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ABSTRACT 
Service-oriented development offers a novel architectural ap-
proach that addresses crucial characteristics of modern business 
process development such as dynamic evolution, intra- and inter-
enterprise cooperation, and distribution/mobility. In previous pa-
pers, we have shown how the mechanisms that regulate the rela-
tionships, functioning and cooperation of business activities in 
such architectural models can be externalised from business rules 
in terms of connectors that can be superposed dynamically on 
stable core business entities.  That is to say, we focused on what, 
in the literature, has been called the “service composition layer” of 
service-oriented architectures or, for short, their “composition 
logic”. Our emphasis in this paper is on the distribution aspects: 
we show how a corresponding “distribution logic” can be defined 
in terms of another set of architectural primitives that address the 
way business rules depend on “locations”.  These primitives ad-
dress what are sometimes called “business channels” (ATMs, 
PDAs, Pay-TV, Internet, inter alia) as offered in typical contem-
porary ICT-infrastructures with substantial added-value to busi-
ness processes.  We argue that interacting (core) business entities 
located at or endowed with such ICT capabilities should be mod-
elled in a way that separates the composition from the distribution 
logic so that business interactions can be understood and evolved 
in a location-transparent way.  Our approach is based on a 
mathematical model that we have recently developed for model-
ling context-aware interactions.  An example from banking is used 
for illustrating its applicability. 

Categories and Subject Descriptors 
D.1.3 [Concurrent Programming]: Distributed Programming, 
Parallel programming. D.2.11 [Software Architectures]: Lan-
guages – connectors; F.1.2 [Modes of Computation]: Interactive 
and reactive computation.  

General Terms 
Design, Languages, Verification. 

Keywords 
Evolution, location-awareness, rule-based business modelling, 
service composition and coordination, software architectures 

 

1. INTRODUCTION 
Modern business processes are becoming more and more com-
plex, reflecting the increasing dependency of the economy, and 
the functioning of the society as a whole, on intricate and volatile 
intra- and inter- organisational cooperation.  On the other hand, 
business operations are relying more and more on day-to-day 
advances in Information and (wired/wireless) Communication 
Technology (ICT).  In order to remain competitive, respond to 
market pressure and attract more customers, companies are 
pressed to provide ever more sophisticated added-value services.  

For instance, banks are continuously creating new services or 
updating existing ones to match the expectations and profiles of 
their customers, while at the same time supporting more and more 
advanced channels for day-to-day banking such as ATM, Internet, 
PDA, Pay-TV, inter alia [23]. 

This tension between complexity and agility is raising new chal-
lenges on the way software needs to support business information 
systems.  It is clear that these challenges transcend by far the ca-
pabilities of the software engineering techniques that have been 
traditionally used for business process development.  This is why 
most business designers are looking for new solutions around 
workflows [1] and, more recently, web services [34].  As a result, 
significant standards, techniques and models have been advanced 
in both directions for modelling and enacting business processes. 

However, we argue that the operational character of these ap-
proaches (even when supported by mathematical models like Biz-
Talk [8,24]) makes it very hard to tackle all the above features 
adequately.  Although it is widely accepted that abstraction and 
rigor are the preponderant means for tackling levels of multi-
dimensional complexity, addressing these requirements equally 
and coherently, as their nature and expected added-value deter-
mine, requires a more declarative approach and semantic model-
ling primitives that work at a level of abstraction in which the 
different dimensions can be integrated and reasoned about. 

More specifically, on the one hand, current standards lack rich 
mechanisms like service negotiation, contracting and service 
communication and coordination as required for flexibility and 
dynamic adaptation and evolution [7] in cross-organisational proc-
esses.  In addition, despite some progress in semi-automatic 
derivation of service-oriented business processes from informal 
business rules [26], the relationship between business rules, their 
evolution and web-services in general remains largely unexplored.   

On the other hand, proposals based on Web services experience 
serious difficulties in addressing location-awareness as an essen-
tial business concern for dealing with multi-channels provided by 
present day's technology.  Web services can be programmed in 
ways that respond to the need for businesses to operate in different 
platforms and through different channels (say, banking at an 
ATM, across the internet, or through a PDA/mobile phone), but 
Service Description Languages do not provide abstraction mecha-
nisms for modelling the underlying distribution logic and the way 
it adheres and enforces given business policies. 

The purpose of this paper is to put forward a set of primitives 
through which distribution concerns can be addressed in service-
oriented business modelling.  We do so by extending the approach 
that we have put forward in [6] for addressing the composition 
logic, i.e. “the way composite services can be constructed for 
defining processes or workflows that interact with sets of Web 
Services to achieve certain goals” [11,32].   



In section two, we justify the use of a rule-based architectural 
approach for modelling both the composition and the distribution 
logic of services, discuss the main assumptions that we make on 
the way service-oriented development applies to business proc-
esses, and present the running example – a simplified banking 
system.  In section three, the coordination primitives that address 
the composition logic are reviewed and illustrated using the ex-
ample. In section four, location primitives are presented as the 
building blocks for the envisaged distribution logic, and illustrated 
using the same example. In section 5, we present an architecture 
for modelling and evolving agile and dynamic business processes 
based on coordination and distribution. 

2. MOTIVATION 
In this section, we justify why and how we are bringing together 
concepts and techniques from service-oriented development, rule-
based business modelling, software architecture, and context-
aware computing. 

A rich set of specifications is currently available for software 
development over service-oriented architectures that include the 
Business Process Execution Language for Web Services 
(BPEL4WS or BPEL for short) [9], WS-Coordination [35] and 
WS-Transaction [36], inter alia.  A so-called BPEL composition 
is a business process or workflow that interacts with a fixed set of 
Web services to achieve a certain goal.  A business process is 
taken as a series of activities involving a given set of partners 
connected according to given data and control flow requirements.  
For instance, a banking process can be taken to consist of several 
activities, including specifically: 

• Customer identification and authentication. 
• Customer execution of banking transactions (deposits, 

withdrawals, loans, mortgages, etc). 
• Customer exit. 

