
Distribution Concerns in Service-Oriented Modelling
N.Aoumeur, J.L.Fiadeiro, C.Oliveira

Department of Computer Science
University of Leicester
Leicester LE1 7RH, UK

{na80,jwf4,co49}@leicester.ac.uk

ABSTRACT
Service-oriented development offers a novel architectural ap-
proach that addresses crucial characteristics of modern business
process development such as dynamic evolution, intra- and inter-
enterprise cooperation, and distribution/mobility. In previous pa-
pers, we have shown how the mechanisms that regulate the rela-
tionships, functioning and cooperation of business activities in
such architectural models can be externalised from business rules
in terms of connectors that can be superposed dynamically on
stable core business entities. That is to say, we focused on what,
in the literature, has been called the “service composition layer” of
service-oriented architectures or, for short, their “composition
logic”. Our emphasis in this paper is on the distribution aspects:
we show how a corresponding “distribution logic” can be defined
in terms of another set of architectural primitives that address the
way business rules depend on “locations”. These primitives ad-
dress what are sometimes called “business channels” (ATMs,
PDAs, Pay-TV, Internet, inter alia) as offered in typical contem-
porary ICT-infrastructures with substantial added-value to busi-
ness processes. We argue that interacting (core) business entities
located at or endowed with such ICT capabilities should be mod-
elled in a way that separates the composition from the distribution
logic so that business interactions can be understood and evolved
in a location-transparent way. Our approach is based on a
mathematical model that we have recently developed for model-
ling context-aware interactions. An example from banking is used
for illustrating its applicability.

Categories and Subject Descriptors
D.1.3 [Concurrent Programming]: Distributed Programming,
Parallel programming. D.2.11 [Software Architectures]: Lan-
guages – connectors; F.1.2 [Modes of Computation]: Interactive
and reactive computation.

General Terms
Design, Languages, Verification.

Keywords
Evolution, location-awareness, rule-based business modelling,
service composition and coordination, software architectures

1. INTRODUCTION
Modern business processes are becoming more and more com-
plex, reflecting the increasing dependency of the economy, and
the functioning of the society as a whole, on intricate and volatile
intra- and inter- organisational cooperation. On the other hand,
business operations are relying more and more on day-to-day
advances in Information and (wired/wireless) Communication
Technology (ICT). In order to remain competitive, respond to
market pressure and attract more customers, companies are
pressed to provide ever more sophisticated added-value services.

For instance, banks are continuously creating new services or
updating existing ones to match the expectations and profiles of
their customers, while at the same time supporting more and more
advanced channels for day-to-day banking such as ATM, Internet,
PDA, Pay-TV, inter alia [23].

This tension between complexity and agility is raising new chal-
lenges on the way software needs to support business information
systems. It is clear that these challenges transcend by far the ca-
pabilities of the software engineering techniques that have been
traditionally used for business process development. This is why
most business designers are looking for new solutions around
workflows [1] and, more recently, web services [34]. As a result,
significant standards, techniques and models have been advanced
in both directions for modelling and enacting business processes.

However, we argue that the operational character of these ap-
proaches (even when supported by mathematical models like Biz-
Talk [8,24]) makes it very hard to tackle all the above features
adequately. Although it is widely accepted that abstraction and
rigor are the preponderant means for tackling levels of multi-
dimensional complexity, addressing these requirements equally
and coherently, as their nature and expected added-value deter-
mine, requires a more declarative approach and semantic model-
ling primitives that work at a level of abstraction in which the
different dimensions can be integrated and reasoned about.

More specifically, on the one hand, current standards lack rich
mechanisms like service negotiation, contracting and service
communication and coordination as required for flexibility and
dynamic adaptation and evolution [7] in cross-organisational proc-
esses. In addition, despite some progress in semi-automatic
derivation of service-oriented business processes from informal
business rules [26], the relationship between business rules, their
evolution and web-services in general remains largely unexplored.

On the other hand, proposals based on Web services experience
serious difficulties in addressing location-awareness as an essen-
tial business concern for dealing with multi-channels provided by
present day's technology. Web services can be programmed in
ways that respond to the need for businesses to operate in different
platforms and through different channels (say, banking at an
ATM, across the internet, or through a PDA/mobile phone), but
Service Description Languages do not provide abstraction mecha-
nisms for modelling the underlying distribution logic and the way
it adheres and enforces given business policies.

The purpose of this paper is to put forward a set of primitives
through which distribution concerns can be addressed in service-
oriented business modelling. We do so by extending the approach
that we have put forward in [6] for addressing the composition
logic, i.e. “the way composite services can be constructed for
defining processes or workflows that interact with sets of Web
Services to achieve certain goals” [11,32].

