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Abstract. We study uncertainty models in sequential pattern mining.
We consider situations where there is uncertainty either about a source

or an event. We show that both these types of uncertainties could be
modelled using probabilistic databases, and give possible-worlds seman-
tics for both. We then describe ”interestingness” criteria based on two
notions of frequentness (previously studied for frequent itemset min-
ing) namely expected support [C. Aggarwal et al. KDD’09;Chui et al.,
PAKDD’07,’08] and probabilistic frequentness [Bernecker et al., KDD’09].
We study the interestingness criteria from a complexity-theoretic per-
spective, and show that in case of source-level uncertainty, evaluating
probabilistic frequentness is #P-complete, and thus no polynomial time
algorithms are likely to exist, but evaluate the interestingness predicate
in polynomial time in the remaining cases.

Keywords: Mining Uncertain Data, Sequential Pattern Mining, Proba-
bilistic Databases, Novel Algorithms for Mining, Theoretical Foundations
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1 Introduction

The problem of sequential pattern mining (SPM), or finding frequent sequences
of events in data with a temporal component, was originally proposed by Agrawal
and Srikant for analyzing retail data [18], [4]. Since then, it has gained a great
deal of attention [26], [17], [5] and has found applications in other domains,
including discovering web access patterns and motif extraction [10], [23].The
classical SPM problem assumes that the data is deterministic, or entirely deter-
mined. However, it is recognized that data obtained from a wide range of data
sources is inherently uncertain [2], [19]. An approach to modelling uncertainty
that has seen increased interest recently is that of probabilistic databases [19], [2];
even more recently data mining and ranking problems have been studied in the
context of probabilistic databases, including top-k [27], [8] and frequent itemset
mining (FIM) [3], [6], [7]. This paper considers the SPM problem in probabilistic
databases.

Although SPM is superficially similar to FIM, we observe that generalizing
SPM to probabilistic databases gives rise to some subtle issues. As we show,
different ways of formalizing the problem can lead to very different outcomes in
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terms of computational complexity. We now outline the main issues, for which we
give a high-level overview of SPM (a formal definition is in Section 2). In SPM,
events (retail transactions, observations of objects/persons) are associated with
sources (customers, sensors/cameras). Events have a time-stamp, so the event
database is easily re-organized into a collection of source sequences, each of which
is a sequence of events (ordered by time stamp) associated with a given source.
The SPM problem is to find sequential patterns – patterns of events that have a
temporal order – that occur in a significant number of source sequences. Unlike
FIM, uncertainty in SPM can occur in three different aspects: the source, the
event and the time may all be uncertain. Uncertainty in time seems not well-
suited to the probabilistic database approach, and we focus on uncertainty in
(any one of) the source and the event.

Source-Level Uncertainty (SLU). In the following situations, an event is
recorded deterministically, but the source is not readily identifiable:

(a) a customer (source) purchases some items (event) from a store, and pro-
vides identity information (loyalty programme, filling a form etc.). However,
multiple matches may emerge in the customer database: the customer’s de-
tails may be incomplete or incorrect, or the customer database itself may be
probabilistic as a result of “deduplication” or cleaning [13].

(b) a vehicle/person is identified by a sensor/camera using methods such as
biometrics or automatic number plate recognition (ANPR), which are in-
herently noisy. To mine patterns such as “10% of cars pass camera X , then
camera Y and later camera Z”, we consider each car as a source and each
sighting as an event.

In such scenarios, it is certain that an event occurred (e.g. a customer bought
some items, a vehicle/person entered an area) but the source associated with
that event is uncertain. The software would typically assign confidence values to
the various alternative matches. Whilst large databases of type (a) are readily
available in commercial organizations, large databases of type (b) are now be-
coming more common, a notable example being the UK’s police ANPR database
[24]. We model the above scenarios by assuming that each event is associated
with a probability distribution over possible sources that could have resulted in
the event. This formulation thus shows attribute-level uncertainty [19], as the
“source” attribute of each event is uncertain.