Web Services are “self-contained, modular applications that can 
be described, published, located, and invoked over a network, 
generally the Web” [34].  They are capable not only of performing 
business activities on their own, but also to take part in higher-
order business transactions by engaging in more or less complex 
interactions with other Web services. 

This approach offers a significant number of advantages.  For 
instance, by being platform-neutral, Web services support the 
definition of business processes by using existing elementary or 
complex services, possibly offered by different service providers 
or extracted from so-called legacy systems.  However, even appli-
cations developed on the basis of BPEL are still some way from 
addressing the challenges raised by the need to tackle complexity 
and agility as identified in the introduction.  One of the reasons is 
that BPEL-style applications are rather unstructured and static. 
For instance, services are composed in a rather ad hoc and unprin-
cipled manner by simply combining their operations and input and 
output messages.  This makes business processes difficult to 
evolve.  If the business rules under which the process operates 
change or need to be adjusted, the workflow will have to be re-
vised and additional or modified service interfaces may have to be 
used for the interconnections. 

Recent investigations in business process modelling are shifting 
the emphasis towards more abstraction through business rule-
driven approaches [15,29].  Business rules are understood as “pro-
jections of organisations’ constraints and declarations of (inter-
nal/external) policy/conditions that must be satisfied for doing 
business” [33].  They specify actions to be taken on the occur-

rence of particular events, including “state of being” changes con-
cerning individuals, infrastructure, consumables, informational 
resources, and business activities in general.  

Rule-driven approaches offer a number of advantages that are 
crucial for coping with dynamically evolving complex business 
processes.  They support the specification of business models 
independently of the specific processes that happen to be running 
at any one instant.  They focus on more primary requirements and 
address business domain descriptions in a declarative rather than 
operational way.  For all these reasons, they are generally more 
apt to support evolution. 

The exploitation of these potentials for achieving new degrees of 
dynamism and abstraction in Web Services composition remains 
largely unexplored.  An exception is the recent work by Papazo-
glou et al. [24].  In this approach, starting from a very general 
specification, the composition is scheduled, constructed and fi-
nally executed with the assistance of business rules judiciously 
classified in a repository.  Besides basic elements such as events, 
conditions, and messages, this classification includes rules dealing 
with the activity flows, the data required for their composition and 
the constraints to be respected. The direct construction and subse-
quent execution of the composition from the business rules is 
performed in terms of XML-like descriptions.  However, the ap-
proach does not address the distribution dimension.   

Our contribution follows in this path and aims to enhance the 
potential of service-oriented architectures by developing semantic 
primitives that raise the level of abstraction and capture rule-based 
business modelling.  In the approach that we have in mind, each 
business activity is a dynamic entity that is put together, at run-
time, from a number of self-contained applications (services) that 
need to be located and invoked over a distribution network.  The 
way these services are brought together and invoked, what is 
sometimes called “orchestration”, must follow given business 
rules as set by the organisation.  For instance, it is clear that a 
withdrawal activity is subject to the business rules that apply to 
the specific customer and account involved as business entities. 
Depending on the nature of the account and of the customer, cer-
tain constraints may apply that determine if, for a given amount, 
the withdrawal is authorized and, if so, what operations of the 
bank itself need to be executed.   

More specifically, our approach aims to capture business rules at 
an interaction level so that dynamic adaptation of services and 
cross-organisational service cooperation can be intrinsically and 
explicitly supported (composition logic).  For this purpose, we 
adopt techniques akin to those that have been developed for Soft-
ware Architecture [3].   We propose to capture as a connector any 
business rule dealing with intra- and inter-organisation coopera-
tion.  On the one hand, as modelling primitives, architectural con-
nectors can be made to describe business service compositions in 
a declarative way as shown through the rule-based approach pro-
posed in [5].  On the other hand, as shown in [22] architectural 
approaches support dynamic evolution as required for agility and 
reconfigurability.  

In our approach, the mechanisms that are required for regulating 
the relationships, functioning and cooperation of services are ex-
ternalised from business rules in terms of semantic primitives that 
we call coordination laws.  These describe composition mecha-
nisms in terms of event-condition-action (ECA) rules that can be 
superposed dynamically on stable core business entities.  Super-
position [16] is non-intrusive on the code that implements the 
services. Therefore, business architectures can be dynamically 



evolved, as volatile business rules change or new cross-
organisational links come into force, while ensuring compliance to 
core business invariants.  

However, business activities depend on business channels and 
networks in ways that are orthogonal to the interactions that busi-
ness relationships impose.  For instance, depending on the loca-
tion where the banking process is requested, identification and 
authentication can consist of: 

(1) A simple “hello” when the request is made by the customer 
in person at the desk of the branch where the account has 
been held for 20 years. 

(2) The presentation of a personal identity document if the clerk 
has only recently joined that branch or if the customer at a 
different branch makes the request. 

(3) A complex transaction involving debit cards and codes if the 
request is made at an ATM (not necessarily by the cus-
tomer). 

(4) A collection of passwords, security codes and pre-
determined personal questions if the request is made through 
the Internet (again, not necessarily by the customer). 

In terms of a service-oriented architecture, this means that the way 
composite services need to be constructed should obey not only a 
composition logic derived from coordination concerns, but also a 
distribution logic derived from location concerns.  Indeed, loca-
tion-awareness is common to business channels (e.g. ATM, 
Branch, Pay-TV), mobile devices (e.g. PDA), internet-based fa-
cilities/software, and sensors, inter alia.  The presence and quality 
of communication with other partners as well as the ability to 
migrate or move to other locations are among the crucial features 
that need to be taken into account at the level of this distribution 
logic.   

