
Mining System-User Interaction Traces for Use Case Models

Mohammad El-Ramly, Eleni Stroulia and Paul Sorenson

Computing Science Department
University of Alberta

Edmonton AB, T6G 2H1, Canada
{mramly, stroulia, sorenson} @cs.ualberta.ca

Abstract

While code understanding is the primary program
comprehension activity, it is quite challenging to
recognize the application requirements from code, since
they have usually been occluded by a set of layers of later
implementation decisions. An alternative source of
evidence, especially valuable for understanding the
purposes for which the application was built, can be the
dynamic behavior of the system, and more specifically the
system-user interaction. We have developed a method for
modeling the application behavior from the user’s
perspective in the form of use case models, using
recorded traces of system-user interaction. We use data
mining and pattern matching methods to mine these
traces for frequently occurring user tasks. When
interesting patterns are discovered, they are augmented
with semantic information and they are used to build use
case models. We demonstrate a successful application of
this method to recover use case models from interaction
traces with legacy 3270 systems to serve user interface
reengineering activities.

1. Introduction

Software development is rarely a “green-fields”
process: more often than not, the new system under
development has to be integrated with other existing
systems, either newly-acquired off-the-shelf components
(COTS) or legacy systems, whose functionality cannot
easily be replaced. In the case of COTS, they usually
come with documentation on how to integrate. But, to
ensure that the desired features of a legacy system are
properly integrated, it is imperative to understand how
this system is actually currently used, that is, it is
necessary to extract a model of its use cases.

The problem of understanding an application’s use
cases is, to some extent, akin to understanding the intent
behind its development, and is, therefore, extremely
challenging. Research in this field is still sparse, and has
focused mainly on extracting use cases of object-oriented

applications [3] by examining their code. But, the
majority of legacy systems have been developed before
the advent of the object-oriented design paradigm, in
languages that do not provide strong encapsulation
support. Even worse, the legacy application code is often
unavailable, and even when it is available, it is usually a
very poor expression of the application design. It is
scarcely structured and usually includes “dead” or
obsolete code and “glue” code of incremental updates that
violate its original architecture; or “ignorant surgeries” as
Parnas calls them [8]. It may even include obsolete and
confusing comments that contradict the code.

More insight as to the purpose of the application from
the user’s perspective could be gained by inspecting how
the application is actually used. The actual run-time
behavior of the application could be an evidence of its use
cases, as they are actually exercised by its current users. A
major component of the run-time behavior of an
application, is the system-user interaction. Recorded
traces of this interaction can be an alternative or a
complementary source of information for legacy system
behavior modeling and use case extraction. Such use case
models are important for legacy software understanding,
maintenance, migration and reengineering activities.

System-user interaction is a rich source of knowledge
and a faithful representation of how the system is
currently being used. In [4],[5] we presented the CelLEST
method for legacy user interface (UI) reengineering and
integration. This method uses recorded traces of the
interaction between the legacy system and its users as
input, and does not require examination of the legacy
code. The CelLEST project demonstrated that this easily
available type of input can be sufficient for lightweight
reverse engineering and user interface wrapping activities.
Using the CelLEST method and tools, it is possible to
build, semi-automatically, a model of the legacy text-
based interface (TBI) as a state-transition graph. Then,
given multiple examples of task-specific traces, an
optimized task-centered graphical user interface (GUI) is
constructed, that wraps the legacy UI and enables the
performance of the same task from a browser.

Proceedings of the 10 th International Workshop on Program Comprehension (IWPC’02)
1092-8138/02 $17.00 © 2002 IEEE

In this paper we discuss how the CelLEST method can
be further automated by discovering the use case models,
needed for the GUI construction, from the interaction
traces. We use knowledge discovery and pattern searching
algorithms to search for frequently occurring patterns in
the traces. These patterns are expected to correspond to
the tasks of most interest to the legacy system user. An
expert user can review them and accept them, reject them
or request a modification to the discovery task parameters
to look for more or different patterns. Then, the
discovered patterns are annotated with the semantic
information needed for the CelLEST GUI construction
step, regarding the information exchange that occurs
between the application and the user on each legacy
system screen. Each legacy screen is a manifestation of an
internal behavioral state of the legacy system that allows
the user a specific set of inputs, offers him a set of
outputs, and allows him to perform transitions to any of a
limited set of other screens. An instance of a screen is
called a “screen snapshot” or simply “snapshot”.