Event-Level Uncertainty (ELU). In some scenarios, the source of the data
is known, but the events are uncertain. Such scenarios could be modelled as
a sequence of events output by a source, but with each event only having a
certain probability of having truly occurred (i.e. tuple-level uncertainty [19]), or
as above, using attribute-level uncertainty. For example:

(a) Employees movements are tracked in a building using RFID sensors [15]. The
stream of tags read by various sensors is stored in a relation SIGHTING(t,
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tID, aID), which denotes that the RFID tag tID was detected by an-
tenna aID at time t. Since an RFID antenna has only a certain proba-
bility of reading a tag within its range, the PEEX system [15] processes the
SIGHTING relation to output an uncertain higher-level event relation such
as MEETING(time, person1, person2, room, prob). An example tuple in
MEETING could be (103, ’Alice’, ’Bob’, 435, 0.4), which means that at time
103, PEEX believes that Alice and Bob are having a meeting (event) with
probability 0.4 in room 435 (source) [15]; since antennae are at fixed loca-
tions, the source is certain but the event is uncertain.1

(b) A logged-in user (source) enters terms into a search engine (events), which are
disambiguated in many different ways e.g. a search term “Tiger” could be dis-
ambiguated as 〈(Animal, 0.5), (Sports Personality, 0.3), (Airplane, 0.1), . . .〉.

Our Contributions. The problem of SPM in probabilistic databases was in-
troduced in [16]. Our main contributions are as follows.

(1) We formalize the notion of event-level uncertainty, provide a possible-
worlds semantics, and contrast it with source-level uncertainty. From the possible-
worlds semantics, we obtain definitions for frequent sequences under two mea-
sures: expected support and probabilistic frequentness. These measures were used
earlier for FIM in probabilistic data [6], [7]. For SPM [16] addressed source-level
uncertainty with the expected support; the other three combinations are new.

(2) We discuss the computational complexity of the fundamental question:

Given a sequence s and a probabilistic database, is s frequent?

In the framework described in [12], which includes not only SPM but also
FIM and a host of other database optimization and machine learning problems,
the above question is the interestingness or quality predicate. As noted in [12],
given such a predicate as a “black box”, one can embed it into a variety of
candidate generate-and-test frameworks for finding not only frequent sequential
patterns, but also maximal frequent sequential patterns. Many popular classi-
cal SPM algorithms such as GSP [18], SPADE [26] or SPAM [5] all fit into
this framework, and algorithms such as PrefixSpan [17], which do not explicitly
generate candidates, also implicitly evaluate the interestingness predicate.

Whilst the interestingness predicate can often be readily evaluated in poly-
nomial time in the deterministic setting, this is not so clear in the probabilistic
setting, as a naive approach would involve enumerating exponentially many pos-
sible worlds. We show a significant difference from a complexity-theoretic view-
point between the four variants of the problem (two models and two measures);
whilst for three variants, it takes polynomial time to check if a sequence is fre-
quent, for the fourth, this task is #P-complete, and thus no polynomial-time
algorithms are likely to exist.

1 Some formulations of this and similar problems may even exhibit SLU.
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Related Work. Classical SPM has been studied extensively [18], [26], [17], [5].
Modelling uncertain data as probabilistic databases [19], [2] has led to several
ranking/mining problems being studied in this context. The top-k problem (a
ranking problem) was intensively studied recently (see [14], [27], [8] and ref-
erences therein). In particular [8] highlights subtle issues in the semantics of
the term “top-k” when applied to probabilistic databases. FIM in probabilistic
databases was studied under the expected support measure in [3], [7]; and under
the probabilistic frequentness measure in [6]. A dichotomy result, showing that
certain queries on probabilistic databases are either #P-complete or in PTIME
was given in [9], but this applies to “tuple-level independent” probabilistic struc-
tures, which do not model SPM (upper bounds) or source-level uncertainty for
SPM (for hardness). To the best of our knowledge, apart from [16], the SPM
problem in probabilistic databases has not been studied. However, uncertainty
in the time-stamp attribute was considered in [20] – we do not consider time to
be uncertain. Also [25] studies SPM in “noisy” sequences, but the model pro-
posed there is very different to ours and does not fit in the probabilistic database
framework.

