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Abstract. We consider sequential pattern mining in situations where
there is uncertainty about which source an event is associated with.
We model this in the probabilistic database framework and consider the
problem of enumerating all sequences whose expected support is suffi-
ciently large. Unlike frequent itemset mining in probabilistic databases
[C. Aggarwal et al. KDD’09; Chui et al., PAKDD’07; Chui and Kao,
PAKDD’08], we use dynamic programming (DP) to compute the prob-
ability that a source supports a sequence, and show that this suffices
to compute the expected support of a sequential pattern. Next, we em-
bed this DP algorithm into candidate generate-and-test approaches, and
explore the pattern lattice both in a breadth-first (similar to GSP) and
a depth-first (similar to SPAM) manner. We propose optimizations for
efficiently computing the frequent 1-sequences, for re-using previously-
computed results through incremental support computation, and for elim-
inating candidate sequences without computing their support via prob-

abilistic pruning. Preliminary experiments show that our optimizations
are effective in improving the CPU cost.

Key words: Mining Uncertain Data, Sequential Pattern Mining, Prob-
abilistic Databases, Novel Algorithms for Mining, Theoretical Founda-
tions of Data Mining.

1 Introduction

The problem of sequential pattern mining (SPM), or finding frequent sequences
of events in data with a temporal component, has been studied extensively [22,
16, 4] since its introduction in [17, 3]. In classical SPM, the data to be mined is
deterministic, but it is recognized that data obtained from a wide range of data
sources is inherently uncertain [1]. This paper is concerned with SPM in proba-
bilistic databases [18], a popular framework for modelling uncertainty. Recently
several data mining and ranking problems have been studied in this framework,
including top-k [23, 8] and frequent itemset mining (FIM) [2, 5–7]. In classical
SPM, the event database consists of tuples 〈eid, e, σ〉, where e is an event, σ is
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a source and eid is an event-id which incorporates a time-stamp. A tuple may
record a retail transaction (event) by a customer (source), or an observation of an
object/person (event) by a sensor/camera (source). Since event-ids have a time-
stamp, the event database can be viewed as a collection of source sequences, one
per source, containing a sequence of events (ordered by time-stamp) associated
with that source, and classical SPM problem is to find patterns of events that
have a temporal order that occur in a significant number of source sequences.

Uncertainty in SPM can occur in three different places: the source, the event
and the time-stamp may all be uncertain (in contrast, in FIM, only the event
can be uncertain). In a companion paper [15] the first two kinds of uncertainty
in SPM were formalized as source-level uncertainty (SLU) and event-level un-
certainty (ELU), which we now summarize.

In SLU, the “source” attribute of each tuple is uncertain: each tuple contains
a probability distribution over possible sources (attribute-level uncertainty [18]).
As noted in [15] this formulation is applicable to scenarios such as the ambiguity
arising when a customer makes a retail transaction, but the customer is not
identified exactly, or because the customer database itself is probabilistic as a
result of “deduplication” or cleaning [11]. In ELU, the source of the tuple is
certain, but the events are uncertain. One example is the PEEX system [13]
that aggregates unreliable observations of employees using RFID antennae at
fixed locations into uncertain higher-level events such as “at time 103, Alice and
Bob were having a meeting in room 435 with probability 0.4”. Here, the source
(Room 435) is fixed, but the event ({Alice, Bob}) is uncertain, and has only
probability 0.4 of having occurred.

Furthermore, in [15] two measures of “frequentness”, namely expected support
and probabilistic frequentness, used for FIM in probabilistic databases [5, 7], were
adapted to SPM, and the four possible combinations of models and measures
were studied from a computational complexity viewpoint. This paper is focussed
on efficient algorithms for the SPM problem in SLU probabilistic databases,
under the expected support measure, and the contributions are as follows:

1. We give a dynamic-programming (DP) algorithm to determine efficiently the
probability that a given source supports a sequence (source support proba-
bility), and show that this is enough to compute the expected support of a
sequence in a SLU event database.

2. We give depth-first and breadth-first methods to find all frequent sequences
in an SLU event database according to the expected support criterion.

3. To speed up the computation, we exploit properties of the DP to obtain
algorithms for:

(a) highly efficient computation of frequent 1-sequences,
(b) incremental computation of the DP matrix, which allows us to minimize

the amount of time spent on the expensive DP computation, and
(c) probabilistic pruning, where we show how to rapidly compute an upper

bound on the probability that a source supports a candidate sequence.

4. We empirically evaluate our algorithms, demonstrating their efficiency and
scalability, as well as the effectiveness of the above optimizations.

2



Significance of Results. The source support probability algorithm ((1) above)
shows that in probabilistic databases, FIM and SPM are very different – there
is no need to use DP for FIM under the expected support measure [2, 6, 7].

Although the proof that source support probability allows the computation
of the expected support of a sequence in an SLU database is simple, it is unex-
pected, since in SLU databases, there are dependencies between different sources
– in any possible world, a given event can only belong to one source. In contrast,
determining if a given sequence is probabilistically frequent in an SLU event
database is #P-complete because of the dependencies between sources [15].