The primary goal of this work is to further automate
the CelLEST UI reengineering method and minimize the
human effort needed in the process, i.e. eliminate the
collection of task-specific traces. However, our long-term
objective is to develop a general process for use case
discovery from system-user interaction traces in support
of tasks such as program comprehension, building UIs for
new applications that are consistent with the user
conceptual models, documenting interactive systems, and
building help or user support systems [9].

After this introduction, section 2 briefly describes the
CelLEST UI reengineering method. Section 3 discusses
an example system-user interaction trace and Section 4
discusses an example use case model. Section 5 presents
the use case pattern discovery process and algorithm.
Section 6 reports the results of an experiment using this
method. Finally, Section 7 provides a summary of our
work and highlights future work directions.

2. The CelLEST Process for User Interface
Reengineering

The CelLEST UI reengineering method is applicable
when the reengineering objective is to provide a more
usable GUI to current legacy services, or to make them
available through the Web. Consider for example the
problem of building an easy-to-use task-centered Web-
interface for the reservation system of a hotel that runs on
a mainframe, to allow reservations from the web, or
integrating the front-ends of the claim systems of different
insurance companies after their merger. The method
assumes that it is not necessary to reengineer the
underlying legacy application or modify its capabilities,
or change the underlying platform on which it runs;

hence, full-scale reverse engineering and code
comprehension is not needed.

While the current industrial practices can accomplish
the task above, they are mostly manual, time-consuming
and potentially error prone. The CelLEST project aims to
apply artificial intelligence methods to increase the
automation of this process.

The CelLEST method consists of two phases. In its
reverse engineering phase, the LEgacy Navigation
Domain Identifier (LeNDI) prototype [4] is used to
produce a behavioral model of the legacy system using
traces of its current use. For legacy systems that use a
block-mode data transfer protocol between the system and
its user terminals, such as IBM 3270, a trace is a sequence
of screen snapshots interleaved with the user actions
performed in response to receiving the snapshots on his
terminal. The behavioral model produced is represented as
a state-transition graph. Each node of the graph
corresponds to a distinct screen of the legacy interface.
The graph nodes are identified by clustering similar
screen snapshots together. To that end, we have
developed a supervised clustering algorithm that clusters
snapshots based on the similarity of the keywords they
contain and their layout. Then a decision tree can be
induced to classify new snapshots, that is, to recognize the
interface screen of which they are an instance. Each edge
of the graph corresponds to a possible user action, that is,
a sequence of cursor movements and keystrokes on a
particular screen that causes a transition to another screen.

After an expert user has reviewed and validated the
legacy UI model, the process of analyzing task-specific
navigation plans and constructing new interfaces to wrap
these tasks can start. Each set of task-specific traces
represents multiple executions of a single user task. The
corresponding user task is modeled with the aid of some
user input to identify the information exchange that takes
place between the user and the legacy application during
the task. The CelLEST test-bed for the forward
engineering phase is a prototype tool called Mathaino [5].
Mathaino constructs an abstract specification of a GUI for
the modeled task, which is subsequently “translated” to a
platform-specific task-centered GUI implementation.

Figure 1 diagrammatically depicts the CelLEST
approach to legacy UI migration. A task-centered GUI
can combine the functionality of several legacy screens,
related to one task in one GUI unit, e.g. a tabbed pane or a
form. The new GUI drives the execution of user tasks
through the legacy system using the state-transition graph
and an API to the data transfer protocol used. This
approach can be extended to integrate several legacy
systems’ front-ends in one GUI. Throughout the process,
an expert user of the legacy system can review and
inspect the constructed models through a visualization
interface.

Proceedings of the 10 th International Workshop on Program Comprehension (IWPC’02)
1092-8138/02 $17.00 © 2002 IEEE

Figure 1: The CelLEST approach to legacy user
interface migration.

The CelLEST UI reengineering method is powerful in
that it constructs a high-level model of the interaction
behavior between the legacy system and its users.
Traditional UI reengineering approaches analyze the
legacy code to detect GUI widgets or text-based interface
code to replace them by functionally similar widgets or
code in new platforms. Instead of replicating the same
interaction with different widgets in new platforms, the
CelLEST method encapsulates interesting behavioral
segments of the legacy interface into new UI front-ends
on different platforms with fundamentally different
widget toolkits, such as WAP devices for example [5].