2 Problem Statement

2.1 Models of Uncertainty

In this section, we give formal definitions of the source-level and event-level
uncertain models. We begin by formally defining the classical SPM problem,
then the event-level uncertain model. When defining the event-level uncertain
model, for simplicity we consider only the tuple-level uncertain case (example in
Table. 1). We then recap the source-level uncertain case from [16].

Deterministic SPM. We begin by recapitulating the definition of standard
SPM. Let I = {i1, i2, . . . , iq} be a set of items and S = {σ1, . . . , σm} be a set of
sources. An event e ⊆ I is a collection of items. A database D = 〈r1, r2, . . . , rn〉 is
an ordered list of records such that each ri ∈ D is of the form (eid i, ei, σi), where
eid i is an event-id, ei is an event and σi is a source. A sequence s = 〈s1, s2, . . . , sa〉
is an ordered list of events. Let s = 〈s1, s2, . . . , sq〉 and t = 〈t1, t2, . . . , tr〉 be two
sequences. We say that s is a subsequence of t, denoted s � t, if there exist
integers 1 ≤ i1 < i2 < · · · < iq ≤ r such that sk ⊆ tij

, for k = 1, . . . , q. The
source sequence corresponding to a source i, denoted by Di, is just the multiset
{e|(eid, e, i) ∈ D}, ordered by eid. For a sequence s and source i, let Xi(s, D) be
an indicator variable, whose value is 1 if s � Di , and 0 otherwise. The objective
is to find all sequences s whose support (Supp) is at least some user-defined
threshold θ, 1 ≤ θ ≤ m, where:

Supp(s, D) =
m∑

i=1

Xi(s, D). (1)



On Probabilistic Models for Uncertain Sequential Pattern Mining 5

Event-Level Uncertainty. A probabilistic database Dp is a collection of p-
sequences Dp

1 , . . . , D
p
m, where Dp

i is the p-sequence of source i ∈ S. A p-sequence
is the natural analogue of the source sequence in classical SPM, and each p-
sequence is of the form 〈(e1, c1) . . . (ek, ck)〉, where the ej ’s are events (ordered
by eid) and cj is the confidence that ej actually occurred. In examples, we write a
p-sequence 〈({a, d}, 0.4), ({a, b}, 0.2)〉 as (a, d : 0.4)(a, b : 0.2). An example of an
event-level uncertain database is in Table. 1(L). The possible worlds semantics

of Dp is as follows. For each event ej in a p-sequence Dp
i there are two kinds

of worlds; one in which ej occurs and the other where it does not. Let occur
= {x1, . . . , xl}, where 1 ≤ x1 < . . . < xl ≤ k, be the indices of events that occur
in D∗

i . Then D∗
i = 〈ex1

, . . . , exl
〉, and Pr(D∗

i ) =
∏

j∈occur cj ∗
∏

j 6∈occur(1 − cj).
In other words, we assume that the events in a p-sequence are stochastically
independent. For example, all possible worlds of Dp

Y are shown in Table. 1(R)
along with detailed probabilities. The set of possible worlds of Dp

i , denoted
by PW (Dp

i ), is obtained by taking all possible 2l alternatives for occur, and
we say PW (Dp) = PW (Dp

1) × . . . × PW (Dp
m). The full set of possible worlds

for each source is shown in Table. 2(L). For any D∗ ∈ PW (Dp) such that
D∗ = (D∗

1 , . . . , D
∗
m), the probability of D∗ is given by Pr[D∗] =

∏m

i=1 Pr(D∗
i ),

i.e. we assume that the p-sequences of all sources are mutually independent. An
example possible world D∗ is shown in Table. 2(R), which is obtained by taking
one possible world each from the worlds of every p-sequences in Table. 2(L). The
probability of D∗ is the product of probabilities of all the worlds in it, Pr[D∗]
= 0.29 × 0.32 × 0.35 = 0.03.