Finally, as noted in [15], (1) can be used to determine if a sequence is fre-
quent in an ELU database using both frequentness criteria: expected support
and probabilistic frequentness. This in turn implies efficient algorithms for enu-
merating frequent sequences under both frequentness criteria for ELU databases,
and by using the framework of [10], we can also find maximal frequent sequential
patterns in ELU databases.

The breadth-first and depth-first algorithms (2) have a high-level similarity
to GSP [17] and SPADE/SPAM [22, 4]. However, since checking if a sequence is
supported by a source requires a relatively expensive DP computation, significant
modifications are needed to achieve good performance. Furthermore, it is unclear
how to use either the projected database idea of PrefixSpan [16], or bitmaps as
in SPAM. The efficiency of our algorithms depend instead upon the ideas ((3)
above) of incremental computation, and probabilistic pruning. Although there
is a high-level similarity between this pruning and a technique of [6] for FIM
in probabilistic databases, the SPM problem is more complex, and our pruning
rule is harder to obtain.

Related Work. Classical SPM has been studied extensively [17, 22, 16, 4]. Mod-
elling uncertain data as probabilistic databases [18, 1] has led to several rank-
ing/mining problems being studied in this context. The top-k problem (a rank-
ing problem) has been studied intensively (see [12, 23, 8] and references therein).
FIM in probabilistic databases was studied under the expected support measure
in [2, 7, 6] and under the probabilistic frequentness measure in [5]. To the best
of our knowledge, apart from [15], the SPM problem in probabilistic databases
has not been studied. Uncertainty in the time-stamp attribute was considered in
[19] – we do not consider time to be uncertain. Also [21] studies SPM in “noisy”
sequences, but the model proposed there is very different to ours and does not
fit in the probabilistic database framework.

2 Problem Statement

Classical SPM [17, 3]. Let I = {i1, i2, . . . , iq} be a set of items and S =
{1, . . . , m} be a set of sources. An event e ⊆ I is a collection of items. A database
D = 〈r1, r2, . . . , rn〉 is an ordered list of records such that each ri ∈ D is of the
form (eid i, ei, σi), where eid i is a unique event-id, including a time-stamp (events
are ordered by this time-stamp), ei is an event and σi is a source.
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A sequence s = 〈s1, s2, . . . , sa〉 is an ordered list of events. The events si in the
sequence are called its elements. The length of a sequence s is the total number of
items in it, i.e.

∑a

j=1 |sj |; for any integer k, a k-sequence is a sequence of length k.
Let s = 〈s1, s2, . . . , sq〉 and t = 〈t1, t2, . . . , tr〉 be two sequences. We say that s is a
subsequence of t, denoted s � t, if there exist integers 1 ≤ i1 < i2 < · · · < iq ≤ r

such that sk ⊆ tij
, for k = 1, . . . , q. The source sequence corresponding to a

source i is just the multiset {e|(eid, e, i) ∈ D}, ordered by eid. For a sequence
s and source i, let Xi(s, D) be an indicator variable, whose value is 1 if s is
a subsequence of the source sequence for source i, and 0 otherwise. For any
sequence s, define its support in D, denoted Sup(s, D) =

∑m

i=1 Xi(s, D). The
objective is to find all sequences s such that Sup(s, D) ≥ θm for some user-
defined threshold 0 ≤ θ ≤ 1.

Probabilistic Databases. We define an SLU probabilistic database Dp to be an
ordered list 〈r1, . . . , rn〉 of records of the form (eid , e,W) where eid is an event-
id, e is an event and W is a probability distribution over S; the list is ordered
by eid. The distribution W contains pairs of the form (σ, c), where σ ∈ S and
0 < c ≤ 1 is the confidence that the event e is associated with source σ and
∑

(σ,c)∈W c = 1. An example can be found in Table 1.

Table 1. A source-level uncertain database (L) transformed to p-sequences (R). Note
that events like e1 (marked with †) can only be associated with one of the sources X

and Y in any possible world.

eid e W

e1 (a, d) (X, 0.6)(Y, 0.4)

e2 (a) (Z : 1.0)

e3 (a, b) (X, 0.3)(Y, 0.2)(Z, 0.5)

e4 (b, c) (X, 0.7)(Z, 0.3)

p-sequence

D
p
X (a, d : 0.6)†(a, b : 0.3)(b, c : 0.7)

D
p
Y (a, d : 0.4)†(a, b : 0.2)

D
p

Z (a : 1.0)(a, b : 0.5)(b, c : 0.3)

The possible worlds semantics of Dp is as follows. A possible world D∗ of
Dp is generated by taking each event ei in turn, and assigning it to one of the
possible sources σi ∈ Wi. Thus every record ri = (eidi, ei, Wi) ∈ Dp takes the
form r′i = (eidi, ei, σi), for some σi ∈ S in D∗. By enumerating all such possible
combinations, we get the complete set of possible worlds. We assume that the
distributions associated with each record ri in Dp are stochastically independent;
the probability of a possible world D∗ is therefore Pr[D∗] =

∏n

i=1 PrWi
[σi]. For

example, a possible world D∗ for the database of Table 1 can be generated by
assigning events e1, e3 and e4 to X with probabilities 0.6, 0.3 and 0.7 respectively,
and e2 to Z with probability 1.0, and Pr[D∗] = 0.6 × 1.0 × 0.3 × 0.7 = 0.126.
As every possible world is a (deterministic) database, concepts like the support
of a sequence in a possible world are well-defined. The definition of the expected
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support of a sequence s in Dp follows naturally:

ES(s, Dp) =
∑

D∗∈PW (Dp)

Pr[D∗] ∗ Sup(s, D∗), (1)

The problem we consider is:

Given an SLU probabilistic database Dp, determine all sequences s such
that ES(s, Dp) ≥ θm, for some user-specified threshold θ, 0 ≤ θ ≤ 1.