Notice that, by location, we do not mean necessarily the space of 
addresses typically used in the Web.  In the literature, service-
oriented modelling is almost always instantiated to “Web Serv-
ices”, i.e. “software that can process XML documents it receives 
through some combination of transport and application protocols” 
[31].  Such services need to be located and invoked over the Web 
using addresses and referencing mechanisms that identify where 
services can be found using a given protocol like TCP or HTTP.     

We have already motivated that this is a rather low-level view of 
what can be called the “service-oriented paradigm”, which we 
would like to explore from the point of view of business process 
modelling in the architectural approach that we motivated.  In 
particular, we would like to distance ourselves from both the 
XML-centred view of information exchange, and the Web-
oriented notions of location and reference protocols.  Our proposal 
is to work on a space in which locations correspond to business 
entities and channels organised according to a given business 
domain.  Therefore, we do not work with a fixed notion of loca-
tion at all.  We propose that, as part of business modelling, the 
notion of location and distribution network that best applies to the 
business domain be specified in abstract terms through data sorts 
and operations. 

To the best of our knowledge there is no conceptual modelling 
approach that addresses location-awareness in business processes 
in the sense that we have motivated, except for the work in [2], 
one of our main sources of inspiration. This work invokes the 
notion of “channel” for addressing location-awareness.  It is, alto-
gether, rather “operational”, not as declarative as we wish ours to 

be, because it uses state machines as a modelling tool.  It does not 
cope with the evolutionary side either, and it has not been inte-
grated within an architectural approach that provides explicit con-
nectors that can handle location-dependency aspects.  

This is why, in what concerns the distribution logic that captures 
the dependency on the business channels and networks, we pro-
pose an approach based on explicit connectors that we call loca-
tion laws.  As with coordination laws, these connectors can be 
superposed dynamically and evolved independently of the other 
business aspects, allowing systems to self-adapt or be adapted to 
changes that occur at the distribution level without interfering 
with the core business policies. 

The semantics of our distribution logic builds on our recent work 
around CommUnity, a formal approach that we have been devel-
oping for architectural description [14].  CommUnity includes 
primitives that capture distribution and mobility aspects [4,19].  
The whole approach has a mathematical semantics defined over 
Category Theory [13].  We borrow in particular the notion of 
space of mobility (location structure) and corresponding contexts 
with the "be-in-touch" and "reach" relationships as preconditions 
for communication and mobility. These ingredients are then com-
bined in a new format for condition-action rules that model the 
way service composition depends on the properties of the current 
context. 

3. COORDINATION CONCERNS 
Coordination primitives, as we have been promoting in recent 
work [5], provide a clean separation between the modelling of the 
computations performed by stable core entities on the running 
business configuration to ensure the functionality of basic busi-
ness services, and the mechanisms that reflect how the (intra- or 
cross-organisational) interactions between these business services 
should be coordinated according to given business rules.  

The emphasis is, therefore, on the aspects that subsume what in 
the literature has become known as the “Service Composition 
Layer” of Service-Oriented Architectures [27], i.e. the level at 
which business processes can be put together from elementary 
services. We aim for the level at which so-called business pro-
tocols and processes [11] are addressed.  What we have in mind is 
the definition of processes or workflows that interact with sets of 
Web services to achieve certain goals in terms of abstract service 
descriptions, separated from specific deployments.  In our ap-
proach, such interactions are captured using the concepts of coor-
dination laws and interfaces.  In terms of architecture description 
languages, these correspond to connector types and roles.  In 
terms of business modelling, they capture business rules that regu-
late and compose required and provided services by the core enti-
ties that instantiate the roles. 

This view addresses the emphasis put by BPEL [9] on the defini-
tion of service compositions in terms of processes that interact 
with partners that are external to the composition itself and identi-
fied only in terms of abstract interfaces.  Indeed, it is particularly 
important that we are able to separate the definition of the "com-
position logic" from the run-time composition of specific services 
as part of a process that is being executed to fulfil a specific busi-
ness goal.  We address the former in terms of "coordination laws" 
that capture the business rules according to which complex busi-
ness activities are put together from more basic services. The pur-
pose of this section is to focus on the coordination model that we 
adopt for composing abstract services according to business rules. 



In fact, in our approach, we go one step further and assign part-
ners not to the business process as a whole but to the activities 
that are performed as part of the process.  This recognises the fact 
that the partners involved in one activity may be different from 
those in another activity within the same process.  Moreover, it 
may not be possible to pre-determine which partners will become 
involved in a given activity as this may depend on what has hap-
pened in the process so far. 

The abstract description of the services that are partners in a given 
business is made in terms of what in [5] we called coordination 
interface.  For instance, as a business activity, a withdrawal in-
volves both an account and a customer regardless of the way the 
withdrawal is requested, if by the customer proper or anyone else.  
The purpose of the identification activity is, precisely, to deter-
mine the business entity that is involved in the business activity.  
Hence, in the case of a withdrawal, two coordination interfaces 
are required: one catering for the account service through which 
the debit needs to be performed, and the other for the customer 
service that is invoked as a result of the identification and authen-
tication activity. 

Note that these are “business” partners, not software components 
that offer operations as in object-oriented approaches.  We fully 
support the distinction made in [31] between Web-services and 
distributed objects.  In this paper, we are in no way concerned 
with the way services are programmed and deployed.  For us, an 
account is not a software component that instantiates an object 
class.  An account is understood as a business service, a unit of 
organisation around which a number of operations are grouped 
together to fulfil certain goals. 