Table 1. An event-level uncertain database (L), and all possible worlds of D
p

Y along
with their probabilities (R).

p-sequence

D
p

X (a, d : 0.6)(a, b : 0.3)(b, c : 0.7)

D
p

Y (a, d : 0.4)(a, b : 0.2)

D
p

Z (a : 1.0)(a, b : 0.5)(b, c : 0.3)

〈〉 (1 − 0.4) × (1 − 0.2) = 0.48

{(a, d)} (0.4) × (1 − 0.2) = 0.32

{(a, b)} (1 − 0.4) × (0.2) = 0.12

{(a, d)(a, b)} (0.4) × (0.2) = 0.08

Table 2. The set of possible worlds for every p-sequence in Table. 1 (L). In all, there
are 8 × 4 × 4 = 128 possible worlds of Dp, one such possible world is shown (R).

PW (Dp

X
) {〈〉 = 0.084}; {(a, d) = 0.126}; {(a, b) = 0.036}; {(b, c) = 0.196};
{(a, d)(a, b) = 0.054}; {(a, d)(b, c) = 0.294};
{(a, b)(b, c) = 0.084}; {(a, d)(a, b)(b, c) = 0.126}

PW (Dp

Y
) {〈〉 = 0.48}; {(a, d) = 0.32}; {(a, b) = 0.12}; {(a, d)(a, b) = 0.08}

PW (Dp

Z
) {(a) = 0.35}; {(a)(a, b) = 0.35}; {(a)(b, c) = 0.15};
{(a)(a, b)(b, c) = 0.15}

D∗

X

{(a, d)
0.294

(b,c)}
D∗

Y {(a, d)} 0.32

D∗

Z

{(a)
0.35

(a, b)}
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Source-Level Uncertainty. A probabilistic database Dp is an ordered list of
records 〈r1, . . . , rn〉 of the form (eid , e,W) where eid is an event-id, e is an event
and W is a probability distribution over S. The distribution W contains pairs
of the form (σ, c), where σ ∈ S and 0 < c ≤ 1 is the confidence that the event e
is associated with source σ; we assume

∑

(σ,c)∈W c = 1. An example of a source-

level uncertain database is in Table. 3(L). A possible world D∗ of Dp is generated
by taking each event ei in turn, and assigning it to one of the possible sources
σi ∈ Wi, where σi ∈ S. Thus every record ri = (eidi, ei, Wi) ∈ Dp takes the
form r′i = (eidi, ei, σi), for some σi ∈ S in D∗. By enumerating all such possible
combinations, we get the complete set of possible worlds. Assuming that the
distributions associated with each record ri in Dp are stochastically independent,
the probability of a possible world D∗ is Pr[D∗] =

∏n

i=1 PrWi
[σi]. For example,

a possible world D∗ for the database of Table. 3 can be generated by assigning
events e1, e3 and e4 to X with probabilities 0.6, 0.3 and 0.7 respectively, and
e2 to Z with probability 1.0, and Pr[D∗] = 0.6 × 1.0 × 0.3 × 0.7 = 0.126. The
complete set of possible worlds for database of Table. 3 is in Table. 4.

Of course, a source-level uncertain database can be transformed into a collec-
tion of p-sequences, and it will be useful to do so. Specifically, for i = 1, . . . , m,
let Dp

i be a list of those events in Dp that have non-zero confidence of being
associated with source i, ordered by eid, together with the associated confi-
dence. However, the resulting p-sequences are not independent; as shown in
Table. 3. Thus, one may view a source-level uncertain database as a collection
of p-sequences with dependencies in the form of x-tuples [8].

Table 3. A source-level uncertain database (L) transformed to p-sequences (R). Note
that the p-sequence representation is the same as the event-level uncertain database of
Table. 1. However, events like e1 (marked with † on (R)) can only be associated with
one of the sources X and Y in any possible world.

eid event W

e1 (a, d) (X : 0.6)(Y : 0.4)

e2 (a) (Z : 1.0)

e3 (a, b) (X : 0.3)(Y : 0.2)(Z : 0.5)

e4 (b, c) (X : 0.7)(Z : 0.3)

p-sequence

D
p

X (a, d : 0.6)†(a, b : 0.3)(b, c : 0.7)

D
p

Y (a, d : 0.4)†(a, b : 0.2)

D
p

Z (a : 1.0)(a, b : 0.5)(b, c : 0.3)

2.2 Notions of Frequentness

We now use the possible-worlds semantics to give two definitions of frequentness.