Since there are potentially an exponential number of possible worlds, it is infea-
sible to compute ES(s, Dp) directly using Eq. 1; next we show how to do this
computation more efficiently using linearity of expectation and DP.

3 Computing Expected Support

p-sequences. A p-sequence is analogous to a source sequence in classical SPM,
and is a sequence of the form 〈(e1, c1) . . . (ek, ck)〉, where ej is an event and cj is
a confidence value. In examples, we write a p-sequence 〈({a, d}, 0.4), ({a, b}, 0.2)〉
as (a, d : 0.4)(a, b : 0.2). An SLU database Dp can be viewed as a collection of p-
sequences D

p
1 , . . . , D

p
m, where D

p
i is the p-sequence of source i, and contains a list

of those events in Dp that have non-zero confidence of being assigned to source
i, ordered by eid, together with the associated confidence (see Table 1(R)). How-
ever, the p-sequences corresponding to different sources are not independent, as
illustrated in Table 1(R). Thus, one may view an SLU event database as a collec-
tion of p-sequences with dependencies in the form of x-tuples [8]. Nevertheless,
we show that we can still process the p-sequences independently for the purpose
of expected support computation:

ES(s, Dp) =
∑

D∗∈PW (Dp) Pr[D∗] ∗ Sup(s, D∗) =
∑

D∗ Pr[D∗] ∗
∑m

i=1 Xi(s, D
∗)

=
∑m

i=1

∑

D∗ Pr[D∗] ∗ Xi(s, D
∗) =

∑m

i=1 E[Xi(s, D
p)], (2)

where E denotes the expected value of a random variable. Since Xi is a 0-1
variable, E[Xi(s, D

p)] = Pr[s � D
p
i ], and we calculate the right-hand quantity,

which we refer to as the source support probability. This cannot be done naively:
e.g., if D

p
i = (a, b : c1)(a, b : c2) . . . (a, b : cq), then there are O(q2k) ways in

which a sequence s = 〈(a)(a, b) . . . (a)(a, b)
︸ ︷︷ ︸

k times

〉 could be supported by source i, and

so we use DP.

Computing the Source Support Probability. Given a p-sequence D
p
i =

〈(e1, c1), . . . , (er, cr)〉 and a sequence s = 〈s1, . . . , sq〉, we create a (q+1)×(r+1)
matrix Ai,s[0..q][0..r] (we omit the subscripts on A when the source and sequence
are clear from the context). For 1 ≤ k ≤ q and 1 ≤ ` ≤ r, A[k, `] will contain
Pr[〈s1, . . . , sk〉 � 〈(e1, c1), . . . , (e`, c`)〉]. We set A[0, `] = 1 for all `, 0 ≤ ` ≤ r
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and A[k, 0] = 0 for all 1 ≤ k ≤ q, and compute the other values row-by-row. For
1 ≤ k ≤ q and 1 ≤ ` ≤ r, define:

c∗k` =

{
c` if sk ⊆ e`

0 otherwise
(3)

The interpretation of Eq. 3 is that c∗k` is the probability that e` allows the element
sk to be matched in source i; this is 0 if sk 6⊆ e`, and is otherwise equal to the
probability that e` is associated with source i. Now we use the equation:

A[k, `] = (1 − c∗k`) ∗ A[k, ` − 1] + c∗k` ∗ A[k − 1, ` − 1]. (4)

Table 2 shows the computation of the source support probability of an example
sequence s = (a)(b) for source X in the probabilistic database of Table 1. Simi-
larly, we can compute Pr[s � D

p
Y ] = 0.08 and Pr[s � D

p
Z ] = 0.35, so the expected

support of (a)(b) in the database of Table 1 is 0.558 + 0.08 + 0.35 = 1.288.

Table 2. Computing Pr[s � D
p

X ] for s = (a)(b) using DP in the database of Table 1.

(a, d : 0.6) (a, b : 0.3) (b, c : 0.7)

(a) 0.4× 0 + 0.6× 1 = 0.6 0.7 × 0.6 + 0.3× 1 = 0.72 0.72

(a)(b) 0 0.7× 0 + 0.3× 0.6 = 0.18 0.3× 0.18 + 0.7× 0.72 = 0.558

The reason Eq. 4 is correct is that if sk 6⊆ e` then the probability that
〈s1, . . . , sk〉 � 〈e1, . . . , e`〉 is the same as the probability that 〈s1, . . . , sk〉 �
〈e1, . . . , e`−1〉 (note that if sk 6⊆ e` then c∗k` = 0 and A[k, `] = A[k, ` − 1]).
Otherwise, c∗k` = c`, and we have to consider two disjoint sets of possible worlds:
those where e` is not associated with source i (the first term in Eq. 4) and those
where it is (the second term in Eq. 4). In summary:

Lemma 1. Given a p-sequence D
p
i and a sequence s, by applying Eq. 4 repeat-

edly, we correctly compute Pr[s � D
p
i ].