In this paper, we describe how patterns of frequent
user tasks can be discovered automatically by applying
data mining techniques to interaction traces, and hence
eliminating the need to collect task-specific traces. A draft
use case model is inferred for each pattern and then
enriched with the semantic information required for the
CelLEST forward engineering phase.

3. An Example System-User Interaction
Trace

A trace of a user’s interaction with the public online
Library of Congress Information System (LOCIS) (IP:
140.147.254.3 or locis.loc.gov) through an IBM 3270
connection was recorded while a user was retrieving
detailed information about some pieces of federal
legislation. The user started by making the necessary
menu selections to open the relevant library catalog. Then
he repeated two information retrieval tasks for several
times. Figure 2.a shows 20 consecutive screen snapshots
of this trace with the keystrokes that occurred on each of

them. The snapshots in solid-line represent a complete
instance of one of the two information retrieval tasks. In
this scenario, the user issued a browse command with
some keyword(s) to browse the relevant part of the library
catalog file. Then he issued a retrieve command to
retrieve a subset of the catalog items. Finally the user
displayed brief information about the items in this set
using the display command and selected some items to
display their full or partial information, e.g. the full
legislation, its abstract, its list of sponsors, its official title,
etc., by typing a display item command and then a display
option. The actual LOCIS trace that was given as input to
LeNDI was 454 snapshots long. LeNDI built a
corresponding state-transition graph. Figure 2.b shows the
part of this graph corresponding to the trace segment in
Figure 2.a. The left top corner of every screen contains its
ID, as given by LeNDI. Labels on the edges are the user
action (command) models inferred.

4. An Example Use Case Model

A use case describes a sequence of interactions
(activities) between a system and an external “actor” that
results in the actor accomplishing a task that provides
benefit to someone. The actor can be the application user,
another software application, a piece of hardware, or
some other entity that interacts with the system to achieve
some goal [10].

Provided that enough instances of the task shown in
Figure 2.a appear in the traces recorded from the legacy
application and that they meet some user-defined criterion
for what constitutes “sufficiently interesting” patterns, our
method can discover that these instances represent a
candidate use case model. The pattern corresponding to
the task instance shown in Figure 2.a and all similar ones
is 4+-5-6+-7+-8+-9, where + is one or more. In section 6,
we explain in details how this pattern was discovered
from the input traces. After review by an expert, it was
concluded that this pattern is a real use case.

The use case pattern is then enriched with the relevant
action models and finally augmented with the semantic
information necessary for the subsequent phase of the
process. The Mathaino prototype in the forward
engineering phase of CelLEST requires that the
information exchange between the user and the
application on each screen is specified, i.e. the user inputs
to the system and the system outputs displayed to the
user. A suitable standard notation can be used to represent
the resulting use case model.

Figure 3 shows the enriched use case pattern for the
task of Figure 2.a, a textual description of the
corresponding use case model and a graphical
representation of this model using activity diagrams,
which are part of the UML toolkit [7].

Legacy System 1

TBI

Legacy System 2

TBI

API to the Legacy Data Transfer Protocol

Task
Model

State-transition
Graph1

State-transition
Graph2Task Centered GUI

Proceedings of the 10 th International Workshop on Program Comprehension (IWPC’02)
1092-8138/02 $17.00 © 2002 IEEE

(a) A part of the LOCIS trace used in the example. (b) The corresponding portion of the state-transition
graph. * means a mandatory argument, [*] is an
optional argument and @E means Enter key.

Figure 2: An example trace of user interaction with the Library of Congress Information System.

5. Use Case Discovery

Sequential pattern mining is an important problem that
has received a lot of attention by the knowledge discovery
in databases (KDD) community. Many algorithms and
tools have been developed, and it is now possible to mine
massive amounts of sequential data to discover new,
interesting and non trivial knowledge. For example, one
can mine the Web access log files collected by Web
servers for user access patterns, a process known as Web
usage mining [6].