Expected Support. As every possible world D∗ is a (deterministic) database,
Supp(s, D∗) is defined as in Eq. 1. We then define the expected support of a
sequence s in Dp as follows:

ESupp(s, Dp) =
∑

D∗∈PW (Dp)

Pr[D∗] ∗ Supp(s, D∗). (2)
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Table 4. All possible worlds for the database of Table. 3 along with their probabilities.
The right-most column shows the support of the sequence (a)(b) in each possible world.

D∗ X Y Z Pr(D∗)
D∗

1
(a, d : 0.6)(a, b : 0.3)(b, c : 0.7) 〈〉 (a : 1.0) 0.126 1

D∗

2
(a, d : 0.6)(a, b : 0.3) 〈〉 (a : 1.0)(b, c : 0.3) 0.054 2

D∗

3
(a, d : 0.6)(b, c : 0.7) (a, b : 0.2) (a : 1.0) 0.084 1

D∗

4
(a, d : 0.6) (a, b : 0.2) (a : 1.0)(b, c : 0.3) 0.036 1

D∗

5
(a, d : 0.6)(b, c : 0.7) 〈〉 (a : 1.0)(a, b : 0.5) 0.210 2

D∗

6
(a, d : 0.6) 〈〉 (a : 1.0)(a, b : 0.5)(b, c : 0.3) 0.090 1

D∗

7
(a, b : 0.3)(b, c : 0.7) (a, d : 0.4) (a : 1.0) 0.084 1

D∗

8
(a, b : 0.3) (a, d : 0.4) (a : 1.0)(b, c : 0.3) 0.036 1

D∗

9
(b, c : 0.7) (a, d : 0.4)(a, b : 0.2) (a : 1.0) 0.056 1

D∗

10
〈〉 (a, d : 0.4)(a, b : 0.2) (a : 1.0)(b, c : 0.3) 0.024 2

D∗

11
(b, c : 0.7) (a, d : 0.4) (a : 1.0)(a, b : 0.5) 0.140 1

D∗

12
〈〉 (a, d : 0.4) (a : 1.0)(a, b : 0.5)(b, c : 0.3) 0.060 1

We illustrate these concepts by computing the expected support of a sequence
s = (a)(b) and the event-level uncertain database of Table. 1. Since there are too
many possible worlds, we do not use Eq. 2 and compute ESupp(s) as follows.
We first compute, for every source, the probability that it supports s. E.g. from
Table. 2, all worlds in PW (Dp

Z) support s except the first one, so the probability
that Z supports s is (0.35+0.15+0.15) = 0.65, and the probability that it does
not is 0.35. Similarly, the probabilities that X and Y support s are 0.558 and
0.08. Now for i = 0, 1, 2, 3, we use the independence of p-sequences to compute
the probability that exactly i sources support s as shown in Table. 5(L), e.g.
the probability that s is supported by all three sources is (0.558 × 0.08 × 0.65)
= 0.029. Then we get ESupp(s) = (0 × 0.142 + . . . + 3 × 0.029) = 1.288.

To compute ESupp(s) for the source-level uncertain case (Table. 3), we di-
rectly use Eq. 2 together with Table. 4 (and get that ESupp(s) = (1×0.126+2×
0.054+ . . . + 1× 0.060) = 1.288. Note that the event- and source-level uncertain
databases of Tables. 1 and 3, which have the same p-sequence form, have the
same expected support, even though the possible worlds are very different.

We now formalize the computational task of finding all frequent sequences
in a probabilistic database Dp [16]:

Definition 1. Given a probabilistic database Dp, determine all sequences s such
that ESupp(s, Dp) ≥ θ, for some user-specified threshold θ.

Table 5. The SPD for the probabilistic DBs of Table. 1 (left) and Table. 3 (right).

No. of sources 0 1 2 3

support probability 0.142 0.456 0.372 0.029

No. of sources 0 1 2 3

support probability 0.0 0.712 0.288 0.0

Probabilistic Frequent Sequences. A criticism of expected support [6] is
that the expectation of a random variable is only one of its measures, and it
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does not provide confidence bounds that the support of a sequence is high.
Following [6], we define the notion of probabilistic frequent sequences.