4 Optimizations

We now describe three optimized sub-routines for computing all frequent 1-
sequences, for incremental support computation, and for probabilistic pruning.

Fast L1 Computation. Given a 1-sequence s = 〈(x)〉, x ∈ I, a simple closed-
form expression for the probability with which source i supports s is:

Pr[s � D
p
i ] = 1 −

r∏

`=1

(1 − c∗1`) , (5)
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where Pr[s � D
p
i ] is the value A[1, r]. We now verify by induction that Eq. 4

gives the same answer as Eq. 5. As A[1, `] = 1 for all `, 1 ≤ ` ≤ r, Eq. 4 can be
written as:

A[1, `] = (1 − c∗1`) ∗ A[1, ` − 1] + c∗1`

We now prove Eq. 5 by induction, which clearly holds for ` = 1, as A[1, 1] =

1 −
∏1

`=1(1− c∗1`) = 1 − (1 − c∗1`) = c∗1`. Assume the induction hypothesis holds
for r = t − 1, then:

A[1, t] = (1 − c∗1t) ∗ A[1, t − 1] + c∗1t

= (1 − c∗1t)(1 −
∏t−1

`=1(1 − c∗1`)) + c∗1t (by induction hypothesis)

= 1 −
∏t

`=1(1 − c∗1`) ,

which proves Eq. 5. This allows us to compute ES(s, Dp) for all 1-sequences
s in just one (linear-time) pass through Dp as follows. Initialize two arrays F

and G, each of size q = |I|, to zero and consider each source i in turn. If
D

p
i = 〈(e1, c1), . . . , (er, cr)〉, for k = 1, . . . , r take the pair (ek, ck) and iterate

through each x ∈ ek, setting F [x] := (F [x] ∗ (1− ck)) + ck. Once we are finished
with source i, if F [x] is non-zero, we update G[x] := G[x] + F [x] and reset F [x]
to zero (we use a linked list to keep track of which entries of F are non-zero
for a given source). At the end, for any 1-sequence s = 〈(x)〉, where x ∈ I,
G[x] = ES(〈(x)〉, Dp).

Algorithm 1 Incremental Support Computation for I-extensions

1: Bi,t[0] = 0
2: for all ` = 1, . . . , r do

3: if tq 6⊆ e` then

4: Bi,t[`] = Bi,t[`− 1]
5: else

6: Bi,t[`] = (1− c`) ∗Bi,t[`− 1]+ (Bi,s[`]−Bi,s[` − 1] ∗ (1− c`))

Incremental Support Computation Let s and t be two sequences. Say that t

is an S-extension of s if t = s·{x} for some item x, where · denotes concatenation
(i.e. we obtain t by appending a single item as a new element to s). We say that
t is an I-extension of s if s = 〈s1, . . . , sq〉 and t = 〈s1, . . . , sq ∪ {x}〉 for some
x 6∈ sq, and x is lexicographically not less than any item in sq (i.e. we obtain
t by adding a new item to the last element of s). For example, if s = (a)(b, c)
and x = d, S- and I-extensions of s are (a)(b, c)(d) and (a)(b, c, d) respectively.
Similar to classical SPM, we generate candidate sequences t that are either
S- or I-extensions of existing frequent sequences s, and compute ES(t, Dp) by
computing Pr[t � D

p
i ] for all sources i. While computing Pr[t � D

p
i ], we will

exploit the similarity between s and t to compute Pr[t � D
p
i ] more rapidly.
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Let i be a source, D
p
i = 〈(e1, c1), . . . , (er, cr)〉, and s = 〈s1, . . . , sq〉 be any

sequence. Now let Ai,s be the (q + 1) × (r + 1) DP matrix used to compute
Pr[s � D

p
i ], and let Bi,s denote the last row of Ai,s, that is, Bi,s[`] = Ai,s[q, `]

for ` = 0, . . . , r. We now show that if t is an extension of s, then we can quickly
compute Bi,t from Bi,s, and thereby obtain Pr[t � D

p
i ] = Bi,t[r]:

Lemma 2. Let s and t be sequences such that t is an extension of s, and let i

be a source whose p-sequence has r elements in it. Then, given Bi,s and D
p
i , we

can compute Bi,t in O(r) time.

Proof. If t is an s-extension of s, i.e. t = s · {x} for some item x, then Bi,s is the
last-but-one row of Ai,s, and we have the information needed to compute the
last row (cf. Eq 4).

Now consider the case where t is a I-extension, i.e. t = 〈s1, . . . , sq ∪ {x}〉 for
some x 6∈ sq. Firstly, observe that since the first q − 1 elements of s and t are
pairwise equal, the first q− 1 rows of Ai,s and Ai,t are also equal. The (q − 1)-st
row of Ai,s is enough to compute the q-th row of Ai,t, but we only have Bi,s,
the q − 1-st row of Ai,s. In general we cannot calculate the entire (q − 1)-st row
of Ai,s from the q-th row (i.e. we cannot “reverse” the DP calculation) but we
can compute enough entries of Ai,s to compute the q-th row of Ai,t.

