate or invalidate our proposed reaction mechanism. Slight variations 

in the match between the two sets of results could expose overlooked details in our proposed 

elementary reactions or perhaps even an entire step. Our methodology will aim to produce 

these individual differential equations for a particular reaction.  

Use of a stoichiometric matrix 

Cardelli [2] proposes a method of deriving these individual ordinary reactions without 

explicit knowledge of the elementary reaction mechanisms, via a stoichiometric matrix. If it 

is known for each reaction, how many molecules of each chemical species is created or 

destroyed, we can build up a matrix as follows: 

 

 A B C D E F G 

k1 -1 -1 1 1 0 0 0 

k-1 1 1 -1 -1 0 0 0 

k2 0 -1 0 -1 0 0 1 

k3 0 0 0 -1 -1 1 0 

Figure 4 – stoichiometric matrix for example reaction 
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Each entry in the matrix corresponds to the aggregate number of molecules produced or 

consumed in a reaction, negative for consumption and positive for production. For example, 

if reaction with rate constant k5 consumed 3 molecules of X but produced 2, the entry for k5 

and X in the matrix would be -1. 

 

From this matrix, we can build the rate laws for the elementary reaction steps if we assume 

that all reactions are initiated either by collision and subsequent reaction of molecules which 

lead to their destruction, or by disintegration of one molecule into several. In both cases, the 

reaction occurs through the destruction/alteration of a molecule. If a molecule is involved in 

the initiation of an elementary step but is not consumed this method does not work. However, 

this is very rare, and even for catalysts (which are never used up by a complex reaction when 

considering the overall outcome) there is usually a change in form at the level of elementary 

reaction. Each row of the matrix informs us of the molecules involved for a particular 

reaction. If we multiply the rate coefficient for each row by the concentration of those species 

which are destroyed in the reaction we can define rate laws for our example reaction as: 

 

k1[A][B] for the first reaction 

 

k-1[C][D] for the reverse of the first reaction 

 

k2[B][D] for the second reaction 

 

k3[D][E] for the third reaction 

 

If one molecule of a species is involved as reagents to an elementary reaction multiple times, 

it would be treated as another species and that species would be multiplied that many times 

e.g. if k5 had a coefficient of -2 for X, it would appear as k5[X][X] or k5[X]
2
. The derivation 

of the rate law matrix from the stoichiometric one is not in Cardelli‟s methodology and he 

finds the rate laws in a different way, which no doubt avoids the problem specified above in 

assuming elementary reactions occur via the alteration of molecules. Appreciation of this 

method would be invaluable for further work and an enhancement of the current 

methodology, which has limited universal applicability.  

 

Now we have a rate law matrix and a stoichiometric matrix, the rate law matrix taking the 

following form with only one row: 

 

k1 k-1 k2 k3 

k1[A][B] k-1[C][D] k2[B][D] k3[D][E] 

Figure 5 - rate law matrix for example reaction 

 

A simple matrix multiplication of Rate Law Matrix by Stoichiometric Matrix then gives us a 

1x7 matrix with the elementary ODE‟s (equations 7 to 13). 
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3. Background – Graph Transformations 
 

 

This section provides parts of the literature survey conducted for the “Project Plan” as a 

summary of existing related work in the use of graph transformations to model chemical 

reactions.   

Literature survey 

[8] gives an excellent overview of basic graph transformation theory. It consists of an easy-

to-follow description of graph transformation systems including the representation of systems 

as graphs (type and instance graphs), rules and transformations, constraints and application 

conditions. To explain its most basic functionality, a rule first looks for a pattern match for 

the left side of the rule in the input graph. Then, edges and nodes that are not in the right hand 

side of the rule are deleted, while edges and nodes that are newly created in the right hand 

side are placed into the graph. This paper will be invaluable as a reference to basic concepts 

throughout the project.  

 

Modelling molecules and reaction networks using graphs is described as a very natural 

application by much of the literature [1,13]. [1] and [17] discuss how a form of graphs is 

already a fundamental part of organic chemistry, when depicting molecules by their structural 

formula. Atoms can naturally be seen as nodes in a graph, with the bonds between them 

represented as bi-directional edges. Double bonds and triple bonds could be modelled as two 

edges and three edges respectively (as represented in [1]) but this would only be useful if a 

reaction involved the breaking of one of the double bonds in one or more of its elementary 

steps (this may be useful for the esterification case study).  

 

The problem with this basic approach, however, is a loss of information about spatial 

configurations i.e. cis and trans isomers and chirality. Furthermore, the valencies of 

individual atoms (the no. of other atoms it can bond to) are not automatically conserved. [5] 

offers an alternative approach that should be much more intuitive for chemists. By modelling 

the atoms as hyperedges and the bonds between them as nodes, valency and chirality can both 

be incorporated into the model. Each hyperedge is typed by atom, allowing for different 

numbers of joined nodes, therefore the concept of valency is preserved. The outgoing „bond‟ 

nodes from a hyperedge are labelled in order to show the three-dimensional ordering (related 

to D-glyceraldehyde), and preserving chirality. This is particular important for reactions 

where one enantiomer is more reactive in an elementary step, or where only one enantiomer 

binds with a particular substrate. This is more prominent in biochemical systems. The 

example of Citrate binding with Aconitase is given in [5]. In our two case studies chirality 

does not need to be considered as it has no bearing on the outcome of reaction. Therefore the 

simpler model may prove sufficient. 

 

From the representation of molecules as graphs, envisioning reactions between molecules as 

graph transformations is not a big step. Both [17] and [18] describe how reactions involve the 

breaking and creation of bonds in a molecule to transform it into a different molecule. In the 

graph, this would mean an elementary reaction step would involve the deletion of edges 

(bonds) and nodes not appearing in the right hand side of the rule, and the creation of edges 

and nodes that appear on the right hand side of the rule. As nodes and edges can have 

attributes, attributes may also be updated during the transformation. Such attributes could 

indicate energies of bonds, valencies or other useful information. Another reason why graph 
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transformation representations are so natural is their “inherent concurrency” [5]. This is the 

ability for these systems to allow simultaneous reactions of different reactants, which is 

obviously what happens in real chemistry. Causal dependencies can be monitored along with 

conflicts, using critical pair analysis. [17] attributes the strength of graph transformations in 

this field to their “pattern handling power”. In any chemical reaction network, involving an 

arbitrarily large number of molecules, a multitude of simultaneous reactions are possible. 

However, graph transformation rules define the standard reactivity of certain functional 

groups. Pattern matching provides a powerful search method for where these rules can be 

applied within the network. This will be explored in both our case studies and a more 

thorough explanation is giving in later sections of this report.  

 

[5] explains how graph transformations work in detail, by summarising the so-called double-

pushout approach. The left side and right side of the rule span show how the molecule will 

change, whereas the gluing graph between the left and right hand side simply indicates which 

elements are involved (“read”) in the rule, but not consumed. In the “toy” model of artificial 

chemistries given in [1] the essential idea is the same, but the gluing graph is labelled the 

context. The visualisation is also much more attuned to the structural formula representation 

used by chemists – atomic/group nodes are just labelled by element symbols and the edges 

replaced by standard bond representations (with double and triple bonds preserved). Although 

this may be more intuitive for chemists, it does not allow us to easily show attributes of nodes 

or edges, and also may seem alien to the way the graphs will look in their eventual 

implementation using tools such as AGG. Using standard graph representations should be 

easy enough to understand so the further simplifications in the toy model are not necessary.  

 

[5] suggests 3 types of rules in any graph transformation system. Symmetry rules are useful 

for the hyperedge model. Although chiral molecules cannot rearrange their spatial 

configuration with respect to the other groups around the chiral carbon centre, the bond 

connected to this carbon can itself rotate, meaning the groups can change position. So that 

this is not considered a separate molecule, equivalence rules can be set up. Expansion rules 

allow us to expand atoms grouped together in one node/hyperedge (usually for simpler 

representation) into their full expanded graph. This is necessary if at some point in the graph 

the details of the group become important e.g. one of the atoms is involved in a reaction. 

Again, this contracted representation is familiar for chemists, who often contract large groups 

in structural formula when their exact spatial details are not contextually important. Reaction 

rules define the change of groups. Our model should definitely incorporate the second and 

third types of rules, and consider the symmetry rules if the chirality preserving hyperedge 

model is used. [5] provides some other invaluable information about how graph 

transformation theory can be applied to reactions, and how atoms can be traced throughout 

the reaction and will serve as good reference material throughout the project.  

 

Stochastic graph transformation systems and rates of reaction 

 

[10] and [11] are excellent references explaining the extension of a graph transformation 

system to a stochastic graph transformation system. Given a start graph and a graph 

transformation system, a labelled transition system can be deduced which shows all the 

possible states (graphs) possible. Applied to a reaction network, each state would represent 

all the species (reactants, products, by-products and intermediates) that would result from 

applying the graph transformation rules. Labels from state to state can be assigned attributes 

such as a probability of reaction. This is analogous to the rate of the transformation from one 

step to the next, hence essential to our derivation of the overall rate of reaction. [10] provides 

all the necessary definitions and procedures needed to convert a stochastic graph 
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transformation system to a Continuous Time Markov Chain, which then allows the 

application of stochastic temporal logic to deduce long-term non-functional stochastic 

properties of the system. Equivalence rules can be set up which check for certain properties 

of the system at any point during the progress of the simulation, thereby allowing us to 

monitor the presence of molecules for example. Querying the system at regular intervals can 

then allow us to effectively measure properties proportional to the concentration of chemical 

species. Paper [10], demonstrates the application of stochastic graph transformations to P2P 

networks. Although the model is simpler (in that the rates are more easily assigned) the 

example will be invaluable in understanding how stochastic systems are applied. As the 

theory behind stochastic graph transformations (Continuous Time Markov Chains, Q-

incidence matrices, Stochastic Temporal Logic) can be quite difficult to grasp, both of these 

papers will be useful to return to.  

 

In deciding the rates of elementary steps, paper [1] provides a very good starting point. As 

discussed earlier, the Arrhenius equation relates the change in energy between reactants and 

products with a rate of reaction. [1] discusses a refinement where instead of entire molecules, 

just the energy of hybridised orbitals involved in the reaction are considered. For complex 

reactions such as case study 2 we can follow the methodology described in [1] and automate 

the procedure of assigning energies by looking at recurring sections of molecules 

(characterised by different hybridised orbitals) rather than entire molecules. This 

generalisation step would avoid having to manually determine and assign energies for the 

high number of possible species involved in the reaction (i.e. chains of many different 

lengths). It can incorporate more complicated electronic distributions accurately into the 

model, such as π-stabilisation where adjacent π-bonding orbitals can overlap in a molecule, 

lowering their overall energy and making them more resistant to breaking and therefore 

reaction. [1] also describes how this method accounts for regioselectivity within a molecule 

i.e. if there are two places where a rule can be applied, calculating energies would force the 

rate of reaction at one site to be realistically higher than the other. [1] actually goes on to 

suggest that the calculation of energies could be used for stochastic simulations of reaction 

networks using the Gillespie algorithm. The background theory and ideas presented in this 

paper could be utilised in the project, possibly for future iterations.         

     

There are other methods in the literature that are used to model stochastic systems. [2] and 

[14] both use process languages to specify the reaction rules and to derive useful properties. 

Cardelli‟s paper [2] is particularly useful as it sets out to achieve what this project does using 

stochastic process algebra, namely CCS and CGF. While this approach is probably more 

intuitive and precise for computer scientists, it loses its appeal for chemists due to its 

technical complexity. The visual graph representation is much more useful in this respect 

because the components are easily recognisable to chemists. The content of the paper is quite 

technical and without a background in logic and automata course requires substantial 

background reading to understand fully. The paper is therefore currently of limited use. 

Nevertheless, it would be highly advisable to understand Cardelli‟s approach, in order to note 

his assumptions and the way in which he assigns rates to elementary reaction steps. For this 

reason, a quick overview of π-calculus (provided by [15]) and subsequent research into CCS 

still needs to be undertaken.   

 

Implementation tools 

 

AGG [19] is widely used by the graph transformation academic community. A brief 

description of its utilisation to a chemical reaction setting is given in [5]. AGG does have 

several limitations for our purposes though. Firstly, it cannot be used for stochastic 
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simulations. To obtain stochastic data, a combination of PRISM and GROOVE (as described 

in [10] and [11]) could be used. [6] also provides a very thorough presentation of FERN, a 

Java framework that can be used for stochastic simulation. The API seems fairly 

straightforward. It does not however provide its own visualisation module. AGG also has its 

own Java API and a combination of the two tools could be coordinated to fit the project‟s 

needs. Further investigation of [6] and [19] will be necessary to achieve this. An appealing 

feature of [6] is that it provides implementations of several stochastic simulation algorithms, 

namely the Gillespie algorithm, extended Gillespie algorithm and a tau-leaping algorithm. 

The framework applies the most appropriate algorithm depending on the speed of the reaction, 

and can even change dynamically during runtime. 

 

Other limitations of the software should also be considered before using AGG such as 

minimum requirements, known bugs and elements of graph transformation theory that are not 

implemented (such as the ability to input hyperedges). The user manuals, bug reports and 

examples which can be found at [19] should be reviewed before/while using the tool.    

 

Consideration for more complete modelling 

 

Despite being an overview paper that has little relevant technical content, [18] does 

illuminate some interesting points to consider if we are to progress to a more complete model 

of real chemistries. In particular, “Global Context Sensitivity” is discussed. This states that 

physical properties play an important role in chemical reactions, such as temperature, solvent, 

viscosity, catalysts and radiation to name just a few. A graph transformation model may be 

limited in its ability to incorporate such factors. This should be taken into account in the final 

stages of the project. “Local Context Sensitivity” considers for example the “three 

dimensional conformation of reactive groups” of a molecule and how this affects reactivity. 

Large groups for example may block collision with incoming molecules, thereby hindering 

reaction rates.  

 

While a complete and accurate model is impossible for the scope of this project, it would be 

interesting to consider some of these factors, in particular temperature as the Arrhenius 

Equation is temperature dependent. The quality of results from the model compared to 

empirical results may prompt further investigation into these factors towards the end of the 

project, time permitting. We will return to this paper for background knowledge at this stage.  

Graphs and type graphs 

The graph transformation theory covered in this section provides a non-technical overview of 

the theory necessary to understand our methodology. For a richer, more mathematical 

discussion of the theory presented here, with formal definitions, please refer to [4], [5] and 

[8], of which the following is a summary. 

 

Graphs are composed of a set of nodes and a set of directed edges. Each edge has a source 

and target node. Formally, a graph can be represented as: 

 

G = (V, E, s, t) equation 14 

 

…where G is a graph, V is the set of vertices (or nodes), E is the set of edges, and s and t are 

the source and target functions respectively (s,t : E  V).  
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A typed graph is much like a UML class diagram, in that it specifies the allowed types 

(analogous to classes) of nodes and edges, and also the allowed relations between different 

nodes and edges. A type graph can also be formulated in the same way as equation 14: 

 

TG = (VTG, ETG, sTG, tTG) equation 15  

 

A graph is typed if it conforms to the specification laid out in the type graph, and is 

represented formally as: 

 

G
T
 = (G, type) equation 16 

 

… which specifies that a typed graph consists of a graph and a graph morphism, which is 

essentially a function, which maps the graph to the type graph, type : G  TG. A graph 

morphism is a combination of two functions; one that maps all vertices from one graph to 

another, and one that maps the edges in the same way. All nodes and edges must be instances 

of the node types and edge types specified in the type graph. The graph as a whole may be 

considered an instance of a type graph, just as in UML an object is an instance of a class. As 

an example, consider the following simple type graph: 

 

 
 

Figure 6 - example type graph 

 

This specifies that the red node can only connect to a black node via a purple edge, and the 

blue node can only connect to a red node via a green edge (note the direction of the edges). 