Such business partners are not units of execution either. A cus-
tomer does not perform a withdrawal by calling the account to 
execute a debit.  It is the composition logic, as captured by a coor-
dination law, that dictates that a debit, as an operation of the ac-
count service, needs to be invoked whenever a customer issues a 
request for a withdrawal, say at an ATM through some combina-
tion of keys and buttons.  The debit is to be located according to 
the account as a business entity, not as a software component that 
stores the code of the debit operation. 

The trigger/reaction mode of coordination that our approach sup-
ports requires that each coordination interface identifies which 
events produced at execution time are required to be detected as 
triggers for the process to react, and which operations must be 
made available for the reaction to superpose the required effects.  
Notice that this separation is supported, for instance, in BPEL 
processes, by distinguishing between different kinds of actions 
(e.g. synchronous request/response or asynchronous one-way 
operation) that implement interactions among the process and its 
partners.  Indeed, in BPEL, this separation occurs at a lower level 
of abstraction and has to be set in a pre-defined, static way.  The 
same applies to the identification of the exchange of messages that 
such modes of interaction may require between the partners in-
volved: in WSDL, each operation/event in our sense is a sequence 
of input and output messages.   

The two composition interfaces that we have in mind can be de-
scribed as follows:  

coordination interface CW-CI  
partner type CUSTOMER 
operations owns(a:ACCOUNT):Boolean 
events withdraw(n:money; a:ACCOUNT) 
end interface 

coordination interface AW-CI  
partner type ACCOUNT 
operations  
 balance():money 
 debit(a:money)  post balance() = old balance()-a 
end interface 

Each interface identifies the type of the partner that it models.  A 
coordination interface does not identify a specific instance of this 
type, just the operations and events that partner instances are re-
quired to make available.  Notice how the properties of the opera-
tions that are required are specified in an abstract way in terms of 
pre- and post-conditions.  

This type should be specified in terms of a sort of business identi-
ties and functions that can relate the partner to other business enti-
ties as required by the application domain.  For instance, the sort 
ACCOUNT should be provided with a function bank of type 
BANK identifying the bank in which it resides, again as business 
entity, not as a software component. To be more precise, as dis-
cussed in section 5, a:ACCOUNT may identify a service that is 
running as part of a bigger service bank(a):BANK.  That is, we are 
not necessarily committed to creating a new independent service 
upon instantiation of a coordination interface: we may bind the 
interface to a running service that will take the instance of the 
interface as a sub-service.  In this way, we may cater for situations 
in which the bank, as an organisation, runs a separate service for 
each account, one single (complex) service for all accounts, one 
single (huge) service for the whole bank, and so on. 

Another important requirement for the intended composition logic 
is that the activity, as a composite service itself, should be de-
scribed only on the basis of the interfaces and the data and control 
flow aspects that the coordination mechanisms put in place to 
ensure the underlying business goal.  This is what, in BPEL, 
would be called the “state and logic” necessary for coordinating 
the interactions between the process and the partners.  This “com-
position logic” can be described in terms of what we call a coor-
dination law [5]: 

coordination law SW-CL 
partners   acco:AW-CI; cust:CW-CI 
rules 
when cust.withdraw(n,acco)  
 with acco.balance() ≥ n &  
  cust.owns(acco) 
 do acco.debit(n) 
end law 

Besides identifying the coordination interfaces, a coordination law 
specifies the rules that define the behaviour of the service. Such 
coordination rules are of the form:  

when event  
 with condition 
 do set of operation invocations 

Each coordination rule identifies, under the “when” clause, a trig-
ger to which the contracts that instantiate the law will react – a 
request by the customer for a withdrawal in the case at hand.  The 
trigger can be just an event observed directly over one of the part-
ners or a more complex condition built from one or more events.  
Under the “with” clause, we include conditions (guards) that 
should be observed for the reaction to be performed.  If any of the 
conditions fails, the reaction is not performed and the occurrence 
of the trigger fails.  Failure is handled through whatever mecha-
nisms are provided by the language used for deployment.  See [9] 
for explicit handling of faults within BPEL. 



The reaction to be performed by the composite service is identi-
fied under the “do” clause as a set of elementary activities.  This 
set may include calls to operations provided by one or more of the 
partners as well as actions that are internal to the “composition 
logic” of the business activity itself.  The whole interaction is 
handled as a single transaction, i.e. it consists of an atomic event 
in the sense that the trigger reports a success only if all the actions 
identified in the reaction execute successfully and the conditions 
identified under the “with” clause are satisfied. Details on transac-
tion protocols for web-service interactions can be found in [36]. 

In what concerns the language in which the reactions are defined, 
we normally use an abstract notation for defining the synchronisa-
tion set as above.   This is important for bringing to a more ab-
stract modelling level the definitions of business processes that 
recent languages for “orchestration” like BizTalk [8] promote, in 
terms of algebras and models for concurrency.  Our opinion and 
experience is that the architectural modelling level at which we 
promote the representation of business interactions makes it easier 
to bridge the gap from the more organisational high-level goals 
and policies that dictate how business should be run to the choice 
of particular control and synchronisation structures that can make 
specific processes run. 