We compute Ai,t[q, `] for ` = 0, . . . , r in that order. By convention, Ai,t[q, 0] =
0, so consider ` > 0. If tq = sq ∪ {x} 6⊆ e`, then Ai,t[q, `] = Ai,t[q, ` − 1], and we
can move on to the next value of `. If tq ⊆ e`, then sq ⊆ e` and so:

Ai,s[q, `] = (1 − c`) ∗ Ai,s[q, ` − 1] + c` ∗ Ai,s[q − 1, ` − 1].

Since we know Bi,s[`] = Ai,s[q, `], Bi,s[` − 1] = Ai,s[q, ` − 1] and c`, we can
compute Ai,s[q − 1, ` − 1]. But this value is equal to Ai,t[q − 1, ` − 1], which is
the value from the (q − 1)-st row of Ai,t that we need to compute Ai,t[q, `] or
Specifically, Bi,t[`] . The pseudocode for this computation is given in Algorithm 1.
An example is shown in Table 3.

Table 3. Example illustrating the incremental support computation of Bi,t for t =
(a)(b, c) from Bi,s where s = (a)(b), by computing Pr[t � D

p
X ] in the database of

Table 1. Note that the row corresponding to (a) is not available.

(a, d : 0.6) (a, b : 0.3) (b, c : 0.7)

(a) 0.4× 0 + 0.6× 1 = 0.6 0.7× 0.6 + 0.3× 1 = 0.72 0.72

(a)(b) 0 0.7 × 0 + 0.3× 0.6 = 0.18 0.3× 0.18 + 0.7 × 0.72 = 0.558

(a)(b, c) 0 0 0.3 × 0 + 0.7× 0.72 = 0.504
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Probabilistic Pruning. We now describe a technique that allows us to prune
non-frequent sequences s without fully computing ES(s, Dp). For each source i,
we obtain an upper bound on Pr[s � D

p
i ] and add up all the upper bounds; if

the sum is below the threshold, s can be pruned. We first show:

Lemma 3. Let s = 〈s1, . . . , sq〉 be a sequence, and let D
p
i be a p-sequence. Then:

Pr[s � D
p
i ] ≤ Pr[〈s1, . . . , sq−1〉 � D

p
i ] ∗ Pr[〈sq〉 � D

p
i ].

Before proving Lemma 3, we indicate how it is used. Suppose, for example, that
we have a candidate sequence s = (a)(b, c)(a), and a source X . By Lemma 3:

Pr[(a)(b, c)(a) � D
p
X ] ≤ Pr[(a)(b, c) � D

p
X ] ∗ Pr[(a) � D

p
X ]

≤ Pr[(a) � D
p
X ] ∗ Pr[(b, c) � D

p
X ] ∗ Pr[(a) � D

p
X ]

≤ (Pr[(a) � D
p
X ])2 ∗ min{Pr[(b) � D

p
X ], Pr[(c) � D

p
X ]}

Observe that the quantities on the RHS are computed by the fast L1 computation
above, and can be stored in a small data structure associated with each source. Of
course, if Pr[(a)(b, c) � D

p
X ] is available, an even tighter bound is Pr[(a)(b, c) �

D
p
X ] ∗ Pr[(a) � D

p
X ]. We now prove Lemma 3.

Proof. Let Ai,s be the DP matrix for computing Pr[s � D
p
i ]. For ` = 0, . . . , r,

let p` = Pr[sq � 〈(e1, c1), . . . , (e`, c`)〉]; pr therefore is precisely Pr[〈sq〉 � D
p
i ].

As noted in Remark 1, we take p0 = 0, and for ` = 1, . . . , r, we can compute p`

using the equation: p` = (1− c∗q`)p`−1 + c∗q`, where c∗q` is as defined in Eq. 3. We
now prove by induction on ` that:

A[q, `] ≤ A[q − 1, `] ∗ p`, (6)

substituting ` = r in Eq. 6 proves the lemma. We now prove Eq. 6, which clearly
holds for ` = 0 since A[q, 0] = A[q − 1, 0] = p0 = 0. Subsequently:

A[q, `] = (1 − c∗q`) ∗ A[q, ` − 1] + c∗q` ∗ A[q − 1, ` − 1] (Eq. 4)

≤ (1 − c∗q`) ∗ A[q − 1, ` − 1] ∗ p`−1 + c∗q` ∗ A[q − 1, ` − 1] (Eq. 6)

≤ A[q − 1, ` − 1] ∗
(
(1 − c∗q`) ∗ p`−1 + c∗q`

)

≤ A[q − 1, ` − 1] ∗ p` ≤ A[q − 1, `] ∗ p`.

5 Candidate Generation

We now describe two candidate generation methods for enumerating all frequent
sequences, one each based on breadth-first and depth-first exploration of the
sequence lattice, which are similar to GSP [17, 3] and SPAM [4] respectively. We
first note that an “Apriori” property holds in our setting:

Lemma 4. Given two sequences s and t, and a probabilistic database Dp, if s

is a subsequence of t, then ES(s, Dp) ≥ ES(t, Dp).