Just like UML class diagrams, cardinalities can be specified on relations between nodes 

through their edges. Every blue node must have 1 or 2 red nodes connected to it. Every red 

node must have 1 blue node connected to it. The relation between the black and red node is 

unconstrained, i.e. there is a zero to many cardinality. As there is no edge between the blue 

and black node, the blue node must never be connected to the black one. A red node can be 

connected to no more than one other red node (including itself). An example of a valid typed 

graph over this type graph is given in figure 7: 

 

 

Figure 7 - example typed graph 
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Graph transformations 

A graph transformation (also known as a rule or production) is a graph morphism that is used 

to specify how a graph can change. It is usually specified in the following way: 

 

 

Figure 8 - definition of a graph transformation (DPO) 

 

This is known as the double pushout approach (DPO) construction. L is the left-hand side of 

the rule and specifies the preconditions for the application of a rule. It is itself a graph which 

contains nodes and edges. K is the gluing (or sometimes called the context) graph. This 

specifies which nodes and edges in L are unchanged by the rule (i.e. “read” only). R is the 

right-hand side of the rule and specifies the postconditions for the application of the rule. 

Nodes and edges in L have an identity and these are mapped to nodes and edges in K and R, 

unless of course R introduces a new node or edge, in which case it will not have an identity. 

In order to perform a transformation on a given graph, there must be a match for the nodes 

and edges in L within the graph i.e. there must be an injective morphism (every member in L 

must be mapped to a unique member in the graph). There can be more than one such match, 

in which case one is non-deterministically chosen for the transformation (AGG allows 

interactive matching which allows you to select which match to perform the transformation 

with). Once a match is found, i.e. a copy of L is found in the graph, the nodes and edges not 

in K are deleted, and the new nodes and edges in R are copied into the graph. This can be 

represented pictorially as: 

 

 

Figure 9 - definition of graph transformation with match 

 

m, k and n all depict the embedding (injective morphism) of L, K and R respectively into G, 

D and H, the instance graphs. G is the graph before the transformation, D is the graph after 

the non-preserved nodes have been deleted, and H is the graph after the new elements in R 

have been copied over.  

 

The subgraphs that constitute the left and right hand sides of a rule  must also conform to type 

graph specifications. An example rule for the type graph given in figure 6 is: 

 

Figure 10 - example rule 1 
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Figure 10 shows only the left and right hand side of the rule. These diagrams were produced 

using AGG (a graph transformation tool), which does not require the input of a gluing graph, 

as this is inferred from the left and right hand sides. The gluing graph here would be the red 

node (1), which is the only node preserved by the rule. This rule essentially just deletes a 

black node, and its corresponding edge, connected to a red node. If this rule is applied to the 

graph in figure 7, we would get the following: 

 

 
 

Figure 11 - rule 1 applied to example graph in figure 7 

 

While there are three matches for the left hand side of the rule, there is only one valid match. 

Deletion of the second black node, connected to two red nodes, would lead to a violation of 

the dangling condition. The two remaining matches select either one of the red nodes with the 

black node. For either of these, if the black node and one edge are deleted, another edge is 

left without a target node, hence a dangling edge. There are two ways to overcome this, either 

to delete the dangling edge, or disallow transformations that lead to a dangling edge (AGG 

allows the setting of this as an option). In our case, we do not delete dangling edges, hence 

there is only one valid match. 

Critical pairs 

The theoretical background presented here is a summary of the chapter on critical pairs in [4].  

 

A critical pair refers to a pair of rules where one rule could potentially affect the application 

of another. There are two main types of critical pairs: conflicts and causal dependencies.  

 

Conflicts refer to parallel dependent pairs of rules, where the application of one rule could 

disable the application of another. Consider a graph, G, with the possible application of rule 

p1 or rule p2: 

 

Figure 12 - parallel independence of rules [4] 
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If the above confluence is possible, rules p1 and p2 are parallel independent. However, if the 

transformation p1 on graph G creates a graph H1 such that p2 can no longer be applied, or p2 

on graph G creates a graph H2 such that p1 can no longer be applied, the two rules are parallel 

dependent and in conflict. We can check for such a conflict by depicting the double pushout 

construction for each rule.  

Figure 13 - double pushout depiction of parallel independence [9] 

 

For parallel independence, each rule must not delete nodes and edges needed in the left hand 

side of the other rule. In other words, D2 (the gluing graph which specifies which nodes and 

edges are not deleted by rule p2) must contain L1, and D1 must contain L2. Another way of 

considering this is to look at the union of the left hand side of both rules. There will be a 

number of graphs satisfying this union, each graph depending on exactly how the union takes 

place. If in any one of these unions, the intersection of the two left hand sides is not in the 

gluing graph of both rules (K1 and K2) the rules are in conflict.  

 

For sequential dependence, we consider the following construction: 

Figure 14 - double pushout depiction of sequential independence [9] 

 

Rule p1 has been reversed. If the order in which p1 and p2 are applied affects the overall 

outcome of the application of both rules, there is sequential dependence. Here we consider if 

D2 contains R1 instead of L1. If we have a reaction rule p1 such that it creates the graph in the 

LHS of p2, L2 will be in R1 but will not be in D1. Since p1 creates L2, L2 should not exist in 

this gluing graph (i.e. before p1 is applied). This is identical to saying that for some 

intersection of R1 and L2, K1 will not contain this intersection as some nodes and elements in 

L2 will not have been produced yet. The intersection of R1 and L2 should be in both K1 and K2 

for sequential independence. Therefore, in this case, we have a critical pair denoting 

sequential dependence.    

 

R1 K1 L1 L2 K2 R2 

H1 D1 G D2 H2 

p1 p2 

L1 K1 R1 L2 K2 R2 

G D1 H D2 G’ 

p1 p2 
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Stochastic graph transformations & reaction networks 

Although stochastic techniques were not utilised in this project, considerable time was spent 

studying and understanding their application to chemical kinetics in the first term. As such, a 

very brief summary of their use is given here, gathered from [10] and [11]. As mentioned in 

the introduction, stochastic simulation is an alternative and better studied approach to 

producing reaction kinetic data. There are a number of differences between this approach and 

ours. While ours aims to produce equations, simulations produce quantitative data. This 

quantitative data depends on the circumstances under which the simulation was run, and also 

chance. Simulations consider every possible change from one molecule to another by a 

reaction in an atomic way, considering each one a unique transformation. Differential 

equations, however, essentially average all of these unique transformations into one overall 

rate law for that reaction. The stochastic simulation technique described below requires the 

input of a reaction mixture (many of each molecule) as the first state of a labelled transition 

system. There are scalability issues here in the number of instances of each molecule possible 

before the simulation can no longer run efficiently. Differential equations overcome this as 

generally only one instance of each molecule involved in each elementary reaction is 

necessary. Both of these approaches should be considered as complementary and further 

work would look at the connection between them. Therefore, an understanding of the theory 

behind stochastic graph transformation systems is very useful for the project.  

 

While a graph transformation system describes the functional, behavioural aspects of a 

system, adaption of this to a stochastic graph transformation system can inform us of non-

functional properties of the same system. The speed at which reactions occur is one such non-

functional property. To derive kinetic information about a particular complex reaction, we 

would first need the rules that make up the elementary reactions for the system, and a type 

graph to which all rules and graphs must conform to. We can derive a labelled transition 

system from these rules if a start graph is used to apply these rules to. The start graph 

describes the initial state of the system. In our case the start graph would be the starting 

material molecules for the reaction.  

 

We can describe the resulting labelled transition system as a labelled transition graph, where 

each graph is reachable from the start graph through the consecutive application of rules, 

starting at the start graph. Each transition is labelled with the rule name. This system now 

describes the entire reaction network, with intermediates as graphs in the labelled graph 

system and rules as the transitions between these graphs.  

 

To progress from this transition system to a stochastic graph transformation system we need 

the notion of a Q-matrix and Continuous Time Markov Chains (CTMC‟s). A Q-matrix 

(without formal mathematical notation, which can be found in [10]), is a transition rate matrix 

which describes essentially the probability that a particular transition will occur in the 

labelled transition system, transforming one graph to another. In chemistry, this is analogous 

to the rate constant, k, for an elementary reaction, which transforms one set of molecules to 

another. Just as the Q-matrix value describes some inherent probability of transition from one 

graph to another, k is an inherent probability of reaction for a particular elementary reaction. 

The usual concentration dependence that the speed of reaction has is incorporated into the 

transition system model elsewhere; the more molecules there are of a particular type required 

in a reaction, the more likely a transition of that type will fire in any given interval if we look 

at the system as a whole.  
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Each entry in the Q-matrix describes the transition rate from one state to another. The rows 

and columns are both elements from the set of possible states for the system to be in. Each 

row must sum to 0 (a necessary normalisation prerequisite for Q-matrices). If a transition 

from one state to another is impossible, the Q-matrix entry where they intersect is 0. The rate 

from one state to the same state is usually where a negative value is inserted to normalise the 

matrix. For example, if A, B and C are intermediate states in a reaction, the Q-matrix might 

look as follows: 

     

 A B C 

A -5 5 0 

B 3 -11 8 

C 1 0 -1 

Figure 15 - example Q-matrix 

 

Here we see that A can go to B but cannot go to C. B can go to A, but is more likely to go to 

C. C can go to A, although it is not very likely, but not B.  

 

From the labelled graph system and the Q-matrix, we can define a Continuous Time Markov 

Chain (CTMC). The CTMC is a random process, which describes the state of a system 

indexed by some t. In our case, t is time, since we are considering the progress of a reaction 

with time. If t is from a continuous set (as it is with time), we are describing a continuous 

time process as opposed to a discrete time process. The “continuous time” in CTMC refers to 

this. The CTMC is discrete-state since the intermediate graphs are the result of concrete, 

finite rule applications. The current state in the CTMC only depends on the previous state.  

 

The Q-matrix, along with the finite states provided by the labelled graph system, defines a 

CTMC in the following way. If the Q-matrix entry is greater than zero for any 2 sets of states, 

s and s‟ (provided s ≠ s‟), then a transition from s to s‟ occurs. So in our example Q-matrix 

above, if we start with A, A can progress to B. If there is more than one possible transition, 

however, a “race” between the possible transitions occurs, with the probability of any 

transition winning and therefore firing being the value of that entry in the Q-matrix divided 

by the total non-negative values in that particular row of the matrix (also given by the 

negative of the value for the s,s entry in the matrix). For example, once at B, we can return to 

A (with a value of 3) or progress to C (more likely, with a value of 8). The probability that B 

  A occurs is 3/11, and the probability that B  C occurs is 8/11.  

 

Another important note about the CTMC is that the transition delay is exponentially 

distributed with rate –Q(s,s) i.e. the probability that a state, s, will change within time t is the 

same at any time and depends on the sum of the entries for any row (i.e. state) of the Q-

matrix. The memoryless property of exponential distributions is particularly suited for 

chemical reactions, as it indicates that the proportion of molecules to undergo a particular 

elementary reaction in time interval, t, is constant. Again, this indicates an inherent reactivity 

of the molecules involved in an elementary reaction. As the sum of the rate constants for all 

outgoing reactions determines how fast a particular intermediate molecule will react and be 

used up, this is intuitively correct. These same rate constants determine the values in the Q-

matrix. The changing concentration of species needed for a reaction to occur will have an 
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effect on the overall speed of reaction, but the rate constant and inherent reactivity of the 

molecules needed for a reaction should never change (assuming a constant temperature).  

 

The stochastic graph transformation system then, attributes to each rule (i.e. transition in the 

labelled graph system) “an exponentially distributed delay of its application” [10], which is 

derived from the Q-matrix (details of how to do this are given in [11]). In chemical reactions, 

this is proportional to the value of the rate constant for a particular reaction. Such a system 

can be implemented using a tool chain such as AGG for rule specification, and GROOVE and 

PRISM for specifying the Q-matrix and running the stochastic simulation. Continuous 

Stochastic Logic (CSL) can then be used to query the stochastic system. This involves setting 

up atomic propositions which question the probability of certain events occurring (e.g. is the 

probability that there are 1000 molecules of intermediate molecule C present after 20 time 

units 0.1?) either throughout the time of the simulation or at long-term steady state (i.e. the 

end of the reaction). Using appropriately designed queries, a value (actually a probability) 

proportional to the number of molecules of each species can be ascertained throughout the 

simulated reaction. If we assume a constant volume, this is proportional to the concentration 

of each species. A graph of concentration against time for each species can then be plotted 

and checked against empirical lab results.  

 

This was a very brief and non-mathematical overview of stochastic graph transformation 

systems. More details can be found in [10] and [11].  

 

As stochastic simulations give us numerical, quantitative data that can be directly compared 

to existing experimental data, it may be reasonable to ask why ODE‟s are necessary at all. 

The ODE‟s give us a direct insight into the overall reaction mechanism for a complex 

reaction. A plot of the combined ODE‟s compared to experimental data may reveal drastic 

differences, which may be due to an inadequately proposed mechanism (i.e. omissions or 

inclusion of reactions that never occur), or highlight interesting physical properties of a 

reaction e.g. temperature dependence or dependence on molecular size or spatial 

configuration. While the methodology developed in this project does not come anywhere 

close to incorporating such physical influences on a reaction, the knowledge of their presence 

alone is invaluable.   
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4. Molecular Representation Using Graphs 
 

 

So far this report has focused on background and related work done in this field. The 

following is an account of how this was used in this project. First we focus on the use of 

graphs to represent molecules and their reactions, and then describe the step by step 

derivation of ordinary differential equations for a reaction, using the concept of critical pairs. 

This is followed by a description of the implementation of this methodology using 3
rd

 party 

and newly developed tools. Our two case studies test the methodology and its implementation 

for a finite reaction mechanism.  

 

A type graph is extremely important when representing molecules using graph 

transformations. A type graph captures the necessary rules to restrict the bonding of atoms, 

their valencies (the total number of bonds a particular atom is allowed to have) and any other 

idiosyncrasies of molecular chemistry. During the initial stages of the project, several type 

graphs were experimented with. This section gives an account of the evolution of these 

approaches through three main stages. 

1
st
 attempt   

Because molecules consist of atoms and bonds that connect two atoms, a first intuitive 

representation of molecules might consist of atoms as nodes and bonds as edges that directly 

connect them. A first approach followed this intuition and produced the following type graph 

(for all atoms in the esterification example): 

 

 

Figure 16 - esterification type graph, 1st attempt 

 

The structure of the type graph is quite complex. Just as with UML class diagrams, we can 

see the use of inheritance in this type graph. All of the atoms are subtypes of the “atom” 

supertype. C, H and H
+
 are all subtypes of “R” (used in organic chemistry to designate an 

arbitrary hydrocarbon chain), which in turn is a subtype of “atom”. A bond between atoms 

must consist of a pair of edges, one in each direction. As edges are directed, making each 

bond a pair of oppositely directed edges avoids the added complication of specifying a 

direction between each pair of atoms, and allows the use of a supertype, generic atom to 
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specify all allowed connections. This is why all bond edges are directed to the central “atom” 

supertype. The cardinalities of the bond edges specify the valencies for each atom. For 

instance, the O type must have 2 outgoing edges to other atoms, and 2 incoming edges, 

therefore specifying that each O atom must have 2 atoms connected to it at all times. The 

“atom” supertype has a connection to itself. This is to allow connections between atoms. 