The externalisation of this composition logic in a coordination law 
is decisive for supporting the required agility in terms of dynamic 
business evolution. The fact that the conditions on which an ac-
count may be debited by its owners are not hard-coded in the op-
erations made available by the account, make it possible for these 
conditions to be changed without interfering with the deployment 
of these services.  For instance, in order to offer a VIP-withdrawal 
in which a given credit limit is allowed, we just have to change 
the composition logic as modelled by the coordination rule; the 
basic debit operation does not need to be changed. 

coordination law VIPW-CL 
partners   acco:AW-CI; cust:cCW-CI 
rules  
when cust.withdraw(n,acco) 
 with acco.balance()+cust.credit()≥ n  &  
  cust.owns(acco) 
 do if acco.balance()≥ n 
   then acco.debit(n)  
   else acco.debit(1.01*n) 
end law 

Notice that a different partner is now required to play the role of 
the customer: we need a service that offers an operation for ob-
taining the credit limit currently assigned to the customer:  

coordination interface cCW-CI  
partner type CUSTOMER 
operations owns(a:ACCOUNT):Boolean 
  credit():money 
events withdraw(n:money; a:ACCOUNT) 
end interface 

Coordination interfaces can be hierarchically organised so as to 
facilitate location and binding of specific concrete services.  We 
leave such matters to a subsequent paper. 

4. LOCATION CONCERNS 
This section puts forward the concepts and constructions that we 
are developing for addressing location-awareness in service-
oriented business modelling.  As emphasized in the introduction, 
our purpose is to provide elements for a “distribution logic” that 
can capture the way service composition needs to take into ac-
count properties of the underlying business channels and commu-

nication infrastructure.  Just like coordination mechanisms that 
separate service functionality from the "composition logic", which 
we illustrated in the previous section, we want to define location 
primitives that can externalise the way business activities depend 
on properties of the distribution topology over which services are 
composed.  The properties that we address in the paper are:  

(1) The communication status, i.e. the presence, absence, or 
quality of the communication link between locations where 
given services are executing but require data to be ex-
changed and synchronisation protocols to be observed as 
part of the composition logic. 

(2) The ability to continue the execution of an activity at another 
location, which requires the new location to be reachable 
from the present one for the execution context to be moved. 

For this purpose, we capitalise on the work developed around 
CommUnity [19].  Although, for simplicity, we will not address 
this specific aspect in depth, the space of locations can be defined 
by the user as an abstract data type with a sort loc and functions 
that capture the properties of the notion of location that are suit-
able for the application domain at hand. This is because, typically, 
different kinds of applications require different notions of loca-
tion.  When a specific notion of location is fixed, as for instance in 
Ambients [10], modelling a different space of mobility requires 
the encoding of a different notion of location, which can be cum-
bersome and interfere with other aspects.  Two observables cap-
ture location awareness as discussed above: communication is 
handled through BT:set(Loc) and movement/reachability through 
REACH:Loc×Loc. 

As we did for the composition logic through coordination laws, 
location laws are the means through which we model the distribu-
tion logic of a given business domain.  Whereas coordination laws 
interconnect partners that are meaningful for the underlying com-
position logic, e.g. customers and accounts in the case of the 
withdrawal, the partners involved in location laws derive from the 
distribution logic and, therefore reflect business channels like 
ATMs, bank branches, etc.   

That is to say, for the distribution logic of a withdrawal, what is 
important is not if the customer has a VIP-contract with the ac-
count, but whether the ATM at which the request for the with-
drawal is made has enough cash in store and is in touch with the 
branch in which the account is held.  The composition logic will 
determine whether the withdrawal can proceed according to the 
relationship that exists between the customer and the account, 
whereas the distribution law will determine how much money can 
be given according to the context in which the transaction is being 
made (cash available at the ATM and status of the communication 
between the ATM and the branch). 

Just like with coordination laws, locations laws are associated 
with business activities within a process, not with the process as a 
whole.  This is because we want to allow for business entities to 
change location during the process.  For instance, we may well 
envisage an instantiation of the banking process in which the cus-
tomer is a mobile entity that starts the process and performs some 
activities through a PDA while driving to the bank where, upon 
arrival, he continues by performing other activities until he even-
tually finishes the process over the internet in his office where he 
needed to retrieve information that he was lacking at the bank.  
The modelling of this kind of mobility within a business process 
is still under active research and will not be further discussed in 
the paper.  See [4,19] for the mathematical domain over which we 
are defining these aspects and early insights on how to use them. 



Requirements on the location of the distribution partner is an 
obligatory feature in every location interface.  These requirements 
consist in the definition of the type of the location as a subtype of 
loc, including any relevant functions and properties.  For instance, 
if a location is required to handle high-precision calculations, its 
type needs to be such that, upon instantiation, service operations 
are executed on hardware that complies with the required proper-
ties.  Security requirements may be reflected in other properties 
and functions on the data that is transmitted. 

location interface ATMW-LI  
location type ATM 
operations  
 default(),cash():money 
 acco():ACCOUNT 
 give(n:money) post cash() = old cash()-n 
events withdraw(n:money)  
end interface 

The event that is being required is self-evident and, as we shall see 
in the next section, refers to the business activity for which we 
have already defined coordination laws.  When this interface is 
instantiated, this event can be refined in many different ways de-
pending on the actual machine at which the business activity is 
being performed: the pressing of a button in the keyboard, the 
filling of a menu on the screen, etc.  The parameter of the event 
will also need to be provided on instantiation. 

The ATM is required to make available two services: the amount 
of cash available inside the machine and the default maximum 
amount that the machine gives if there is no connection to the 
account.  The ATM service is also required to make available the 
number of the account that is currently being serviced.  This data 
will have been stored upon identification through the ATM card.  
We will see in the next section that location (and coordination) 
interfaces are instantiated in run-time to services that may be run-
ning, i.e. instantiation does not mean creation of a service.  In the 
case at hand, the instance of ATM will be the service that will 
have been running when the ATM was “switched on” and that 
will have accepted and authenticated the card involved in the first 
activity of the specific banking process at stake. 

