

An Experiment in Automatic Conversion of Legacy Java Programs to C#

Mohammad El-Ramly Rihab Eltayeb Hisham A. Alla

Department of Computer Science,
University of Leicester, University

Road, Leicester, LE1 7RH, UK

Department of Computer Science,
Sudan University of Science and Technology, Sudan
rahbon@hotmail.com hmanssor@hotmail.com

mer1@le.ac.uk

Abstract. Source-to-source transformation is an important
tool for migrating key legacy programs to modern
languages and platforms and giving them new life. Many
organizations cannot do without their legacy systems on
the one hand, but are stuck in an old technology on the
other hand. Converting to a newer programming language
can ease integration with modern technologies, give access
to a wider developers population and/or lower maintenance
costs. Serious language conversion efforts use automated
tools, since manual conversion is out of question for non-
trivial programs. We present our experiment in building a
Java to C# transformer, Java2C#, that partially converts
legacy Java code (version 1.1 or earlier) to C#. Java2C# is
written in TXL, a language specially designed for program
transformation, using tree re-writing. We explore and
discuss the challenges and issues to consider when
automatically transforming Java to C# and when building
automated language transformers in general.

1. Introduction
Source-to-source transformation (S2ST) is an instance of
the wider problem of program transformation. S2ST has
many variants, e.g., compilers perform S2ST to pre-process
source code, expand macros, optimize code, etc.
Obfuscators change source code or bytecode to make it
harder to reverse engineer and understand. [3] Another
application of S2ST is language conversion, e.g.:
• Converting a program to a newer version of the same

language (Cobol 68 to Cobol 85) [1]
• Converting a program to a version of the same language

under a different programming paradigm (Cobol 85 to
Object Cobol) [6]

• Converting a program to a modern procedural or object-
oriented language (Cobol to C or Java) [2]

• Migrating an application to a different system that
supports a different dialect of the same language (Cobol
on IBM Mainframe to AS/400 Cobol) [1]

• Structuring unstructured programs (Removing goto
statements from Cobol programs) [9]

• Bug fixing and preventive maintenance, e.g., solving
Year 2000 problem [10,11]

In this paper we present our experimental work on an
instance of the S2ST problem. Specifically, we built an
experimental Java to C# transformer, called Java2C#, to

study the issues and challenges in converting legacy Java
systems to C# under .Net framework. Java2C# can be
downloaded from www.txl.ca. While Java is a young
language, the rapid evolution of Java specifications quickly
created legacy Java applications. As happened with many
other technologies, the advent of C# and .Net created a
demand for tools and techniques for converting legacy
applications to the new language and platform. We built a
partially automatic experimental transformer to transform a
subset of Java 1.1 to C#. Partial here has two meanings.
The first is that it coverts only a subset of the Java
language, since it was designed as an experiment not for
full commercial deployment. The second is that for certain
language constructs, automatic conversion is almost
impossible and some manual transformation is required.
For these later cases, the transformer documents the issue
and leaves comments in the transformed source code for the
developer to complete the transformation manually. We
studied the similarities and differences between the two
languages and identified the main challenges in this
conversion process.
Because of the time limit we had (8 months part-time
during the M.Sc. project of the 2nd author) and the huge
API of both languages, we focused on a subset of the core
Java 1.1 and did not work on API translation.
To build the transformer, we chose an eloquent functional
rule-based language, TXL (Turing Extender Language)
[4,5], which is designed as a generic S2ST language.
In the following, Section 2 introduces TXL basics. Section
3 discusses the Java 1.1 subset currently supported in
Java2C# and its similarities/differences with C#. Section 4
discusses Java2C# implementation with examples of the
transformations supported. Section 5 presents related work.
Section 6 presents the lessons learnt and conclusions.

2. TXL
TXL is a programming language for S2ST. TXL is
specifically designed for manipulating and experimenting
with programming language notations and features using
S2ST. [4]. TXL is a functional rule-based language. It takes
as input an arbitrary context-free grammar in EBNF
(Extended BNF) notation [7], and a set of show-by-example
transformation rules to be applied to the input programs.