Mining legacy system-user interaction traces for
recurrent patterns of user activity, corresponding to use
cases, is similar to mining episodes in sequences. To
tackle this problem, five issues need to be addressed:

1. Constructing an appropriate representation syntax of
the input traces: the syntax has to be compact, so as to
enable the representation of long traces;

2. Defining a criterion for what constitutes sufficient
evidence for a pattern in the traces: the criterion has to
discriminate among spurious frequent occurrences and
“real” tasks;

3. Extracting the patterns that fulfill the criterion;
4. Verifying or modifying the results of the extraction

process through user feedback; and
5. Building use case models for the extracted patterns.

In the next few sections, we present how each of these
five issues is addressed by our method.

5.1 Preprocessing

An interaction trace is initially represented as a
sequence of snapshots, represented by integers. Each
integer is the ID of the screen, of which the snapshot is an
instance, according to the classifier constructed by
LeNDI. Let’s denote this representation as R0. R0 often
contains repetitions, resulting from accessing many
instances of the same screen consecutively, such as for
example, browsing many pages of a library catalog. These
repetitions may result in missing some important patterns,
if pattern discovery is performed on traces in R0 format.
For example the trace segment 4-5-6-6-6-6-6-6-7-7 in
Figure 4 below will not be counted as an instance of the
pattern 4-5-6-7 unless we allow an error of at least five
insertions (irrelevant noise screens) in the instances of the
patterns discovered.

To address this problem, traces are encoded using the
run-length encoding algorithm, which replaces immediate
repetitions with a count followed by the item being
repeated. We denote this representation of the trace as R1.
Figure 4 shows R0 and R1 representations of the trace
segment of Figure 2.a.

LOCIS
 Main Menu

Federal
Legislation

Menu

Welcome

3@E

11@E

Item Details
First Page

b * [*]@E

1

2

3

7

 *@E

@E

Brief
Display

6

 [*]@E

Catalog
Browse

4

r * [*]@E

Retrieve
Results

5

 d item *@E

 d *@E

Item Details
Intrmd. Pg.

8

@E

 @E

Item Details
Last Page

9

 @E

 @E

summ@E

ottl@E

@E

@E

LOCIS
Main Menu

Federal
Legislation

Menu

Welcome

3@E

11@E

Catalog
Browse

b rep williams@E

Brief
Display

Brief
Display

Brief
Display

@E

@E

Brief
Display

@E

Retrieve
Results

r b06@E

Brief
Display

@E

d 1@E

Brief
Display

Item Details
First Page

Item Details
First Page

d item 133@E

all@E

Item Details
Intrmd. Pg.

@E

Item Details
First Page

Item Details
First Page

Item Details
First Page

Item Details
Last Page

Item Details
Intrmd. Pg.

@E

Item Details
Intrmd . Pg.

@E

133@E

Proceedings of the 10 th International Workshop on Program Comprehension (IWPC’02)
1092-8138/02 $17.00 © 2002 IEEE

(a) A use case pattern for an information retrieval task for a federal legislation from LOCIS, augmented with action
locations. @ ?, 67 means that the user action occurs on the screen snapshot at unspecified row and column 67.

__

Use case name: Retrieving Information on a Federal Legislation

Participating actor: LOCIS User

Entry condition: The user issues a browse command to LOCIS

Flow of events: 1- Turn the catalog pages until the relevant page.
2- Issue a retrieve command to construct a results set for the chosen catalog entry.
3- Display the results set and turn its pages until the required item is found.
4- Issue a display item command.
5- Specify a display option.
6- Display the item details.
7- Repeat steps 5 and 6 till retrieving the right details

Exit condition: The user retrieves the required information about the federal legislation of interest.

__

(b) A textual description of the use case.

(c) The corresponding activity diagram.

Figure 3: An example use case pattern and the corresponding textual and UML models.

R0 : 1-2-3-4-5-6-6-6-6-6-6-7-7-8-8-8-9-7-7-7

R1 : 1-2-3-4-5-(6)6-(2)7-(3)8-9-(3)7

Figure 4: Preprocessing interaction traces.

5.2 Pattern Qualification Criterion

A common problem in KDD research is the discovery
of a large number of patterns, many of which are simply
spurious frequent occurrences and thus not interesting.
This makes it difficult to comprehend them and
distinguish from them the actual patterns of interest. So,

Browse
Catalog

Retrieve
Results Set

[item found]

 [item not found]

Display Results
Subset

Display First
Page of Details

[the required details]

[not the
 required
 details]

Specify a Display
Option

Display the Inter-
mediate Pages

Display the
Last Page

[the required
 catalog page
 found]

 [not found]

Item Details
Intrmd. Pg.