The location interface that applies to the bank is as follows:  

location interface rBANKW-LI  
location type BANK 
operations internal(n:money; a:ACCOUNT)  
  maxatm(a:ACCOUNT): money 
end interface 

That is, the bank is required to be make available, for every ac-
count, the maximum amount that can be debited from an ATM, as 
well as accommodate executions of withdrawals internally.  This 
is because we want to be able to move withdrawals to the bank 
when they are requested at the ATM and there is no communica-
tion between the two locations. 

These two location interfaces are brought together in the location 
law that defines the distribution logic of the withdrawal activity 
when performed at an ATM:  

location law ATMW-LL 
locations  bank: rBANKW-LI; atm: ATMW-LI 
rules 
when atm.withdraw(n) & 
 BT(atm,bank) 
 with n ≤ bank.maxatm(atm.acco()) & 
  n ≤ atm.cash() 
 do atm.give(n)  

when atm.withdraw(n) & ¬BT(atm,bank)& 
  REACH(atm,bank) 
 let N=min(atm.default(),n) in 
 with N ≤ atm.cash() 
 do atm.give(N)  
 mv bank.internal(N, atm.acco())) 
end law 

As in coordination laws, location laws declare a number of part-
ners (called locations) and their interfaces. The ECA rules that we 
use for describing the distribution logic in location laws differ 
from the ones used in coordination laws because the composition 
logic does not require the communication and reachability status 
to be taken into account.  On the contrary, in location laws, we 
need to take into account the properties of the context in which the 
trigger occurs, the condition needs to be evaluated, and the action 
needs to be performed. 

Indeed, as neither the presence nor the quality of communication 
can be taken for granted in location-aware business components, 
we have to take explicit account of the communication status be-
tween any involved interfaces using their locations.  For instance, 
depending on whether given locations are in touch, either a full 
composition of operations is performed across all locations in-
volved thus synchronising the services in execution at these loca-
tions, or just a composition of the operations available at the loca-
tion where the trigger is perceived can be performed.  

This dependency is made explicit through the use of BT. In the 
location law, two different rules are considered depending on 
whether the two locations are in touch when the request for the 
withdrawal is detected.  Notice that the distinction is made at the 
level of the trigger (the event of the ECA), not the guard (condi-
tion).  This is because each case needs to be treated differently, in 
particular through different guards: when BT holds, the guard 
concerns upholding the maximum withdrawal permitted by the 
bank at an ATM whereas, when BT does not hold, it is the maxi-
mum allowed by the ATM itself that needs to be upheld. 

The fact that two locations are not “in touch” (BT) does not mean 
that one cannot be reached from the other (REACH).  Reachabil-
ity allows for mobility of services, namely for service execution to 
be moved to other locations as an instance of another service.  In 
the case that concerns us, even in the absence of communication 
with the bank, ATMs can provide a limited amount of cash as 
long as there is a protocol with the bank for remote/delayed 
transmission of the corresponding withdrawal.  The operations 
that continue the execution of the activity at a different location 
are declared under mv whereas those that are executed locally are 
identified under do as usual.   

Notice that what is being moved for execution at the bank con-
cerns a full withdrawal service, not the elementary debit operation 
that we discussed in the previous section.  Indeed, the required 
service needs to be executed in the right context, which means 
taking into account the coordination and location rules that apply, 
internally at the bank, to that specific client and account.  The way 
the service is moved from the ATM to the bank is left unspecified: 
it should be handled at the level of the definition of the location 
types, namely the topology of movement that applies.  In the case 
of current Web services, these are rather trivial situations as 
reachability is, once again, handled at the level of network ad-
dresses.  In our example, this movement can be just the storage of 
a request until communication becomes available (lightweight 
mobility), or the print out of instructions that are delivered in hand 
at the bank and executed on arrival at the end of the day (strong 



snail mobility), just to name a few and stress that we are model-
ling services that are not necessarily deployed over the Web! 

As discussed in the next section, the transaction to be executed 
may involve whatever operations are required by the composition 
logic through the coordination rules that react to the same trigger.  
Indeed, the location rules above are not concerned with the con-
tracts that the customer has with the bank with respect to with-
drawals from the specific account that is involved as a partner, 
just as the coordination rules discussed in the previous section 
were not concerned with distribution.  This separation of concerns 
is, precisely, what the paper aims to explain. 

Before we discuss the integration of separately modelled con-
cerns, consider a few more examples that illustrate other situa-
tions.  For instance, consider the situation in which the request for 
the withdrawal is made at a branch of the bank, although not nec-
essarily the one in which the account is held.  We still need two 
location interfaces because two locations are involved:  

location interface BRW-LI  
location type BANK  
operations  
 cash():money 
 give(n:money) post cash() = old cash()-n 
events withdraw(n:money; a:ACCOUNT)  
end interface 

location interface BANKW-LI  
location type BANK 
end interface 

In this case, nothing is required of the bank location that concerns 
the distribution logic; only the coordination rules will apply as 
discussed in the next section.  This becomes evident in the loca-
tion law itself:  

location law BRW-LL 
locations  bank: BANKW-LI; branch: BRW-LI 
rules 
when branch.withdraw(n,a) & 
 BT(branch,bank) 
 with n ≤ branch.cash() 
 do branch.give(n)  
end law 

In this case, there is no location rule for the situation in which the 
branch is not in touch with the “bank”, i.e. with the location in 
which the account is held.  This means that, in those circum-
stances, the request for the withdrawal is not recognised, i.e. does 
not constitute a trigger (the clerk at the branch just says “sorry: the 
system is down again”...) 