While the edges from the subtype atoms to the supertype “atom” should already assume this 

possibility, AGG did not allow it unless the “atom” to “atom” edge was added. Charged 

atoms were included separately as they have different valencies to their non-charged 

counterparts. O
+
 can have 3 connections for example, whereas neutral O can only have 2.  

 

In producing a graph over the type graph above, in AGG the type graph must be enabled. 

There are two options for enabling the type graph – with both minimum and maximum 

cardinalities enabled, or just the maximum. With the minimum enabled, this minimum is in 

effect throughout the lifetime of the graph, even when rules are being applied, and as most 

rules involve deletion of an edge before re-adding another, this minimum may be violated 

making the rule inapplicable. Therefore, for all type graphs, we only enable the maximum 

cardinalities of the type graph. Figure 17 shows an example of a graph that conforms to the 

type graph of figure 16. These are the starting materials in the esterification reaction studied 

in this project: 

 

 

Figure 17 - esterification start graph, 1st attempt 

 

The leftmost molecule is a carboxylic acid, ethanoic acid. Between the C on the right and the 

upper O, there are 4 edges in total, therefore 2 bonds. Under this type graph, this is how a 

double bond is represented. The small molecule is TsOH, an acid catalyst in the reaction. 

Here, we have encapsulated the complicated internal structure of p-Toluenesulfonic acid as a 

single TsO node, as this internal structure is not important to the reaction; only the attached H 

atom has any significance. The molecule on the right is the alcohol (ethanol) which reacts 

with the ethanoic acid to eventually form an ester. 

 

As the minimum cardinalities are disabled for the graph, it is entirely possible that through 

the course of the reaction certain required conditions may become violated, in particular the 

fact that each bond must consist of two edges. This is particularly important for critical pair 

analysis, which we will discuss later, where we look for critical overlappings of nodes and 

edges between a pair of rules. When we specify rules, we can carefully control their outcome 

through the left and right hand sides. Critical overlappings however are extracted from all 
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possible permutations of an embedding of the two rules into one graph. To ensure all of these 

permutations conform to rules not specified in the type graph, we can use constraints. 

Constraints are specified for an entire graph grammar (rules and start graph). An atomic 

constraint consists of an atomic proposition, and one or more conclusions that must be true if 

the proposition is true. For example: 

 

 

Atomic proposition:    Atomic conclusion: 

    
 

Figure 18 - atomic constraint for 1st attempt type graph 

 

This atomic constraint states that whenever one atom is connected to another by an edge, 

there must be an accompanying edge in the opposite direction. A constraint can be 

formulated from many individual atomic constraints using Boolean logic. Constraints 

specifying the necessary presence of a situation can be expressed by leaving the atomic 

proposition empty and specifying an atomic conclusion. This means that the conclusion must 

always be true. To specify required absence, a constraint that falsifies such an atomic 

constraint must be defined.    

 

While this was an extremely intuitive type graph, which could easily be understood by both 

chemists and computer scientists, there are some drawbacks because of its simplicity. 

Primarily, the dangling condition (described earlier) can easily be violated in the specification 

of a rule unless extended local context is given in that rule. For example, if a rule specified 

that one of the bonds of the C=O double bond in ethanoic acid (figure 17) should break to 

leave a single bond, with C becoming C
+
, we would need to break the other bonds this C has 

and reform them with the C
+
. If the rule only included the C which actually changes, and left 

out the local context, the rule would become inapplicable as the dangling condition would be 

violated when C changed to C
+
. Generally, to specify reactivity that is as general and widely 

applicable as possible, rules should include only the functional groups that are affected by 

rules, and avoid local context. A way around this for this particular type graph, would be to 

split rules (as can be seen for rules entitled Step4a and Step4b, in file 

“esterification_attempt1.ggx”), but this adds unnecessary complication to the grammar.   

2
nd

 attempt 

A second attempt looked at incorporating a hyperedge treatment. AGG does not allow the use 

of hyperedges. However, they can be simulated using bipartite graphs, as carried out in [5]. A 

hyperedge is an edge that connects more than two nodes. The nodes that a central hyperedge 

connects can be ordered thereby some semblance of 3-dimensional spatial configuration is 

preserved. This is an extremely useful property for the reactions of chiral molecules where 

only certain enantiomers (3-dimensional configurations) undergo reactions. For our case 

studies, chirality was not relevant. However, this representation also enables an easy way of 

limiting the number of bonds each atom is allowed, hence establishing valency maximums. 

CH4 (methane) would have the following hyperedge representation: 
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Figure 19 - hyperedge representation of CH4 

 

Contrary to the 1
st
 model, atoms are now (hyper)edges, and bonds are nodes. The green 

hyperedge is the central carbon atom, and the blue hyperedges are the bonded hydrogen 

atoms. The black nodes represent a bond. Hyperedges of carbon type can connect four such 

nodes and hydrogen only one. This restriction information would be in the type graph for this 

hypergraph. The bipartite graph simulation of this would have the following form: 

 

 

Figure 20 - bipartite graph representation of CH4 

 

The hyperedges are simply represented as a special type of node in AGG. The resulting form 

of the graph is very similar in appearance to the hyperedge approach. 

 

The type graph for esterification in this model is given in figure 21. The corresponding 

starting materials (analogous to figure 17) are given in figure 22. The type graph in figure 21 

is considerably simpler than the type graph in figure 16, for the previous model. However, 

there are again drawbacks with this model. While the number of bond nodes each atom node 

can connect to is appropriately limited, the opposite is not true. From the type graph it is clear 

that each bond node could have several atoms nodes attached, a maximum of 2 for C, 2 for O, 

2 for O
+

, 2 for H etc. To prevent this, a great number of constraints would need to be added to 

the grammar, ensuring every possible combination of atoms at a bond node is accounted for.  

This would increase the complexity of the grammar, and we can speculate that checking this 

many constraints could make critical pair analysis or rule applicability analysis perform much 

less efficiently. In addition, the generic bond nodes that are used throughout each molecule 

would increase potential inclusions to check for during critical pair analysis. Embedding one 

v1 
v2 

v3 

v4 
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rule into another, both of which use these nodes heavily, equates to far more possible 

embeddings to check through.    

 

 

 

Figure 21 - esterification type graph, 2nd attempt 

 

 

 

Figure 22 - esterification start graph, 2nd attempt 

 

3
rd

 attempt 

After many experiments and modifications of the two type graphs given above, a final type 

graph was settled upon. This extends the bipartite graph idea, but solves the problem of 

spurious connections to each generic bond node, by introducing more detail to this node. 

Each generic bond node is now a pair of atom-specific bond nodes. Each atom node can have 

a certain no. of atom-specific bond nodes (thereby introducing valency in the same way as the 

bipartite graph system), and each atom-specific bond node can only be connected to one other 

atom-specific bond node. This is specified through a combination of the type graph and 

additional constraints. As edges are directed, there must be a simple way of determining the 

allowed direction between each possible pair of atom-specific bond nodes. It was decided that 

the relative electronegativities (the ability of an atom to draw electronic charge towards it) of 

each atom would determine this direction. As O is more electronegative than C, the direction 

of the edge would go from the C bond node to the O bond node. The final type graph used in 
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our case studies is given in figure 23. An instance of this, esterification starting materials as 

per the two previous examples, is given in figure 24.   

 

Figure 23 - esterification type graph, final version 

 

Figure 24 - esterification start graph, final version 

 

Although the graph is much bigger, involving far more nodes, this representation solves 

many problems. As mentioned in the appraisal of the plan (see page 73), many changes to the 

representation came about through problems with the case study or implementation. This 

representation led to far fewer inclusions at the critical analysis stage (explained in 

“Methodology”) due to the lack of generic or non-atom-specific nodes and was therefore 

selected for the project. A slight modification of this type graph was used for the second case 



Mayur Bapodra  30 
CO3120 Final Report 

study, but this will be covered in more detail when describing that case study. Note that the 

C-C bond in both of the larger molecules has two edges (in opposite directions) between the 

bond nodes. This is because the C-C bond is symmetric in terms of electronegativity, so this 

added convention is useful. This can be enforced using a constraint in the same way that all 

bonds had to consist of two edges in the first attempt type graph (see figure 18).  

 

As explained, additional constraints were also necessary to limit the number of edges each 

bond node could have. Each bond node should only have 2 connections (except for 

symmetric bonds). Atomic constraints took the following form and had to be specified for 

each permutation of 3 atoms, and then these had to be declared to be false in an overall 

constraint: 

 

Atomic proposition:    Atomic conclusion: 

 

             

          

(empty) 

 

 

 

 

Figure 25 - example bond node constraint for final type graph 

 

As expected, this was very cumbersome and led to a total of over 40 such atomic conclusions. 

For a more complicated reaction system involving more varied elements these constraints 

would grow to be extremely difficult to define by hand. This was a major drawback of the 2
nd

 

attempt, and now this one. However, this drawback is fixed in the revised iteration of this 

type graph used for the second case study, using inheritance in the type graph and constraints. 

When the esterification type graph above was designed, after some discouraging results, it 

was unclear as to the effects of inheritance on AGG‟s implementation of critical pair analysis 

and was therefore avoided. Later, whilst working on the second case study, we speculated 

that inheritance should only cause problems with the critical pair analysis if generic 

supertypes were used in the definition of rules, and not in type graphs or constraints, as these 

are merely checking mechanisms for the validity of a graph. If inheritance is used in a rule, at 

critical pair analysis, the supertype node can be substituted for every subtype in the concrete 

overlapping graph, leading to a possible explosion in the number of inclusions to check. It is 

not even clear as to how inheritance in rules is treated by the critical pair analysis engine of 

AGG.  

 

While the improved revision is discussed in more detail later, the type graph above gives the 

general idea of our approach, using two bond nodes for each bond. This is still a very 

intuitive molecular representation for chemists. The two bond nodes could even be visualized 

as the pair of electrons needed to form a directed bond between two atoms.  
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5. Methodology 
 

 

A background on critical pairs was given in “Background – Graph Transformations”. The use 

of critical pairs for deriving ODE‟s presented below is adapted from [9].  

Use of critical pairs 

The concept of critical pairs can be used to determine which molecules are consumed by 

which reactions within a network of reactions. To do this, first we need to establish the 

reactions as one set of graph transformation rules and the molecules (starting materials and 

intermediates in the reaction) as another set of identity (or identic) rules and check for critical 

pairings between members of these two sets. An identity rule is one in which the left hand 

side (LHS) of the rule and the right hand side (RHS) are identical. Hence, it can only be 

applied to a graph if the LHS of the rule is present within that graph, and its application does 

not change this graph. As such, identity rules are generally used to check for the presence of 

certain subgraphs within a graph.  

 

Consider a reaction rule p1 which defines a transformation that breaks bonds (i.e. in our graph 

representation of molecules, deletes edges and bond nodes) that are present in a molecule, m. 

Let us create an identity rule for m, called m1. If we were to check for critical pairs between 

p1 and m1, all overlappings (or unions) of the LHS of rule p1 and LHS of m1 would need to be 

constructed. If in any of these overlappings, the nodes and edges that are deleted by p1 are 

also in m1, we have a critical pair as the application of p1 at this particular match would mean 

m1 could no longer be applied, since the molecule would be changed by p1. Notice that we do 

not need to consider the gluing graph for m1 as per the construction in figure 13 because for 

an identity rule, the LHS, gluing graph and RHS are all identical. Checking the LHS alone is 

sufficient. What the check actually equates to however, is the fact that the intersection of the 

LHS of m1 and p1 is not in the gluing graph of p1, since p1 deletes some of these nodes and 

edges. In summary then, a critical pair consisting of a particular reaction rule and molecular 

identity rule signifies that that reaction consumes that particular molecule.  

 

In a similar fashion, the concept of sequential dependence (see figure 14) can be utilised to 

find which reactions produce molecules. If we have a reaction rule p1, and a molecular 

identity rule, m1, such that p1 creates the molecule in the LHS of m1 at some stage of the 

reaction mechanism, for some overlappings of R1 (from p1) and L2 (from m1), some nodes 

and edges in L2 will not be in the gluing graph of p1, since this reaction rule creates L2. All 

nodes and edges in R1 however will be in L2, and therefore D2 (since L2, D2 and R2 are 

identical). In other words, for a reaction p1 that produces a molecule in the LHS of m1, p1 can 

be applied before m1, but m1 cannot be applied before p1. This is the condition for sequential 

dependence. 

 

These two categories of critical pairs give us the crucial elements necessary to derive ODE‟s, 

since to do this, all we need is information regarding in which elementary reactions chemical 

species are produced or consumed. Parallel conflicts and sequential dependencies between 

reaction rules and molecular identity rules give us this information. 

 

What follows is an account of how this theory is incorporated into an overall methodology in 

deriving ODE‟s. There are 10 steps, each of which is covered in detail. To test the 

methodology, these steps were implemented with the aid of the critical pair analysis tools of 
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AGG with some additional classes/modifications for added efficiency, automation, and the 

eventual output of ODE‟s. The details of how this was achieved are given in the next section, 

“Implementation”.  

 

Step 1: Specification of reaction rules and starting materials in AGG  

Using AGG, and a suitable graph representation of molecules, specify all general 

reactivity as graph transformation rules, including all relevant reverse reactions. 

Define the starting reactants as the start graph for the grammar. Each starting 

chemical species should also be added as the LHS and RHS of identity rules. 

 

At this stage, the reaction rules must be as general as possible, possibly at the level of 

functional groups only. A functional group is the part of a molecule that undergoes a reaction. 

For example, in acid-catalysed esterification, the C=O double bond undergoes protonation at 

the start of the reaction. For a general reaction rule, we would only include the C=O part of 

the molecule in the LHS of the rule. The reason for this is so that the rule can be applied at a 

later stage in the reaction, for a possibly unknown intermediate. If the rule is too specific at 

this stage, the reactivity of this intermediate is missed, and the ODE‟s will not be accurate. 

This is particularly important for chaining reactions, where the intermediates are essentially 

too numerous to define or even count. The reactivity of each of these needs to be considered 

in an automated way.  

 

Reaction rules should be labelled Step1, Step2 etc. while molecular identity rules should be 

named by the molecule they represent in the textual form of the structural formula of the 

molecule. For example, ethanoic acid with the following form, would be CH3COOH: 

 

O

O
H

H

H

H  

Figure 26 - structural representation of ethanoic acid 

 

This is a convention that is necessary for the extraction of ODE‟s in recognized chemical 

forms at a later stage.  

 

Step 2: Application of reaction rules to the start graph to obtain intermediates   

With the graph grammar defined in step 1, attempt to apply all general reaction 

transformations to the start graph. For each resulting graph, add any new 

chemical species as new identity rules. Repeat for the resulting graphs until all 

rules have been applied to all possible graphs in the reaction mechanism.  
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This step attempts to find all possible reaction intermediates so that they can be included in 

the critical pair analysis in the next stage. If, however, not all intermediates are captured at 

this stage, the critical pair analysis in the next stage should achieve the same results. However, 

running the critical pair analysis and examining the results to find all possible intermediates is 

less efficient than completing this step, especially as we are aided by AGG‟s GUI here.  