8 Item Details
First Page

7
Item Details
First Page

7

Brief
Display

6
Brief

Display

6Catalog
Browse

4
Catalog
Browse

4
b * [*]@E Catalog

Browse

4 Retrieve
Results

5

 Item Details
Last Page

 9 Item Details
First Page

7

Brief
Display

6r * [*]@E

@ 23, 11

 d *@E

@ 18, 8

d item *@E

@ ?, 8

Item Details
Intrmd. Pg.

8
Item Details
Intrmd. Pg.

8 @E

@ ?, 67

@E

@ ?, ?

Proceedings of the 10 th International Workshop on Program Comprehension (IWPC’02)
1092-8138/02 $17.00 © 2002 IEEE

before pattern extraction, one needs to define the criterion
of interesting patterns to focus the discovery process and
reduce the retrieval of insignificant patterns.

We define this criterion in terms of four elements: the
minimum pattern length (minL), the maximum pattern
length (maxL), the minimum number of occurrences (also
called frequency and support) of the pattern (minFreq)
and the pattern Score. The default values for minL,
minFreq and Score are 2, 2 and 1 respectively. If maxL is
unspecified, then the algorithm discovers the longest
possible patterns that meet the other conditions of the
criterion. In our work, we adopted a simple scoring
function for pattern evaluation aiming at balancing the
weight of the pattern length with the weight of the pattern
frequency. Our experiments showed that this function is
adequate for our purposes. The function has two forms:
one for exact patterns and another for approximate
patterns with insertion errors. An exact pattern is one
whose instances are all identical. An approximate pattern
with insertion errors is one whose instances share an
ordered sequence of IDs while each instance may contain
up to a user defined number of extra screens.

1. For an exact pattern of length pattL and frequency
pattF, the scoring function is:

Score = log2 (pattL) * log2 (pattF)

2. For an approximate pattern, let the minimum length
of any instance of this pattern be pattL and the
pattern frequency be pattF and assume that the
average number of insertion errors per instance is
avIns. Then, the scoring function is:

Score = log2 (pattL) * log2 (pattF) * Density

Density = pattL /(pattL + avIns)

According to this function a pattern of length 4 and
frequency 10 will have a Score equal to a pattern of
length 10 and frequency 4, if they have the same density.

5.3 Pattern Extraction

We used a simplified variant of the Seq-R&G
algorithm [2] to extract maximal exact use case patterns
from interaction traces. A maximal pattern is a pattern
that is not a sub-pattern of any other pattern with the same
frequency.

To avoid an exhaustive search of all possible patterns
of all lengths, the algorithm uses a popular idea in KDD
literature. The idea is that a long pattern cannot meet the
minimum frequency constraint unless its sub-patterns
meet this constraint. To apply this, we can start by
discovering patterns of length minL first using exhaustive
search, then combining the ones that meet the minFreq
constraint to construct patterns of length minL+1, thus
avoiding an exhaustive search for the later. However, we

still have to count the instances of each constructed
minL+1 long pattern in the input traces to see which ones
meet the minFreq constraint. Then, the qualified patterns
of length minL+1 are used to construct patterns of length
minL+2. This process is repeated until the qualified
patterns of length maxL are discovered or until no more
qualified patterns can be discovered.

