Flexible Service Specification and Matching
Based on Feature Models

Muhammad Naeem and Reiko Heckel

University of Leicester {mn105, reiko}@mcs.le.ac.uk

Abstract. We propose to use variability techniques from the realm of
product lines to help make service specifications more flexible. Feature di-
agrams provide a high-level model of the essential and optional aspects of
services in combination with detailed models of service’s semantics based
on visual contracts specified by graph transformation rules. In this way
we hope to provide a precise, yet flexible specification of requirements
towards as well as provided services, which is amenable to automation
while being visual and user-friendly.

1 Introduction

The use of the web as a platform for application integration provides the tech-
nology to react to today’s rapidly changing business climate [1]. However, while
technically web services can be discovered, selected and bound to at runtime [2],
the necessary automation of these tasks continues to pose major challenges. One
of them is the level of flexibility required to find a service satisfying the specified
requirements. Human programmers, if they cannot find exactly what they asked
for, will be happy enough to adapt their demands to a sufficiently similar service
and change their implementation accordingly. But any automated selection and
binding requires a detailed specification not just of the signatures and data types
of the services required but also of their actions and protocols. Such a detailed
description will, however, be less likely to be matched by any existing service.

Let us consider a scenario where a requester (potential client) finds a service
satisfying most of the requirements. For example, while requesting a service for
hotel and flight reservation, requester may also be interested in transport from
the airport to the hotel, a guide to visit holy or historical places, while having a
preference to pay via bank transfer. The provider may offer to book flight, hotel
and transport, and allow payment via bank transfer or credit card. Comparing
our requirements with the offer we find a mismatch in the fact that no guide
services are provided. To resolve this mismatch we need information about the
relevance of the missing feature, e.g., whether it is optional or compulsory for
the success of our application. In addition, there will be dependencies between
features as well as with other elements of our models.

In this paper we are proposing to combine visual techniques for the modelling
of product lines, specifically feature models [3-5], with a modelling approach
using visual contracts (graphical pre- and post conditions for operations [8, 9]) for

Flexible Service Specification and Matching Based on Feature Models

specifying and matching service descriptions as produced by the service provider
against requirements as expressed by the requester. The approach is based on
an easy integration with mainstream software UML notations, provides the level
of formality and flexibility required to realistically allow automated matching of
services, and supports the adaptation of provider and requester interfaces and
implementations to the chosen variant.

The remainder of the paper is organised as follows: Section 2 discusses some
related work, Section 3 introduces the specification and matching of services by
visual contracts using a small case study. Section 4 extends this approach by
feature models and Section 5 describes the matching and adaptation of these
extended models. Section 6 concludes the paper.

2 Related Work

A number of approaches address flexible matching of services with semantic de-
scriptions. Paolucci et al. in [11] have described an engine that allows matching of
advertisements and requests on the bases of the capabilities. Several matchmak-
ing frameworks are developed in [12—-16], which operate on service descriptions
written in RDF, DAML+OIL or DAML-S. Wu in [17] proposes a similarity-
based approach, which grounds the matching process on a comparison of sig-
nature specifications in WSDL, but not on semantic descriptions. Matchmaking
approaches ranking the similarity between advertisement and request are devel-
oped in [18] and [19]. In [20], Yongley adopted the ranking technique to service
matching based on semantic descriptions.

We believe that variability needs to be built into the service specification,
so that automated decisions can be made in the case of imperfect matches.
This is different from ranking matches according to their degree of similarity.
Moreover, our approach, while being inspired by standard methods for specifying
and matching service semantics, does so on the basis of a visual notations which
allows integration into mainstream software modelling languages.

3 Specifying and Matching of Services

In this section we describe the basic approach to visual semantic modelling and
matching of services by means of a case study of an online travel agent. We use
graph transformation rules to represent visual contracts.

Graph Transformation Systems (GTS) provide a modelling language where
graphs model (data) states and rules specify state changing operations. The class
of admissible states is specified by a type graph [9]. Fig. 1 shows a possible state
graph of the case study where bookings have been generated by a client for hotel,
flight, and transport. The types of nodes and their associations are represented
by the type graph in the left of Fig. 1.