Figure 1. TXL Processing Engine [8]

TXL automatically parses input programs in the language
described by the grammar, even if ambiguous or recursive,
and then successively applies the transformation rules to the
parsed input until they fail. It outputs the transformed
source. Figure 1 shows TXL processing engine.
A TXL program has two components: (1) a description of
the structure to be transformed in EBNF grammar in
context-free ambiguous form and (2) a set of transformation
rules and functions specified by example, using
pattern/replacement pairs. A rule has the form:
Left-HS →→→→ Right-HS IF Condition
where Left-HS and Right-HS are term patterns.
Condition is optional. The application of a rule to a
term succeeds if the term matches the Left-HS pattern
and the condition is true. The result is the instantiation of
the Right-HS pattern. Rules are applied recursively until
they fail. Functions are similar to rules but are applied once
on the entire function input. A sample rule is shown in
Figure 2. This rule applies to a sequence of one or more
Java modifiers recursively. If a modifier is final,
transient or volatile, it is removed since there is
no equivalent to these in C#. This rule breaks a sequence of
modifiers, represented by repeat modifier, into a
CurrentModifier and the remaining modifiers in
RemainingModifiers. Then if CurrentModifier
is one of those unavailable in C#, it is replaced by the
RemainingModifiers in by clause. The where
clause contains the condition for applying the rule, where
isFinal, isTransient and isVolatile are
functions that check if a modifier is as the function name
suggests. TXL uses % for comments and ' for strings.
TXL has several applications in software engineering and
other areas including VLSI layout, database migration, and
others. Example TXL uses in software engineering are [4]:
• Transforming between C, Pascal and Turing.
• Transforming between ISL, C++, Modula II and Ada.
• Y2K Bug Fixing (4.5 Billion LOC).

3. Java vs. C#
We studied the similarities and differences between Java
and C# and classified the necessary transformations for

% Rule [1-1-6]-----------------------------
% Remove Java final, transient and volatile
% modifiers. C# does not have them

rule removeNonCS
 replace [repeat modifier]
 CurrentModifier[modifier]
 RemainingModifiers [repeat modifier]
 Where CurrentModifier [isFinal]

[isTransient] [isVolatile]
 by RemainingModifiers
end rule
% Function [1-1-19]------------------------
function isVolatile
 match [modifier]
 'volatile
end function

Figure 2. A TXL Rule That Deletes final, transient
and volatile Modifiers.

converting Java programs to C# to four categories. The first
is “same” (or no) transformation where the syntax of both
languages is identical and the code is reproduced in the
converted program. The second is “direct” transformations
where one-to-one mapping between Java and C# exists and
some rules for minor adaptation are needed. The third is
“indirect” transformations where some tricks are needed to
map a Java construct to a C# one. The fourth is “challenging”
transformations where C# has no equivalent for a Java
construct and clever tricks, intelligent techniques and
manual intervention are needed to do a transformation.
Appendix 1 lists the main transformations we found in each
category. We added a fifth category of transformations,
which are the ones we did not study because of the focused
scope of this study. This category includes Java extensions
and Java API transformations. Some Java APIs are directly
translatable to .Net APIs and some are quite challenging.
C# was intended to exceed Java while still looking familiar.
So, most Java concepts were preserved in C#. The number
of new concepts introduced is more than those that are not
supported in C#. This makes forward transformation from
Java to C# easier than backward transformation from C# to
Java. However, C# does not have its own API. So, calls to
Java API need to be replaced by calls to .Net API, which
may require thousands of TXL rules to transform.

4. Java2C# Implementation
This section describes the Java2C# transformer. First, it
describes the primary requirements set for Java2C#, then the
design process and design decisions made. Next, it describes
the implantation and its components. Lastly, it provides
examples of transformation rules and their applications.

4.1 Java2C# Requirements

Since this transformer is experimental and is meant to study
the challenges in converting Java to C#, some requirements
were set to ease extending and experimenting with it and to
ensure the quality of the produced code:

TXL Processor

TXL Program

Transformed
Source

Parse
Tree

Grammatical Structure
Specification

Structural
Transformation Rules

Original
Source

Parse

Unparse

Transform
Transform-

ed Parse
Tree

Contains:
− Grammar

overrides
− Other useful

definitions

Translate
Members

Transforms:
− Constructors
− Methods
− Nested

Declarations

JavaToC#.txl

Translate Field
Declaration

Transforms:
− Run time

constants
− Compile time

constants
− Variables

Translate Block
Statements

Transforms:

− Variables & constants
− Class within a block
− Statements

(Expression, if,
switch…)

Helper
Rules

Has common
rules that are used
by other modules.