 

For larger reaction networks, this step would be difficult to accomplish in its entirety. As 

such, for added efficiency, this iterative application of reaction rules and subsequent 

definition of identity rules should be automated if possible. This is discussed further in the 

“Critical Appraisal”.  

 

Step 3: Execution of first pass critical analysis 

Using AGG’s critical pair analysis engine, conduct a first pass critical pair 

analysis between the set of general reaction rules and set of identity rules.   

 

This step gives an indication of which general reaction rules are applicable to which 

molecules. Both, parallel conflict analysis (to determine which reactions consume which 

molecules) and sequential dependence analysis (to determine which reactions produce which 

molecules) should be conducted.    

 

Step 4: Removal of structurally equivalent overlappings 

Reduce the number of critical overlappings found for each pairing of reaction 

rule and identity rule, so that only chemically different overlappings remain.   

 

This stage is not compulsory, but makes the next step (which requires manual interaction) 

much easier. Due to the nature of our molecular representation, some of the critical 

overlappings returned from step 3 may be spurious overlappings. Consider the example of 

two critical overlappings for the same rule pair obtained from the critical pair analysis of the 

SN1 reaction, given in figure 27. Structurally, these two overlappings are identical. There are 

six such similar overlappings in total, arising from the nature of our molecular representation, 

which requires two atom-specific bond nodes and an edge between them to represent a bond. 

In the two overlappings shown, the identities of the H bond nodes (17, 19 and 14) and C-H 

bond node edges (20, 23 and 25) connected to the central C bond nodes (3, 4 and 5) are 

rotated around. Six such overlappings arise because there are 6 configurations these identities 

can be in. In real chemistry, however, these configurations have no significance to the 

selection of a reaction or to the outcome of the reaction. As no configuration is unique, they 

should all be treated as one. This step therefore removes spurious overlappings such that only 

one unique overlapping remains for each set of chemically equivalent overlappings.   
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Figure 27 - example of chemically equivalent structural overlappings 

 

Step 5: Manual observation of results and instantiation of rules 

View the critical overlappings resulting from Steps 3 and 4, and instantiate the 

general rules to concrete rules to make their application specific to one match 

within one molecule. These rules are then added to the graph grammar.     

 

At this stage, we derive instantiated rules from the general ones by limiting the application of 

each instantiated rule to one particular situation i.e. one part of one molecule. Further details 

about the instantiation of rules are given in [7] and [16]. We do this because the application 

of a general rule to two different molecules, or even two different parts of the same molecule 

will have a different rate constant, and should be considered a different elementary reaction 

in the overall mechanism. Small factors such as local context (even the presence of an 

attached carbon rather than a hydrogen) can have an effect on the reactivity of a site, and 

hence the rate constant.  

 

For each unique critical overlapping, to gain the LHS of the instantiated rule, the LHS of the 

reaction rule is embedded within the LHS of the molecular identity rule, using the match 

given by the critical overlapping. To gain the RHS of the instantiated rule, we complete the 

morphism by copying the RHS of the general reaction rule to the embedded LHS, after 

deleting the unpreserved nodes and edges. Essentially, we have applied the general reaction 

rule to the molecule graph and taken the result as the RHS of a new rule. The result (i.e. RHS 

of the newly instantiated rule) should also now be added as a new molecular identity rule if it 

does not already exist. Figure 28 gives a construction that summarises the process. Lmol is the 

LHS of the molecular identity rule. The instantiated rule, pinstantiated is constructed from Lmol, 

Dins and Hins, after commutation of Lmol with the LHS (Lgen), gluing graph (Kgen) and RHS 

(Rgen) of the general rule, pgeneral. 
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Figure 28 - double pushout construction depicting instantiation of rule 

 

If upon examining the results of the critical pair analysis, it is clear that each general rule is 

only applicable to one situation, there is no need to instantiate a new rule and the unmodified 

general rule can be used.  

 

If new molecular identity rules do arise at this stage, we must repeat steps 3 to 5, as the newly 

discovered intermediates may also undergo general reactions such that even more 

intermediates can be determined. Only when no new intermediates arise can we deem that the 

reaction network is fully defined in terms of the chemical species possible (based on our 

definition of the general reactivity allowed in the system).    

 

Step 6: Disabling of original general rules, and renaming of all rules 

For general rules that have been instantiated, the general rules they were derived 

from should be disabled. All rules should now be renamed with the rate constant 

to which the elementary reaction should be associated.  

 

This is to ensure results are not duplicated for instantiated rules, since the reactivity proposed 

by the general rule should now be assumed by a set of more specific instantiated rules. As 

rules are now specific to a set context, all rules (instantiated ones and general ones that did 

not need to be instantiated) should be renamed as a rate constant, e.g. k1, k2 etc., preferably 

with the numbering representing the order that reactions take place in the reaction mechanism. 

Reverse reactions should be labelled with a negative number, corresponding to the forward 

reaction it reverses e.g. if a rule is the reverse reaction of k1, it should be renamed k-1. This 

convention ensures ODE‟s that include the rate constant at step 9.  

 

Step 7: Execution of critical pair analysis with fully instantiated rules 

Run the critical pair analysis once more, between the set of instantiated rules 

(that now have rate constants associated to them) and the complete set of 

molecular identity rules. 

 

This will finally yield a stoichiometric matrix informing us of the elementary reactions that 

produce or consume each chemical species. One major drawback of the current methodology, 

which originates with this step however, is that reactions that consume or produce more than 

Kgen Lgen Rgen 

Lmol Dins Hins 

pgeneral 

pinstantiated 

m k n 
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one of a certain molecule cannot yet be ascertained. This is discussed in more detail in the 

“Critical Appraisal” section. It is a flaw that should be solvable given more time. 

 

If we view the resulting “.cpx” file in AGG, we are presented with a table that already closely 

resembles the stoichiometric matrix that we need to derive ODE‟s. The following is the 

conflicts analysis summary table for the SN1 reaction (after rule instantiation): 

 

 

 Figure 29 - AGG critical pair conflicts summary example 

 

 

Only the upper right corner of the table is useful since the other rule pairings are not 

necessary for kinetic analysis.  

 

Step 8: Removal of structurally equivalent overlappings for instantiated rules 

The critical overlappings obtained from Step 7 are passed through the Structural 

Equivalence analysis program to remove spurious pairs so that only unique 

overlappings remain.  

 

The logic behind this step was presented in step 4. After performing this step, we are finally 

presented with the stoichiometric matrix needed for the derivation of ODE‟s. The table in 

figure 29 is reduced to that in figure 30. 
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Figure 30 - AGG critical pair conflicts summary example after structural equivalence reduction 

 

Step 9: Execution of ODE extraction program 

Run the ODE extraction program with the output “.cpx” file from Step 8 as input. 

This will generate the ODE’s from the stoichiometric matrix and output them in 

string format in a text file.  

 

This stage uses the theory set out in “A Chemistry Background” of the “Relevant Background 

Information” section. The output currently is in string format. However, the output can be 

modified to any format necessary (e.g. XML). Integration with step 10 requires knowledge of 

the specific math solver to be used and its input format. As step 10 was not fully realised in 

the timescale of the project, it was decided that the output would simply be in string format, 

to demonstrate that output is possible. Currently, it has the following format: 

 
d[CH3+]/dt =  -k-1[CH3+][Cl-] +k-2[CH3O+H2] +k1[CH3Cl] -k2[CH3+][H20] 

 

d[CH3Cl]/dt =  +k-1[CH3+][Cl-] -k1[CH3Cl] 

    

There is one such line for each chemical species in the reaction network. 

 

Step 10: Solving ODE’s using a 3
rd

 party math solver 

Pass the ODE’s extracted in Step 9 into a suitable math solver software. A single 

equation defining the progress of the reaction should be returned, in terms of the 

change in concentration of one interesting species with time.   

 

Although this step was not completed for the project, it is included for completion. In the 

final stage, a 3
rd

 party math solver allows us to use the results of the kinetic analysis to 

generate quantitative data and a graph representing the kinetic profile of the reaction. For this, 

the values of all of the rate constants for the reaction need to be known. These can be derived 

by numerous small experiments or gathered from existing sources. While these sources have 
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not been investigated, further research should reveal libraries (perhaps online) where such 

information on reactions is maintained.  

 

The results of this final stage can be used to validate our reaction mechanism. If the extracted 

graph does not have the same form as established data for a particular reaction, it is clear that 

the reaction rules were not complete or perhaps implemented incorrectly.   
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6. Implementation 
 

 

The implementation of our methodology involved three distinct newly constructed 

components. Each of these was implemented as a self-contained Java module and had the 

following functions: 

  

1. Critical pair analysis 

2. Structural equivalence testing 

3. ODE extraction 

 

These were combined into a simple command line user interface (using shell and batch 

scripting) which we shall call the kinetic analysis suite. This section will first cover how this 

suite, along with AGG, can be used to apply our methodology to a concrete example, 

specifically which steps in the methodology each tool/module relates to. A description of the 

Java coding that was needed to implement each of the three modules is then given, along with 

an account of the developed batch/shell script.  

Tools that implement the methodology 

Steps 1 and 2: AGG 

 

To input rules, start graph and type graph AGG is used: 

Figure 31 - main layout of AGG 

List of components of 
grammar, i.e. start graphs, 
type graphs, rules, 

constraints etc.  

Left and right hand side of currently 
highlighted rule (also the area used to 

define constraints) 

Nodes and 
edge types 
defined for 
current 

grammar  

Area for defining start graph and type 
graph, and shows results of rule 
application  
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The red area can be used in step 2 to see which new chemical species occur as the result of 

applying rules to previous graphs. Further documentation on the use of AGG can be found at 

[19]. 

 

Steps 3 and 4: Kinetic Analysis Script 

 

Here the prepared shell scripts need to be run. Initially the user is presented with an option of 

whether they wish to run the full suite or component programs. For steps 2 and 3, the user 

should choose “no”. Next, they are presented with an option for which program they wish to 

run. For step 2, option 1 (“Critical Pair Analysis”) should be chosen. For step 3, when the 

user has started the program for a second time, option 2 (“Structural Equivalence Analysis of 

Pairs”) should be chosen. In both cases, they will be asked to input the location of the input 

file.  

 

 

Figure 32 - kinetic analysis program, steps 2 and 3 

 

Step 5: AGG Critical Pair GUI 

 

Critical pairs can be examined using AGG‟s critical pair GUI (figure 33). This is accessed 

from the main AGG window by selecting “Analyzer > Critical Pair Analysis > Load > In 

This Window” from the menu bar.  

 

A summary table of the total conflicts and dependencies is given initially. By clicking a 

square in this table the actually critical overlappings along with the 2 conflicting rules can be 

examined for a rule pair. The top half of figure 33 shows the two conflicting rules. The graph 

in the bottom right corner shows the critical overlapping. The nodes highlighted in green 

show the graph objects that are responsible for the conflict. Mapping identities allow the user 

to relate these to the same nodes and edges in the rules.  

 

For this step, each critical overlapping should be examined to see if this rule needs to be 

instantiated (i.e. more context introduced to the rule to make it more specific). If it does, the 

main AGG window should be returned to, and the new rule added. The rule should then be 

applied to the molecule for which the critical overlapping was found, and the new molecule 

added as a new identity rule.   
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Figure 33 - critical pair analysis GUI module of AGG 

 

 

Step 6: AGG 

 

This step requires AGG once more. Once the rules have been instantiated, the old rules 

should be disabled, by right clicking them in the grammar components list and selecting 

“disabled”.  

 

Steps 7, 8 and 9: Kinetic Analysis Script 

 

The script should be run once more. This time, the full analysis suite option should be chosen. 

Once the analysis is complete, the user is presented with the message in figure 34, which tells 

them the filename which contains the generated ODE‟s. These are also printed to the system 

output during the analysis.  

 

Step 10: Third Party Algebra Solver 

 

This part was not completed in time, partially due to the very simple nature of the case study 

used, which did not require quantitative verification of results. Several commercial 

applications were researched however. The majority of these were not freeware, especially 

the most suitable for solving differential equations.  
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Figure 34 - result of running complete kinetic analysis suite 

The AGG API 

This API (for version 1.6.4) is included on the software CD for the project. Details of how to 

access it are included on the readme file. AGG is an open source graph transformation tool 

that is available at [19]. It is widely used to implement graph grammars and contains a depth 

of functionality that can be accessed through its API, allowing low-level access to and the 

opportunity to extend what is presented in its GUI. Because of the ease with which rules, type 

graphs, and graphs can be implemented in AGG, it was a natural choice for the 

implementation of the project. There are very few free open source graph transformation 

tools like it. More information on its development and evolution can be found at [19]. 

 

In order to adapt what the software does to our needs, several classes needed to be extended, 

and others were required for low-level functionality. At times, this proved extremely difficult. 

The software itself has some depth and not all classes have complete Javadoc comments. This 

is perfectly understandable for a non-commercial piece of software. Fortunately, the source 

code was available which allowed us to deduce each method‟s purpose from its code and also 

included some non-Javadoc comments. This was partially written in German, but use of 

online translators helped translate parts of this. Nevertheless, the complexity of understanding 

the API was a great technical challenge. With perseverance, and many hours of investigation, 

however, much of the functionality required was attained. When it was felt that progress was 

not being made at all (see the section on structural equivalence testing), help was available 

directly from a member of the AGG development team.  

 

The critical pair analysis part of AGG was the bottleneck in the methodology as it was 

extremely memory intensive and time-consuming. Certain grammars actually had to be 

abandoned (e.g. the esterification case study) because the Java virtual machine eventually ran 

out of heap space. This is a limitation of the software that members of the AGG staff are 

currently looking into. For future work, it would be extremely helpful if this problem was 

resolved. In the meantime, alternative software that can carry out critical pair analysis for 

graph transformation systems should be researched.  
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Critical Pair Analysis 

The classes needed for this part are arranged in the following package structure: 

 
  agg.parser 

 

    MB294ComputeCriticalPairs    

    MB294DependencyPairContainer 

     extends DependencyPairContainer 

    MB294ExcludePairContainer 

     extends ExcludePairContainer 

    MB294ParserFactory 

        

mb294 

 

    CPAnalysisSetup 

Figure 35 - critical pair analysis package structure 

  

 

As can be seen from this package structure, many of the classes are extensions of existing 

AGG classes. MB294ComputeCriticalPairs is an almost exact copy of ComputeCriticalPairs, 

with minor changes. This class could not be extended as certain methods that needed to be 

overridden in the subclass required copying code from the superclass, and this contained 

some private data members.  