Proof. In Eq. 1 note that for all D∗ ∈ PW (Dp), Sup(s, D∗) ≥ Sup(t, D∗).
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Algorithm 2 Breadth-First Exploration

1: Input: SLU probabilistic database Dp and support threshold θ.
2: Output: All sequences s with ES(s, Dp) ≥ θm.

3: j ← 1
4: L1 ← ComputeFrequent-1(Dp)
5: while Lj 6= ∅ do

6: Cj+1 ← Join Lj with itself
7: Prune Cj+1

8: for all s ∈ Cj+1 do

9: Compute ES(s, Dp)
10: Lj+1 ← all sequences s ∈ Cj+1 s.t. ES(s, Dp) ≥ θm}.
11: j ← j + 1
12: Stop and output L1 ∪ . . . ∪ Lj

5.1 Breadth-First Exploration

An overview of our BFS approach is in Algorithm 2. We now describe some
details. Each execution of lines (8)-(12) is called a phase. Line 4 is done using
the fast L1 computation (see Section 4). Line 6 is done as in [17, 3]: two sequences
s and s′ in Lj are joined iff deleting the first item in s and the last item in s′

results in the same sequence, and the result t comprises s extended with the last
item in s′. This item is added as a new element if it was a separate element in
s′ (t is an S-extension of s) and is added to the last element of s otherwise (t
is an I-extension). Thus, (a)(b, c)(d) joins with (b, c)(d, e) to yield (a)(b, c)(d, e)
and (a, b)(c, d) joins with (b)(c, d)(e) to yield (a, b)(c, d)(e). The join of two 1-
sequences (a) and (b), results in both (a)(b) and (a, b) being output.

We apply apriori pruning to the set of candidates in the (j+1)-st phase, Cj+1,
and probabilistic pruning can additionally be applied to Cj+1 (note that apriori
pruning has no effect on C2, and probabilistic pruning is the only possibility).

Step 9 is divided into two main sub-steps. We consider each source i in turn
and perform the following operations:

– Find a subset Ni,j+1 of Cj+1 that may be supported by source i (this step
is called narrowing). Ni,j+1 must include all sequences s in Cj+1 such that
Pr[s � D

p
i ] is strictly greater than zero.

– For all sequences in s ∈ Ni,j+1, compute Pr[s � D
p
i ] and update ES(s, Dp).

Denote the set of all frequent j-sequences that have non-zero expected support
in D

p
i by Li,j . After computing L1 in Step 1, we store Li,1 for all i, for the entire

duration of the algorithm, and with each s ∈ Li,1, we also store Pr[s � D
p
i ] in

case probabilistic pruning is used. We consider two ways of narrowing:

Prefix-Based Narrowing. We place all elements in Cj+1 into a hash table, using
its prefix of length j as the hash-key. Furthermore, we compute the sets Li,j for all
sources i at the end of the j-th phase, and keep them until the end of the (j +1)-
st phase. When considering source i, we iterate through all sequences s ∈ Li,j ,
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and use the hash table to find all sequences t in Cj+1 that are extensions of s. If
t is created by adding the element x to s as an S-extension of s (i.e. t = s · {x})
we further check to see if x ∈ Li,1, and if so, we add t to Ni,j+1. If t is created
as an I-extension of s, we add t to Ni,j+1 unconditionally.

Hashtree-Based Narrowing. We use a hashtree for the purpose of narrowing [17].
In any phase, a candidate sequence s ∈ Cj+1 is stored in the hashtree by hashing
on each item in s in order, and the leaf node contains the (j +1)-st item and the
candidate sequence s. When considering source i, we restrict our search to those
parts of sequence-lattice that contain sequences which are likely to be supported
by source i. We use Li,1 for the purpose, and traverse hashtree recursively using
Li,1 only, until we have traversed all the leaf nodes, thus obtaining Ni,j+1.

Given Ni,j+1 we now discuss computing the support of t in source i. Since
computing Pr[t � D

p
i ] is expensive and requires j + 1 rows of a DP matrix to

be computed, we attempt to reuse partial answers as follows. If we compute the
support of t immediately after computing the support of s, where s = 〈s1, . . . , sq〉
and t = 〈t1, . . . , tr〉, then if s and t have a common prefix, i.e. for k = 1, 2, . . . , z,
sk = tk, then we start the computation of Pr[t � D

p
i ] from tz+1. Our narrowing

methods naturally tend to place sequences with common prefixes in consecutive
positions of Ni,j+1.

Algorithm 3 Depth-First Exploration

1: Input: SLU probabilistic database Dp and support threshold θ.
2: Output: All sequences s with ES(s, Dp) ≥ θm.