Given a probabilistic database Dp and its set of possible worlds PW (Dp),
the support probability for a sequence s and support value k is denoted by:

Prk(s) =
∑

D∗∈PW (Dp),(Supp(s,D∗)=k)Pr(D∗), (3)

where Supp(s, D∗) is the support of s in D∗. In other words, Prk(s) is the
probability that the support of s is exactly k. Next define the support proba-
bility distribution (SPD) as the vector 〈Pr0(s), . . . , Prm(s)〉. The SPDs for the
databases of Table. 1 and Table. 3 are shown in Table. 5 and are very different,
even though the p-sequences are the same, e.g. for the event-level DB in Table. 1,
Pr3(s) = 0.029, but in the source-level DB of Table. 3, Pr3(s) = 0, as no such
world exists where all three sources support s (see Table. 4). Finally, denote by
Pr≥θ(s) =

∑m

k=θ Prk(s) the probability that the support of s is at least θ. We
now define:

Definition 2. Given a probabilistic database Dp and two user-specified thresh-
olds, a support threshold θ, 1 ≤ θ ≤ m and a confidence threshold τ ∈ (0, 1],
find all probabilistic frequent sequences (PFSes), which are sequences s s.t.
Pr≥θ(s) ≥ τ (i.e. s is a PFS if it has probability ≥ τ of having support ≥ θ).

Observe that the SPD gives far more detailed information than expected sup-
port; from the SPD of a sequence one can easily compute not only the expected
support, but also the variance and higher moments.

3 Support Computation

We now discuss the computational complexity of computing frequent sequences
based on the definitions in the previous section. As indicated earlier, we focus
on the interestingness predicate, which when specialized to our problem and
definitions of frequentness, yield the following questions. Given a probabilistic
database Dp (either source-level or event-level uncertain):

– For a given sequence s and a threshold θ, is ESupp(s, Dp) ≥ θ?

– For a given sequence s and thresholds θ and τ , is Pr(Supp(s, Dp) ≥ θ) ≥ τ?

We assume that the database, whether source-level or event-level uncertain,
is given as a list of p-sequences. We denote by m the number of sources (as
before), by Ni the number of events in the p-sequence of the i-th source, by
N =

∑m

i=1 Ni the total size of all p-sequences and by k the number of events in
s.2

2 We assume that an event consists of at most a constant number of items.
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3.1 Source support probability

The first task is to determine the source support probability, namely the proba-
bility that a given source σi supports a sequence s, or Pr(s � Dp

i ). An important
issue is that s may be a subsequence of Dp

i in many different ways. For example,
if s = 〈(a)(a) . . . (a)

︸ ︷︷ ︸

k times

〉 and Dp
i = 〈(a : c1), (a, c2), . . . , (a, cNi

)〉, then any subset of

k positions from Dp
i could be the (sole) basis for the i-th source to support s. In

[16] a dynamic programming recurrence is given that computes this probability
in polynomial time:

Theorem 1 ([16]). Given s and Dp
i , we can calculate Pr(s � Dp

i ) in O(k ·Ni)
time.

3.2 Expected Support

For both event-level and source-level uncertainty, it was shown in [16] that:

ESupp(s, Dp) =

m∑

i=1

Pr(s � Dp
i ). (4)

This holds even though p-sequences are not independent in the source-level
uncertain case, due to the principle of linearity of expectation. To calculate
ESupp(s, Dp) using Eq. 4, we can apply Theorem 1 to each source in turn,
which takes O(k ·

∑m

i=1 Ni) = O(kN) time, and obtain:

Theorem 2. Given s and Dp, we can calculate ESupp(s, Dp), and hence evalu-
ate the interestingness predicate, in O(kN) time, for both event-level and source-
level uncertainty.

3.3 Probabilistic Frequentness

Event-Level Uncertainty. As in [6], we compute the entire support proba-
bility distribution (SPD), namely the vector 〈Pr0(s), . . . , Prm(s)〉, where Prk(s)
is the probability that the support of s is exactly k. Given the SPD, we then
compute the cumulative probabilities Pr≥θ(s) =

∑m

k=θ Prk(s) in O(m) time and
thereby answer the interestingness predicate.