 

The main purpose of the modification to AGG‟s own critical pair analysis program is that this 

conducts an analysis of critical pairs between every possible pairing of rules. Kinetic analysis 

only requires the analysis of pairs where one member is a reaction rule and the other is a 

molecular identity rule. CPAnalysisSetup loads and analyses a grammar, separating the rules 

into two lists, one for reaction rules and the other for molecular identity rules. The crucial 

code segment is given below: 

 

 

Code 1 - CPAnalysisSetup, setUpRules method 

 

This method extracts all of the enabled rules from its associated grammar as a list. Then using 

a list iterator, checks each rule. If the LHS and RHS of the rule are identical, it is an identity 

054   private void setUpRules() { 

055     System.out.print("Sorting rules..."); 

056     long start = System.currentTimeMillis(); 

057     List<Rule> allRules = gragra.getListOfEnabledRules(); 

058     ListIterator<Rule> itr = allRules.listIterator(); 

059     while (itr.hasNext()) { 

060       Rule tmp = itr.next(); 

061       if (tmp.getLeft().compareTo(tmp.getRight())) { 

062         identityRules.add(tmp); 

063       } else { 

064         reactionRules.add(tmp); 

065       } 

066     } 

067     long elapsedTimeMillis = System.currentTimeMillis() - start; 

068     System.out.println("Finished sorting rules in " + elapsedTimeMillis 

069         + " milliseconds"); 

070   } 
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rule and is added to this object‟s identity rules list data member, else it is assumed to be a 

reaction rule and is added to this object‟s reaction rules list.  

 

The scheduling of rule pairs for critical pair analysis takes place in AGG‟s 

ExcludePairContainer class for conflicts. MB294ExcludePairContainer extends this class and 

overrides the fillContainers method (responsible for scheduling pair analysis). Its constructor 

creates a new CPAnalysisSetup object, passing in as a parameter the graph grammar for 

which it is being used. MB294ExcludePairContainer then has two extra data members – a list 

of identity rules and a list of reaction rules. 

 

 

Code 2 - MB294ExcludePairContainer, fillContainers method 

 

Some of this code is copied from the superclass‟ method. Lines 51-62 are the crucial part 

which carries out the scheduling. For every reaction rule, every member of the identity rules 

list is paired with it and scheduled for computing critical overlappings (line 59). 

scheduleForComputing is a method of the superclass.  

 

Similarly, for DependencyPairContainer, which computes sequentially dependent pairs, 

MB294DependencyPairContainer extends this and overrides the following crucial method.    

 

 

 Code 3 - MB294DependencyPairContainer, computeCritical method 

34   @Override 

35   protected synchronized void computeCritical(Rule r1, Rule r2){ 

36     if (reactionRules.contains(r1) && identityRules.contains(r2)){ 

37       super.computeCritical(r1, r2); 

38     } 

39     else { 

40       //do nothing 

41     } 

42   } 

 

40   @Override 

41   protected void fillContainers() { 

42  

43     if (useHostGraph && grammar != null) { 

44       grammar.getApplicableRules(testGraph, strategy); 

45     } 

46  

47     if (!useHostGraph) { 

48       isComputed = false; 

49     } 

50  

51     ListIterator<Rule> itr1 = reactionRules.listIterator(); 

52  

53     while (itr1.hasNext()) { 

54       Rule r1 = itr1.next(); 

55  

56       ListIterator<Rule> itr2 = identityRules.listIterator(); 

57       while (itr2.hasNext()) { 

58         Rule r2 = itr2.next(); 

59         this.scheduleForComputing(r1, r2); 

60       } 

61  

62     } 

63  

64     if (!useHostGraph) { 

65       isComputed = true; 

66     } 

67   } 
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In the original superclass, all rule pairs are automatically scheduled for computing. In order to 

restrict the pairs that are actually computed, we override the computeCritical method and 

check whether the rule 1 parameter is a reaction rule and rule 2 is an identity rule. If they are, 

the superclass‟ original computeCritical method is called. Otherwise, the method does 

nothing, thereby successfully bypassing the computation of unnecessary pairs. 

 

In the original ComputeCriticalPairs class, the analysis engine retrieves and uses 

ExcludePairContainer and DependencyPairContainer objects (used to calculate and store 

critical pairs) from a ParserFactory object. MB294ParserFactory is a copy of this class, which 

instead returns MB294ExcludePairContainer and MB294DependencyPairContainer objects 

(see lines 37, 47 and 51 of the source code). MB294ComputeCriticalPairs then simply 

retrieves the new customised PairContainer objects using MB294ParserFactory wherever 

ParserFactory was originally used, as in the following code segement: 

    

 

Code 4 - MB294ComputeCriticalPairs, use of MB294ParserFactory 

 

This ensures that this program only calculates the pairs needed, and is a first attempt at a 

more efficient and optimized analysis.  

Structural Equivalence Testing 

To reduce structurally equivalent overlappings (in terms of Chemistry) a program was 

developed that could accept the “.cpx” XML file output from the critical pair analysis, 

perform the reduction, and save the new pairs in a new file (with the suffix 

“_structuremod.cpx”). The package structure for this program is as follows: 

 
mb294 

 

    StructuralEquivalenceAnalysis 

Code 5 - structural equivalence testing package structure 

 

 

The source code for this class is heavily commented so only a summary of our method is 

presented here. The constructor uses API methods to load critical pair information from a file 

(identified by filename supplied through the command line). The method 

reduceStructurallyEquivalentOverlappings then extracts all the overlapping information and 

performs the reduction. For each rule pair, all overlappings are tested for uniqueness. It was 

decided that the best way to do this would be to apply the reaction rule to the molecular graph 

represented by the LHS of the identity rule, using the match provided by the critical 

overlapping of the two rules. The result of the application should be checked for isomorphism 

: 

: 

357       if (excludePairContainer == null) 

358         excludePairContainer = MB294ParserFactory 

359             .createEmptyCriticalPairs(gragra, 

360                 CriticalPairOption.EXCLUDEONLY, cpOption 

361                     .layeredEnabled()); 

362  

: 

: 
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with all other unique overlappings for this rule pair. If it is isomorphic to any of them, it 

should be discarded, else it should be added as a unique overlapping. Applying the rule is a 

sufficient check for structural uniqueness.    

 

The help of Olga Runge (an AGG developer) should be greatly acknowledged here. Although 

the method presented above was recognised as the best way to test for structural uniqueness, 

a way to apply the rule using the match information from the critical pair could not be 

deduced from the API without affecting the original XML file. A method was designed, but it 

led to nodes and edges in the critical overlapping being deleted when written back to file. 

Also, the method of reversing a rule and applying it (necessary for checking for uniqueness in 

dependency pair overlappings, see the construction in figure 14) could not be deduced. Olga 

Runge‟s help and advice at this stage through numerous emails was invaluable and very 

greatly appreciated. Code that she helped with is noted in comments within the source code. 

The makeStep method in its entirety was provided by Olga.   

ODE Extraction 

The classes needed for this part are arranged in the following package structure: 

 
  mb294 

 

    ODEArray    

    ODEExtraction 

    RateLawArray 

    StoichiometricMatrix 

  Code 6 - ODE extraction package structure      

 

ODEExtraction is the program with a main method that produces the ODE‟s. It has an object 

of each of the other 3 classes listed above as data members. All of these classes are heavily 

commented so only a summary of their main functions are presented here.  

 

ODEArray contains a Hashtable that stores these ODE‟s. For each identity rule key in the 

Hashtable (i.e. chemical species), there is a string representation of its corresponding ODE as 

the object.  StoichiometricMatrix takes the overlappings data from the XML output file of the 

structural equivalence component and discards superfluous information making it easier for 

other methods to process. The stoichiometric matrix data is stored as a Hashtable, with 

reaction rules as keys, and another Hashtable as objects. This second Hashtable has the 

identity rules as keys and Integers as objects. These integers represent the entry in the 

stoichiometric matrix for each reaction-identity rule pairing. The RateLawArray object is 

created using information from a StoichiometricMatrix object (as described in “Relevant 

Background Information”). The rate laws for each elementary reaction are stored as an array 

of pairs. Each pair in the array consists of a reaction rule, and a string representing its rate law. 

 

ODEExtraction loads overlappings data in the same way that the structural equivalence 

module does, using API methods. Once loaded, this class instantiates an 

ExcludePairContainer and a DependencyPairContainer object to store conflict and 

dependency overlapping information respectively. This occurs in the constructor. The main 

method calls this constructor and then calls the following method: 
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Code 7 - ODEExtraction, outputODEs method 

 

The first task is population of the StoichiometricMatrix object (line 102). The method that 

does the work within the private populateStroichiometricMatrix method is the fillMatrix 

method of StoichiometricMatrix, which takes the no. of critical conflict overlappings for each 

reaction-identity rule pair (the no. of molecules consumed by a reaction) and minuses it from 

the no. of dependency overlappings for the same pair (the no. of molecules produced by the 

reaction). This gives the overall effect a reaction has on a particular chemical species. This 

number is added to the stoichiometric matrix for this reaction-identity rule pair.  

 

When the stoichiometric matrix is filled, the rate law array is extracted from it (line 104). 

This is done by the fillArray method in the RateLawArray class. For each elementary 

reaction, we look for negative entries in the stoichiometric matrix. By assuming that negative 

entries mean involvement in initiation of a reaction, we can extract the rate law for that 

reaction.  

 

generateODEs (line 106) then calls the generateODEArray method of ODEArray. This 

simulates the matrix multiplication of the rate law array by the stoichiometric matrix and 

stores the results. This class also contains a method that returns all the ODE‟s as a String 

object. Lines 108 to 118 in code 7 show how the ODE‟s are output to console and to a text 

file using this String.   

Running the Kinetic Analysis 

The classes described above were all compressed into a JAR file entitled 

“kinetic_analysis_in_agg.jar” and placed in the agg root directory, where the JAR files that 

hold AGG‟s other classes are also located. A batch file (for Windows) and a shell script (for 

Linux) were created labelled “kinetics.bat” and “kinetics.sh” respectively. These scripts are 

the GUI through which many steps in the methodology can be performed, guiding the user 

through input and output of the 3 programs described above. There are some variables which 

must be changed in these files to allow them to run on a specific machine (such as 

JAVA_HOME). A “maxheap” variable also specifies the maximum heap memory allowed by 

the Java virtual machine. As mentioned previously, the critical pair analysis is extremely 

memory intensive and can fail if not supplied with enough heap space. This variable should 

be set as large as possible. An additional argument is supplied to the Java virtual machine, 

100   public void outputODEs() throws Exception { 

101     System.out.println("\n"); 

102     populateStoichiometricMatrix(); 

103     getStoichiometricMatrix().printStoichiometricMatrixInfo(); 

104     populateRateLawMatrixFromStoichiometricMatrix(); 

105     getRateLawArray().printRateLawArray(); 

106     generateODEs(); 

107  

108     String output = getODEArray().odeEquationsToString(); 

109     System.out.println("\n\nPRINTING ODEs:\n" + output + "\n"); 

110     System.out.println("Writing ODEs to text file with name " + newfilename 

111         + " ..."); 

112     // write the ODEs string to file 

113     BufferedWriter out = new BufferedWriter(new FileWriter(newfilename)); 

114     out.write(output); 

115     out.flush(); 

116     out.close(); 

117     // System.out.println("Done."); 

118   } 
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namely “XX:-UseGCOverheadLimit”. This ensures that OutOfMemory errors are not thrown 

if the virtual machine spends too much time in garbage collection. This was necessary for 

larger grammars which led to many such errors. However, Sun Microsystems deem this an 

unstable option, and it should possibly be removed in future iterations when AGG‟s critical 

pair analysis engine is improved for efficiency (see 

http://java.sun.com/javase/technologies/hotspot/vmoptions.jsp for more details).  

 

The scripts enable the user to run all three programs described above to run consecutively 

without any need for user interaction. In order to prevent subsequent programs from running 

when an exception occurs in an earlier program, system exit codes were utilised. For the 

structural equivalence analysis and ODE extraction, if an exception occurred, the main 

method returns a -1 exit code, else 10 is returned (highlighted in red): 

 

 

Code 8 - StructuralEquivalenceAnalysis, main method demonstrating use of exit codes 

 

This is not possible for the main method of MB294CriticalPairAnalysis however. 

 

 

Code 9 - MB294CriticalPairAnalysis, main method 

 

Line 416 initiates a thread. While this thread is running the main method continues to execute 

its next line in its own thread of execution. Any system exit code would immediately cause 

this program to end. Therefore, for this program, we use the default system exit code (of 

value 0) which is automatically returned when all threads are finished. In the event of an 

exception however, -1 can still be returned.  

 

The Windows script uses these codes as shown in code 10. If an error is returned the control 

is forwarded to the printing out of an error message and then the end of the script. Otherwise, 

the next program is started with the output file of the last program as input.  

413   public static void main(String[] args) { 

414     try { 

415       MB294ComputeCriticalPairs mcp = new MB294ComputeCriticalPairs(); 

416       mcp.run(args); 

417     }catch (Exception e){ 

418       System.err.println("An error occurred during critical pair analysis!"); 

419       e.printStackTrace(); 

420       System.exit(-1); 

421     } 

422   } 

 

379   public static void main(String[] args) { 

380  

381     try { 

382       StructuralEquivalenceAnalysis sea = new StructuralEquivalenceAnalysis( 

383           args[0]); 

384       sea.processFileForStructuralEquivalence(); 

385       System.exit(10); 

386     } catch (ArrayIndexOutOfBoundsException e) { 

387       System.err 

388           .println("There was an error loading your specified file - please try 

again!"); 

389       e.printStackTrace(); 

390       System.exit(-1); 

391     } 

392  

393   }// end of main method 
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Code 10 - Windows batch script demonstrating use of Java system exit codes 

 

 

:section1command 

 java -Xmx%MAXHEAP%m -XX:-UseGCOverheadLimit agg.parser.MB294ComputeCriticalPairs %file% 

 IF ERRORLEVEL 0 goto :section1-1 

 IF ERRORLEVEL -1 goto :section1-1error 

 

:section1-1 

 set nextfile=%file:.ggx=_out.cpx% 

 java -Xmx1000m mb294.StructuralEquivalenceAnalysis %nextfile% 

 IF ERRORLEVEL 1000 (goto :section1-2) ELSE (goto :section1-2error) 

   

:section1-2 

 set lastfile=%nextfile:_out.cpx=_out_structuremod.cpx% 

 java -Xmx1000m mb294.ODEExtraction %lastfile% 

 IF ERRORLEVEL 1000 (goto :section1complete) ELSE (goto :section1-3error)  

:    

: 

: 

:section1-1error 

 echo There was a problem running the critical pair analysis. 

 goto :eof 
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7. Case Study 1 – Esterification 
 

 

As mentioned previously, this case study was intended as a simple example of a finite and 

closed reaction network, which would allow the testing of our methodology. Unfortunately, 

due to the bottleneck in the implementation created by the AGG critical pair analysis module, 

and its associated memory errors, we could not proceed past step 3 for this reaction. However, 

it is still useful to document steps 1 and 2, and also discover for which rule pair the memory 

problem occurs. The grammar for this case study is on the software CD in the graphs folder 

as “esterification_general.ggx”.  

 

Esterification is the reaction of an alcohol and a carboxylic acid to create an ester and give off 

water. The reaction can be catalysed by acid or alkali. The acid catalysed reaction was chosen 

as it made the example more complex and interesting. The mechanism for the reaction was 

verified with that found at [3].  

Step 1  

The first step is to define a type graph, which includes all the elements possible in the 

reaction. This was presented in figure 23 (see “Molecular Representation Using Graphs”). 

The next step is to define the starting materials as a graph typed over this type graph. This is 

given in figure 24. Here, we have the carboxylic acid, alcohol and acid catalyst.  

 

Then we define as much general reactivity as possible. This can be done by examining the 

reaction mechanism and determining what happens to functional groups in the molecules 

throughout the reaction. To illustrate this, the chemical representations of the five forward 

steps in the reaction are presented along with their corresponding general graph rewriting 

rules. 

