
Distribution Concerns in Service-Oriented Modelling∗

Nasreddine Aoumeur† José Fiadeiro Cristóvão Oliveira‡

Department of Computer Science

University of Leicester

LE1 7RH, UK

{na80, jwf4, co49}@le.ac.uk

Abstract

Service-oriented development offers a novel architectural approach that addresses crucial char-

acteristics of modern business process development such as dynamic evolution, intra- and inter-

enterprise cooperation, and distribution/mobility. In previous papers, we have shown how the

mechanisms that regulate the relationships, functioning and cooperation of business activities in

such architectural models can be externalised from business rules in terms of connectors that can

be superposed dynamically on stable core business entities. That is to say, we focused on what,

in the literature, has been called the ”service composition layer” of service-oriented architectures

or, for short, their ”composition logic”.

Our emphasis in this paper is on the distribution aspects: we show how a corresponding ”dis-

tribution logic” can be defined in terms of another set of architectural primitives that address the

way business rules depend on ”locations”. These primitives address what are sometimes called

”business channels” (ATMs, PDAs, Pay-TV, Internet, inter alia) as offered in typical contem-

porary ICT-infrastructures with substantial added-value to business processes. We argue that

interacting (core) business entities located at or endowed with such mobility/distribution capabil-

ities should be modelled in a way that separates the composition from the distribution logic so that

business interactions can be understood and evolved in a location-transparent way. Our approach

is based on a mathematical model that we have recently developed for modelling context-aware

interactions. An example from banking is used for illustrating its applicability.

∗This is a revised version of the paper that appears in the IBM series [AFO04a]
†Supported by the European Commission through the contract IST-2001-32747 (AGILE: Architectures for Mobility)
‡Supported by FCT, Portugal, through the PhD Scholarship SFRH/BD/6241/2001.

1

1 Introduction

Modern business processes are becoming more and more complex, reflecting the increasing dependency

of the economy, and the functioning of the society as a whole, on intricate and volatile intra- and inter-

organisational cooperation. On the other hand, business operations are relying more and more on

day-to-day advances in Information and (wired/wireless) Communication Technology (ICT). In order

to remain competitive, respond to market pressure and attract more customers, companies are pressed

to provide ever more sophisticated added-value services. For instance, banks are continuously creating

new services or updating existing ones to match the expectations and profiles of their customers, while

at the same time supporting more and more advanced channels for day-to-day banking such as ATM,

Internet, PDA, Pay-TV, inter alia [MPS03].

This tension between complexity and agility is raising new challenges on the way software needs to

support business information systems. It is clear that these challenges transcend by far the capabilities

of the software engineering techniques that have been traditionally used for business process develop-

ment. This is why most business designers are looking for new solutions around workflows [AHW03]

and, more recently, web services [Web00a, Web00b]. As a result, significant standards, techniques and

models have been advanced in both directions for modelling and enacting business processes.

However, we argue that the operational character of these approaches (even when supported by

mathematical models like Biz-Talk [Biz00, GS03]) makes it very hard to tackle all the above features

adequately. Although it is widely accepted that abstraction and rigor are the preponderant means

for tackling levels of multi-dimensional complexity, addressing these requirements equally and coher-

ently, as their nature and expected added-value determine, requires a more declarative approach and

semantic modelling primitives that work at a level of abstraction in which the different dimensions

can be integrated and reasoned about.

More specifically, on the one hand, current standards lack rich mechanisms like service negotiation,

contracting and service communication and coordination as required for flexibility and dynamic adap-

tation and evolution [BTB03] in cross-organisational processes. In addition, despite some progress in

semi-automatic derivation of service-oriented business processes from informal business rules [OYP03],

the relationship between business rules, their evolution and web-services in general remains largely

unexplored.

On the other hand, proposals based on Web services experience serious difficulties in addressing

location-awareness as an essential business concern for dealing with multi-channels provided by present

day’s technology. Web services can be programmed in ways that respond to the need for businesses

to operate in different platforms and through different channels (say, banking at an ATM, across

the internet, or through a PDA/mobile phone), but Service Description Languages do not provide

abstraction mechanisms for modelling the underlying distribution logic and the way it adheres and

enforces given business policies.

The purpose of this paper is to put forward a set of primitives through which distribution concerns

can be addressed in service-oriented business modelling. We do so by extending the approach that

we have put forward in [AF04, AF03] for addressing the composition logic, i.e. ”the way composite

services can be constructed for defining processes or workflows that interact with sets of Web Services

to achieve certain goals” [FRN+03, Tge01].

In section two, we justify the use of a rule-based architectural approach for modelling both the

composition and the distribution logic of services, discuss the main assumptions that we make on the

2

way service-oriented development applies to business processes, and present the running example - a

simplified banking system. In section three, the coordination primitives that address the composition

logic are reviewed and illustrated using the example. In section four, location primitives are presented

as the building blocks for the envisaged distribution logic, and illustrated using the same example. In

section 5, we present an architecture for modelling and evolving agile and dynamic business processes

based on coordination and distribution. Finally, we note that preliminary results of this work appeared

in [AFO04b, AFO04a].

2 Motivation

In this section, we justify why and how we are bringing together concepts and techniques from service-

oriented development, rule-based business modelling, software architecture, and context-aware com-

puting.

A rich set of specifications is currently available for software development over service-oriented ar-

chitectures that include BPEL4WS [BPE03], WS-Coordination [Web00b] and WS-Transaction [Web00c],

inter alia. A so-called BPEL composition is a business process or workflow that interacts with a fixed

set of Web services to achieve a certain goal. A business process is taken as a series of activities

involving a given set of partners connected according to given data and control flow requirements. For

instance, a banking process can be taken to consist of several activities, including specifically:

• Customer identification and authentication.

• Customer execution of banking transactions (deposits, withdrawals, loans, mortgages, etc).

• Customer exit.

Web Services are ”self-contained, modular applications that can be described, published, located,

and invoked over a network, generally the Web” [Web00a]. They are capable not only of performing

business activities on their own, but also to take part in higher-order business transactions by engaging

in more or less complex interactions with other Web services.

This approach offers a significant number of advantages. For instance, by being platform-neutral,

Web services support the definition of business processes by using existing elementary or complex

services, possibly offered by different service providers or extracted from so-called legacy systems.

However, even applications developed on the basis of BPEL are still some way from addressing the

challenges raised by the need to tackle complexity and agility as identified in the introduction. One of

the reasons is that BPEL-style applications are rather unstructured and static. For instance, services

are composed in a rather ad hoc and unprincipled manner by simply combining their operations and

input and output messages. This makes business processes difficult to evolve. If the business rules

under which the process operates change or need to be adjusted, the workflow will have to be revised

and additional or modified service interfaces may have to be used for the interconnections.

Recent investigations in business process modelling are shifting the emphasis towards more ab-

straction through business rule-driven approaches [KL04, RW02]. Business rules are understood as

”projections of organisations’ constraints and declarations of (internal/external) policy/conditions

that must be satisfied for doing business” [WKL03]. They specify actions to be taken on the occur-

rence of particular events, including ”state of being” changes concerning individuals, infrastructure,

consumables, informational resources, and business activities in general.