Data Structures Translate
Initializers

Transforms:

− Instance initializers
− Static initializers

Transforms:

− Class declaration
− Interface declaration

Figure 3. The Modules of Java2C#

1- The transformer should be easily extendable to include
more transformation rules when needed.

2- The transformer should be easily updated to cover more
recent versions of Java and C#.

3- Identifiers must keep their names after transformation if
possible.

4- Original programmers’ comments must be preserved and
reproduced in the same locations in code, if possible.

5- Messages should be issued to the programmer as
comments in the converted code when some manual
transformation is needed.

4.2 Java2C# Design Process

In the beginning, a research on the similarities and
differences between Java and C# was carried out to know
the areas that need transformation and classify the required
transformations according to the level of difficulty as
explained in Section 3. The first step in writing a
transformer, that uses tree rewriting via a parse-transform-
unparse process, is writing working grammars for both the
target and the source language and then writing a union
grammar that accepts constructs from both languages. A
grammar for Java 1.1 is available from TXL Web site [5].
Writing a C# grammar would be quite time consuming
especially considering the limited time of this project. So,
we resorted to a quicker but not ideal solution. Instead of
writing a C# grammar and then writing a union grammar,
we directly extended Java grammar to support C# syntax by
using TXL redefine statement as in the following example:
%New C# set of modifiers for constants
define constant_modifier

 'const % additional modifiers
 |'readOnly % used in C#

end define
redefine modifier

 ... % Now includes both Java and
 |[constant_modifier] % C# modifiers

end redefine
Next, we built the transformation engine. It consists of TXL
rules and functions grouped in sets or modules. Each set of
rules and functions transforms one language construct of

Java (class headers, declarations, statements, etc.) to the
equivalent in C#. These rules are logically grouped in a
number of transformation sub-engines, each in one file.

4.3 Java2C# Implementation

The current implementation of Java2C# transformer is
organized in modules. Each module is stored in a separate
file. The overall structure of the transformer is shown in
Figure 3. It contains the main module that starts the
program and invokes the rules of other modules, which are
4 transformation modules and 2 utility modules. The role of
different modules is briefly explained below:
• JavaToC#.Txl is the main module from which the

transformation begins. It is used by TXL to match an
input Java program against Java grammar and call the
transformation rules to apply on the input program.

• TranslateMembers.Rul contains rules and functions to
transform constructors, methods and nested declarations.

• TranslateInitializers.Rul contains rules and functions to
transform instance initializers and static initializers.

• TranslateFieldDeclaration.Rul transforms field
declarations (variable or constant declarations) when
they are declared as class members.

• TranslateBlockStatements.Rul transforms the blocks
that form the bodies of methods or constructors and
transforms the statements, variable or constant
declarations and control structures within the blocks.

• DataStructures.Grm contains the Java grammar
extension to accept C# constructs beside the definition of
the different mappers or tables used to directly map
Java’s constructs to C# equivalents.

• HelperRules.Rul contains common rules that are used in
more than one place during the whole transformation.

The original Java source is left untouched after applying
the transformation. Java2C# outputs a transformed source
file. This file contains the result of the transformation
where direct automatic conversion from Java to C# was
possible. It also contains guiding comments where no
transformation was applied.

4.4 Transformation Examples

In this section we provide some transformation examples.
We show Java and C# syntax of the subject construct in
EBNF and the TXL rules and functions that apply the
transformation and explain the idea behind the
transformation. These examples are selected to represent
the different categories of transformations mentioned earlier.
Example 1: Direct Transformation - Inheritance Syntax
Both languages support the concept of single inheritance,
which is having only one parent (base class) for the child
(subclass). The difference is only in the syntax. C# uses
C++ syntax (a colon followed by a name) and Java uses
extends keyword instead. Figure 4 shows the EBNF
grammar of class definition in both languages and an
example class definition.
Transformation: The extends_clause in Java grammar is
redefined to include C# inheritance syntax. changeExtend
function does the transformation as below:
redefine extends_clause

 ...%Java
 |': [list qualified_name+] % C#

end redefine
function changeExtend

 replace [opt extends_clause]
 'extends Enames[list type_name+]

 construct AllNames
 [repeat qualified_name]