Figure 5 shows the algorithm used. It starts by loading
the desired traces from the database and asking the user
for the parameters minL, maxL, minFreq and Score of the
criterion for defining interesting patterns. Steps 4 and 5
create a candidate and a potential pattern lists. The first is
used to store the patterns already discovered and the
second is used to store the patterns currently under
examination that do not meet the qualification criterion
yet. Step 6 sets a window for scanning the traces, whose
initial length is set to the defined minimum length, i.e.
winLen = minL. Step 7 divides all the traces into segments
of length minL by moving the window along each trace,
sliding one item at time. For example if winLen = 3, the
trace {3-4-5-6-3-6} will be divided into the subsequences
{3-4-5}, {4-5-6}, {5-6-3} and {6-3-6}. Step 8 stores the
segments that meet the criterion of interesting patterns in
the candidate pattern list. Step 9 is repeated as long as
there are more potential patterns whose lengths are less
than maxL. In steps 9.a and 9.b, a new potential pattern
list is constructed from the existing candidate patterns of
length winLen. This is done by examining patterns in a
pair-wise fashion. For every pair of patterns i and j of
length winLen, if the suffix of pattern i (its last winLen–1
IDs) matches the prefix of pattern j (its first winLen–1
IDs), then a new potential pattern of length winLen+1 is
formed. This is done by concatenating the first ID in
pattern i to the beginning of pattern j. Step 9.c increments
winLen by 1 for the next iteration. Step 9.d counts the
number of occurrences of every new potential pattern in
all traces under analysis. Step 9.e evaluates every
potential pattern according to the user’s criterion and
removes unqualified patterns. Step 9.f breaks the loop if
no new patterns were discovered in the current iteration.
Step 9.g copies the qualified patterns to the candidate
pattern list. When there is no more potential patterns, step
10 removes non-maximal patterns from the candidate
pattern list. Finally, step 11 presents to the user all the
extracted patterns ordered by length, frequency or score.

5.4 User Feedback and Post-processing

Once all the maximal patterns have been identified,
one can change the pattern selection criterion to narrow or
widen the results set if he feels that too little or too many
patterns were retrieved. An implementation of the Shift-
OR algorithm [1] is used to retrieve the instances of a
discovered pattern to verify that they correspond fully or
partially to a real use case.

Proceedings of the 10 th International Workshop on Program Comprehension (IWPC’02)
1092-8138/02 $17.00 © 2002 IEEE

__

1. Load N traces of length trLi where 1 ��i ��N from the trace database
2. Read the four parameters minL, maxL, minFreq and Score from the user
3. Evaluation criterion EvCriterion = new Criterion (minL, maxL, minFreq, Score)
4. candidatePatternList = new PatternList ()
5. potentialPatternList = new PatternList ()
6. Initial window Length winLen= minL
7. For (i = 1; i ��N; i++)

Break tracei into trLi – winLen + 1 segments using a sliding window of length winLen
8. Store segments that meet EvCriterion in candidatePatternList.
9. while (winLen < maxL) {

a. Empty potentialPatternList
b. For every patterni and patternj ∈ candidatePatternList which are of length winLen {

If suffixwinLen-1 (patterni) == prefix winLen-1 (patternj) {
Construct newPattern = first ID of patterni + patternj

Add newPattern to potentialPatternList }
 }
c. winLen ++
d. For (i = 1; i ��N; i++) {

Break tracei into trLi – winLen + 1 segments using a sliding window of length winLen
For (j = 1; j ��trLi – winLen + 1; j++)

If segmentj is in potentialPatternList increment its counter by 1

e. Remove from potentialPatternList all segments that do not meet EvCriterion
f. If potentialPatternList is empty, break the loop
g. Copy all segments in potentialPatternList to candidatePatternList

}
10. Remove non-maximal patterns from candidatePatternList
11. Present candidatePatternList to the user in the desired order.
__

Figure 5: The use case pattern extraction algorithm

Also, it is possible to search for instances of a
discovered pattern with insertion errors, using a variant of
the Shift-OR algorithm [11] for approximate pattern
matching. These instances may include variations in the
specifics of the task or in the path used to accomplish the
task, e.g. opening a list of choices to choose from instead
of typing a choice. These cases are alternative scenarios
for the use case that also result in successful task
completion.

Additionally, one can choose a set of patterns whose
scores and/or frequencies are within specific range(s) and
compact it by removing any pattern that is a subset of
another pattern, even if it is maximal. This makes results
easier to comprehend

5.5 Use case Modeling

Finally, when results are satisfactory, the interesting
patterns discovered are annotated with any necessary
semantic information to build use case models as
described in section 4 to feed the forward engineering
phase of CelLEST or for other usage.

6. An Experiment

In this experiment, we used a trace, 454 snapshots
long, recorded while a user was retrieving information
about the federal legislation in the USA from LOCIS. Part
of this trace is shown in Figure 2.a. Let’s denote this raw
trace as T-R0. In this trace, the user performed two
different information retrieval tasks several times. He
accessed 18 LOCIS system screens with the frequencies
shown in Table 1.