In the context of semantic web services we can think of the type graph as
a representation of an ontology and of the instance graph as a data confirming

Flexible Service Specification and Matching Based on Feature Models

to it. Transformations of instance graphs are due to the application of graph
transformation rules, shown in Fig. 2.

cc: CreditCard
cc > CreditCard
owns

| I
| |
| I
| I
¢ - Client | :
1 c:Client
f = Flight I |made made |
| made 1
R I
h = Hotel typing : | :Booking | | :Booking | |:Booking | |
t 2 Transport r : for for for :
I " !
f:Flight h:Hotel t:-Transport
Type Graph :_l]| | | - l:
i R N Sy ——
Instance Graph

made

Bank Credit
Account Card

Fig. 1. Type and instance graphs

Service models are given in two version: from the requester’s point of view
describing desired functionality and from the provider’s perspective specifying
the services that are actually implemented.

The rule in the top part of Fig. 2 represents the requirements of a requester
who is looking to reserve guide services and is willing to pay by credit card. The
left side of the rule shows the preconditions of the operation while the right-hand
side shows its postcondition / effect [9]. The rule expresses the demand for an
operation which allows a client to book a guide payed for by a credit card owned
by the client. Similar operations could be requested for the booking of hotel,
flight, and transport, or to allow payment via bank transfer.

A rule describing the operation as implemented by the provider is in the
bottom of Fig. 2. It offers to book any service using any available payment
method.

It should be clear that, in this case the requirements of the requester are
satisfied by the operations as specified by the provider because of the subtyping
relation between MeansOfPayment and CreditCard as well as Service and Guide.
These relations are captured in the ontology that both rules are based on, and
which we assume to be standardised.

However, while we clearly have to rely on such standardisation to allow
matching of services at all, we would like to have the possibility for example

Flexible Service Specification and Matching Based on Feature Models

cc: CreditCard

owns Req: bookGuideByCC

A
A

cc: CreditCard

owns

U N

m: MeansOfPayment

owns Prov: bookService

n

s:Service s:Service

Fig. 2. Visual contracts specifying booking operations from requester (top) and
provider (bottom) point of view

to specify a provider that does not offer guide services. We could do so at a
moment by replacing the generic rule shown in the bottom of Fig. 2 by a num-
ber of more specific ones for booking hotel, transport and flight. In this case,
the requester’s requirement would not be satisfied by this service. In the next
sections we will introduce a more economical way of representing this and other
provider models based on features. We will also have to extend our notion.

Formally, a (provider) rule satisfies another (requester) rule if the precondi-
tions of the first entail the preconditions of the second and the postconditions /
effects of the second entail those of the first. Entailment in this case boils down to
subgraph matching, allowing for the specialisation of types, i.e., the right-hand
side of the provider rule entails the right-hand side of the requester rule because
the former is a supergraph of the latter with more general types.

4 Visual Contracts with Features

In order to allow for a more fine-grained specification of the functionality on
offer as well the desired flexibility in the matching of provisions to requests,
we propose to use feature models. A feature is “a distinguishable characteristic
of a concept that is relevant to some stakeholders” [4] while feature diagrams
can be used to show the variability of features in a hierarchical form, including
different types of features (such as optional, mandatory, alternative, etc.) and
their interdependencies [3-7]. A feature model consists of a feature diagram and

Flexible Service Specification and Matching Based on Feature Models

other associated information, in our case given by the type graph (ontology) and
visual rules (visual contracts) of requester and provider models.

Semantically, a feature diagram describes a set of instances, each representing
a permissable subset of features. By taking the intersection between the sets of
subsets on the requester and provider side we can identify the feature sets agree-
able to both parties. Each such set describes a particular selection of features
which can be used to derive a corresponding variant of the underlying service
models.

Feature diagrams for requester and provider are shown in Fig. 3(a), 3(b).
For example, the requester diagram declares Transport and Guide as optional
features whereas Hotel and Flight Reservation and Payment by Bank Transfer as
mandatory features. We have used System for the concept node of both requester
and provider feature trees for ease in comparison.

(a) Requester (b) Provider

Fig. 3. Feature Diagrams of Requester and Provider

The connection between feature diagrams and visual contract models is pro-
vided by labelling the model elements (node types, rules, etc.) by the features
they are part of. This is shown for our example in the type graph in Fig. 4 by
small gray boxes with dashed borders placed at the corners of classes. Semanti-
cally, this means that since the Guide is not available as a feature of the provider
(as seen from the provider’s feature diagram), the corresponding class in the type
graph is projected from the provider’s view. In this way, the provider’s booking
rule in Fig. 2 describing the booking for all services does not promise subsume
the booking of Guide services. For brevity we have used underlined characters
of feature names (from Fig. 3) as labels in Fig. 4.

Similarly, operations and their visual contracts are labelled, e.g., rule Req
22 bookGuideByCC would be labelled Guide and CC while Prov :: bookService
would carry all labels except for Guide.