3: L1 ← ComputeFrequent-1(Dp)
4: for all sequences x ∈ L1 do

5: Call TraverseDFS(x)
6: Output all sequences in L

7: function TraverseDFS(s)
8: for all x ∈ L1 do

9: t← s · 〈{x}〉 {S-extension}
10: Compute ES(t, Dp)
11: if ES(t, Dp) ≥ θm then

12: L← L ∪ t

13: TraverseDFS(t)
14: t← 〈s1, . . . , sq ∪ {x}〉 {I-extension}
15: Compute ES(t, Dp)
16: if ES(t, Dp) ≥ θm then

17: L← L ∪ t

18: TraverseDFS(t)
19: end function

11



5.2 Depth-First Exploration

An overview of our depth-first approach is in Algorithm 3. We first compute the
set of frequent 1-sequences, L1 (line 3) and assume that L1 is in ascending order.
We then explore the pattern sub-lattice as shown, but use pruning to ensure that
in line 8, unnecessary alternatives are not considered, as follows.

Consider a call of TraverseDFS(s), where s is some k-sequence. Prior to the
support computation, we check all lexicographically smaller k-subsequences of
t (which would have been explored previously) for frequentness, and reject t as
infrequent if this test fails. We can then apply probabilistic pruning to t, and if
t is still not pruned we compute its support (line 10). If at any stage t is found
to be infrequent or if it is pruned, we do not consider x, the item used to extend
s to t, as a possible alternative for S-extensions in the recursive tree under s (as
in [4]). Observe that for sequences s and t, where t is an S- or I- extension of s,
if Pr[s � D

p
i ] = 0, then Pr[t � D

p
i ] = 0. When computing ES(s, Dp), we keep

track of all the sources where Pr[s � D
p
i ] > 0, denoted by Ss. If s is frequent

then when computing ES(t, Dp), for any sequence t that is an S- or I- extension
of s, we need only to visit the sources in Ss.

Furthermore, with every source i ∈ Ss, we assume that the array Bi,s (see
Section 4) has been saved prior to calling TraverseDFS(s), allowing us to use the
incremental support computation. By implication, the arrays Bi,r for all prefixes
r of s are also stored for all sources i ∈ Sr), so in the worst case, a source may
store up to k arrays, if s is a k-sequence. The space usage of the DFS traversal
is quite modest in practice, however.

Remark 1. The idea of focussing interest on only the sources S is of course quite
similar to that of a projected database [16]. This, combined with the fast algo-
rithm for computing frequent 1-sequences may suggest that candidate generation
may be avoided altogether. However, note that in general one cannot simply per-
form a frequent 1-sequence computation on the projected database. For example,
if an 〈{a}〉-projected database contained two p-sequences (b : 0.5)(b : 0.5)(a :
0.5)(a : 0.5) and (b : 0.5)(a : 0.5)(a : 0.5)(b : 0.5), then when considering whether
(a)(b) is frequent, it is not correct to compute the expected support of (b) in the
projected database (for example, both p-sequences above would give the same
contribution – 0.75 – to the support of (b) in the projected database, but clearly
their support for (a)(b) is different). Additional ideas are therefore needed to
eliminate candidate generation altogether.

6 Experimental Evaluation

We report on an experimental evaluation of our algorithms in this section. Our
implementations are in C# (Visual Studio .Net 2005), executed on a machine
with a 3.2GHz Intel CPU and 3GB RAM running XP (SP3). Out reported
running times are averages from multiple runs. We begin by describing datasets
used for experiments. Then, we demonstrate the scalability of our algorithms,
and also evaluate probabilistic pruning.

12



We use both real and synthetic datasets for our experiments. The real dataset
Gazelle is from Blue Martini [14], and synthetic datasets are generated using
the IBM Quest data generator [3]. We transform these deterministic datasets to
probabilistic form using an approach similar to [2, 5, 23, 7]; we assign probabili-
ties to each event in a source sequence using a uniform distribution over (0, 1],
thus obtaining a collection of p-sequences. Note that we in fact generate ELU
data rather than SLU data: a key benefit of this approach to data generation
is that it tends to preserve the distribution of frequent sequences in the deter-
ministic data. On the other hand, the resource utilization of our algorithms is
largely unaffected, as the algorithm for computing frequent sequences under the
expected support measure is the same for ELU and SLU.

We follow the naming convention of [22]: a dataset named CiDjK means that
the average number of events per source is i and the number of sources is j

(in thousands). For example, the dataset C10D20K has on average 10 events
per source and 20K sources. The alphabet size is fixed at 2K, and all other
parameters, such as average items per event or length of the maximal sequential
patterns have been set to default values.

We study three parameters in our experiments: the number of sources D,
the average number of events per source C, and the threshold θ. We test our
algorithms for one of the three parameters by keeping the other two fixed. Ev-
idently, all other parameters being fixed, increasing the number of sources and
the events per source, or decreasing θ, all make an instance harder. We choose
the variants of our algorithms according to two “axes”:

– Lattice traversal could be done using BFS with Prefix-based narrowing
(pBFS) or BFS with Hashtree-based narrowing (hBFS), or DFS.

– Probabilistic Pruning (P) could be ON or OFF.

We thus report on six variants in all, for example “pBFS+P” represents the
variant with BFS lattice traversal, with prefix-based narrowing and with prob-
abilistic pruning ON.

Probabilistic Pruning. To show the effectiveness of probabilistic pruning, we
kept statistics on the number of candidates in our algorithms for the datasets
C10D20K and C20D10K. Table 4 shows that probabilistic pruning is highly effective
at eliminating infrequent candidates in phase 2 — for example, in all variants,
over 95% of infrequent candidates were eliminated without support computation.