3

Rule-driven approaches offer a number of advantages that are crucial for coping with dynamically

evolving complex business processes. They support the specification of business models independently

of the specific processes that happen to be running at any one instant. They focus on more primary

requirements and address business domain descriptions in a declarative rather than operational way.

For all these reasons, they are generally more apt to support evolution.

The exploitation of these potentials for achieving new degrees of dynamism and abstraction in Web

Services composition remains largely unexplored. An exception is the recent work by Papazoglou et

al. [GS03]. In this approach, starting from a very general specification, the composition is sched-

uled, constructed and finally executed with the assistance of business rules judiciously classified in a

repository. Besides basic elements such as events, conditions, and messages, this classification includes

rules dealing with the activity flows, the data required for their composition and the constraints to

be respected. The direct construction and subsequent execution of the composition from the business

rules is performed in terms of XML-like descriptions. However, the approach does not address the

distribution dimension.

Another approach recently proposed in [Cha04] consists in explicitly separating business rules from

the flow in business processes (i.e. splitting BPEL into business-flow and business rules). This al-

lows business rules to be specified/evolved independently of the (reduced) BPEL descriptions. The

integration of both business rules and business-flow is achieved using aspect-oriented programming

[Tge01]. This vision fits well with our ideas and can be exploited for further concretisation or imple-

mentation of our approach. Other approaches that are close to ours include [QDVS04] and [ZLB04].

This work stresses the crucial relevance of the specification phase in service-oriented development of

business processes as well as the need for separating between interactions and concrete coordinations

(e.g. choreography/orchestration), respectively.

Concerning context-awareness and distribution/mobility in service-orientation, the focus is still

very much confined to the implementation level with the so-called M-service [BM03]. For instance,

[SBM+04, MSB03, MAM+04] proposes agent technology to cope with service enactment using mobile

devices. For conceptual modelling, this work proposes Service State Charts [ML03]. In [CDPG+04],

the authors propose a re-engineering technique to upgrade single-channel (i.e. internal) services to

be adopted for multi-business channels like PDAs and mobile phones. Their approach is oriented to

implementation over a concrete reflection-based tool named MAIS.

Our contribution aims to enhance the potential of service-oriented architectures by developing

semantic primitives that raise the level of abstraction and capture rule-based business modelling. In

the approach that we have in mind, each business activity is a dynamic entity that is put together,

at run-time, from a number of self-contained applications (services) that need to be located and

invoked over a distribution network. The way these services are brought together and invoked, what

is sometimes called ”orchestration”, must follow given business rules as set by the organisation. For

instance, it is clear that a withdrawal activity is subject to the business rules that apply to the specific

customer and account involved as business entities. Depending on the nature of the account and of

the customer, certain constraints may apply that determine if, for a given amount, the withdrawal is

authorized and, if so, what operations of the bank itself need to be executed.

More specifically, our approach aims to capture business rules at an interaction level so that

dynamic adaptation of services and cross-organisational service cooperation can be intrinsically and

explicitly supported (composition logic). For this purpose, we adopt techniques akin to those that have

been developed for Software Architecture [AG97]. We propose to capture as a connector any business

4

rule dealing with intra- and inter-organisation cooperation. On the one hand, as modelling primitives,

architectural connectors can be made to describe business service compositions in a declarative way

as shown through the rule-based approach proposed in [AFLW03, AF03]. On the other hand, as

shown in [MK96] architectural approaches support dynamic evolution as required for agility and

reconfigurability.

In our approach, the mechanisms that are required for regulating the relationships, functioning

and cooperation of services are externalised from business rules in terms of semantic primitives that

we call coordination laws. These describe composition mechanisms in terms of event-condition-action

(ECA) rules that can be superposed dynamically on stable core business entities. Superposition

[Kat93] is non-intrusive on the code that implements the services. Therefore, business architectures

can be dynamically evolved, as volatile business rules change or new cross-organisational links come

into force, while ensuring compliance to core business invariants.

However, business activities depend on business channels and networks in ways that are orthogonal

to the interactions that business relationships impose. For instance, depending on the location where

the banking process is requested, identification and authentication can consist of:

(1) A simple ”hello” when the request is made by the customer in person at the desk of the branch

where the account has been held for 20 years.

(2) The presentation of a personal identity document if the clerk has only recently joined that branch

or if the customer at a different branch makes the request.

(3) A complex transaction involving debit cards and codes if the request is made at an ATM (not

necessarily by the customer).

(4) A collection of passwords, security codes and pre-determined personal questions if the request

is made through the Internet (again, not necessarily by the customer).

In terms of a service-oriented architecture, this means that the way composite services need to be

constructed should obey not only a composition logic derived from coordination concerns, but also a

distribution logic derived from location concerns. Indeed, location-awareness is common to business

channels (e.g. ATM, Branch, Pay-TV), mobile devices (e.g. PDA), internet-based fa-cilities/software,

and sensors, inter alia. The presence and quality of communication with other partners as well as the

ability to migrate or move to other locations are among the crucial features that need to be taken into

account at the level of this distribution logic.

Notice that, by location, we do not mean necessarily the space of addresses typically used in the

Web. In the literature, service-oriented modelling is almost always instantiated to ”Web Services”,

i.e. ”software that can process XML documents it receives through some combination of transport

and application protocols” [Vog03]. Such services need to be located and invoked over the Web using

addresses and referencing mechanisms that identify where services can be found using a given protocol

like TCP or HTTP.

We have already motivated that this is a rather low-level view of what can be called the ”service-

oriented paradigm”, which we would like to explore from the point of view of business process modelling

in the architectural approach that we motivated. In particular, we would like to distance ourselves

from both the XML-centred view of information exchange, and the Web-oriented notions of location

and reference protocols. Our proposal is to work on a space in which locations correspond to business

5

entities and channels organised according to a given business domain. Therefore, we do not work

with a fixed notion of location at all. We propose that, as part of business modelling, the notion of

location and distribution network that best applies to the business domain be specified in abstract

terms through data sorts and operations.

To the best of our knowledge there is no conceptual modelling approach that addresses location-

awareness in business processes in the sense that we have motivated, except for the work in [Abo01],

one of our main sources of inspiration. This work invokes the notion of ”channel” for addressing

location-awareness. It is, altogether, rather ”operational”, not as declarative as we wish ours to be,

because it uses state machines as a modelling tool. It does not cope with the evolutionary side either,

and it has not been integrated within an architectural approach that provides explicit connectors that

can handle location-dependency aspects.

This is why, in what concerns the distribution logic that captures the dependency on the business

channels and networks, we propose an approach based on explicit connectors that we call location laws.

As with coordination laws, these connectors can be superposed dynamically and evolved independently

of the other business aspects, allowing systems to self-adapt or be adapted to changes that occur at

the distribution level without interfering with the core business policies.

The semantics of our distribution logic builds on our recent work around CommUnity, a formal

approach that we have been developing for architectural description [FLW03]. CommUnity includes

primitives that capture distribution and mobility aspects [AFLW03, LFW02, LF03, FL04]. The whole

approach has a mathematical semantics defined over Category Theory [Fia04]. We borrow in particular

the notion of space of mobility (location structure) and corresponding contexts with the ”be-in-touch”

and ”reach” relationships as preconditions for communication and mobility. These ingredients are then

combined in a new format for condition-action rules that model the way service composition depends

on the properties of the current context.