5 Matchmaking and Adaptation

In order to find out if a provider description matches the requirements expressed
by a requester model, we proceed in three steps.

Flexible Service Specification and Matching Based on Feature Models

MeansOfPayment Client

paid made

I Receipt }——fL{ Booking l
of

[

1 BT | — CC |
Bank L---2 Credltl--l---I

Transfer ’— Card A

T I T T O ey
GuideT"' I Flight T"'I Hotel T"I Transpo‘rt"l’"I

Fig. 4. Type Graph labelled by features: BT for Bank Transfer, CC for Credit Card,
Gd for Guide, F for Flight, H for Hotel, Tra for Transport

1. Compute intersection of feature sets of requester and provider feature dia-
grams.

2. For each feature set in the intersection, derive the corresponding variant of
provider and requester model.

3. Check compatibility of each derived pair of models.

For Step 1, feature trees can be converted into propositional formulas [3, 6, 7].
The set of solutions of the conjunction of the propositional formulas derived from
the two feature models provides us with the desired intersection, i.e., the set of
all subsets of features that are admissible according to both models. The result
can be visualised as a feature diagram again, such as in Fig. 5 representing the
intersection of feature diagrams of Fig. 3(a), 3(b). The largest admissible features
set is {Sys, Res, F, H,Tra, Pay, BT}, but also {Sys, Res, F, H, Pay, BT} is in
the intersection.

Hotel Flight Bank Transfer

Fig. 5. Intersection of feature diagrams of Figures 3(a), 3(b)

Flexible Service Specification and Matching Based on Feature Models

In order to define the variant of requester and provider models in Step 2,
we have to delete from these models all elements labelled by features not in the
relevant feature set, and then recursively all the elements dependent on those
deleted. For example, deleting the Guide class results in deleting the correspond-
ing subtyping relation as well as all the operations and rules containing instances
of this class. They are therefore disregarded in the next step. Further, if a sub-
class is removed from a superclass which occurs in a rule, this rule is removed
as well and replaced by all its specialisations where the superclass is replaced by
all permissable subclasses. In this way, from rule Prov :: bookService in Fig. 2
we obtain three specialisations, one of which (for Service — Transport) is shown
in Fig. 6 together with the variant of the type graph.

1
owns

1 -

|| MeansOfPayment |—| Client |

Type graph .y, sa, 1ray

: paid made
: | Receipt |ﬂ| Booking |
|

: Bank

i Account A

1

1

1
|
1
1
1
|
|
of !
1
1
|
1
1
1
1
|

b: BankAccount

| b: BankAccount |

owns Prov:: bookSetvice pay pa, 1 | owns

t:Transport

for

t:Transport

Fig. 6. Variant of type graph and rule

Since as a result of Step 2 we will obtain a pair of ordinary models (without
features) for each subset of features selected in Step 1, we can apply the standard
notion of matching as explained in Section 3 to check that they are indeed
compatible.

Thus, there could be two reasons for a requirement not to be matched by
a service description: An empty intersection of their feature diagrams (e.g., if a
mandatory feature of the requester is not provided), or an incompatibility in the
semantics of the actual operations. For the latter, consider a rule like the one in
Fig. 2 but without the links between c¢:Client and cc:CreditCard in the left- and
right-hand sides. In this case, the client would try to pay with a credit card not

Flexible Service Specification and Matching Based on Feature Models

owned by the person who has made the booking, which would contradict the
requirement of the provider rule.

Notice that we take for granted here the fact that all models are specified
over a shared ontology. Thus rules use the same classes for the same concepts
and naming of features is consistent.

6 Conclusion

We proposed an extension by feature models of a visual approach to semantic web
services based on graph transformation. As feature models can be rephrased in
terms of propositional logic and visual contracts map to simple description logics,
the entire approach could be handled in a purely logical framework. However, we
believe that the visual presentation of models is as important for their usability
as the explanation of the matching procedure at the same level.

Future work will focus on evaluating the approach, developing tool support,
and extending it towards prioritising of features to be able to rank different
feature sets for their level of satisfaction before going on to check the consistency
of the semantic descriptions.

References

1. Leymann, F.: Choreography for the Grid: Towards Fitting BPEL to the Resource
Framework. Journal of Concurrency and Computation: Practice and Experience. 17
(2005).