 _[^ Enames]
 construct NewListEnames
 [list qualified_name]

 _[toQualifiedName each AllNames]
 by ': NewListEnames

end function

Example 2: Indirect Transformation – Instance Initializer
An instance initializer in Java is simply a block of code in a
class that is not in any method. It is executed when an
instance of a class is created. A Java block is enclosed
between two curly brackets. C# doesn’t permit a block to
be present by itself as a class member declaration so the
block in the instance initializer must be transformed to a
method block to be a valid C# member declaration. Figure
5 shows the relevant grammar and examples.
Transformation: Because there is no direct class member
declaration in C# that maps to Java’s instance initializer,
the instance initializer is transformed into a method by
calling toMethods rule in Java2C# which builds a new
method with the instance initializer as the method body and
gives the method a unique name. The next step is to place a
method call inside all constructors. If there is no
constructor, a new constructor is created by the function
setDefaultConstructor. If a constructor or more are
provided there is a probability that a constructor may call
its base class’s constructor by placing this call as the first
statement in its body. As a result a check must be done to
see whether a base call is present and preserve the order of
statements. In all cases the method call is added to the
constructor body. This transformation is accomplished by
the functions containSuper, containThis, addCallsToSuper
and addCalls. The rule toMethods is presented below:
rule toMethods

 replace [class_body_declaration]
 Block[block]

 %name begin with initialMethod
 construct MethodID [id]

 initialMethod

Java
ClassDeclaration:
 ClassModifiersopt class Identifier
 Superopt Interfacesopt ClassBody
Super:
 extends ClassType

Example
class Point {
 int x, y;
 Point (int x, int y)
 { this.x = x; this.y = y; }
}
class ColoredPoint extends Point {
 static final int WHITE=0,BLACK =1;
 int color;
 ColoredPoint(int x,int y,int color)
 {super(x,y); this.color = color;}
}

C#
ClassDeclaration:
 Attributesopt ClassModifiersopt

 class Identifier ClassBaseopt ClassBody
ClassBase:
 : ClassType
 : InterfaceTypeList
 : ClassType, InterfaceTypeList
Example
class Point {
 int x, y;
 internal Point (int x, int y)
 { this.x = x; this.y = y; }
}
class ColoredPoint : Point {
 const int WHITE =0, BLACK = 1;
 int color;
internal ColoredPoint(int x,int,y,int color):base (x,y)
 {this.color = color;}
}

Figure 4. Java and C# Syntax for Expressing Inheritance

%Add a number to the name to be unique
 construct MethodName[id]
 MethodID[!]
 construct MethodCall
 [declaration_or_statement]
 MethodName();
 import InitCalls

 [repeat declaration_or_statement]
 %Add new method call to previous calls
 export InitCalls

 InitCalls [. MethodCall]
 %Lastly the method itself
 construct initialMethod
 [member_declaration]
 'private 'void MethodName()
 Block
 by initialMethod
end rule

Example 3: Challenging Transformation – Constant
Field Declaration
A variable that is declared as a member in a class is called a
field variable. Java keyword final is used to express a
named constant value that should not change during the
execution, and the initial value is provided as part of the
declaration. A final variable that is not initialized in its
declaration is called a blank final. A non-static blank final
variable can be left uninitialized when declared but must be
assigned a value exactly once in an instance initializer or
exactly once in each constructor. The static blank final
variable can be left uninitialized when declared but it must
be assigned a value exactly once in a static initializer.
Although const is a Java reserved word it is not a
keyword. C# provides the keyword const for compile
time constants and readonly for the runtime constants.
Figure 6 shows the relevant grammar and examples.