3 Coordination Concerns

Coordination primitives, as we have been promoting in recent work [AF03, AF02], provide a clean

separation between the modelling of the computations performed by stable core entities on the running

business configuration to ensure the functionality of basic business services, and the mechanisms that

reflect how the (intra- or cross-organisational) interactions between these business services should be

coordinated according to given business rules.

The emphasis is, therefore, on the aspects that subsume what in the literature has become known

as the ”Service Composition Layer” of Service-Oriented Architectures [Mge03], i.e. the level at which

business processes can be put together from elementary services. We aim for the level at which

so-called business protocols and processes [FRN+03] are addressed. What we have in mind is the

definition of processes or workflows that interact with sets of Web services to achieve certain goals

in terms of abstract service descriptions, separated from specific deployments [QDVS04]. In our

approach, such interactions are captured using the concepts of coordination laws and interfaces. In

terms of architecture description languages, these correspond to connector types and roles. In terms

of business modelling, they capture business rules that regulate and compose required and provided

services by the core entities that instantiate the roles.

This view addresses the emphasis put by BPEL [BPE03] on the definition of service compositions in

terms of processes that interact with partners that are external to the composition itself and identified

6

only in terms of abstract interfaces. Indeed, it is particularly important that we are able to separate

the definition of the ”composition logic” from the run-time composition of specific services as part

of a process that is being executed to fulfil a specific business goal. We address the former in terms

of ”coordination laws” that capture the business rules according to which complex business activities

are put together from more basic services. The purpose of this section is to focus on the coordination

model that we adopt for composing abstract services according to business rules.

In fact, in our approach, we go one step further and assign partners not to the business process as

a whole but to the activities that are performed as part of the process. This recognises the fact that

the partners involved in one activity may be different from those in another activity within the same

process. Moreover, it may not be possible to pre-determine which partners will become involved in a

given activity as this may depend on what has happened in the process so far.

The abstract description of the services that are partners in a given business is made in terms

of what in [AF03, AFLW03] we called coordination interface. For instance, as a business activity, a

withdrawal involves both an account and a customer regardless of the way the withdrawal is requested,

if by the customer proper or anyone else. The purpose of the identification activity is, precisely,

to determine the business entity that is involved in the business activity. Hence, in the case of a

withdrawal, two coordination interfaces are required: one catering for the account service through

which the debit needs to be performed, and the other for the customer service that is invoked as a

result of the identification and authentication activity.

Note that these are ”business” partners, not software components that offer operations as in

object-oriented approaches. We fully support the distinction made in [Vog03] between

Web-services and distributed objects. In this paper, we are in no way concerned with the way ser-

vices are programmed and deployed. For us, an account is not a software component that instantiates

an object class. An account is understood as a business service, a unit of organisation around which

a number of operations are grouped together to fulfil certain goals.

Such business partners are not units of execution either. A customer does not perform a withdrawal

by calling the account to execute a debit. It is the composition logic, as captured by a coordination

law, that dictates that a debit, as an operation of the account service, needs to be invoked whenever

a customer issues a request for a withdrawal, say at an ATM through some combination of keys and

buttons. The debit is to be located according to the account as a business entity, not as a software

component that stores the code of the debit operation.

The trigger/reaction mode of coordination that our approach supports requires that each coordina-

tion interface identifies which events produced at execution time are required to be detected as triggers

for the process to react, and which operations must be made available for the reaction to superpose

the required effects. Notice that this separation is supported, for instance, in BPEL processes, by

distinguishing between different kinds of actions (e.g. synchronous request/response or asynchronous

one-way operation) that implement interactions among the process and its partners. Indeed, in BPEL,

this separation occurs at a lower level of abstraction and has to be set in a pre-defined, static way.

The same applies to the identification of the exchange of messages that such modes of interaction may

require between the partners involved: in WSDL, each operation/event in our sense is a sequence of

input and output messages.

Example 3.1 For our running example, the two composition interfaces that we have in mind for the

customer and the bank can be described as follows:

7

coordination interface CUSTSdW-CI

partner type CUSTOMER

operations owns(a:ACCOUNT):Boolean

events withdraw(n:money; a:ACCOUNT)

end interface

coordination interface ACNTSdWW-CI

partner type ACCOUNT

operations

balance():money

debit(a:money) post balance() = old balance()-a

end interface

Each interface identifies the type of the partner that it models. A coordination interface does

not identify a specific instance of this type, just the operations and events that partner instances are

required to make available. Notice how the properties of the operations that are required are specified

in an abstract way in terms of pre- and post-conditions.

This type should be specified in terms of a sort of business identities and functions that can relate

the partner to other business entities as required by the application domain. For instance, the sort

ACCOUNT should be provided with a function bank of type BANK identifying the bank in which it resides,

again as business entity, not as a software component. To be more precise, as discussed in section

5, a:ACCOUNT may identify a service that is running as part of a bigger service bank(a):BANK. That

is, we are not necessarily committed to creating a new independent service upon instantiation of a

coordination interface: we may bind the interface to a running service that will take the instance

of the interface as a sub-service. In this way, we may cater for situations in which the bank, as an

organisation, runs a separate service for each account, one single (complex) service for all accounts,

one single (huge) service for the whole bank, and so on.

Another important requirement for the intended composition logic is that the activity, as a com-

posite service itself, should be described only on the basis of the interfaces and the data and control

flow aspects that the coordination mechanisms put in place to ensure the underlying business goal.

This is what, in BPEL, would be called the ”state and logic” necessary for coordinating the interac-

tions between the process and the partners. This ”composition logic” can be described in terms of

what we call a coordination law [AF02, AFLW03]:

Example 3.2 The correspoding coordination law of the standard withdrawal is as follows:

coordination law SdWdr-CL

partners acco:ACNTSdW-CI;

cust:CUSTSdWW-CI

rule Withdraw

when cust.withdraw(n,acco)

with acco.balance() ≥ n and

cust.owns(acco)

do acco.debit(n)

end law

SdWdr−CL

 ACNTSdW−CI

CUSTOMER

owns(ACCOUNT)

withdraw(money)

balance()

debit() post ...

ACCOUNT

 CUSTSdW−CI

Besides identifying the coordination interfaces, a coordination law specifies the rules that define the

behaviour of the service. Such coordination rules are of the form:

when event

with condition

do set of operation invocations

8

Each coordination rule identifies, under the ”when” clause, a trigger to which the contracts that

instantiate the law will react - a request by the customer for a withdrawal in the case at hand. The

trigger can be just an event observed directly over one of the partners or a more complex condition

built from one or more events. Under the ”with” clause, we include conditions (guards) that should be

observed for the reaction to be performed. If any of the conditions fails, the reaction is not performed

and the occurrence of the trigger fails. Failure is handled through whatever mechanisms are provided

by the language used for deployment. See [BPE03] for explicit handling of faults within BPEL.

The reaction to be performed by the composite service is identified under the ”do” clause as a

set of elementary activities. This set may include calls to operations provided by one or more of the

partners as well as actions that are internal to the ”composition logic” of the business activity itself.

