
Uncertainty in Sequential Pattern Mining

Muhammad Muzammal and Rajeev Raman

Department of Computer Science, University of Leicester, UK.
{mm386,r.raman}@mcs.le.ac.uk

Abstract. We study uncertainty models in sequential pattern mining.
We discuss some kinds of uncertainties that could exist in data, and show
how these uncertainties can be modelled using probabilistic databases.
We then obtain possible world semantics for them and show how frequent
sequences could be mined using the probabilistic frequentness measure.
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1 Sequential Pattern Mining

Sequential pattern mining [2] is an important data mining problem: it is con-
cerned with databases that contain sequences of events, each of which is associ-
ated with a source. For example, a transaction database of a store may contain
sequences of purchases (events) made by individual customers (sources), and
the objective is to find patterns of customer purchasing behaviour in successive
visits. This has applications in various domains including transaction databases,
web access patterns and biological sequences, and is formally defined as follows.
Let I = {i1, i2, . . . , iq} be a set of items and S = {1, . . . ,m} be a set of sources.
An event e ⊆ I is a collection of items. A database D = 〈r1, r2, . . . , rn〉 is an
ordered list of records such that each ri ∈ D is of the form (eid i, ei, σi), where
eid i is event-id, ei is an event and σi is a source. A sequence s = 〈s1, s2, . . . , sa〉
is an ordered list of events. Let s = 〈s1, s2, . . . , sq〉 and t = 〈t1, t2, . . . , tr〉 be
two sequences. We say that s is a subsequence of t, denoted s � t, if there exist
integers 1 ≤ i1 < i2 < · · · < iq ≤ r such that sk ⊆ tij

, for k = 1, . . . , q. The
source sequence corresponding to a source i, denoted by Di, is just the multiset
{e|(eid, e, i) ∈ D}, ordered by eid. For a sequence s and source i, let Xi(s,D) be
an indicator variable, whose value is 1 if s � Di , and 0 otherwise. The objective
is to find all sequences s whose support (Supp) is at least some user-defined
threshold θ, 1 ≤ θ ≤ m, where Supp(s,D) =

∑m

i=1 Xi(s,D).

2 Modelling Uncertainty

Traditionally, it is assumed that data is deterministic. However, it is now recog-
nized that data is often inherently noisy or uncertain. Probabilistic databases are
one way to model such uncertainties [1, 7]. Recently, many data mining problems
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have been studied in probabilistic databases including frequent itemset mining [1,
3]. We focus on sequential pattern mining and our interest is in situations where
there is uncertainty either about a source or in the associated events.

Source-Level Uncertainty. In a retail transaction database, a customer’s details
may be incomplete or incorrect, or the database may itself be uncertain as a
result of “deduplication” or cleaning [4], leading to ambiguity in the customer’s
identity. A person/vehicle may be detected by a sensor/camera, but identification
methods may be noisy, leading to uncertainty (take the UK police’s automatic
number plate recognition database [9] for example). In such scenarios, it is certain
that an event occurred (e.g. a customer bought some items, a vehicle/person
entered an area) but there is uncertainty about the source associated with that
event. Situations like this can be modelled using attribute level uncertainty [7],
when the ’source’ attribute is a probability distribution over sources.

A probabilistic database Dp is an ordered list 〈r1, . . . , rn〉 of records of the
form (eid , e,W) where eid is an event-id, e is an event and W is a probability
distribution over S. The distribution W contains pairs of the form (σ, c), where
σ ∈ S and 0 < c ≤ 1 is the confidence that the event e is associated with
source σ; we assume

∑
(σ,c)∈W c = 1. A possible world D∗ of Dp is generated

by taking each event ei in turn, and assigning it to one of the possible sources
σi ∈ Wi, where σi ∈ S. Thus every record ri = (eidi, ei,Wi) ∈ Dp takes the
form r′i = (eidi, ei, σi), for some σi ∈ S in D∗. By enumerating all such possible
combinations we get the complete set of possible worlds. Assuming that the
distributions associated with each record ri in Dp are stochastically independent,
the probability of a possible world D∗ is Pr[D∗] =

∏n

i=1 PrWi
[σi].

Table 1. A source-level uncertain database (L) and one possible world D
∗ (R) showing

sources and associated events (here, Pr[D∗] = 0.6 × 0.3 × 0.7 = 0.126).

eid event W

e1 a (σ1:0.6)(σ2:0.4)

e2 b (σ1:0.3)(σ2:0.2)(σ3:0.5)

e3 c (σ1:0.7)(σ3:0.3)

source event(s)

σ1 (a)(b)(c)

σ2 〈〉

σ3 〈〉

Table 2. An event-level uncertain database (L), all possible worlds for D
p

2
(C) and a

possible world D
∗ for D

p (R) containing one world each from possible worlds of every
D

p

i . (here, Pr[D∗] = 0.126 × 0.48 × 0.35 = 0.021).

p-sequence

D
p

1
(a : 0.6)(b : 0.3)(c : 0.7)

D
p

2
(a : 0.4)(b : 0.2)

D
p

3
(b : 0.5)(c : 0.3)

〈〉 0.6 × 0.8 = 0.48

(a) 0.4 × 0.8 = 0.32

(b) 0.6 × 0.2 = 0.12

(a)(b) 0.4 × 0.2 = 0.08

source possible world

σ1 (a)(b)(c) = 0.126

σ2 〈〉 = 0.48

σ3 〈〉 = 0.35

Event-Level Uncertainty. In some cases, the ‘source’ of the event is known but
the ‘event’ itself is uncertain. Consider a scenario where employees movements
are tracked in a building using RFID sensors [5]. A typical relation SIGHTING(t,
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tID, aID) in PEEX system [5], denotes that the RFID tag tID was detected
by antenna aID at time t. Consequently, PEEX processes the SIGHTING relation
to output a higher-level uncertain relation such as MEETING(time, person1,

person2, room, prob). An example tuple such as (103, ’Alice’, ’Bob’, 435,
0.4) in MEETING means that at time 103, PEEX believes that Alice and Bob are
having a meeting (event) with probability 0.4 in room 435 (source) [5]; since
antennae are at fixed locations, the source is certain but the event is uncertain.