Java
FieldDeclaration:

FieldModifiersropt Type
VariableDeclarators ;

FieldModifier:
public protected private
final static transient volatile

Example
class FieldDeclaration {
 final int i1 = 10;
 static final int i2= 20;
 final boolean DONE = true;
 public static final long
 x1 = new Date().getTime();
 final Object v = new Object();
 final float f;
 FieldDeclaration() {
 f = 17.21f;
 }
}

C#
FieldDeclaration:

Attributesropt FieldModifiersropt Type
 VariableDeclarators;

FieldModifier:
new public protected internal
private static readonly

Example
class FieldDeclaration {
 const int i1 = 10;
 const int i2 = 20;
 const boolean DONE = true;
 public static readonly long
 x1 = new Date().getTime();
 readonly Object v = new Object ();
 readonly float f;
 internal FieldDeclaration () {
 f = 17.21f;
 }
}

Figure 6. Java and C# Syntax for Constant Fields Declaration

Java
InstanceInitializer:
 Block
Example
class InstanceInit2{
 {

int tmp = 1;
int x = 2;
int y = 10;

 }
InstanceInit2(){
 super();
 byte b;
 }
}

C#
StaticConstructorDeclaration:
 Attributesopt StaticIdentifier () Block
Example
class InstanceInit2{
private void initialMethod1 () {
 int tmp = 1;
 int x = 2;
 int y = 10;
 }
internal InstanceInit2():base () {
 initialMethod1 ();
 sbyte b;
 }
}

Figure 5. Java and C# Syntax for Expressing an Instance Initializer

Transformation: Java compile time constants (with
primitive values) are transformed to C# constants and
static keyword is removed from Java’s declaration, if it
is there, because C# const is implicitly static. The
runtime constants are transformed to readonly constants.
This is done by 7 functions translateFieldDeclaration,
changeField, checkPrimitiveConstatnts, isCompileTime,
checkRunTimeConstatnts, finalToConst, and
finalToReadOnly. Two of them follow:
%for constants that has no immediate
%value in their declaration
function checkRunTimeConstants
 replace[field_declaration]

 Modifiers[repeat modifier]
 TypeSpecifier[type_specifier]
 VarDecl[variable_declarator];

 where Modifiers[containFinal]
 where not VarDecl[isCompileTime]
 by Modifiers[finalToReadOnly]

 [removeNonCSModifiers]
 [changeProtected]

 TypeSpecifier [changeDataTypes]
 [changeArrayTypes]
 VarDecl ;
end function

%change the keyword final to readonly
function finalToReadOnly
 replace *[repeat modifier]

 CurrentModifier[modifier]
 RemainingModifiers
 [repeat modifier]
 where CurrentModifier[isFinal]
 by 'readonly
 RemainingModifiers
end function

Example 4: Transformation of a Small Program
Java2C# was tried on several small size programs. Figure 7
is an example of full program transformation using some of
the rules discussed above and others. It is a very small
example due to space limitation. We provide the necessary
explanation and details of how the transformation happens
using Java2C# rules and functions at the end of the
example.
The main transformation rule matches against the whole
Java program, which consists of a package header, import
declaration and type declaration. The package header is
redefined to include the C# notation and
changePackageToNamespace function transforms it to a C#
namespace declaration. The import declaration is optional
and the program does not contain an import clause. The
default System namespace in C# is added automatically to
the program because it contains most API and utility
classes needed for simple programs.
The program consists of one type declaration, which is the
class itself. changeClassHeader is matched by the class
declaration and used to treat the whole class. It divides the
class to its header and body. A new class header is created
after calling changeModifiers, changeImplement, and
changeExtend to do more refined work. A class body is
transformed by translateEmptyBody for an empty body and
changeClassBody for body with fields, instance initializers,
static initializers, constructors and method declarations.
The class body contains a method declaration matched by
translateMethods. The function pattern match is the special
main method. As a method it consists of modifiers, type
specifier, an optional throws clause and method body. The
special thing about Java ‘main’ method is that its name
should be transformed to ‘Main’ with capital M in C#.

Java
package Txl;
class SwitchEx {
 public static void main (
 String args[]) {
 int i = 2;
 switch(i) {
 case 1:
 System.out.println("one");
 case 2:
 System.out.println("Two");
 break;
 case 3:
 System.out.println("Three");
 break;
 default:
 System.out.println("Default");
 }
 }
}

C#
using System;
namespace Txl
{
 class SwitchEx {
 public static void Main
 (String [] args) {
 int i = 2;
 switch (i) {
 case 1 :
 Console.WriteLine ("one");
 goto case 2;
 case 2 :
 Console.WriteLine("Two");
 break;
 case 3 :
 Console.WriteLine("three");
 break;
 default :
 Console.WriteLine("Default");
 break;
 }
 }
 }
}