The whole interaction is handled as a single transaction, i.e. it consists of an atomic event in the sense

that the trigger reports a success only if all the actions identified in the reaction execute successfully

and the conditions identified under the ”with” clause are satisfied. Details on transaction protocols

for web-service interactions can be found in [Web00c].

In what concerns the language in which the reactions are defined, we normally use an abstract

notation for defining the synchronisation set as above. This is important for bringing to a more abstract

modelling level the definitions of business processes that recent languages for ”orchestration” like

BizTalk [Biz00] promote, in terms of algebras and models for concurrency. Our opinion and experience

is that the architectural modelling level at which we promote the representation of business interactions

makes it easier to bridge the gap from the more organisational high-level goals and policies that dictate

how business should be run to the choice of particular control and synchronisation structures that can

make specific processes run.

The externalisation of this composition logic in a coordination law is decisive for supporting the

required agility in terms of dynamic business evolution. The fact that the conditions on which an

account may be debited by its owners are not hard-coded in the operations made available by the

account, make it possible for these conditions to be changed without interfering with the deployment

of these services.

Example 3.3 In order to offer a VIP-withdrawal in which a given credit limit is allowed, we just

have to change the composition logic as modelled by the coordination rule; the basic debit operation

does not need to be changed.

coordination law VIPWdr-CL

partners acco:ACNTVPW-CI;

cust:CUSTVPW-CI

rule : Withdraw

when cust.withdraw(n,acco)

with acco.balance()+cust.credit()≥n
and cust.owns(acco)

do if acco.balance() ≥ n

then acco.debit(n)

else acco.debit(1.01n)

end law

VIPWdr−CL

balance()

ACCOUNT
CUSTOMER

withdraw(money)

owns(ACCOUNT)

credit()
debit() post ...

 CUSTVPW−CI
 ACNTSdW−CI

In this coordination law for VIP withdrawal, the account interface is just renamed, whereas a different

partner is now required to play the role of the customer: we need a service that offers an operation

for obtaining the credit limit currently assigned to the customer:

9

coordination interface CUSTVPW-CI

partner type CUSTOMER

operations

owns(a:ACCOUNT):Boolean

credit():money

events withdraw(n:money; a:ACCOUNT)

end interface

Coordination interfaces can be hierarchically organised so as to facilitate location and binding of

specific concrete services. We leave such matters to a subsequent paper.

4 Location Concerns

This section puts forward the concepts and constructions that we are developing for addressing

location-awareness in service-oriented business modelling. As emphasized in the introduction, our

purpose is to provide elements for a ”distribution logic” that can capture the way service composition

needs to take into account properties of the underlying business channels and communication infras-

tructure. Just like coordination mechanisms that separate service functionality from the ”composition

logic”, which we illustrated in the previous section, we want to define location primitives that can

externalise the way business activities depend on properties of the distribution topology over which

services are composed. The properties that we address in the paper are:

(1) The communication status, i.e. the presence, absence, or quality of the communication link

between locations where given services are executing but require data to be exchanged and

synchronisation protocols to be observed as part of the composition logic.

(2) The ability to continue the execution of an activity at another location, which requires the new

location to be reachable from the present one for the execution context to be moved.

For this purpose, we capitalise on the work developed around CommUnity [LF03, LFW02, FL04].

Although, for simplicity, we will not address this specific aspect in depth, the space of locations can be

defined by the user as an abstract data type with a sort loc and functions that capture the properties of

the notion of location that are suitable for the application domain at hand. This is because, typically,

different kinds of applications require different notions of location. When a specific notion of location

is fixed, as for instance in Ambients [CG98], modelling a different space of mobility requires the

encoding of a different notion of location, which can be cumbersome and interfere with other aspects.

Two observables capture location awareness as discussed above: communication is handled through

BT : set(Loc) → boolean and movement/reachability through REACH : Loc× Loc → boolean.

As we did for the composition logic through coordination laws, location laws are the means through

which we model the distribution logic of a given business domain. Whereas coordination laws intercon-

nect partners that are meaningful for the underlying composition logic, e.g. customers and accounts

in the case of the withdrawal, the partners involved in location laws derive from the distribution logic

and, therefore reflect business channels like ATMs, bank branches, etc.

That is to say, for the distribution logic of a withdrawal, what is important is not if the customer

has a VIP-contract with the ac-count, but whether the ATM at which the request for the withdrawal

is made has enough cash in store and is in touch with the branch in which the account is held. The

composition logic will determine whether the withdrawal can proceed according to the relationship

10

that exists between the customer and the account, whereas the distribution law will determine how

much money can be given according to the context in which the transaction is being made (cash

available at the ATM and status of the communication between the ATM and the branch).

Just like with coordination laws, locations laws are associated with business activities within a

process, not with the process as a whole. This is because we want to allow for business entities to

change location during the process. For instance, we may well envisage an instantiation of the banking

process in which the customer is a mobile entity that starts the process and performs some activities

through a PDA while driving to the bank where, upon arrival, he continues by performing other

activities until he eventually finishes the process over the internet in his office where he needed to

retrieve information that he was lacking at the bank. The modelling of this kind of mobility within

a business process is still under active research and will not be further discussed in the paper. See

[AFLW03, LFW02, FL04] for the mathematical domain over which we are defining these aspects and

early insights on how to use them.

Requirements on the location of the distribution partner is an obligatory feature in every location

interface. These requirements consist in the definition of the type of the location as a subtype of

loc, including any relevant functions and properties. For instance, if a location is required to handle

high-precision calculations, its type needs to be such that, upon instantiation, service operations are

executed on hardware that complies with the required properties. Security requirements may be

reflected in other properties and functions on the data that is transmitted.

Example 4.1 In the location interface related to the ATM (depicted in the left-hand side below), the

event that is being required is self-evident and, as we shall see in the next section, refers to the business

activity for which we have already defined coordination laws. When this interface is instantiated, this

event can be refined in many different ways depending on the actual machine at which the business

activity is being performed: the pressing of a button in the keyboard, the filling of a menu on the

screen, and so on. The parameter of the event will also need to be provided on instantiation.

location interface ATMWdr-LI

location type ATM

operations

default(), cash():money

acco():ACCOUNT

give(n:money)

post cash() = old cash()-n

events withdraw(n:money)

end interface

location interface BANKWrd-LI

location type BANK

operations

internal(n:money, a:ACCOUNT)

maxatm(a:ACCOUNT): money

end interface

The ATM is required to make available two services: the amount of cash available inside the machine

and the default maximum amount that the machine gives if there is no connection to the account.

The ATM service is also required to make available the number of the account that is currently being

serviced. This data will have been stored upon identification through the ATM card. We will see in

the next section that location (and coordination) interfaces are instantiated in run-time to services

that may be running, i.e. instantiation does not mean creation of a service. In the case at hand, the

instance of ATM will be the service that will have been running when the ATM was ”switched on”

and that will have accepted and authenticated the card involved in the first activity of the specific

banking process at stake.

The location interface that applies to the bank is as depicted in the right-hand side above. That is,

11

the bank is required to make available, for every account, the maximum amount that can be debited

from an ATM, as well as accommodate executions of withdrawals internally. This is because we want

to be able to move withdrawals to the bank when they are requested at the ATM and there is no

communication between the two locations.