A probabilistic database Dp is a collection of p-sequences D
p
1 , . . . ,Dp

m, where
D

p
i is associated with source i ∈ S, D

p
i = 〈(e1, c1) . . . (ek, ck)〉, where the events

ej are ordered by eid and cj is the confidence that ej actually occurred. The
possible worlds semantics of Dp is as follows. For each event ej in a p-sequence
D

p
i there are two kinds of worlds; one in which ej occurs and the other where

it does not. Let occurred = {x1, . . . , xl}, where 1 ≤ x1 < . . . < xl ≤ k, be the
indices of events that occur in D∗

i . Then D∗
i = 〈ex1

, . . . , exl
〉, and Pr(D∗

i ) =∏
j∈occurred cj ∗

∏
j 6∈occurred(1 − cj). The set of all possible worlds of D

p
i , de-

noted by PW (Dp
i ) is obtained by taking all possible 2l alternatives for occurred,

and we say PW (Dp) = PW (Dp
1) × . . . × PW (Dp

m). For any D∗ ∈ PW (Dp) such
that D∗ = (D∗

1 , . . . ,D∗
m), the probability of D∗ is given by: Pr[D∗] =

∏m

i=1 Pr(D∗
i ).

3 Probabilistic Frequentness

For Frequent itemset mining in probabilistic databases, measures like expected
support [1] and probabilistic frequentness [3] have been used. An expected sup-
port based approach for mining sequential patterns in probabilistic databases
was proposed in [6]. Here, we focus on probabilistic frequent sequential patterns.

Definition 1. Given a probabilistic database Dp and its set of possible worlds
PW (Dp), the support probability for a sequence s is denoted by: Pri(s) =∑

D∗∈PW (Dp),(Supp(s,D∗)=i) Pr(D∗), where Supp(s,D∗) is the support of s in D∗.

Note that Pri(s) is the probability that the support of s is exactly i. Further, define
the support probability distribution (SPD) as the vector 〈Pr0(s), . . . ,Prm(s)〉.

Denote by Pr≥θ(s) =
∑m

k=θ Prk(s) the probability that the support of s is at
least θ. Given Dp and two user-specified thresholds namely support θ, 1 ≤ θ ≤ m

and a confidence τ ∈ (0, 1], the objective is to find all probabilistic frequent se-
quences (PFSes) s s.t. Pr≥θ(s) ≥ τ (i.e. all s with probability ≥ τ of having
support ≥ θ). Next, we show that we can obtain PFSes by dynamic program-
ming (DP) for event-level uncertainty. By contrast, we show the computational
intractability of finding PFSes for source-level uncertainty. We consider the fun-
damental question “is s a PFS”, i.e. given Dp, s, θ and τ , is Pr≥θ(s) ≥ τ?

PFSes for Event-Level Uncertainty. First, we compute the probability with
which a source supports a sequence s i.e. we compute Pr(s � D

p
i ) ∀ i, 1 ≤ i ≤ m,

as done by [6]. Then, we compute Pri,j(s), for 0 ≤ i, j ≤ m, which is the proba-
bility that exactly i of the first j sources support s, by DP using the recurrence:

Pri,j(s) = Pri−1,j−1(s) · Pr(s � D
p
i ) + Pri,j−1(s) · (1 − Pr(s � D

p
i )), (1)
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where Pr0,j(s) = 1, 0 ≤ j ≤ m and Pri,j(s) = 0,∀ i > j. Clearly, Pri,m(s) =
Pri(s), for all i, and we can use this to determine if s is a PFS.

PFSes for Source-Level Uncertainty. In source-level uncertainty, an event may
potentially be associated to more than one sources as shown in Table 1. Note
that the DP computation in Eq. 1 computes the value Pri,j(s), which does not
help in this case. For example, in Table 1, event ’b’ is confused between sources
σ1, σ2 and σ3, but it could only be associated to one of the three in a real world,
which is ignored when using Eq. 1. For example, for s = (b), Pr2,2(s) = 0, as only
one of the sources can support s. However, using Eq. 1, we obtain: Pr2,2(s) =
Pr1,1 ×Pr(s � D

p
2) + Pr2,1 ×(1 − Pr(s � D

p
2)) = 0.3 × 0.2 + 0 × 0.8 = 0.06,

which is not correct. So, Eq. 1 does not work for source-level uncertainty. We
further note that it is not possible to compute the value Pri,j(s). As mentioned
above that Prk,m(s) = Prk(s), for all k, we say that computing Prk(s) (i.e. the
probability that exactly k sources support s) as Exact-k-Support problem.

Theorem 1. Given a probabilistic database Dp, a sequence s and a number
k,0 ≤ k ≤ m, computing the Exact-k-Support for s in Dp is ♯P-complete.

Theorem 1 is shown by reducing the problem of computing the number of
perfect matchings in a bipartite graph, a ♯P complete problem [8], to the Exact-
k-Support problem.

4 Conclusions and Future Work

We studied uncertainty models for sequential pattern mining and discussed prob-
abilistic frequentness computation for source-level and event-level uncertainties.
An empirical evaluation and comparison with expected support in computational
cost and in quality of the solution should be an interesting direction to explore.
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