 

 

Figure 36 - step 1 of esterification reaction [3] 

 

 

Figure 37 - step 1 of esterification reaction, GT rule 
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As can be seen in figure 37, the whole molecule is not presented in the rule, only the part that 

undergoes reaction. This makes the rule applicable to any molecule that might have this 

functional group, which is exactly what is required. This reaction is reversible, so the C=O 

double bond can be deprotonated once it is protonated. This is represented in the grammar by 

a rule labelled step-1, where the LHS and RHS of step1 are simply switched.  

 

 

Figure 38 - step 2 of esterification reaction [3] 

 

 

Figure 39 - step 2 of esterification reaction, GT rule 

 

Step 2 of the reaction is the attack of the negatively charged oxygen in the alcohol on the now 

positively charged (due to the protonation in step 1) central carbon atom in the carboxylic 

acid. This results in the joining of the two large molecules into one. This step is also 

reversible and is represented by step-2 in the grammar. 

 

 

Figure 40 - step 3 of esterification reaction [3] 

 

Figure 41 - step 3 of esterification reaction, GT rule 
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This reaction is the simple change in the location of a proton (H atom) within the newly 

formed large molecule. The reverse of this reaction is labelled step-3 in the grammar.  

 

 
 

Figure 42 - step 4 of esterification reaction [3] 

 

 

Figure 43 - step 4 of esterification reaction, GT rule 

 

Here, the protonated OH group leaves the larger molecule as water, allowing the C=O double 

bond to reform. The reverse of this step is labelled step-4. The representation of the positively 

charged C=O
+
 in the RHS of the graph transformation rule is identical to that presented in 

figure 42. Here, the electrons in the O-C=O
+
 structure are delocalised over all 3 bonds, and 

the positive charge can also be spread over all three atoms.   

 

 

 
 

Figure 44 - step 5 of esterification reaction [3] 

 

The final step in the reaction (also reversible) is deprotonation of the reformed C=O double 

bond. However, this was not added as a general rule, as this reactivity is already captured by 

step-1. Step 5 and 6 of the methodology would see two instantiations of the step-1 reaction 

rule, one for the initial deprotonation (as a reverse of step1) and one for the final 

deprotonation. Each would be assigned their own rate constant.  
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Step 2 

Step 3 was carried out before step 2 to check that the critical pair analysis gave correct results 

for the consumption of the starting materials. As step 3 failed, it was felt there was little point 

in returning to and completing step 2. Therefore, the complete set of intermediates in the 

reaction is not present as molecular identity rules in the grammar.  

Step 3 

As already mentioned, step 3 failed due to OutOfMemory errors from the Java virtual 

machine. The critical pair analysis reached the testing of the step2 reaction rule against 

Acid_Identity when it could progress no further. The LHS of the rule for step2 is a rather 

large graph as it describes the coming together of the two large starting materials. The alcohol 

molecule is itself quite large. The number of possible overlappings for which to calculate 

critical overlappings (i.e. possible unions of the two graphs) grows as the size of the graphs in 

the LHS of both rules grows. Therefore, this particular pairing exceeded the calculable limit. 

In fact, the number of possible overlappings was so large that the program did not even get as 

far as outputting exactly how many overlappings there were, but instead froze at this point for 

many hours until an OutOfMemory error occurred.  

 

To give an indication of the scalability problem, the following table shows how many total 

overlappings and eventual critical overlappings occurred for each rule pair. Those rule pairs 

that came after the step2, acid-identity pair have been omitted since the program did not 

progress past this point.  

 

 Acid_Identity Alcohol_Identity TsOH_Identity 

 Total Critical Total Critical Total Critical 

step1 1558 2 1558 0 30 1 

step-1 - 0 - 0 - 0 

step2 Not calculable     

    Table 1 - delete-use overlapping information for esterification - conflicts 
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8. Case Study 2 – SN1 Reaction 
 

 

SN1 stands for unimolecular nucleophilic substitution. It involves the replacement of a good 

leaving group on a carbon atom (e.g. a chlorine atom) with a group that is less able to support 

negative charge (e.g. a hydroxyl, OH, group). Unimolecular refers to the fact that the rate 

determining step involves only one molecule, the halocarbon. The reaction occurs once the 

Cl
-
 group leaves the molecule. There is also an SN2 reaction which is bimolecular in its rate 

determining step. The substituting group and the halocarbon must collide for reaction to 

occur. A transition state where the new group and leaving group are both partially bonded to 

the central carbon atom occurs, before the leaving group leaves. There is one less step in the 

SN2 reaction, so SN1 was chosen to make the example more testing of the methodology.  

 

This reaction is very simple and its selection was prompted by the memory problems that 

occurred in the esterification example. The reactant molecules are quite small, so the number 

of possible overlappings for each reaction rule during critical pair analysis is reduced. Despite 

this, the analysis still took up to 80 minutes on some occasions for the instantiated grammar 

using 2.6GB of heap memory on a Linux machine.  

 

The general grammar can be found in the graphs folder of the software CD as 

“SN1_general.ggx”. The instantiated grammar has filename “SN1_instantiated.ggx”. 

Step 1 

The type graph for this reaction is given below: 

 

 

Figure 45 - SN1 type graph 

 

 

The individual connections between different types of bond nodes present in the esterification 

type graph are replaced with an inheritance relationship. To ensure every bond node is only 

connected to one other bond node, the supertype BondNode has a 1 to 1 relation to itself. It is 

now much easier to solve the problem described in “Molecular Representation Using Graphs” 

where numerous constraints were needed to restrict multiple bond node connections. These 

numerous constraints can be replaced by just one atomic constraint which must always be 

false: 
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Atomic proposition:    Atomic conclusion: 

 

             

          

(empty) 

 

 

 

Figure 46 - constraint limiting number of bonds allowed 

 

However, as the connections between each type of bond node are no longer explicit, this type 

graph has lost bond direction conventions. For example, there is no indication that if a C bond 

node is connected to an O bond node, the edge should go from the C to the O. To solve this, 

additional bond direction atomic constraints are added to the grammar. For the C-O example, 

we have the following atomic constraint, which is developed into a graph constraint where 

this atomic constraint is designated as always being false: 

   

Atomic proposition:    Atomic conclusion: 

 

             

          

(empty) 

 

Figure 47 - constraint designating direction of edges in bonds 

 

 

In this type graph, O
+
 and C

+
 no longer have their own bonding nodes. This was an 

experiment to determine whether limiting the types of nodes made the grammar any more 

efficient. Unfortunately, the results were inconclusive, as each time the grammar was run, the 

time taken fluctuated greatly without any pattern. Nevertheless, the simpler type graph was 

kept. This does however necessitate two further constraints that prevent both a C and C
+
 

connecting to a single C bond node (and similarly for O and O
+
). The atomic constraint is 

given below, and again this is developed into a graph constraint where it must always be 

false: 

 

Atomic proposition:    Atomic conclusion: 

 

             

          

(empty) 

 

 

 

 

Figure 48 - constraint limiting C and C
+
 connection to same bond node 

 

The starting materials are defined as follows: 
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Figure 49 - SN1 starting materials 

 

 

The molecule on the left is water. The OH group of this is what will attack the positively 

charged central carbon atom of the molecule on the right, chloromethane (or methyl chloride).  

 

There are three steps in the reaction which we can assume are reversible. Whether these 

reactions are actually viable at all are determined by the rate constant that will eventually be 

assigned to their instantiated forms. As it turns out, these reactions are not very reversible at 

all particularly for the size of the hydrocarbon molecule we are considering (only one carbon). 

For the time being, however, they are included as possible reactions. The reverse of the 

reactions below are not given explicitly, but can be viewed in the grammar file on the 

software CD. The reverse rule just switches the LHS and RHS of the forward rule.  

 

 

 

CH3 Cl CH3

+
Cl

-

 

Figure 50 - step 1 of SN1 reaction 

 

 

Figure 51 - step 1 of SN1 reaction, GT rule 

 

 

This is the initial step of the reaction where the chlorine leaves the hydrocarbon. The central 

carbon is left positively charged and therefore unstable. An atom with lone pairs of electrons 

(electrons not involved in bonding and in the outer electronic orbital of the atom) can attack 

this carbon centre to form a new bond. This can be chlorine (i.e. the reverse of the reaction is 

possible) or the oxygen of a water molecule as in figure 52. Note that the C bond nodes must 
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be included in the definition of the general rule in figure 51. This is because the central C 

atom changes to a C
+ 

atom. This is a deletion of the C followed by creation of the C
+
. During 

the deletion, if the C bond nodes are not explicitly shown in the rule, a violation of the 

dangling rule occurs (see “Molecular Representation Using Graphs”).  

 

 

O

H

H

C
+

H

H

H

CO
+

H

H

HH

H  
 

Figure 52 - step 2 of SN1 reaction 

 

 

Figure 53 - step 2 of SN1 reaction, GT rule 

 

The final step of the reaction is deprotonation of the positively charged O to leave the alcohol 

(methanol in this case). The Cl
-
 generated from step 1 co-ordinates with the H

+
 that is 

released, to give hydrochloric acid (HCl).  

 

CO
+

H

H

HH

H

Cl
-

CO

H

H

H

H

ClH

 

Figure 54 - step 3 of SN1 reaction 

 

 

Figure 55 - step 3 of SN1 reaction, GT rule 
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Step 2 

Applying the rules to the start graph non-deterministically yielded the following preliminary 

intermediates and products. Each one was added as a molecular identity rule. The molecules 

in the start graph (CH3Cl and H2O in figure 49) were also added as identity rules. 

 

Chemical 
Formula 

Structural Formula Graph Representation 

CH3Cl C Cl

H

H

H

 

 

 
 

H2O O
HH

 

 

 
 

CH3
+ 

C
+

H

H

H  
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Cl- Cl
-
 

 

 
 

CH3O
+H2 CO

+

H

H

HH

H
 

 

 
 

HCl Cl H 

 

 
 

CH3OH O

H

H

HH

 

 

 
 

Table 2 - preliminary intermediates in SN1 reaction 

 

Step 3 

The AGG screenshot below shows the exact results obtained from the first pass critical pair 

analysis. 
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Table 3 - summary of conflict overlappings from critical pair analysis (first pass) 

 

 

Table 4 - summary of dependency overlappings from critical pair analysis (first pass) 

 

To give an indication of the scalability of the critical pair analysis, the following tables show 

how many total overlappings and eventual critical overlappings occurred for each rule pair at 

this stage (as shown for the esterification example).  

 

As can be seen from this, a total of over 32,500 inclusions need to be checked for certain rule 

pairs. These correspond to the combination of the reaction rules consisting of most nodes in 

the LHS graph, and identity rules describing the largest molecules, namely step2 and 

CH3O+H2. Adding even one more node to the LHS of the rule takes the no. of overlappings 

to check to over 100,000. This is a serious limitation of the AGG tool to handle more 

complex molecular structures and reactions, particularly if a reaction rule requires slightly 

more local context than that represented in the reaction rules of this case study.  
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 CH3Cl H20 CH3+ Cl- CH3O+H2 CH3OH HCl 

 Total Critical Total Critical Total Critical Total Critical Total Critical Total Critical Total Critical 

step1 663 6 - 0 8 0 - 0 89 0 89 0 4 0 

step-1 - 0 - 0 27 6 4 1 - 0 - 0 - 0 

step2 - 0 63 2 135 6 - 0 - 0 - 0 504 1 

step-2 445 0 26 0 40 0 - 0 32593 12 6448 0 - 0 

step3 - 0 32 0 - 0 4 1 1531 2 208 0 - 0 

step-3 100 0 45 0 - 0 - 0 - 0 315 1 29 1 

    Table 5 - delete-use overlapping information for SN1 - conflicts 

 

 CH3Cl H20 CH3+ Cl- CH3O+H2 CH3OH HCl 

 Total Critical Total Critical Total Critical Total Critical Total Critical Total Critical Total Critical 

step1 - 0 - 0 27 6 4 1 - 0 - 0 - 0 

step-1 663 6 - 0 8 0 - 0 89 0 89 0 4 0 

step2 445 0 26 0 40 0 - 0 32593 12 6448 0 - 0 

step-2 - 0 63 2 135 6 - 0 - 0 504 1 - 0 

step3 100 0 - 0 - 0 - 0 - 0 315 1 29 1 

step-3 - 0 32 0 - 0 4 1 1531 2 208 0 - 0 

Table 6 - delete-use overlapping information for SN1 - dependencies 

Step 4 

Step 4 (structural equivalence testing of results of step 3) was bypassed for this case study as 

the overlappings were quite easy to study without doing this step. For more complex 

mechanisms though with larger molecules (and hence more critical overlappings with the 

same structure) or more rules, this step would make manual analysis in step 5 far easier.  

Step 5 

Examination of the results from step 3 yields a necessary instantiation of the general rule, 

step2. Step2 consumes H2O and CH3
+
 (deduced from the conflicts table), but also seems to 

consume CH3OH. This suggests that the following reaction is also possible: 
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C
+

H

H

H

C OH

H

H

H CH3

O
+

CH3

H

 

Figure 56 - reaction of CH3OH with CH3
+
 

 

In other words, the alcohol product, as well as water, can react with the carbocation. In fact, 

this may even be a stronger reaction, as the CH3 group attached to the oxygen is very slightly 

electron donating, meaning the push of the lone pair to the carbocation is made easier. This 

intermediate would have been discovered at stage 2 of the methodology had the product 

alcohol molecule been added to the start graph as a possible reactant.  

 

The general rule, step2, therefore needs to be instantiated twice; once for the reaction with 

water and once for the reaction with methanol. These new rules are shown in figures 57 and 

58.  

 

   Figure 57 - instantiation of step2 for reaction with water 

 

 

Figure 58 - instantiation of step2 for reaction with methanol 

 

Notice that it is sufficient to replace one of the hydrogen atoms in the attacking molecule in 

figure 57 with a single carbon. This introduces enough local context to make this rule apply 

only to the product methanol, and not water. This is preferable to adding the entire molecule 

as this increases the time taken for critical pair analysis, because more nodes equates to more 

overlappings to check through. The reverse rules were also instantiated here.  
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At this stage, the new intermediates and instantiated rules were added to the grammar. With 

the general rules still in place (in case they are applicable to the new intermediates) a second 

critical pair analysis pass was tried. This led to OutOfMemory problems however. It seemed 

that the new large molecule created by the reaction in figure 56 passed the threshold for 

allowed analysis. As this was quite late in the project, a decision was made to ignore the 

possibility that this reaction occurs, disabling the instantiated rule that represents it, and any 

molecular identity rules of intermediates that arise from it. The verification of overall results 

and extracted ODE‟s would take this omission into account.  

 

After doing this, the critical pair analysis was reattempted. Once again an OutOfMemory 

error occurred which prevented the analysis from completing. This was now due to the 

instantiated rule set up for water (figure 57). It seemed that even two nodes and one edge 

more than the number present in the general rule is enough to prevent the analysis engine 

from completing successfully. Another strategy was needed that would use the general rule as 

the instantiated rule for water then, but disallow the reaction with methanol. A negative 

application condition (NAC) was employed to achieve this. NAC‟s are preconditions to rules. 

They constitute a graph which if it occurs in the match for the LHS of the rule, prevents the 

application of the rule for that match. The following NAC was added to the general rule for 

step 2 (rule shown in figure 53).      