In the case of event-level uncertainty, the p-sequences are independent. This
allows the SPD to be calculated as a dynamic programming recurrence as follows.
We first compute Pr(s � Dp

i ) for all sources i in O(kN) time as in Thm. 2. Next,
we define Pri,j(s), for 0 ≤ i, j ≤ m, as the probability that exactly i of the first
j sources support s. We then use the formula:

Pri,j(s) = Pri−1,j−1(s) · Pr(s � Dp
i ) + Pri,j−1(s) · (1 − Pr(s � Dp

i )), (5)

where Pr0,j(s) = 1, 0 ≤ j ≤ m and Pri,j(s) = 0, ∀ i > j, to compute all the
values Pri,j in O(m2) time. Since Pri,m(s) = Pri(s), we get the full SPD and can
use this to determine if s is a PFS; the overall time is O(kN +m2). In summary:
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Theorem 3. Given s and Dp, if Dp is an event-level uncertain database, we
can calculate the support probability distribution, and hence the interestingness
predicate in O(kN + m2) time.

Remark 1. When computing Pri,j(s) using Eq. 5, we consider two cases: either σi

supports s, and exactly j−1 of σ1, . . . , σi−1 support s (the first term) or σi does
not support s and exactly j of σ1, . . . , σi−1 support s. The correctness of Eq. 5
depends crucially on the fact that we assume independence among p-sequences,
so Pr(s � Dp

i ) (resp. Pr(s 6� Dp
i )) is unchanged even when conditioned on

knowing that exactly j − 1 (resp. j) of the first i − 1 sources support s.

Remark 2. Since N/m is the average length of a p-sequence, N/m � m and
(since k is not very large as well) the m2 term will often dominate the kN term.
This means the interestingness predicate for probabilistic frequentness will often
be computationally more expensive than for expected support.

Source-Level Uncertainty. In source-level uncertainty, we cannot use Eq. 5
to efficiently compute the SPD, since the p-sequences are not independent (see
Remark 1). Consider the very simple probabilistic database which consists of
just the event {a}, associated with source σ1 and σ2 with probabilities 0.5 each.
There are only two possible worlds, the first with the event {a} associated with
σ1 and nothing with σ2, and the second the other way around. Clearly, if s is the
sequence 〈{a}〉, then Pr(s � Dp

1) = Pr(s � Dp
2) = 0.5. However, applying Eq. 5

gives that Pr1,1 = 0.5 (correct) and Pr2,2 = 0.25 (incorrect). The probability that
both sources support s is zero, not 0.25 – there is no possible world in which
both sources support s. To see what goes wrong, consider the computation of

v1

v2

v3

u1

u2

u3

(a)

eid event W

e1 a (σ1:0.5)(σ2:0.5)

e2 a (σ1:0.33)(σ2:0.33)(σ3:0.33)

e3 a (σ1:0.5)(σ3:0.5)

(b)

Fig. 1. A sample bipartite graph (a) transformed to a probabilistic database (b).

Pr2,2(s) as Pr1,1(s) · 0.5 + Pr2,1(s) · 0.5 = 0.5 · 0.5 + 0 · 0.5 = 0.25. Looking at the
first term, if σ1 supports s, then conditioned on this knowledge, the probability
that σ2 supports s is zero. Thus, the correct computation for Pr2,2(s) would be
as 0.5 · 0 + 0 · 0.5 = 0. Unfortunately, the difficulty is not with one particular
approach but is intrinsic to the problem: we now show that computing even a
single entry of the SPD is provably hard. Define the following problem:
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source event(s)

σ1 e1, e2

σ2 〈〉

σ3 e3

v1

v2

v3

u1

u2

u3

(a)

source event(s)

σ1 e3

σ2 e1

σ3 e2

v1

v2

v3

u1

u2

u3

(b)

Fig. 2. Two possible worlds in PW (Dp) and their bipartite graph representations. A
perfect matching (b), when every vertex in U ∪ V is adjacent to a single edge.

Definition 3 (Exact-k Support problem). The input is a source-level un-
certain probabilistic database Dp, a sequence s and a number k, 0 ≤ k ≤ m. The
output is Prk(s), i.e. the probability that exactly k sources support s.