Figure 7. Full Program Transformation

changeMethodDeclarator function is used to capitalize the
first letter from the name and also change the formal
parameters declaration from String args[] to String [] args
which is the valid C# array declaration.
changeFormalParamsDataTypes is used to change data
types between the two languages. The method body is sent
to translateBlock to transform it.
The method block consists of one or more declaration or
statement. The declaration of the variable i is matched by
translateVarDeclaration which further calls
checkLocalVars,checkLocalConstants,
changeArrayDimensions, checkLocalRunTimeConstants
and checkLocalBlankConstants functions to cooperate in
transforming the local variable declaration.
The body also contains a switch statement, which is
matched by translateStatementInBlock function and it
selects the function changeSwitch to transform the switch
statement. changeSwitch function calls changeExpression
to transform the expression, addBreak to add a break
statement to the case alternative statements if it is not
provided and fallThrough to prevent falling through the
next case alternative. It also calls changeSwitchStmts
function to look after transforming the statements inside the
case. The result of the effort of these functions together is
the addition of a break statement to the default case in the
program, the goto statement is constructed and added to
case 2 to prevent falling through case 3. The
System.out.println API call is transformed to its functional
equivalence Console.writeLine call.
Every rule/function matches its pattern, does a successful
transformation job and replaces the input Java code with
the C# code. The result of transformation the C# program
in Figure 7. Below are three of the functions used during
the transformation process
%Change the method name and parameters
%If it is main method, rename it as Main
function changeMethodDeclarator
 replace [method_declarator]

Name [method_name]
'(FormalParms [list
formal_parameter] ')
Dim [repeat dimension]

 %change every parameter
 construct NewFormalParms
 [list formal_parameter]

_[changeFormalParamsDataTypes each
FormalParms]

 by Name[changeMain] '(
 NewFormalParms ')Dim
end function
function changeMain
 replace[method_name]

'main
 by 'Main
end function

function translateVarDeclaration
 replace*[repeat
 declaration_or_statement]

Var[local_variable_declaration]
Remaining[repeat
 declaration_or_statement]

 by Var[checkLocalVars][
 checkLocalConstants]

[checkLocalRunTimeConstants]
[checkLocalBlankConstants]
[changeArrayDimensions]
Remaining[translateVarDeclaration]

end function
%In C# last alternative statements
%have to have a break
function addBreak
 replace[repeat switch_alternative]

SwitchAlters [repeat
switch_alternative]

 construct Length [number]
 %how many statements?

_[length SwitchAlters]
 construct Index[number]Length[- 1]

%get the last option
 construct LastAlter[repeat
 switch_alternative]

SwitchAlters [tail Length]
%start from tail

 deconstruct LastAlter
 %divide it into its contents
 Label[switch_label]
 Stmts
 [repeatdeclaration_or_statement]
 %no break ?
 where not Stmts[ContainBreak]

% all alternatives before
% the last one

 construct BeforeLastAlter
 [repeat switch_alternative]

SwitchAlters [head Index]
%a new break to be added

 construct Break [repeat
declaration_or_statement]
break ;

 construct NewStmts [repeat
 declaration_or_statement]

Stmts[. Break]
%add new break statement to others

 %new statements with break
 construct NewLastAlter[repeat
 switch_alternative]

Label NewStmts
 construct NewSwitchAlters[repeat
 switch_alternative]

BeforeLastAlter[. NewLastAlter]
 by NewSwitchAlters
end function

5. Related Work
Many specific and some generic research and commercial
language conversion tools can tackle some S2ST problems
with different levels of success. The larger the semantic and

syntactic gap between the source and target languages, the
harder the conversion is [13]. The closest work to Java2C#
is Microsoft Java Language Conversion Assistant (JLCA),
currently available in version 2.0 and Beta version 3.0 [12].
It can convert Java applications to J++ and C# and Java API
calls to native .Net Framework calls, 80% automatically, as
the owners claim. See [14] for a discussion of JLCA, an
example of code conversion, some of the issues that rise
during API conversion and the manual coding required to
finish up the conversion task. It is unclear what conversion
technology is used in JLCA, as it is proprietary. It is also
unclear how flexible and extendable JLCA is. Java2C# is
unique in using parse tree rewriting via by-example style of
rule specification, as in TXL. Extensions to cover other
Java versions, addition of new transformation rules or
change of existing ones are well supported by the flexibility
of the transformer. Java2C# is unique in that it pays
attention to the detailed and subtle differences between
both languages. For example, Java2C# is watchful of the
default access (when no access modifiers specified in the
code) and is able to transform it. Java default access is
friendly access while C# default access is private. Ignoring
such defaults will be problematic in the resulting code.