Example 4.2 The two location interfaces that we have just discussed are brought together in the

location law that defines the distribution logic of the withdrawal activity when performed at an ATM:

location law ATMWdr2-LL

locations bank: BANKWdr2-LI; atm: ATMWdr2-LI

rule : Withdraw

when atm.withdraw(n)

and BT(atm,bank)

with n ≤ bank.maxatm(atm.acco())

and n ≤ atm.cash()

do atm.give(n)

when atm.withdraw(n) and

¬ BT(atm,bank)

and REACH(atm, bank)

let N=min(atm.default(),n) in

with N≤atm.cash()
do atm.give(N)

mv bank.internal(N, atm.acco()))

end law

give(money) post ...

default()

charge()

cash()

withdraw(money)

 ATM

ATMWdr−LL

ATMWdr−LI

internal(money, ACCOUNT)

maxatm(ACCOUNT)

 BANK

BankWdr−LI

As in coordination laws, location laws declare a number of partners (called locations) and their

interfaces. The ECA rules that we use for describing the distribution logic in location laws differ from

the ones used in coordination laws because the composition logic does not require the communication

and reachability status to be taken into account. On the contrary, in location laws, we need to take

into account the properties of the context in which the trigger occurs, the condition needs to be

evaluated, and the action needs to be performed.

Indeed, as neither the presence nor the quality of communication can be taken for granted in

location-aware business components, we have to take explicit account of the communication status

be-tween any involved interfaces using their locations. For instance, depending on whether given

locations are in touch, either a full composition of operations is performed across all locations involved

thus synchronising the services in execution at these locations, or just a composition of the operations

available at the location where the trigger is perceived can be performed.

This dependency is made explicit through the use of BT. In the location law, two different rules are

considered depending on whether the two locations are in touch when the request for the withdrawal

is detected. Notice that the distinction is made at the level of the trigger (the event of the ECA), not

the guard (condition). This is because each case needs to be treated differently, in particular through

different guards: when BT holds, the guard concerns upholding the maximum withdrawal permitted

by the bank at an ATM whereas, when BT does not hold, it is the maximum allowed by the ATM

itself that needs to be upheld.

The fact that two locations are not ”in touch” (BT) does not mean that one cannot be reached

from the other (REACH). Reachability allows for mobility of services, namely for service execution to

be moved to other locations as an instance of another service. In the case that concerns us, even in

the absence of communication with the bank, ATMs can provide a limited amount of cash as long as

12

there is a protocol with the bank for remote/delayed transmission of the corresponding withdrawal.

The operations that continue the execution of the activity at a different location are declared under

mv whereas those that are executed locally are identified under do as usual.

Notice that what is being moved for execution at the bank concerns a full withdrawal service,

not the elementary debit operation that we discussed in the previous section. Indeed, the required

service needs to be executed in the right context, which means taking into account the coordination

and location rules that apply, internally at the bank, to that specific client and account. The way

the service is moved from the ATM to the bank is left unspecified: it should be handled at the level

of the definition of the location types, namely the topology of movement that applies. In the case

of current Web services, these are rather trivial situations as reachability is, once again, handled at

the level of network addresses. In our example, this movement can be just the storage of a request

until communication becomes available (lightweight mobility), or the print out of instructions that are

delivered in hand at the bank and executed on arrival at the end of the day (strong snail mobility),

just to name a few and stress that we are modelling services that are not necessarily deployed over

the Web!

As discussed in the next section, the transaction to be executed may involve whatever operations

are required by the composition logic through the coordination rules that react to the same trigger.

Indeed, the location rules above are not concerned with the contracts that the customer has with

the bank with respect to withdrawals from the specific account that is involved as a partner, just as

the coordination rules discussed in the previous section were not concerned with distribution. This

separation of concerns is, precisely, what the paper aims to explain.

Before we discuss the integration of separately modelled concerns, consider a few more examples

that illustrate other situations.

Example 4.3 Consider the situation in which the request for the withdrawal is made at a branch of

the bank, although not necessarily the one in which the account is held. We still need two location

interfaces because two locations are involved:

location interface BranchWdr-LI

location type BANK

operations

cash():money

give(n:money) post cash() = old cash()-n

events withdraw(n:money; a:ACCOUNT)

end interface

location interface BankWdr-LI

location type BANK

end interface

Remark that nothing is required of the bank location that concerns the distribution logic; only the

coordination rules will apply as discussed in the next section. This becomes evident in the location

law itself:

13

location law BranchWdr-LL

locations bank: BankWdr-LI; branch: BranchWrd-LI

rule : Withdraw

when branch.withdraw(n,a)

and BT(branch, bank)

with n ≤ branch.cash()

do branch.give(n)

end law

BranchWdr−LL

 BRANCH BANK
BranchWdr−LI BankWdr−LI

cash()

give()

withdraw(money)

In this case, there is no location rule for the situation in which the branch is not in touch with the

”bank”, i.e. with the location in which the account is held. This means that, in those circumstances,

the request for the withdrawal is not recognised, i.e. does not constitute a trigger (the clerk at the

branch just says ”sorry: the system is down again”...).

Example 4.4 Let us consider now a different business activity-identification. At an ATM, two loca-

tions are involved: the ATM itself and the card.

location interface ATMIdf-LI

location type ATM

operations

acco():ACCOUNT;

cust():CUSTOMER;

accept(c:CARD) post acco()=ac(c) and

cust()=ct(c) and bank()=bk(c)

events enter(n:PIN)

end interface

location interface CardIdf-LI

location type CARD

operations

attempts():nat

code():PIN

reject post attempts() = old attempts()+1

accept post attempts()=0

end interface

The interface for the ATM detects the entering of a pin number as an event. As elementary ser-

vices, it involves the acceptance of a card, which implies retrieving from the card the identities of

the account and the customer. This is done through operations ac : CARD → ACCOUNT and

ct : CARD → CUSTOMER available at the level of the data types provided as part of the underly-

ing busi-ness model. On the side of the card, elementary operations handle attempts at guessing the

code that is stored. The corresponding location law is pretty intuitive:

location law ATMIdf-LL

locations atm: ATMIdf-LI; card: CardIdf-LI

rule : Identification

when card.enter(n) and BT(atm,card)

with card.attempts() ≤ 3

do if n=card.code()

then card.accept()

and atm.accept(card)

else card.reject()

end law

acco() : ACCOUNT

cust() : CUSTOMER

accept(c:CARD) post ...

attempts() : nat
code() : PIN

accept()

reject() post ...
post ...enter(n: PIN)

 ATM CARD

ATMIdf−LL

ATMIdf−LI CardIdf−LI

Notice that, in this case, BT means that the ATM is able to recognise the card and, hence,

”communicate” with it, namely to extract information from it as done through the action accept. If

14

the card is not recognised, then the trigger is not recognised either and the evaluation of the guard is

not even attempted.

5 Integration of Concerns

So far we proposed a set of semantic primitives through which we can separate two different concerns

in business modelling: the coordination mechanisms that should be put in place to compose services

(composition logic or layer) and the location-aware aspects that handle the dependency on the business

channels across which services are distributed (distribution logic or layer).