The trace was preprocessed and represented in R1
format. Let the preprocessed trace be T-R1. Then a few
different criteria were tried until, finally, the following
criterion for pattern discovery was established on T-R1:

minL = 4
maxL = 9
minFreq = default, which is 1
Score = 5

Next, the pattern-extraction algorithm was applied and
the 14 maximal patterns shown in Table 2 were
discovered. The longest of these patterns is 7 items long.

Proceedings of the 10 th International Workshop on Program Comprehension (IWPC’02)
1092-8138/02 $17.00 © 2002 IEEE

The maximal pattern set was then compacted by removing
patterns that are subsets of others. The patterns of the
compact set are marked with a checkmark in Table 2.
Note that a + sign is added to any pattern ID whose
repetition count in T-R1 is greater than 1 in some of the
pattern instances.

Finally, sample instances of each pattern were
reviewed to evaluate whether any of the resulting patterns
corresponds fully or partially to an actual use case. This
inspection revealed that two sub-patterns; 4+-5-6+-7+-8+-9
and 4+-14-15+-6+-7+, are interesting and represent two
different use cases. The first is a sub-pattern of pattern 3
in Table 2, and the second is a sub-pattern of pattern 4.

The first use case is described earlier in section 4 and
its model is shown in Figure 3. In the second use case, the
user browsed the desired part of the currently open library
catalog. Then he issued a select command to retrieve
some records from the catalog. The select command
constructs separate subsets of results for the specified
search term, each for a different search field, e.g. one for
the records that have the search term in the title, one for
the records that have it in the abstract, etc. Then, the user
issued a combine command to merge some of these
subsets together into one set using some logical operators.
Finally he displayed brief information about the items in
this set and selected some items to display their full or
partial information.

We used the approximate pattern matching algorithm
to look for instances of both of the discovered patterns
with up to 3 insertion errors. None existed for the first
pattern and these three were discovered for the second:

• 4+-14-15+-13-6+-7+

• 4+-14-11-15+-6+-7+

• 4+-11-14-15+-11-6+-7+

The extra screens; 11 and 13, are in italic. By checking
them in Table 1, one can see that 11 is an “Error” screen,
that results from mistakes in the command issued and 13
is “Display List” screen that lists the numbers of the
federal bills in a results set if a display command was
issued with the parameter /list. Hence, the conclusion is
that the first instance is a slightly different scenario for the
use case with an extra step of displaying the content of the
combined results set before displaying brief information
about the items in the set. While the last two instances
include some noise resulting from user mistakes.

In the context of the CelLEST method, the patterns
discovered are augmented with the information exchange
between the user and the system on each screen and then
are used for automatic construction of a new task-centered
GUI. However, these patterns can be used for other
general or specific program comprehension tasks, e.g.
system re-documentation, requirements recovery, building
help systems, etc.

Table 1: The LOCIS screens used in the
experiment.

Screen
ID

Screen Description Frequency

1 Main LOCIS Menu 5
2 Fed Leg Menu 3
3 Welcome 3
4 Browse Results 69
5 Retrieve Results 31
6 Brief Display 83
7 Display item page 1/1 or 1st/n 114
8 Display item page (2 or more/n) 29
9 Display item last page (n/n) 17

10 Help 2
11 Error 36
12 Search History 20
13 Display List 4
14 Select Command Results Page 13
15 Combine Command Results Page 14
16 Release Command Results Page 9
17 Comments & Logoff 1
18 Goodbye 1

Table 2: The maximal patterns retrieved from the
LOCIS trace. The patterns of the compact results
set are marked with checkmarks.

Pattern Frequency Score
1 4+-5-6+-7+ 10 6.64
2 6+-7+-8+-9-7+ 7 6.52
3 4+-5-6+-7+-8+-9-7+ 5 6.52 √
4 4+-14-15+-6+-7+-4+-14 5 6.52 √
5 7+-8+-9-7+ 9 6.34
6 7+-8+-9-7+-8+ 6 6.00 √
7 7+-8+-9-7+-4+ 6 6.00 √
8 4+-14-15+-6+-7+ 6 6.00
9 4+-14-15+-6+ 8 6.00
10 9-7+-4+-5 7 5.61 √
11 7+-4+-5-6+-7+ 5 5.39 √
12 6+-7+-4+-14-15+ 5 5.39 √
13 6+-7+-4+-14 6 5.17
14 7+-4+-14-15+ 6 5.17

7. Summary and Future Work

In this paper, we discussed a behavior-analysis method
for understanding the use cases of software applications.
The assumption underlying this work is that inspecting
“how the legacy application is actually used” can lead to
understanding of “what uses it was intended to support”
in the first place.