 

Figure 59 - NAC for step2 general rule to create instantiated rule 

 

The NAC specifies that a carbon bond node must not be connected to the oxygen bond node 

with mapping identity 7, therefore disallowing the reaction of methanol with the carbocation. 

Water is still able to react.  

 

This simpler grammar that ignores the full reactivity of the system can be found on the 

software CD in the graphs folder, with name “SN1_instantiated_simpler.ggx”. This grammar 

was used for all subsequent steps in the methodology.  

Step 6 

Once the rules are instantiated and no further intermediates are found the general rules are 

usually disabled. In our case, the instantiated rules which allowed the reaction with methanol 

had to be disabled. In the end, the original general rules were used (one with an added NAC). 

All reaction rules were renamed as rate constants. The “step” prefix in the name of every 

general rule was replaced with a “k”. Hence, step1 became k1 and step-1 became k-1 etc.   

Step 7 

The critical pair analysis was run once again, yielding the following results: 
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Table 7 - summary of conflict overlappings from critical pair analysis (final pass) 

 

 

Table 8 - summary of dependency overlappings from critical pair analysis (final pass) 

 

As can be seen from table 4, the reaction of step2 (now k2) no longer consumes the methanol 

product (CH3OH). These results are found in the file “SN1_instantiated_simpler_out.cpx” in 

the results folder on the software CD.  

Step 8 

Running the structural equivalence analysis reduced the number of critical overlappings in 

tables 4 and 5 to those in tables 6 and 7. All of the entries were reduced to 1, indicating that 

all of the original overlappings were the same. This was verified to be the case by manually 

examining the overlapping information produced in step 7.  

 

These results are found in the file “SN1_instantiated_simpler_out_structuremod.cpx” in the 

results folder on the software CD.   
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Table 9 - summary of conflict overlappings after structural equivalence analysis 

 

 

Table 10 - - summary of dependency overlappings after structural equivalence analysis 

Step 9 

Finally, running the ODE extraction program yields the following ODE‟s: 

 
d[CH3+]/dt =  -k-1[CH3+][Cl-] +k-2[CH3O+H2] +k1[CH3Cl] -k2[CH3+][H20] 

 

d[CH3Cl]/dt =  +k-1[CH3+][Cl-] -k1[CH3Cl] 

 

d[CH3O+H2]/dt =  -k-2[CH3O+H2] +k-3[CH3OH][HCl] +k2[CH3+][H20] -k3[CH3O+H2][Cl-] 

 

d[CH3OH]/dt =  -k-3[CH3OH][HCl] +k3[CH3O+H2][Cl-] 

 

d[Cl-]/dt =  -k-1[CH3+][Cl-] +k-3[CH3OH][HCl] +k1[CH3Cl] -k3[CH3O+H2][Cl-] 

 

d[H20]/dt =  +k-2[CH3O+H2] -k2[CH3+][H20] 

 

d[HCl]/dt =  -k-3[CH3OH][HCl] +k3[CH3O+H2][Cl-] 
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Brief Analysis of results 

The ODE‟s derived in step 9 do in fact agree with the ODE‟s derived by hand for the SN1 

reaction, taking into account the omission of certain reactivity at steps 5 and 6. This is a 

positive result that shows the methodology (and its implementation) are capable of deriving 

ODE‟s for simple reactions. While the wider applicability of this methodology is limited (as 

discussed earlier in “Methodology”), this is a substantial first step in developing a more 

universally applicable method.  

 

The SN1 reaction in reality is a very simple one and is often quoted as having a rate of: 

 

][
][

3

3 ClCHk
dt

ClCHd
  

 

This is because the reaction k1 in our grammar, the departure of the Cl
-
 group from CH3Cl, is 

considered to be the rate determining step i.e. the only step of any significance to the rate. 

Subsequent reactions occur very quickly once this step occurs. The equation above can 

actually be derived from our ODE‟s from step 9. If all other elementary reactions do not 

occur at all or are assumed to be very rare (particularly the reverse ones) k1 is the only rate 

constant that doesn‟t have negligible value. For reactions that occur extremely quickly once 

the rate determining step does, intermediates are immediately consumed so their 

concentration throughout the reaction can be approximated to zero. If these approximations 

are taken into account, the differential reaction for the rate of change of concentration of 

CH3Cl approximates to the equation given above. Once concrete rate constants are found, any 

arbitrary system of reactions will be reduced down in this way so that only significant 

reactions remain. Our methodology ensures all possible reactivity is taken into account before 

this simplification occurs.   
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9. Planning and Timescales 

Tasks 

The following is a preliminary account of the expected tasks of the project, as presented in 

the Project Plan document. As predicted, these underwent significant changes as the project 

progressed, new understanding came to light and new problems or challenges occurred. Due 

to the open nature of the project, it would have been unwise to continually update and modify 

the plan. This would have been time-consuming. It was discovered that any attempt to adhere 

to a concrete plan limited further exploration in a particular area of interest and failed to 

incorporate significant changes to the direction of the project. Therefore, the plan is presented 

here unaltered, and a discussion of the deviations that occurred follow it.  

 

 

1. Further background research 

 

1.1  Stochastic graph transformation theory 

 

This is fundamental to the project and therefore must be understood 

clearly. In addition to what has already been read, other sources will be 

investigated. Papers [10] and [11] will be thoroughly revised to ensure 

complete familiarity with the process of creating stochastic graph 

transformation systems.  

 

1.2  Example stochastic graph transformation system 

 

To ensure understanding, a simple example will be constructed in AGG, 

with supporting tools for stochastic simulation. The major challenge here 

may be tool support, as PRISM and GROOVE have not been 

encountered yet. However, this stage will also allow us to gain 

familiarity with these tools and AGG. 

 

1.3  Research into CCS and π-calculus 

 

In order to understand and learn from the methodology in [2], a quick 

study of [15] will be undertaken. Some lecture notes from the 

department‟s course on Communicating and Concurrent processes will 

also be reviewed. [15] covers an extensive and technically involved 

subject. The challenge here will be not to dwell on an area of computer 

science that won‟t be used extensively in the final project. It will be 

important to restrict the time given to this task. 

 

 

2. Developing a Methodology 

 

2.2   Deriving ordinary differential equations 

 

This is the most important and possibly time-consuming part of the 

project, and has been scheduled accordingly. This part will involve 

formulating the methodology behind defining a stochastic graph 
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transformation from reactant molecules and how to assign rates to 

transitions between graphs. This part of the project cannot be broken 

down any further at this stage because of its theoretical nature – the 

particular details of how the derivation will occur are not known at this 

time. This stage will draw from all of the research conducted in part 1 of 

the project, as well as additional chemistry research needed at this stage, 

such as kinetics, thermodynamics, reaction mechanisms, and molecular 

orbital theories. As already mentioned this is a highly theoretical and 

challenging part of the project. There is substantial risk here if a suitably 

accurate methodology cannot be formed. In this case, an iterative process 

of simpler models (incorporating less and less real chemistry) will be 

adopted in order to get some kind of methodology. Additionally, the 

level of automation in the process of assigning rates can be lowered if 

necessary. If finding the rates by checking the change in the molecular 

orbital makeup of a molecule presents itself as too difficult and time-

consuming, the rate constant assignment can be reverted to a manual 

process. Simplifying our case study subjects may also be an option if the 

eventual methodology is deemed unsuitable for the existing ones. 

Technical help will be requested from members of the Chemistry 

department and from Prof. Heckel and Dr. Fer-Jan de Vries if necessary.   

  

 

3. Tool Investigation 

 

3.1  Tool investigation 

 

AGG cannot be used for stochastic simulation despite being extremely 

good for testing the application of transformation rules. At this stage 

other tools such as PRISM, GROOVE and FERN should be investigated 

to see how they can aid the project. Although these tools have not been 

used before, [6], [10] and [11] outline their use in stochastic simulation. 

Prof. Heckel has used [10] and [11] before and may be able to help at 

this stage in case of difficulties. 

 

3.2  Tool development 

 

This step may not be necessary if existing tools are readily available. 

However, if work needs to be done to develop a stochastic simulation 

tool or integration with AGG, some time will be reserved for this. AGG 

is implemented in Java and is supplied with an API for just such an 

integration task. FERN may prove to be an ideal candidate for the 

stochastic part of the overall tool chain, as it is also developed in Java 

and designed to be easily integrated.  

 

 

4 Case Study 1- esterification 

 

4.1  Background research 

 

The reaction mechanism will be investigated using standard chemistry 

textbooks, journals and websites. Peculiarities of the reaction will be 
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noted. Empirical data on the reaction rate and form of the rate law will 

be gathered using textbooks, journal and online databases. The challenge 

here may be access to this empirical data. If empirical data is lacking, the 

Chemistry department will be contacted for help, and possibly to set up 

an actual experiment. 

 

4.2  Rule generation 

 

The reaction mechanism found in 4.1 will be implemented in AGG as a 

start graph and transformation rules. This step should not prove 

challenging.  

 

4.3  Rate calculations 

 

Using the methodology developed in part 2, probabilities of graph 

transformations will be applied to the mechanism input in 4.2. Again, 

once the methodology is in place, this step should be fairly simple.   

 

4.4  Simulation 

 

Using the tool decided upon in part 3, the complete case study will be 

implemented and the stochastic simulation will be run to gain the 

ordinary differential equation for the reaction. The challenges for this 

section are limited to the challenges in part 3, unless there are some 

particular peculiarities in the reaction mechanism which are not 

implementable. We do not foresee this happening.   

 

 

5 Case Study 2 – condensation and hydration of glucose 

 

The subtasks will follow the same format as part 4. More time will be dedicated 

to part 5 however, as the reaction mechanism is more extensive (making 5.1 and 

5.2 more time-consuming). The polymerisation aspect of the case study also 

makes the implementation of automatic rule calculation (5.3) a little more 

complex. These two factors combined may make 5.4 a lengthier process.  

 

 

6 Review 

 

6.1  Verification of results 

 

The differential equations from the empirical data gained in 4.1 and 5.1 

will be compared to the derived differential equations gained in 4.4 and 

5.4 respectively.  

 

6.2  Refinements and amendments 

 

This will be a necessary step in critically evaluating the methodology 

designed in the project. Depending on the results of 6.1 and the 

availability of time, the methodology may be changed to incorporate 

improvements outlined in this part of the project. The project may then 
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undergo an iterative process whereby part 5 and 6 are repeated until 

there is not enough time, or satisfactory results are obtained.   

 

 

7 Final Deliverables 

 

7.1  Final deliverables 

 

The final part of the project will include the write-up of the final report, 

as well as preparation for the viva. Due to the theoretical nature of the 

project the final report document may be quite large and there may not 

be sufficient time at the end of the project to complete it. Therefore, 

preparation of this should occur incrementally throughout the project, 

with the time allocated at the end for refinement and review. Some 

tools/plugins which allow the easy input of stoichiometric equations, 

chemical structural formulae and graphs should be found early on in the 

project, as without them the preparation of this document could be 

slower than necessary. 

 

Challenges and Risks 

As outlined above, the two main challenges we can envision with the project are the 

theoretical nature of the project and adequate tools to implement the methodology. Measures 

to reduce the effects of risk from these two areas have been outlined in the “Tasks” section 

above.  

 

If however, success in deriving a methodology is not forthcoming by the end of January 2009, 

the goals of the project may be reassessed. A meeting with Dr. Fer-Jan de Vries will be 

scheduled to monitor progress and the likelihood of success.  

 

Another challenge is the scope of the project. It may appear that the project is not viable due 

to the amount of work needed and time constraints, particularly for a 30 credit module. This 

term in particular is restrictive in that only 10 credits have been assigned to the project, with 

55 other credits for 3 other modules (including a management module that requires extensive 

reading and an involved piece of coursework). As such, fruitful results this term may be 

limited. However, time will be reserved over the holidays for project work and a weekly 

meeting will be scheduled with available supervisors to keep the input into the project 

flowing. There is more time next term with only one computer science and one management 

module other than the project. In anticipation of time needed for the project, some of the 

background reading for the management module was conducted over the summer. Time for 

the project over the summer was limited due to a 3 month fulltime industrial placement. 

Some time during the winter vacation will be lost due to Christmas & New Year, January 

examinations and a 3-day computer science conference.  

 

Bugs within AGG also need to be considered. [19] will be reviewed regularly and bug fixes 

will be downloaded frequently to avoid any serious risk to the implementation. In case a 

particular bug does affect the project, the AGG team can be emailed directly with suggestions. 

The source code can also be scrutinised ourselves to attempt a bug fix. In the event that AGG 

becomes unusable for our needs, other tools such as PRISM will be kept in reserve. Other 

tools should also be searched between now and the implementation stage.    
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Deliverables 

The deliverables for the project are outlined below. These are marked on the Gantt chart 

which follows, but time is not specifically allocated to their preparation. This must be 

undertaken in a timely and responsible manner, and incorporated into the overall structure of 

the project naturally.  

 

 Weekly SVN uploads: 

o 30
th

 November 

o 14
th

 December 

o 1
st
 February 

o 22
nd

 February 

o 15
th

 March 

o 3
rd

 May 

 

 Project plan presentation 

o 1
st
 – 5

th
 December 

 

 1
st
 Interview 

o 2
nd

 – 6
th

 February 

 

 2
nd

 Interview 

o 17
th

 March 

 

 Final report and Implementation 

o 14
th

 May 

 

 Viva 

o Date Unknown 

 

Gantt Chart 

The approximate allocation of time for each task is given in the following Gantt chart. Again, 

these timings are approximate and are subject to changes as the project progresses.  

 

Dates for assessed deliverables are given at the top of the chart as milestones. Other 

intermediate milestones are interspersed with the tasks described above. Weekly meetings 

with supervisors and the weekly discussion group session with PhD students have been 

omitted for the sake of simplicity.  
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Appraisal of Plan 

Section 1 of the plan, entitled “Further Background Research” provided a very useful 

background in the existing use of graph transformation theory in determining reaction rates. 

However, as it turned out, the stochastic simulation elements of the theory would not be as 

prominent in our methodology as initially thought. As much of the first semester was spent 

researching and understanding this, there was less time in the second term to concentrate on 

our eventual methodology. It would probably have been wiser to restrict the time spent on 

this research. Due to the open nature of the project however, the changing aims, and 

unfamiliar theoretical territory this was largely unavoidable and the appreciation of stochastic 

techniques should not be considered wasteful.  

 

Due to exam and coursework pressure, 1.2 (the implementation of an example stochastic 

system) and 1.3 (background research in CCS and π-calculus) could not be completed. Not 

spending time on 1.2 was in fact a benefit as this would not have been useful to the project in 

the end. Completing 1.3 however would have been useful, but was perhaps an unrealistic goal 

due to the scope of the subject matter and the necessary time to understand such an involved 

field, particularly when it was scheduled during a time when there were other heavy 

academic obligations.  

 

The time allocated to developing a methodology was also unrealistic. Again, because of the 

open, challenging nature of the project and the unfamiliar territory more time should have 

been afforded to this part. Initially several weeks over the vacation were allocated to this, but 

many of these were spent on Christmas holidays and examination revision. A major 

shortcoming of the proposed plan was the assumption that there would be any time at all over 

the vacation to focus on the project. Preparation for three exams made this largely untenable. 

As it happened, the methodology was continuously evolving as case studies were tried and 

tools were developed.   