Consider now a different business activity – identification.  At an 
ATM, two locations are involved: the ATM itself and the card.  

location interface ATMId-LI  
location type ATM  
operations  
 acco():ACCOUNT; 
 cust():CUSTOMER; 
 accept(c:CARD) post acco()=ac(c) & cust()=ct(c) 
events enter(n:PIN)  
end interface 

location interface CARD-LI  
location type CARD  
operations attempts():nat 
  code():PIN 
  reject post attempts() = old attempts()+1 
  accept post attempts()=0 
end interface 

The interface for the ATM detects the entering of a pin number. as 
an event.  As elementary services, it involves the acceptance of a 
card, which implies retrieving from the card the identities of the 
account and the customer.  This is done through operations 
ac:CARD→ACCOUNT and ct:CARD→CUSTOMER available at 
the level of the data types provided as part of the underlying busi-
ness model.  On the side of the card, elementary operations handle 
attempts at guessing the code that is stored. 

The corresponding location law is pretty intuitive:  

location law ATMId-LL 
locations  atm: ATMId-LI; card: CARD-LI 
rules 
when enter(n) & 
 BT(atm,card) 
 with card.attempts() ≤ 3 
 do if n = card.code() 
  then  card.accept() & 
   atm.accept(card) 
  else  card.reject() 
end law 

Notice that, in this case, BT means that the ATM is able to recog-
nise the card and, hence, “communicate” with it, namely to extract 
information from it as done through the action accept.  If the card 
is not recognised, then the trigger is not recognised either and the 
evaluation of the guard is not even attempted. 

5. INTEGRATION OF CONCERNS 
So far we proposed a set of semantic primitives through which we 
can separate two different concerns in business modelling: the 
coordination mechanisms that should be put in place to compose 
services (composition logic or layer) and the location-aware as-
pects that handle the dependency on the business channels across 
which services are distributed (distribution logic or layer).   

This separation of concerns seems to be rather intuitive.  As a 
business activity, a withdrawal from a bank account should in-
volve a number of partners that execute required services in a 
coordinated way, i.e. according to certain logic, regardless of 
where they are located.  For instance, the use of a credit facility is 
part of a business contract between the customer and the bank 
regardless of the channel through which withdrawals are made.  
Likewise, the limitations that the absence of communication be-
tween an ATM and a bank imposes on the activity is independent 
of the existence of a credit allowance. 

This is why it is important to support this separation of concerns 
at the level of business modelling.  On the one hand, each dimen-
sion can be refined independently of the other.  On the other hand, 
changes in one dimension can be done without interfering with 
decisions made in the other. 

Being able to model these concerns separately does not mean that 
they are independent. The way a business activity is performed 
within a process system emerges from the coordination and loca-
tion laws that jointly apply to that activity.  In this section, we 
discuss this mechanism of emergence, i.e. we are concerned with 
the away both concerns get integrated in a model of the business 
activity as it ends up being executed. 

As an example, consider the withdrawal once again.  At run-time, 
the way the withdrawal is processed is determined not by inde-
pendent partners and locations but by located partners: for in-
stance, cust@atm and acco@bank.  That is, both coordination and 
location interfaces need to be instantiated by the same run-time 
services.  In particular, because the ATM component identifies a 



customer and an account, we have cust=atm.cust() and 
acco=atm.acco(), i.e. a single customer service and a single ac-
count service.  This makes it clear that the business partner that is 
involved in the activity is not necessarily the person standing in 
front of the ATM but the customer identified in the card.  

To be more precise, the instantiation of the coordination and loca-
tion laws means binding the coordination and location interfaces 
to services that are running on the current system configuration.  
Hence, in the case of a withdrawal, we will have services running: 
one that binds cust and atm; the other binds acco and bank.   

As already mentioned, these services are not necessarily disjoint 
or independent, and they are not necessarily created upon instan-
tiation.  For instance, as discussed in section 3, acco may be a 
service running autonomously within bank.  On the other hand, 
the ATM service atm will have started when the ATM was 
switched on; when the binding of the location interface ATMW-LI 
takes place, it will have a context in which atm.acco() and 
atm.cust() will hold the identities of the account and customer to 
which the withdrawal applies.  This is because, through the loca-
tion law ATMId-LL, this data will have been retrieved from the 
card during the identification activity.  Moreover, the binding also 
establishes that the value of cust.owns(acco) is true.  Notice that, 
at a branch, the binding of cust would not necessarily establish 
this equality: in the case of the ATM, it is the use of the card that 
authenticates the pair (cust.acco).  This is another reason in sup-
port of making business processes location-aware. 

The way a process activity like a withdrawal interacts with these 
services in described in the coordination and location rules ac-
cording to the events that are detected in the run-time configura-
tion.  For instance, the event that triggers the withdrawal business 
activity instantiates as atm.withdraw(n) in the location interface 
and cust.withdraw(n,acco) in the coordination interface  Assum-
ing that the coordination law that is active in the run-time configu-
ration is SW-CL (see section 3), the occurrence of the event is 
subject to the following rules: 

when cust.withdraw(n,acco)  
 with acco.balance() ≥ n &  
  cust.owns(acco) 
 do acco.debit(n) 

when atm.withdraw(n) & BT(atm,bank) 
 with n ≤ bank.maxatm(atm.acco()) & 
  n ≤ atm.cash() 
 do atm.give(n)  

when atm.withdraw(n) & ¬BT(atm,bank)& REACH(atm,bank) 
 let N=min(atm.default(),n) in 
 with N ≤ atm.cash() 
 do atm.give(N)  
 mv bank.internal(N,atm.acco())) 