6. Discussions, Lessons Learnt and Future Work
In this paper we presented our experience in building an
experimental language transformer, Java2C# using tree
rewriting via functional rule-based programming with TXL.
We have learnt some lessons from this experience:
1. The primary reason for language conversion is migrating

an application to a modern language or platform. The
migration decision is affected by many factors including
language and platform support, developers’ availability,
cost, performance and speed, market expansion and third
party product availability. However, a crucial factor for
making the decision is the availability of good tool
support for the conversion; otherwise, only trivial
programs can be manually converted cost effectively.
Good tool support requires significant investment.
Java2C# took 8 months part-time to build and it covers
only a sub-set of Java 1.1 to C# language conversion, not
including Java API. If we add the work needed to
convert every single Java API to .Net API, excluding
Java third party APIs, the effort needed will be
enormous. If we consider that several versions of Java
exist and that Java continues to evolve, we can easily
imagine how things will scale up.

2. Adopting TXL to build the transformer allows
incremental updates of the language transformer.
Whenever a newer version of Java is released, the older
TXL Java grammar can be updated and incremented with
REDFINE statements and other languages constructs.
Then the transformation rules can be updated as well.

3. Fully automated conversion is far from real in the current
technology. This is because human intelligence and
understanding is needed to deal with the cases when a

language construct or feature in the source language is
lacking in the target language, and there is no
straightforward replacement. Thus, there will be always
need for human effort to complete the missing pieces.
However, using some intelligent algorithms, custom built
solutions for specific programming patterns can help
convert some of these cases.

4. Transforming the core Java language to core C# is a non-
trivial task. But transforming the Java API, which has
thousands of classes and methods, is a huge task.
Considering how such APIs evolve and change, it
becomes very important to develop methods for
automatic API transformation. Graph transformation
technology might be a possible solution for this problem,
where one can define a graphical model of both the
source and target APIs and then define graph
transformation rules from the source to the target.
However, this idea needs further investigation.

For future work, Java2C# can be enhanced to be more
interactive and user friendly by generating additional
comments and reports about the transformation process,
transforming packages instead of one file at a time and
adding a wizard-oriented graphical user interface.
This work can be extended to apply to new Java
specifications after 1.1 in order to transform more recent
Java programs. This involves upgrading the Java grammar
in TXL by providing the grammar rules for newer features.
Including other Java technologies such as JSP, Servlets,
and Swing will be easier because Java2C# transforms the
core java code. As an example JSP (Java Server Pages)
code consists of special tags and objects, Java code and
HTML tags. To transform JSP to ASP.Net we only need
rules to map the JSP tags and objects to ASP.

Acknowledgements: The authors like to thank Jim Cordy and
Thomas Dean for their valuable advice and help during the
implementation of Java2C#.

References
[1] H. Sneed, Risks Involved in Reengineering Projects, Proc. of

6th Working Conf. on Reverse Eng. (WCRE), pp. 204-, 1999.
[2] M. Mossienko, Automated Cobol to Java Recycling, Proc. of

7th European Conf. on Software Maintenance and
Reengineering (CSMR), pp. 40-50, 2003.

[3] C. Collberg, C. Thomborson, and D. Low. A Taxonomy of
Obfuscating Transformations. Tech. Rep. 161. Dept. of
Comp. Sc., The Univ. of Auckland, New Zealand, July 1997.

[4] J. Cordy, TXL - A Language for Programming Language
Tools and Applications, Proc. ACM 4th Int. Workshop on
Language Descriptions, Tools and Applications (LDTA
2004), pp. 1-27, 2004. Electronic Notes in Theoretical
Computer Science 110, pp. 3-31 (Keynote paper).

[5] J. Cordy, , The TXL Programming Language, Version 10.4,
2005. Available at www.txl.ca.

[6] K. Cremer, A. Marburger and B. Westfechtel, Graph-Based
Tools for Re-engineering, J. of Software Maintenance and
Evolution: Research and Practice, 14(4), pp. 257-292, 2002.