 

The first task of the tool investigation stage was research into the integration of AGG with 

other tools for stochastic simulation. As stochastic simulation was no longer an aim of the 

project, this part of the project instead focused primarily on studying and understanding 

AGG‟s supplied API. This would be vital when adapting AGG‟s capabilities to our specific 

application domain. Stages 2, 3 and 4 in fact ran concurrently and iteratively rather than 

linearly. This was a necessity as limitations in AGG‟s capabilities, or the complexity of the 

case study implementation highlighted defects or inefficiencies in the methodology and vice 

versa.  

 

A major change to the outcome of the project was the change in case studies midway through 

the project. Esterification was originally planned as a simple introductory test case. However, 

memory limitations (discussed in detail later) rendered this case study unsolvable. It was 

therefore decided to try a simpler chemical reaction with fewer steps and smaller intermediate 

molecules, hence the introduction of the SN1 (the symbolic representation for unimolecular 

nucleophilic substitution) reaction. This was chosen as a simple example to test the 

methodology and is in fact a trivial one as discussed earlier. However, this also incurred some 

severe Java virtual machine memory limitations which limited the speed at which results 

could be processed. The glucose condensation reaction had to unfortunately be abandoned 

due to a lack of time. This is a complex reaction which requires a different methodology to 

the simple closed SN1 reaction network, and would have been interesting to study. As the 

whole glucose monomer is modelled as one node, the analysis would most probably have had 
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fewer memory problems associated with it (which we believe to be more likely as the number 

of nodes in the rules and graph representations of intermediate molecules increases). 

However, it was important to first understand and validate the methodology for the more 

fundamental closed system before progressing to this, so this reaction had to be sidelined.  

 

Subsection 4 of the case study (stochastic simulation) was naturally discarded. Instead, a suite 

of Java programs was developed that produced the ODE‟s in text format.  

 

In the end, the project involved a substantial amount of work and time was used effectively 

and efficiently, but is in no way complete in producing a universally applicable methodology. 

The methodology developed works well for the simple SN1 reaction, but has some 

limitations that make it potentially useless for other types of reactions without further work. 

This is discussed in the “Critical Appraisal” section.     
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10. Critical Appraisal 

Summary of completed work  

The following has been achieved during the 3
rd

 year project: 

 

 Extensive research into graph transformation theory and stochastic modelling, as well 

as a revision of some basic chemical kinetics. If the career plan in appendix 1 is 

adhered to, this will prove to be an invaluable foundation for future work. The 

mathematics required to understand many of the graph transformation papers and 

critical pair theory also helped to fill gaps in academic knowledge (e.g. set theory that 

is not covered in the “with Management” degree). 

 A suitable molecular representation necessary to specify molecules and their reactions 

using graph transformations. Several variations were experimented with. Finally, a 

type graph, and constraint system, were decided upon, which incorporated the 

necessary abstraction level and remained intuitive enough for chemists to understand.   

 A prototype 10-step methodology for deriving ordinary differential equations. While 

this is currently limited to simple, finite reactions, it is a good basis for researching 

infinite systems such as the glucose polymerisation reaction. Also, there are 

limitations in that the consumption or production of more than one of a particular type 

of molecule by an elementary reaction cannot be ascertained by this method, since 

each critical pair between a reaction rule and molecular identity rule only signifies 

one molecule of that type being consumed in that reaction. Slight modifications to the 

methodology would be necessary for more universal applicability, where the 

involvement of multiple molecules in a reaction can be ascertained. This could 

involve a convention whereby the molecular identity rule is duplicated, or additional 

steps in the methodology for testing the occurrence of such a reaction could be 

designed.    

 A prototype implementation to test the methodology described above. The SN1 case 

study showed that our methodology can be realised using a combination of existing 

software (AGG and its critical pair analysis engine) and new Java classes. 

 A simple case study testing both the methodology and the implementation, namely the 

SN1 reaction. This allowed a complete run through of the methodology and revealed 

limitations to the implementation, in particular, the critical pair analysis engine.  

Self-assessment   

While the project may not have yielded complete results, considerable progress has been 

made in the direction of this goal. There are a number of shortcomings of the methodology 

and implementation, many of which have been discussed already throughout this report. A 

summary of these is given here.  

 The methodology is not universal, in that in can only be applied to simple finite 

systems where each elementary reaction only produces or consumes at most one of 

each molecule. While this is disappointing, it does not render the methodology useless. 

Rather, a modification or enhancement to the existing idea is most likely required, 
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rather than a complete overhaul. Solving the universal applicability problem would 

have exceeded the time deadline for the project.  

 The implementation can only be tested for very simple systems, and even then some 

elementary reactions had to be disabled. This is a problem with AGG‟s memory 

intensive critical pair analysis engine. It might be avoided by altering our type graph, 

but currently it has not been discovered how to achieve this. In order to reduce the 

number of possible overlappings for each rule pair, the idea of linking and therefore 

fixing the nodes peripheral to a central carbon atom was tested, but this did not solve 

the problem. Perhaps more research should have been done into alternatives to AGG. 

 The problems with the critical pair analysis rendered both of our initially planned case 

studies untenable. This was disappointing as the glucose condensation and hydration 

example in particular would have been interesting to study. Also, esterification, which 

has a fairly complex reaction network, was replaced with the SN1 reaction which in 

reality is not very complex. Complexity was artificially introduced to make the 

example more interesting. Finding rate constant data for all of the unviable 

elementary reactions in SN1 would therefore be quite difficult, so this may have been 

a poor choice of simple reaction.   

 Integration with an algebra solver (step 10 of the methodology) was not completed, 

partly due to a lack of importance to the core of the project, and partly because the 

algebra solver was not really needed for the SN1 reaction, since the generally quoted 

rate law for this reaction is extremely simple. However, for completion‟s sake, this 

integration should have been scheduled in. A suitable piece of freeware could have 

been found time-allowing and this would have helped possible future iterations of the 

project.  

 The current GUI to the system (non AGG stages) is a simple command line one. 

While not of central importance, a more aesthetically pleasing GUI developed in Java 

would have been more satisfying. The possibility of integrating the AGG critical pair 

analysis GUI (for checking the critical overlappings) and our programs into an overall 

program is also appealing, allowing the user to complete the kinetic analysis through 

one window. The possibility of human interaction in such a GUI to manually alter 

entries in the stoichiometric matrix is a preliminary suggestion to solve the universal 

applicability problem (although not an ideal one).      

 

Most of these shortcomings came at the implementation phase of the project. While the 

implementation part of the project seems quite simple with only a few classes written entirely 

from scratch, navigation of the AGG API was very time-consuming. Therefore the 

implementation was far from easy. Furthermore, due to the theoretical nature of the project, 

the focus (particularly at early stages of the project last term) was on the methodology rather 

than the software. As the theory required the majority of the time available, the opportunity to 

deal with all of the shortcomings in the implementation was sparse.   

In terms of organisation and time management, there were weekly PhD discussion groups, 

weekly one hour meetings with Prof. Heckel (on occasion twice a week), and occasional 

meetings with the project supervisor. In retrospect, perhaps more meetings with the project 

supervisor should have been scheduled. However, with two or three other hours of meetings a 

week, this would have put pressure on time to do work. More work should have been 
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completed in the first term, in particular research into critical pairs and their use in the project. 

The realisation that stochastic simulation was not needed to derive ODE‟s came perhaps a 

little late. Understanding stochasticity was useful, but a greater focus on critical pairs and 

AGG may have left more time to solve some of the shortcomings described above.  

 

Overall, however, it is felt that a sufficient amount of work was done. The disappointment in 

the implementation is tempered by the fact that a working case study was developed. There 

were many learning outcomes from the project too. An introduction to graph transformation 

theory, certain categories of mathematics, stochasticity and a revision of chemistry were all 

important by-products of the project. Finally, a deeper understanding of the research process 

and how to progress with open projects was one of the main outcomes, specifically learning 

to limit goals, look for alternatives, private research, use of contacts and presentation skills.  

Suggestions for further work 

1. Solving the shortcomings described above in “Self-assessment”, both in terms of 

methodology and implementation, would be the first stage of a further iteration of the 

project.  

2. The development of a GUI that is attractive and easy to use for chemists so that the 

methodology derived here has some actual usability. Integration of all steps of the 

methodology, and finally with a library of rate constant data, would make this kinetic 

analysis suite a useful tool in the lab for understanding reaction mechanisms.  

3. Automation in the derivation of the molecular identity rules. Currently, rules must be 

applied or several rounds of critical pair analysis must be performed, followed by 

manual addition of discovered intermediates as identity rules. With an extra step in 

the methodology, and use of API methods (to apply rules), automation of this step 

should be possible. This would be useful for larger, or open-ended systems where the 

no. of intermediates is very large, or unbounded. 

4. Investigation of AGG‟s critical pair analysis engine to see if it can be made more 

efficient, and if the OutOfMemory problem can be solved. This would go hand in 

hand with modifications of the type graph used to study reactions (since the analysis 

engine seems to handle other large grammars from other application domains well). 

The source code may need to redesigned. Alternatively, other software packages that 

can carry out critical pair analysis should be researched. These exist for term rewriting, 

but if the molecules are represented as terms rather than graphs, we would lose much 

of the rich information in graphs, such as bond order, valency, isomerism and 

structural complexity. Such a representation would be less intuitive and appealing to 

chemists.  

5. Investigation of open ended, unbounded systems such as the polymerisation of 

glucose and free radical reactions.  

6. Research into how local context affects the rate constant, and to see if the value of the 

rate constant can be derived automatically. This may require a lower level 

representation of the molecule as molecular orbitals that store electrons. The energy 

of these orbitals determines how easy it is to make or break bonds and this in turn 

determines the rate constant. The molecular orbitals may not have to be represented, 

but could be inferred from the atomic elements present. Other physical considerations 
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on reactivity could also be investigated, such as the importance orientation and size of 

a molecule have when it reacts. In an SN2 reaction for example, nucleophilic attack 

must always occur from the side opposite to that of a potential leaving group. If bulky 

groups are on this side (e.g. methyl, CH3, groups instead of H atoms) the reaction is 

less likely, therefore lowering the rate constant for the reaction. At first glance, the 

derivation of rate constants involves a large number of variables and its difficulty 

placed it outside the scope of the project. 

7. The effect of temperature on rate constants and reactivity could be investigated. Each 

elementary reaction gives out or takes in energy from the reaction medium. Many 

such reactions would lead to a noticeable change in temperature on the macro scale. 

This would affect the rate constant since it has an exponential temperature 

dependence.  

8. Finally, a comparison of the results obtained from this project (derivation of ODE‟s) 

and the results of stochastic modelling should be carried out to see how closely the 

two approaches agree if at all.    
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Appendix 1 – Career Plan 
 

 

1. Where do I want to go after graduation? 

 

A large portion of the Leicester Award, which I undertook in the second year involved career 

plan formulation. During this period, I performed extensive research into my skills, the kinds 

of tasks I enjoy and the kind of company I would like to work for. As a result of this, by the 

beginning of this academic year, I had already mapped out a career plan to become a graduate 

software developer, and eventually an analyst/developer for a small to medium sized 

enterprise. With this in mind, I organised a three month internship over summer to work as a 

Java developer for a London company called RI3K. Due to the enjoyable and fulfilling nature 

of the work, I decided this would be an ideal career for me.  

 

As the year progressed, I had many talks with my supervisor about postgraduate studies. Due 

to my age, a lack of funds and a desire to progress to industry, to which I thought I would be 

more suited, I was initially quite resistant to the idea. However, as the project progressed, I 

came into contact with PhD students, and began to very much enjoy aspects of the project, 

particularly brainstorming sessions with Prof. Heckel. As the economic crisis also fully came 

to light, it appeared there were very few satisfactory positions in the job market for 

developers, in terms of salary, type of company and level of responsibility.  

 

I believe postgraduate studies would give me an excellent chance to develop a more in depth 

knowledge of a subject I greatly enjoy, be it a Masters of PhD. I believe this will appease my 

desire to gain a much better, and more theoretically sound knowledge of the subject. While 

this would serve my future career prospects well, it is primarily out of a personal interest in 

bettering myself that I wish to pursue this. I do not want to feel that I have wasted my talents 

and interest in the subject.  

 

 

2. What will I do this academic year to get there? 

 

I decided to submit some postgraduate applications to keep this route open to me. I was 

accepted into a Masters course at Oxford University which I have provisionally accepted. I 

have also submitted an application for the University of Leicester “University of the Year” 

PhD scholarship. I hope to hear the outcome of this by the end of April. If I am accepted for 

the PhD I will decline the Oxford offer. I have also kept the option to progress to industry 

open, in case I am unable to acquire funding for postgraduate study. In preparation for this 

route, I have prepared an updated CV and had it checked by the Careers Office. I have also 

stayed in touch with the company I interned with over summer, and used Milkround and 

contacts to learn more about various companies that I might want to work for. In my spare 

time, I have been undertaking web design projects that use new technology, as a learning 

opportunity and showcase for potential employers. On the surface, this may appear to be a 

lack of commitment to one path, but I feel by cultivating both possibilities fully (study or 

full-time work), I can easily decide to switch my plan to incorporate the other without having 

to suddenly do missing groundwork.    

 

To prepare myself for postgraduate study, I have attended Prof. Heckel‟s PhD group 

discussion meetings every week this year. This has given me a great insight into the type of 

research that others are doing, how to present work and the level of depth expected. For direct 

entry into a PhD, my lack of a Masters may be brought into question. As such, I have tried 
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my best to understand highly mathematical papers and also had a look at some of the modules 

I missed in the first year due to management modules.   

 

 

3. How does my project contribute to my career? 

 

My PhD project proposal would be a direct continuation of this year‟s project. As such, I will 

have hopefully developed much of the background information necessary. The open, 

research-style nature of the project will also prepare me for the self-disciplined approach to a 

PhD. My project required the reading of many journal articles too, the understanding of 

which I believe is a skill in its own right, particularly as a gap in knowledge identified by 

reading one journal may prompt the reading of further articles. This kind of selective 

knowledge search is very useful for self-teaching.   

 

In addition the project has helped me to understand limitations to open projects, particularly 

at the implementation stage, and how to get around these either by modifying software or by 

altering ideas. I have had much contact with other academics, particularly Olga Runge of 

AGG, which has improved my communication skills and methods of explanation and 

cooperation. In presenting my project to PhD students and lecturers, I have also learnt 

important lessons about appropriate levels of abstraction. In addition, time-keeping and 

organisation skills were enhanced through the project, both of which are important for PhD 

work.  

 

If I decide instead to progress to industry, the open nature of the project has taught me 

organisation and project management, how to focus on deliverables, how to be realistic about 

outcomes, scaling back project depth due to lack of resources or time, and most importantly, 

more complex problem solving than I have been used to before. It has also taught me how to 

communicate and absorb ideas from others, as well as how to approach completely new 

theoretical domains. Dealing with the complex and sometimes perplexing API used in the 

implementation stage of the project is an added skill. In industry many legacy or off-the-shelf 

components are often necessary for an application and knowledge of how to integrate them is 

very useful.   

  

Finally, the project has taught me diligence and the need for a great deal of hard work to 

succeed in any project. While this is something everyone knows, the extremely challenging 

nature of this particular project made it clear just how much dedication is needed to ensure 

success in difficult undertakings.    
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Appendix 2 – Weekly Diaries 
 

 

The following is a complete set of weekly diaries for the duration of the project, signed and 

dated by the project supervisor, Dr. Fer-jan de Vries.  

 

 

 

 