2. Papazoglou, P.: Service-Oriented Computing: Concepts, Characteristics and Direc-
tions. In Proceedings of the Fourth International Conference on Web Information
Systems Engineering. IEEE Computer Society Washington, DC, USA. (2003) 3-12

3. Czarnecki, K., Eisenecker, U.: Generative Programming - Methods, Tools, and Ap-
plications. Addison-Wesley, Boston, MA. (2000)

4. Kang, K., Cohen, S., Hess, J., Nowak, W., Peterson, S.: Feature-Oriented Domain
Analysis (FODA) feasibility study. Technical Report CMU/SEI-90-TR-21, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, PA 15213. (1990)

5. Kang, K., Kima, S., Lee, J., Kim, K., Shin E., Huh, M.: FORM: A Feature-Oriented
Reuse Method with Domain-Specific Reference Architectures. Annals of Software
Engineering. 5 (1998) 143-168

6. Batory D.: Feature Models, Grammars, and Propositional Formulas. In Proceedings
of Software Product Lines Conference 2005. Springer Berlin/Heidelberg. LNCS 3714
(2005) 7-20

7. Jong, M., Visser, J.: Grammars as Feature Diagrams. In Proceedings of ICSR7
Workshop on Generative Programming. (2002) 23-24

8. Hausmann, J., Heckel, R., Lohmann, M.: Model-based Development of Web Service
Descriptions: Enabling a Precise Matching Concept. International Journal of Web
Services Research. 2 (2005) 67-84

9. Engels G., Heckel, R.: Graph Transformation as a Conceptual and Formal Frame-
work for System Modelling and Model Evolution. In Proceedings of the 27th
International Colloquium on Automata, Languages and Programming. Springer
Berlin/Heidelberg. LNCS 1853 (2000) 127-150

Flexible Service Specification and Matching Based on Feature Models

10. Simos, M., Creps, R., Klingler, C., Lavine, L., UNISYS DEFENSE SYSTEMS
RESTON VA: Software Technology for Adaptable Reliable System (STARS) Or-
ganization Domain Modeling (ODM) Guidebook. Technical Report STARS-VC-
A025/001/00, Lockheed Martin Tactical Defense Systems, Manassas, VA. 2 (1996)

11. Paolucci, M., Kawamura, T., Payne, T., Sycara, K.: Semantic Matching of Web
Services Capabilities. In Proceedings of the 1st International Semantic Web Confer-
ence. LNCS 2342 (2002) 333-348

12. Chiat, L., Huang, L., Xie, J.: Matchmaking for Semantic Web Services. In Proceed-
ings of IEEE International Conference on Services Computing. IEEE SCC. (2004)
455-458

13. Trastour, D., Bartolini, C., Priest, C.: Semantic Web Support for the Business-
to-Business E-Commerce Lifecycle. In Proceedings of Eleventh Conference on World
Wide Web. ACM New York, NY, USA. (2002) 89-98

14. Gonzales-Castillo, J., Trastour, D., Bartolini, C.: Description Logics for Matchmak-
ing of Services. Proceedings of the KI-2001 Workshop on Applications of Description
Logics, Aachen: CEUR Workshop Proceedings. 44 (2001) 89-126

15. Li, L., Horrocks, I.: A Software Framework for Matchmaking Based on Semantic
Web Technology. In Proceedings of the Twelfth International Conference on World
Wide Web. ACM New York, NY, USA. (2003) 331-339

16. Paolucci, M., Kawamura, T., Payne, T., Sycara, K.: Semantic Matching of Web
Services Capabilities. In Proceedings of the 1st International Semantic Web Confer-
ence. Springer-Verlag London, UK. LNCS 2342 (2002) 334-347

17. Wu, J., Wu, Z.: Similarity-based Web Service Matchmaking. In Proceedings IEEE
International Conference on Services Computing. IEEE Computer Society Washing-
ton, DC, USA. SCC 1 (2005) 287294

18. Noia, T., Sciascio, E., Donini, F., Mongiello, M.: A System for Principled Match-
making in an Electronic Marketplace. In Proceedings of the Twelfth International
Conference on World Wide Web. ACM New York, NY, USA. (2003) 321-330

19. Jaeger, M., Tang, S.: Ranked Matching for Service Descriptions using DAML-S. In
Proceedings of the Open InterOp Workshop on Enterprise Modelling and Ontologies
for Interoperability Co-located with CaiSE’04 Conference. (2004) 217-228

20. Yao, Y., Su, S., Yang, F.: Service Matching Based on Semantic Descriptions. In
Proceedings of the Advanced International Conference on Telecommunications and
International Conference on Internet and Web Applications and Services. IEEE Com-
puter Society Washington, DC, USA. (2006) 126-131