[7] ISO/IEC, Information technology - Syntactic Metalanguage
-Extended BNF, ISO/IEC 14977:1996(E), 1996

[8] T. Dean, J. Cordy, A. Malton and K. Schneider, Grammar
Programming in TXL, Proc. IEEE 2nd Int. Workshop on
Source Code Analysis and Manipulation (SCAM'02), pp. 93-
102, 2002.

[9] N. Veerman, Restructuring Cobol Systems Using Automatic
Transformations, M.Sc. Thesis, Vrije Universiteit
Amsterdam, 2001.

[10] J. Cordy, T. Dean, A. Malton and K. Schneider, Software
Engineering by Source Transformation - Experience with
TXL, Proc. IEEE 1st Int. Workshop on Source Code
Analysis and Manipulation (SCAM'01), pp. 168-178, 2001.

[11] T. Dean, J. Cordy, K. Schneider and A. Malton, Experience
Using Design Recovery Techniques to Transform Legacy
Systems, Proceedings IEEE Int. Conf. on Software
Maintenance (ICSM), pp. 622-631, 2001.

[12] Microsoft, Java Language Conversion Assistant 3.0 (Beta),
2004.

[13] A. Terekov and C. Verhoef, The realities of language
conversion, IEEE Software 2000, 17(6): 111 124, 2000.

[14] N. Nanda and S. Kumar, Migrating Java applications to
.Net, JavaWorld Jan. 2003. Available at www.javaworld.
com/javaworld/jw-01-2003/jw-0103-migration_p.html

Appendix 1
The following table shows the main transformations
identified and classified in different categories of
transformations that are needed to transform Java legacy
applications to C#. Identical constructs are not shown here.

Direct Transformations
Java Concept C# Concept Supported
Package Namespace Fully
import declaration using clause Fully
main method Main method Fully
extends clause Colon followed by a name Fully
finalize method ~ class name No
synchronized lock Fully
final const/readonly Fully
byte sbyte Fully
boolean bool Fully
final class sealed class Fully
native extern Fully
No modifier virtual Fully
Final method No modifier (default is final) Fully
protected protected internal Fully
Shift operator >>> Shift operator >> Fully
instanceof is No

Multidimensional arrays Jagged arrays (of same
length) Partially

Default access is
friendly Default access is private Fully

static initializer static constructor Fully
Nested top level class or
interface (static) Static nested classes Fully

Block with semi colon Block with nothing inside it Fully

Indirect Transformations
Java Concept C# Concept Supported
super () Base () Fully
transient modifier Non-existent Fully
volatile modifier Non-existent Fully
Implements clause “:” followed by a name Fully
Instance initializer Non-existent Fully
Data type variable name [] Data type [] variable name Fully
System.out.print
System.out.println

Console.write
Console.writeline Fully

Challenging Transformations
Java Concept C# Concept Description Supported
Run time and
blank local
constants

C# doesn’t allow
local constants
without initial
constant value

Local constants
with no value in
their declaration.

Fully

throws
clause Non-existent All C# exceptions

are unchecked Fully

java.lang
Non-existent (System
class contains most
functionality)

Default
package (API
calls)

Partially

Interface
constant fields

Non-
existent

Shared constants
declared in an interface

Inner classes
 (non static)

Non-
existent

A class defined as a member
(non static) of another.

Local class Non-
existent

A class defined in a
block of code.

Anonymous
class

Non-
existent

Unnamed class defined
within an expression.

A
comment
is added
for
manual
inter-
vention.

Anonymous arrays Non-existent Unnamed arrays No
switch
Statement

switch
Statement

Multiple-selection
structure Fully

break
to label

goto statement with the
same label name after it

Transfers
control to a label Fully

continue
to a label

goto statement with
the same label name
after it

Transfers
control to a
label

Fully

Not Studied
Java Concept C# Concept Description
Java Swing Windows Forms Applications Provide GUI support
Java Collections
Framework

. NET Collection
Classes

APIs and main
language packages

Applets Windows user
controls

Web pages client side
technology

JSP and Servlets ASP.Net Dynamic web pages
JDBC Java Data-
base Connectivity ADO.Net Database access

EJB Enterprise
Java Beans

. Net managed
Components

Application server
classes