This separation of concerns seems to be rather intuitive. As a business activity, a withdrawal from a

bank account should involve a number of partners that execute required services in a coordinated way,

i.e. according to certain logic, regardless of where they are located. For instance, the use of a credit

facility is part of a business contract between the customer and the bank regardless of the channel

through which withdrawals are made. Likewise, the limitations that the absence of communication

be-tween an ATM and a bank imposes on the activity is independent of the existence of a credit

allowance.

This is why it is important to support this separation of concerns at the level of business modelling.

On the one hand, each dimension can be refined independently of the other. On the other hand,

changes in one dimension can be done without interfering with decisions made in the other.

Being able to model these concerns separately does not mean that they are independent. The way

a business activity is performed within a process system emerges from the coordination and location

laws that jointly apply to that activity. In this section, we discuss this mechanism of emergence, i.e.

we are concerned with the away both concerns get integrated in a model of the business activity as it

ends up being executed.

Example 5.1 By consider the withdrawal once again, at runtime, the way the withdrawal is pro-

cessed is determined not by independent partners and locations but by located partners: for instance,

cust@atm and acco@bank. That is, both coordination and location interfaces need to be instantiated

by the same run-time services. In particular, because the ATM component identifies a customer and

an account, we have cust = atm.cust() and acco = atm.acco(), i.e. a single customer service and a

single account service.

This makes it clear that the business partner that is involved in the activity is not necessarily the

person standing in front of the ATM but the customer identified in the card. To be more precise,

the instantiation of the coordination and location laws means binding the coordination and location

interfaces to services that are running on the current system configuration. Hence, in the case of a

withdrawal, we will have services running: one that binds cust and atm; the other binds acco and

bank. As already mentioned, these services are not necessarily disjoint or independent, and they

are not necessarily created upon instantiation. For instance, as discussed in section 3, acco may be a

service running autonomously within bank. On the other hand, the ATM service atm will have started

when the ATM was switched on; when the binding of the location interface ATMW-LI takes place, it

will have a context in which atm.acco() and atm.cust() will hold the identities of the account and

customer to which the withdrawal applies. This is because, through the location law ATMId-LL, this

data will have been retrieved from the card during the identification activity. Moreover, the binding

15

also establishes that the value of cust.owns(acco) is true. Notice that, at a branch, the binding of cust

would not necessarily establish this equality: in the case of the ATM, it is the use of the card that

authenticates the pair (cust.acco). This is another reason in support of making business processes

location-aware.

The way a process activity like a withdrawal interacts with these services in described in the

coordination and location rules according to the events that are detected in the run-time configuration.

Example 5.2 In our example, the event that triggers the withdrawal business activity instantiates as

atm.withdraw(n) in the location interface and cust.withdraw(n, acco) in the coordination interface

Assuming that the coordination law that is active in the run-time configuration is SdWdr-CL (see

section 3), the occurrence of the event is subject to the following rules:

when cust.withdraw(n,acco)

with acco.balance() ≥ n

and cust.owns(acco)

do acco.debit(n)

when atm.withdraw(n) and BT(atm,bank)

with n ≤ bank.maxatm(atm.acco())

and n ≤ atm.cash()

do atm.give(n)

when atm.withdraw(n) and ¬ BT(atm,bank) and

REACH(atm,bank)

let N=min(atm.default(),n) in

with N=atm.cash()

do atm.give(N)

mv bank.internal(N, atm.acco())

The joint execution of ECA rules that we have in mind, as formalised in [FLW03], takes the con-

junction of the guards and the parallel composition of the actions (i.e. the union of the corresponding

synchronisation sets) when BT holds. When the located partners are not in touch, i.e. cannot com-

municate, the coordination rules do not apply.

Example 5.3 As an application to this synchronisation, the rules according to which a withdrawal

is performed are:

when cust@atm.withdraw(n) and BT(atm,bank)

with n ≤ bank.maxatm(atm.acco()) and

n ≤ atm.cash() and

n ≤ acco.balance() and cust.owns(acco)

do atm.give(n) and acco.debit(n)

when cust@atm.withdraw(n) and

¬ BT(atm,bank) and

REACH(atm,bank)

let N=min(atm.default(),n) in

with N=atm.cash()

do atm.give(N)

mv bank.internal(N, atm.acco())

That is, when the ATM is in communication with the bank, the withdrawal is performed accord-

ing to the coordination rule of a standard withdrawal and the location rule of the ATM. The two

triggering events atm.withdraw(n) and cust.withdraw(n, acco) have now to be merged into a sin-

gle one: cust@atm.withdraw(n, acco). That is, all their parameters are to be gathered so that all

required information related to the coordination and the location are present. Notice that, because

cust.owns(acco) holds as a result of the binding and, it was omitted from the ”with” condition. The

need for communication is obvious in the guard condition, which requires the balance of the account

to be checked, and in the action, which requires the account to be debited. In the case of the joint

execution of the guard, BT is necessary to ensure synchronous, atomic execution of the reaction.

16

C
oordination C

oncerns
L

ocation C
oncerns

A
ctivity

F
low

A
ctivity

F
low

C
onfiguration

R
un−tim

e B
usiness

give(money) post ...

ACCOUNT@ BANK

cash()

default()
BankWdr1−LI

maxatm(ACCOUNT)

balance()

ACCOUNT

withdraw(money)

CUSTOMER@ ATM

WithdrawIdentification

Withdraw

acco() : ACCOUNT

cust() : CUSTOMER

accept(c:CARD) post ...

enter(n: PIN)

attempts() : nat
code() : PIN

accept()

reject() post ...
post ...

CUSTOMER

owns(ACCOUNT)

withdraw(money)

CUSTOMER@ CARD

debit() post ...

SdWdr−CL

 CARD ATM

ATMIdf−LI

ATMIdf−LL

CardIdf−LI ATM

ATMWdr−LI

ATMWdr−LL

 BANK

acco()
internal(money, ACCOUNT)

 ACNTSdW−CI CUSTSdW−CI

Figure 1: The Architecture illustrated with the identification and withdrawal.

Notice that synchronous execution does not involve REACH because the service is not being moved

from one location to another: both services are executed, each in its location, but atomically, which

is what requires communication. Naturally, this semantics requires a proper distributed transaction

management system to be in place. See [Lit03] for transaction protocols in the scope of Web services.

Summarising, as claimed in section 2 and illustrated in Figure 2, our approach to activity modelling

and evolution in distributed business process. That is, for each activity within a business process, we

identify which are the location and coordination concerns that apply to the business entities involved,

and how they are put together to respect the business process logic (e.g. the activity ordering). In

general, there is a 0-N correspondence between each business process activity and Coordination /

Location Laws. That is, depending on the semantics of each activity, we may have no coordination

laws (which is the case of identification in the example) or one or more coordination laws (case of

withdraw); and the same for location laws.

We have to emphasize that, depending on the business entities involved in a specific activity, not

every law applies at each configuration. Determining which laws should apply and, for those that

17

L
ocation C

oncerns

F
low

s
A

ctivity

C
onfiguration

R
un−tim

e B
usiness

C
oordination C

oncerns
F

low
s

A
ctivity

activity1 activity 2 activityN

activityNActivity1

. . .