The joint execution of ECA rules that we have in mind, as formal-
ised in [14], takes the conjunction of the guards and the parallel 
composition of the actions (i.e. the union of the corresponding 
synchronisation sets) when BT holds.  When the located partners 
are not in touch, i.e. cannot communicate, the coordination rules 
do not apply.  As a result, the rules according to which a with-
drawal is performed are: 

when atm.withdraw(n) & BT(atm,bank) 
 with n ≤ acco.balance() & 
  n ≤ bank.maxatm(acco) & 
  n ≤ atm.cash() 
 do atm.give(n)  &  
  acco.debit(n) 

when atm.withdraw(n) & ¬BT(atm,bank)& REACH(atm,bank) 
 let N=min(atm.default(),n) in 
 with N ≤ atm.cash() 
 do atm.give(N)  
 mv bank.internal(N,acco) 

That is, when the ATM is in communication with the bank, the 
withdrawal is performed according to the coordination rule of a 
standard withdrawal and the location rule of the ATM.  Notice, 
however, that cust.owns(acco) holds as a result of the binding and, 
hence, was omitted from the “with” condition. The need for com-
munication is obvious in the guard condition, which requires the 
balance of the account to be checked and the action, which re-
quires the account to be debited.  In the case of the joint execution 
of the guard, BT is necessary to ensure synchronous, atomic exe-
cution of the reaction. Notice that synchronous execution does not 
involve REACH because the service is not being moved from one 
location to another: both services are executed, each in its loca-
tion, but atomically, which is what requires communication.  
Naturally, this semantics requires a proper distributed transaction 
management system to be in place.  See [20] for transaction pro-
tocols in the scope of Web services. 

Summarising, as claimed in section 2, our approach is activity-
oriented in the sense that, for each activity within a business proc-
ess, we identify which are the location and coordination concerns 
that apply to the business entities involved, and how they are put 
together to enforce the business process logic (e.g. the activity 
ordering).  In general, there is a 0-N correspondence between each 
business process activity and coordination / location laws.  That 
is, depending on the semantics of each activity, we may have no 
coordination laws (which is the case of identification in the exam-
ple) or one or more coordination laws (case of withdrawals); and 
the same for location laws. 

We have to emphasize that, depending on the business entities 
involved in a specific activity, not every law applies at each con-
figuration.  Determining which laws should apply and, for those 
that apply, how the business entities instantiate the interfaces (lo-
cation and coordination), and how the corresponding instantiated 
coordination and location laws bind the entities together with 
contracts, is out of the scope of this paper. See [5,6] for configura-
tion management primitives that apply to coordination laws.  In 
what concerns location laws, we are now developing similar con-
figuration primitives. 

6. CONCLUDING REMARKS 
In this paper, we discussed a service-oriented architectural-based 
approach that addresses current challenges in modern business 
process modelling for reflecting dynamic cross- and intra-
organisational interactions as well as dependencies on the busi-
ness channels and networks over which organisations operate.  
Our approach is inspired in the rich set of specifications that is 
currently available for software development over Web services, 
i.e. “software that can process XML documents it receives 
through some combination of transport and application protocols” 
[31].  Languages and techniques as made available by BPEL4WS 
[9], WS-Coordination [35] and WS-Transaction [36], inter alia, 
remain too close on this narrow view of services that need to be 
located and invoked over the Web using addresses and referencing 
mechanisms that identify where services can be found using a 
given protocol like TCP or HTTP.  As a consequence, they offer 
little support to the higher-levels of abstraction in which business 
rules and organisational infrastructures need to be modelled. 



This is why we decided to distance ourselves from both the XML-
centred view of information exchange, and the Web-oriented no-
tions of location and reference protocols.  Our proposal addresses 
a rule-based approach to business modelling and addresses a space 
in which locations correspond to business entities and channels 
organised according to a given organisational communication and 
distribution network. 

The semantic primitives that we proposed for business modelling 
capture structural features of architectural connectors in separating 
concerns and addressing business rules as first-class entities.  
Following our approach, the aspects that relate to the way busi-
ness rules determine how the services involved in a business ac-
tivity need to be orchestrated fall under what we call “coordina-
tion laws”.  These are semantic primitives that are used for model-
ling the “service composition layer” of service-oriented architec-
tures or, for short, their “composition logic”. 

In what concerns the “distribution logic” that captures the depend-
ency on the business channels and networks (e.g. properties of the 
computational platform and communication network, mobility of 
devices/sensors, inter alia), we proposed a similar approach based 
on explicit connectors we called location laws.  As with coordina-
tion laws, these connectors can be superposed dynamically and 
evolved independently of the other business aspects, allowing 
systems to self-adapt or be adapted to changes that occur at the 
distribution level without interfering with the core business poli-
cies. 

The semantics of both the composition and distribution logic, and 
of coordination and location laws, builds on recent work around 
CommUnity, a formal approach that we have been developing for 
architectural description [14].  CommUnity includes primitives 
that capture distribution and mobility aspects [19], and explicitly 
separate between components computation, coordination and dis-
tribution/mobility. Besides recently forwarded operational seman-
tics—including graph transformations, Tile and rewriting logic—
the main strength of CommUnity lies in its logic of interactions, 
which is based on Category Theory [13].  CommUnity is also 
endowed with a software tool for editing, simulating and validat-
ing distributed software architectures.  Extensions of CommUnity 
towards context-aware computing are now being explored that 
will further enrich this architectural approach.    

We are currently working on more case studies in order to con-
solidate and validate this service-oriented architectural approach.  
We are also collaborating with ATX Software, the IT company 
with whom we developed the Coordination primitives, on the 
methodological aspects of location laws; one of our main goals is 
to develop a deeper understanding and classification of business 
rules so that semi-automatic derivation of coordination and loca-
tion laws can be ultimately achieved.  In this sense, the work for-
warded in [26] on classifying Web Services-oriented rules could 
be a significant input for us.  Last but not least, extensions to 
modelling languages like the UML with coordination and distribu-
tion laws are also being investigated at Leicester.  
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