In the subsequent phases, we compute upper bounds for probabilistic pruning
in one of the two ways i.e. either by using Li,1 probabilities only (in hBFS), or
by using both Li,1 and Li,j probabilities (in pBFS and DFS). As mentioned in
Section 4 (after Lemma 3) that using both Li,1 and Li,j probabilities gives a
more accurate upper bound than only using Li,1 probabilities, and our analysis
in Table 4 supports the claim — for example, in C10D20K in Phase 3, (223−91) =
132 and (234 − 91) = 143 infrequent candidates that survived apriori pruning
were reduced to (167 − 91) = 76 and (175 − 91) = 84, in pBFS and in DFS,
respectively. The reduction was not as significant in hBFS as (223 − 91) = 132
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infrequent candidates that survived apriori pruning were reduced to (208−91) =
117 only.

Similarly, in C20D10K in Phase 3, over 95% and over 35% of infrequent can-
didates that survived apriori pruning were eliminated by probabilistic pruning
in DFS and in pBFS, respectively. In contrast, probabilistic pruning was less
effective from Phase 3 onwards in hBFS compared to pBFS and DFS for the
considered datasets and support threshold θ. We therefore, turn probabilistic
pruning OFF after Phase 2 in hBFS in our experiments.

Table 4. Effectiveness of probabilistic pruning at θ = 2%, for datasets C10D20K (left)
and C20D10K (right). On each side, the columns from left to right indicate the cur-
rent phase, algorithm variant, numbers of candidates created by joining, remaining
after apriori pruning, remaining after probabilistic pruning and deemed as frequent,
respectively.

Dataset: C10D20K, θ=2%
Ph. Algo. Joining Apriori Prob. prun. Freq.

2 pBFS 15555 15555 173 39
2 hBFS 15555 15555 173 39
2 DFS 15555 15555 173 39

3 pBFS 237 223 167 91
3 hBFS 237 223 208 91
3 DFS 334 234 175 91

4 pBFS 381 337 261 44
4 hBFS 381 337 337 44
4 DFS 562 395 275 44

Dataset: C20D10K, θ=2%
Ph. Algo. Joining Apriori Prob. prun. Freq.

2 pBFS 283620 283620 2670 807
2 hBFS 283620 283620 2670 807
2 DFS 283620 283620 2670 807

3 pBFS 43257 4458 2985 394
3 hBFS 43257 4458 4410 394
3 DFS 122223 84126 3059 394

4 pBFS 2728 1802 1640 706
4 hBFS 2728 1802 1802 706
4 DFS 22480 4850 1726 706

In Fig. 1, we show the effect of probabilistic pruning on overall running time
as θ decreases, for both synthetic (C10D10K) and real (Gazelle) datasets. It can
be seen that pruning is effective particularly for low θ, both for synthetic and
real datasets (note the speedup of DFS+P wrt DFS at θ ≤ 1%) but gradually
loses effectiveness for higher θ values.
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Fig. 1. Effectiveness of probabilistic pruning for decreasing values of θ, for the synthetic
dataset (C10D10K) (left) and for real dataset Gazelle (right).
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Scalability Testing. In Fig. 2(left), we fix the average number of events per source
at 10 and θ = 1%, and test the scalability for increasing number of sources. We
observe that all the algorithms scale essentially linearly with increasing number
of sources. However, pBFS variants run out of memory for larger inputs (as
indicated by missing dots) because of additional memory needed due to storing
the sets Li,j , which grow quite large. In Fig. 2(right), we test the scalability of
our algorithms for increasing number of events per source by fixing the number
of sources at 10K and θ = 25%. We observe behaviour similar to that reported
in Fig. 2(right), as all variants scale well for increasing number of events per
source; again, pBFS variants run out of memory for larger inputs. We do not see
savings in CPU cost for DFS+P wrt DFS here, because θ is quite high (25%).

To conclude, we say that hBFS scales well overall for increasing number of
sources, increasing number of events per source or decreasing values of θ. DFS
also performs well and we see behaviour similar to hBFS. However, pBFS has
high memory requirements and runs out of memory for larger inputs.

7 Conclusions and Future Work

We have considered the problem of finding all frequent sequences in SLU prob-
abilistic databases. This is a first study on efficient algorithms for this prob-
lem, and naturally a number of open directions remain, including expanding the
range of “interesting objects”, e.g. finding maximal frequent sequences or hav-
ing a more restricted definition of the “subsequence” relation. However, equally
challenging is exploring further the notion of “interestingness”. In this paper, we
have used the expected support measure, which has the advantage that it can
be computed efficiently for SLU databases – the probabilistic frequentness [5] is
provably intractable for SLU databases [15]. Our approach yields (in principle)
efficient algorithms for both measures in ELU databases, and comparing both
measures in terms of computational cost versus solution quality is an interesting
future direction. A number of other longer-term challenges remain, including
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creating a data generator that gives an “interesting” SLU database and consid-
ering more general models of uncertainty (e.g. it is not clear that the assumption
of independence between successive uncertain events is justified).
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