. . .

C Law 1 C Law 2 C Law N

Activity2

Business Comp_1 Business Comp_K

Business Comp_2

. . .

. . .

Act1−I1−CI

Act2−I1−CI ActN−I1−CI

ActN−I2−CI

Act1−I2−CI

LocPActN−LLLocJAct2−LLLoc1Act1−LL

Loc1Act1−LI

LocJAct21−LI LocPActN1−LI LocLAct22−LI

LocRActN1−LI

Figure 2: A graphical illustration of the integration of concerns

apply, how the business entities instantiate the interfaces (location and coordination), and how the

corresponding instantiated coordination and location laws bind the entities together with contracts, is

out of the scope of this paper. See [AF03, AF04] for configuration management primitives that apply

to coordination laws. In what concerns location laws, we are now developing similar configuration

primitives.

6 Concluding remarks

In this paper, we discussed a service-oriented architectural-based approach that addresses current

challenges in modern business process modelling for reflecting dynamic cross- and intra-organisational

interactions as well as dependencies on the business channels and networks over which organisations

operate. Our approach is inspired in the rich set of specifications that is currently available for

software development over Web services, i.e. ”software that can process XML documents it receives

18

through some combination of transport and application protocols” [Vog03]. Languages and techniques

as made available by BPEL4WS [BPE03], WS-Coordination [Web00b] and WS-Transaction [Web00c],

inter alia, remain too close on this narrow view of services that need to be located and invoked over

the Web using addresses and referencing mechanisms that identify where services can be found using

a given protocol like TCP or HTTP. As a consequence, they offer little support to the higher-levels

of abstraction in which business rules and organisational infrastructures need to be modelled. Our

proposal adopts instead a rule-based approach to business modelling: it addresses a notion of space

in which locations correspond to business entities and channels are organised according to a given

organisational communication and distribution network.

The semantic primitives that we proposed for business modelling capture structural features of

architectural connectors in separating concerns and addressing business rules as first-class entities.

Following our approach, the aspects that relate to the way business rules determine how the services

involved in a business activity need to be orchestrated fall under what we call ”coordination laws”.

These are semantic primitives that are used for modelling the ”service composition layer” of service-

oriented architectures or, for short, their ”composition logic”.

In what concerns the ”distribution logic” that captures the dependency on the business channels

and networks (e.g. properties of the computational platform and communication network, mobility

of devices/sensors, inter alia), we proposed a similar approach based on explicit connectors we called

location laws. As with coordination laws, these connectors can be superposed dynamically and evolved

independently of the other business aspects, allowing systems to self-adapt or be adapted to changes

that occur at the distribution level without interfering with the core business policies.

The semantics of both the composition and distribution logic, and of coordination and location

laws, builds on recent work around CommUnity, a formal approach that we have been developing

for architectural description [FLW03]. CommUnity includes primitives that capture distribution and

mobility aspects [LF03], and explicitly separate between components computation, coordination and

distribution/mobility. Besides recently forwarded operational semantics–including graph transforma-

tions, Tile and rewriting logic–the main strength of CommUnity lies in its logic of interactions, which

is based on Category Theory [Fia04]. CommUnity is also endowed with a software tool for editing,

simulating and validating distributed software architectures [OW04].

Meseguer’s Rewriting Logic [Mes92] was used in [AF05] as a semantic domain for validating co-

ordination and location concerns independently of each other and for checking consistency between

them. We are also collaborating with ATX Software, the IT company with whom we developed the

Coordination primitives, on the methodological aspects of location laws; one of our main goals is to

develop a deeper understanding and classification of business rules so that semi-automatic derivation

of coordination and location laws can be ultimately achieved. In this sense, the work put forward

in [OYP03] for classifying Web Services-oriented rules can provide us significant input. Last but not

least, extensions to modelling languages like the UML with coordination and distribution laws are

also being investigated at Leicester.

7 Acknowledgements

The authors would like to thank L.Andrade, P.Kosiuczenko, G.Koutsoukos and A.Lopes for many

insights and suggestions on the work reported in this paper.

19

References

[Abo01] L. Abom. Frame-working RM-ODP in Banking. In A.J. Moinhos Cordeiro and H. Kilov, editors,

WOODPECKER 2001, In conjunction with ICEIS, 2001. ICEIS Press, 2001.

[AF02] L.F. Andrade and J. Fiadeiro. Agility through coordination. Information Systems, 27:411–424,

2002.

[AF03] L. Andrade and J. Fiadeiro. Service-Oriented Business and System Specification: Beyond Object-

orientation. In H. Kilov and K. Baclwaski, editors, Practical Foundations of Business and System

Specifications, pages 1–23. Kluwer Academic Publishers, 2003.

[AF04] L. Andrade and J. Fiadeiro. Composition Contracts for Service Interaction. Journal of Universal

Computer Science, 10(4):375–390, 2004.

[AF05] N. Aoumeur and J. Fiadeiro. Architectural Specification of Location-aware Systems in Rewriting

logic. Technical Report, 2005. Submitted for Publication.

[AFLW03] L. Andrade, J. Fiadeiro, A. Lopes, and M. Wermelinger. Coordination for Distributed Business

Systems. In R.Mittermeir J.Eder and B.Pernici, editors, Proc. of Information Systems for a

Connected Society, pages 27–37. University of Maribor Press, 2003.

[AFO04a] N. Aoumeur, J. Fiadeiro, and C. Oliveira. Distribution Concerns in Service-Oriented Modelling.

In S.Weerawarana, editor, 2nd International Conference on Service Oriented Computing (IC-

SOC’04), Short papers, IBM REsearch Divison, IBM Report:RA221 (W0411-084), pages 26–35,

2004.

[AFO04b] N. Aoumeur, J. Fiadeiro, and C. Oliveira. Towards an Architectural Approach for Location-

aware Business Processes. In Proc. of the 13th IEEE International Workshops on Enabling,

Technologies : Infrastructure for Collaborative Enterprises, June 14-16, pages 147–152. IEEE

Computer Society, 2004.

[AG97] Robert Allen and David Garlan. A formal basis for architectural connection. ACM Transactions

on Software Engineering and Methodology, July 1997.

[AHW03] W.M.P. van der Aalst, A.H.M. ter Hofstede, and M. Weske. Business Process Management: A

Survey. In W.M.P. van der Aalst A.H.M. ter Hofstede and M. Weske, editors, International

Conference on Business Process Management (BPM 2003), volume 2678 of Lecture Notes in

Computer Science, pages 1–12, 2003.

[Biz00] BizTalk Orchestration - a new Technology for Orchestrating Business Interactions. Microsoft

Research, 2000.

[BM03] B. Benatallah and Z. Maamar. Introduction to the special issue on M-services. IEEE Transactions

on Systems, Man, and Cybernetics, Part A, 33(6):665–666, 2003.

[BPE03] Business Process Execution Language for Web Services. IBM, 2003. version 1.1.

[BTB03] A Baina, S. Tata, and K. Benali. A Model for Process Service Interaction. In W.M.P. van der

Aalst A.H.M. ter Hofstede and M. Weske, editors, Business Process Management: International

Conference, BPM 2003, volume 2678 of Lecture Notes in Computer Science, pages 261–275, 2003.