Theorem 4. Exact-k Support is #P-complete.

Proof. We reduce the problem of computing the number of perfect matchings in
a bipartite graph, a known #P-complete problem [21] to Exact-k Support.

Let G(U, V, E) be an undirected bipartite graph, where U and V are disjoint
sets of vertices and E is the set of edges between them, E ⊆ U × V . We assume
that |U | = |V | = n. A perfect matching M is a subset of edges in E such that
each vertex in U ∪V is adjacent to exactly a single edge in M . Given a bipartite
graph G, the problem of counting how many perfect matchings there are in G is
#P-complete [21].

Given a bipartite graph G, to compute the number of matchings in G, we
create an instance of Exact-k Support (a probabilistic database Dp, a se-
quence s and a number k) in polynomial time such that solving the latter
instance gives the number of perfect matchings in G. Given G = (U, V, E)
where U = {u1, . . . , un} and V = {v1, . . . , vn}, we create a set of sources
S = {σ1, . . . , σn} such that σi ∈ S represents ui ∈ U . The probabilistic database
Dp is a set of records ri = (ei, e, Wi), where ei is a event id, e is an event
and Wi is a distribution. The record ri represents vi in V together with all the
edges from vi to the neighborhood of vi, i.e. the set of vertices in U adjacent
to vi. In what follows, we denote the neighborhood of vi as N(vi). The event
contained in every record is a set containing just the singleton element {a}. In
the i-th record ri, the distribution Wi contains only the sources σj that rep-
resent vertices uj ∈ N(vi). All sources in Wi have the same probability, i.e.
(1/|N(vi)|). An example of such a transformation is shown in Fig. 1. Finally, we
choose k = 0 and the sequence s = (a)(a), and ask to compute Pr0(s), i.e. the
probability that no sources support s. This completes creation of the instance of
Exact-k Support, and the transformation is clearly polynomial-time. Clearly,
every possible world D∗ ∈ PW (Dp) is equally likely, and the probability of a
possible world D∗ is φ = (1/|PW (Dp)|), where |PW (Dp)| =

∏n

i=1 |N(vi)|. For
example, there are 12 possible worlds for the database in Fig. 1(b), and the
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probability of each world is (1/12). In each possible world, each record ri is as-
sociated with some source σj , so a possible world can be viewed as a sub-graph
of G where every vertex in V has degree exactly one. Two possible worlds and
their corresponding graphs are shown in Fig. 2. Those possible worlds where each
source is associated with exactly one record corresponds to a perfect matching
(Fig. 2(b)); in such possible worlds, the support of the sequence s = (a)(a) will
clearly be zero. Thus, we see that Pr0(s) = φ · (# matchings in G), and once
we are given Pr0(s), we obtain the number of matchings in G by multiplying
by the total number of possible worlds. For example, in database in 1(b), there
are only three possible worlds where each source is associated with exactly one
event, which are (σ1 : e1, σ2 : e2, σ3 : e3), (σ1 : e2, σ2 : e1, σ3 : e3) and
(σ1 : e3, σ2 : e1, σ3 : e2). Hence, Supp(s, D∗) = 0) in three worlds and there-
fore, Pr0(s) = 3 × (1/12) = 0.25. We multiply the answer by the number of
possible worlds, 12, to get 3, the number of perfect matchings in G.

Hence, we have shown that if the value Prk(s) can be computed for s =
(a)(a) and k = 0 in Dp, we can also find number of perfect matchings in G,
thus reducing the problem of counting perfect matchings in a bipartite graph to
Exact-k Support, and showing that Exact-k Support is #P-complete. ut

4 Conclusions and Future Work

We studied uncertainty models for sequential pattern mining and defined the
notions of frequentness under the expected suppot and probabilistic frequentness
measures. We elaborated on these measures from complexity-theoretic view-
point, and discussed the computational cost of evaluating these measure for our
considered models. Thus we were able to show, that whilst dynamic program-
ming could be used to find frequent sequences efficiently, computing probabilistic
frequentness for source-level uncertainty is #-P complete. An empirical evalua-
tion and comparison of our considered measures in terms of computational cost
and quality of the solution should be an interesting direction to explore.
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