Our method is part of the CelLEST environment,
developed to support legacy UI migration to Web-
accessible platforms. It inspects traces of legacy screen

Proceedings of the 10 th International Workshop on Program Comprehension (IWPC’02)
1092-8138/02 $17.00 © 2002 IEEE

snapshots, sent to the user by the legacy application,
during their interaction. These trace snapshots are
identified as instances of unique behavioral screens, based
on the screen classification produced by the CelLEST
classifier, LeNDI. By mining recurring screen patterns in
the trace, our method extracts the actual consistent uses of
the interface, which potentially correspond to the use
cases of the legacy application.

Our method is most suitable for mature stable systems
with rich presentation. For batch systems or systems with
very limited UI, there is not enough information in the
system-user interaction traces to model the use cases.

In the context of CelLEST, our use case mining
method is used for automatically extracting examples of
user tasks, that are subsequently used for developing new
Web-accessible interfaces for these tasks, using a
“demonstrational programming” tool, called Mathaino.
More generally however, it can be used for all activities
where requirements reverse engineering is desired, such
as platform migration and re-implementation, or user
documentation, etc. In our future work, we will explore
the applicability of our method to these activities.

Although the application presented in this paper used
traces of interaction with 3270 legacy systems, our use
case discovery method is applicable to other kinds of
interaction traces, e.g. sequences of events in a windows-
based application. This is another future work direction
that we like to explore.

References

[1] Baeza-Yates, R. and Gonnet, G., A New Approach to
Text Searching, Communications of the ACM, vol.
35, no. 10, 74-82, Oct. 1992.

[2] Baixeries, J., Casas, G. and Balcázar, J., Frequent
sets, sequences, and taxonomies: new, efficient
algorithmic proposals, Tech. Rep. LSI-00-78-R,
Universitat Politècnica de Catalunya (UPC), Spain,
2000.

[3] Di Lucca, G., Fasolino, A., and De Carlini, U.,
Recovering Use Case Models from Object-Oriented
Code: a Thread-based Approach, in Proc. 7th
Working Conf. on Reverse Engineering (WCRE
2000), pp. 108-117, IEEE Computer Society Press,
2000.

[4] El-Ramly, M., Iglinski, P., Stroulia, E., Sorenson, P.
and Matichuk, B., Modeling the System-User Dialog
Using Interaction Traces, in Proc. 8th Working Conf.
on Reverse Engineering (WCRE 2001), pp. 208-217,
IEEE Computer Society Press, Oct. 2001.

[5] Kapoor, R. and Stroulia, E., Simultaneous Legacy
Interface Migration to Multiple Platforms, in Proc.
9th Int. Conf. on Human-Computer Interaction, vol.
1, pp. 51-55, Lawrence Erlbaum Associates, Aug.
2001.

[6] Mortazavi-Asl, B., Discovering and Mining User
Web-page Traversal Patterns, M.Sc. Thesis, The
School Of Computing Science, Simon Fraser
University, Canada, Apr. 2001.

[7] OMG, The OMG Unified Modeling Language
Specification, version 1.3, OMG, 1999.

[8] Parnas, D., Software Aging, in Proc. 16th Int. Conf.
on Software Engineering (ICSE’94), pp. 279-287,
1994.

[9] Paternò, F., Task Models in Interactive Software
Systems, in Handbook of Software Engineering and
Knowledge, vol. I, World Scientific Publishing Co.,
USA, 2002 (to appear).

[10] Wiegers, K, Hearing the Voice of the Customers,
chapter 8 in Software Requirements, Microsoft Press,
1999.

[11] Wu, S. and Manber, U., Fast Text Searching
Allowing Errors, Communications of the ACM, vol.
35, no. 10, 83-91, Oct. 1992.

Proceedings of the 10 th International Workshop on Program Comprehension (IWPC’02)
1092-8138/02 $17.00 © 2002 IEEE