[CDPG+04] M. Comerio, F. De Paoli, S. Grega, C. Batini, C. Di Francesco, and A. Di Pasquale. A Service Re-

Design Methodology for Multi-Channel Adaptation. In M. Aioello, M. Aoyama, F. Curbera, and

M. Papazoglou, editors, Proceedings 2nd International Conference on Service Oriented Computing

(ICSOC04). ACM Press, 2004.

[CG98] L. Cardelli and A. Gordon. Mobile Ambients. In M. Nivat, editor, Proc. of FoSSACs98, volume

1378 of Lecture Notes in Computer Science, Berlin, pages 140–155. Springer, 1998.

20

[Cha04] M. Charfi, A. Mezini. Hybrid web service composition: Business processes meet business rules. In

M. Aioello, M. Aoyama, F. Curbera, and M. Papazoglou, editors, Proceedings 2nd International

Conference on Service Oriented Computing (ICSOC04). ACM Press, 2004.

[Fia04] J. Fiadeiro. Categories for Software Engineering. Springer, 2004.

[FL04] J. Fiadeiro and A. Lopes. CommUnity on the Move: Architectures for Distribution and Mobility.

In Formal Methods for Components and Objects, volume 3188 of Lecture Notes in Computer

Science, pages 177–198. Springer, 2004.

[FLW03] J. Fiadeiro, A. Lopes, and M. Wermelinger. A mathematical semantics for architectural con-

nectors. In Generic Programming, volume 2793 of Lecture Notes in Computer Science, pages

190–234. Springer, 2003.

[FRN+03] F.Curbera, R.Khalaf, N.Mukhi, S.Tai, and S.Weerewarana. The Next Step in Web Services. In

M.Papazoglou and D.Georgakopoulos (guest editors), editors, Special Issue on Service-Oriented

Computing, Communications of the ACM, volume 46(10), pages 41–47. 2003.

[GS03] G.Meredith and S.Bjorg. Contracts and Types. In M.Papazoglou and D.Georgakopoulos (guest

editors), editors, Special Issue on Service-Oriented Computing, Communications of the ACM,

volume 46(10), pages 41–47. 2003.

[Kat93] S. Katz. A Superimposition Control Construct for Distributed Systems. ACM TOPLAS,

15(2):337–356, 1993.

[KL04] P. Kardasis and P. Loucopoulos. Expressing and Organising Business Rules. Information and

Software Technology, 2004.

[LF03] A. Lopes and J. Fiadeiro. On how Distribution and Mobility interfere with Coordination. In

M. Wirsing, D. Pattinson, and R. Hennicker, editors, Recent Trends in Algebraic Development

Techniques, volume 2755 of Lecture Notes in Computer Science, pages 343–358. Springer, 2003.

[LFW02] A. Lopes, J.L. Fiadeiro, and M Wermelinger. Architectural primitives for distribution and mo-

bility. In Proc. of ACM SIGSOFT Symp. on Foundations of Software Eng., pages 41–50. ACM

Press, 2002.

[Lit03] M Little. Transactions and Web Services. In M.Papazoglou and D.Georgakopoulos (guest editors),

editors, Special Issue on Service-Oriented Computing, Communications of the ACM, volume

46(10), pages 49–54. 2003.

[MAM+04] Z. Maamar, G. AlKhatib, S. Mostéfaoui, M. Lahkim, and W. Mansoor. Context-based Per-

sonalization of Web Services Composition and Provisioning. In Proc. EUROMICRO’04. IEEE

Computer Society, 2004.

[Mes92] J. Meseguer. Conditional rewriting logic as a unified model for concurrency. Theoretical Computer

Science, 96:73–155, 1992.

[Mge03] M.Papazoglou and D.Georgakopoulos (guest editors). Communications of the ACM, 46(10), 2003.

[MK96] Kramer Magee and J. Kramer. Dynamic Structure in Software Architectures. In Proc. of 4th

Symp. on Foundations of Software Engineering, pages 3–14. ACM Press, 1996.

[ML03] Z. Maamar and M. Lahkim. A Specification Approach to Compose Mobile Web Services Using

Service Chart Diagrams. In Proc. CAiSE Workshops, CEUR Publications, 2003.

[MPS03] A. Maurino, B. Pernici, and F.A. Schreiber. Adaptive Channel Behavior in Financial Information

Systems. In Proceedings of Information and Collaboration Systems CAISE’03 Workshop (June

16-20), pages 77–89, 2003.

[MSB03] Z. Maamar, Q. Sheng, and B. Benatallah. Selection of Web Services for Composition Using

Location of Provider Hosts Criterion. In Proc. CAiSE Workshops, CEUR Publications, 2003.

21

[OW04] C. Oliveira and M. Wermelinger. The CommUnity workbench. In Proc. of the 26th Intl. Conf.

on Software Engineering, pages 709–710. IEEE Computer Society Press, 2004.

[OYP03] B. Orriëns, J. Yang, and M.P. Papazoglou. A Framework for Business Rule Driven Web Service

Composition. In Proc. of Conceptual Modeling for Novel Application Domains, volume 2814 of

Lecture Notes in Computer Science, pages 52–64. Springer, 2003.

[QDVS04] D. Quartel, R Dijkman, and M. Van Sinderen. Methodological Support for Service-oriented

Design with ISDL. In M. Aiello, M. Aoyama, F. Curbera, and M. Papazoglou, editors, 2nd

International Conference on Service Oriented Computing (ICSOC’04), ACM Press, pages 1–10,

2004.

[RW02] D. Rosca and C. Wild. Towards a Flexible Deployment of Business Rules. Expert Systems with

Applications, 23:385–394, 2002.

[SBM+04] Q. Sheng, B. Benatallah, Z. Maamar, M. Dumas, and A. Ngu. Enabling Personalized Composition

and Adaptive Provisioning of Web Services. In In Proc. of CAiSE, volume 3084 of Lecture Notes

in Computer Science, pages 322–337. Springer, 2004.

[Tge01] T.Elrad and R. Filmanand A. Bader (guest editors). Communications of the ACM, 44(10), 2001.

[Vog03] W Vogel. Web Services Are Not Distributed Objects. IEEE Internet Computing, 2003.

[Web00a] Web Services architecture overview - the next stage of evolution for e-business. 2000.

http://www.ibm.com/developerworks/web/library/w-ovr/.

[Web00b] Web Services Coordination, version 1.0. 2000. http://www.ibm.com/developerworks/web/library/ws-

coor/.

[Web00c] Web Services Transaction, version 1.0. 2000. http://www.ibm.com/developerworks/web/library/ws-

transpec/.

[WKL03] W.M.N. Wan-Kadir and P. Loucopoulos. Relating Evolving Business Rules to Software Design.

Journal of Systems Architecture, 2003.

[ZLB04] C. Zirpins, , W. Lamersdorf, and T. Baier. Flexible coordination of service interaction patterns. In

M. Aioello, M. Aoyama, F. Curbera, and M. Papazoglou, editors, Proceedings 2nd International

Conference on Service Oriented Computing (ICSOC04), pages 49–56. ACM Press, 2004.

22