In section two, we justify the use of a rule-based architectural
approach for modelling both the composition and the distribution
logic of services, discuss the main assumptions that we make on
the way service-oriented development applies to business proc-
esses, and present the running example – a simplified banking
system. In section three, the coordination primitives that address
the composition logic are reviewed and illustrated using the ex-
ample. In section four, location primitives are presented as the
building blocks for the envisaged distribution logic, and illustrated
using the same example. In section 5, we present an architecture
for modelling and evolving agile and dynamic business processes
based on coordination and distribution.

2. MOTIVATION
In this section, we justify why and how we are bringing together
concepts and techniques from service-oriented development, rule-
based business modelling, software architecture, and context-
aware computing.

A rich set of specifications is currently available for software
development over service-oriented architectures that include the
Business Process Execution Language for Web Services
(BPEL4WS or BPEL for short) [9], WS-Coordination [35] and
WS-Transaction [36], inter alia. A so-called BPEL composition
is a business process or workflow that interacts with a fixed set of
Web services to achieve a certain goal. A business process is
taken as a series of activities involving a given set of partners
connected according to given data and control flow requirements.
For instance, a banking process can be taken to consist of several
activities, including specifically:

• Customer identification and authentication.
• Customer execution of banking transactions (deposits,

withdrawals, loans, mortgages, etc).
• Customer exit.

Web Services are “self-contained, modular applications that can
be described, published, located, and invoked over a network,
generally the Web” [34]. They are capable not only of performing
business activities on their own, but also to take part in higher-
order business transactions by engaging in more or less complex
interactions with other Web services.

This approach offers a significant number of advantages. For
instance, by being platform-neutral, Web services support the
definition of business processes by using existing elementary or
complex services, possibly offered by different service providers
or extracted from so-called legacy systems. However, even appli-
cations developed on the basis of BPEL are still some way from
addressing the challenges raised by the need to tackle complexity
and agility as identified in the introduction. One of the reasons is
that BPEL-style applications are rather unstructured and static.
For instance, services are composed in a rather ad hoc and unprin-
cipled manner by simply combining their operations and input and
output messages. This makes business processes difficult to
evolve. If the business rules under which the process operates
change or need to be adjusted, the workflow will have to be re-
vised and additional or modified service interfaces may have to be
used for the interconnections.

Recent investigations in business process modelling are shifting
the emphasis towards more abstraction through business rule-
driven approaches [15,29]. Business rules are understood as “pro-
jections of organisations’ constraints and declarations of (inter-
nal/external) policy/conditions that must be satisfied for doing
business” [33]. They specify actions to be taken on the occur-

rence of particular events, including “state of being” changes con-
cerning individuals, infrastructure, consumables, informational
resources, and business activities in general.

Rule-driven approaches offer a number of advantages that are
crucial for coping with dynamically evolving complex business
processes. They support the specification of business models
independently of the specific processes that happen to be running
at any one instant. They focus on more primary requirements and
address business domain descriptions in a declarative rather than
operational way. For all these reasons, they are generally more
apt to support evolution.

The exploitation of these potentials for achieving new degrees of
dynamism and abstraction in Web Services composition remains
largely unexplored. An exception is the recent work by Papazo-
glou et al. [24]. In this approach, starting from a very general
specification, the composition is scheduled, constructed and fi-
nally executed with the assistance of business rules judiciously
classified in a repository. Besides basic elements such as events,
conditions, and messages, this classification includes rules dealing
with the activity flows, the data required for their composition and
the constraints to be respected. The direct construction and subse-
quent execution of the composition from the business rules is
performed in terms of XML-like descriptions. However, the ap-
proach does not address the distribution dimension.

Our contribution follows in this path and aims to enhance the
potential of service-oriented architectures by developing semantic
primitives that raise the level of abstraction and capture rule-based
business modelling. In the approach that we have in mind, each
business activity is a dynamic entity that is put together, at run-
time, from a number of self-contained applications (services) that
need to be located and invoked over a distribution network. The
way these services are brought together and invoked, what is
sometimes called “orchestration”, must follow given business
rules as set by the organisation. For instance, it is clear that a
withdrawal activity is subject to the business rules that apply to
the specific customer and account involved as business entities.
Depending on the nature of the account and of the customer, cer-
tain constraints may apply that determine if, for a given amount,
the withdrawal is authorized and, if so, what operations of the
bank itself need to be executed.

More specifically, our approach aims to capture business rules at
an interaction level so that dynamic adaptation of services and
cross-organisational service cooperation can be intrinsically and
explicitly supported (composition logic). For this purpose, we
adopt techniques akin to those that have been developed for Soft-
ware Architecture [3]. We propose to capture as a connector any
business rule dealing with intra- and inter-organisation coopera-
tion. On the one hand, as modelling primitives, architectural con-
nectors can be made to describe business service compositions in
a declarative way as shown through the rule-based approach pro-
posed in [5]. On the other hand, as shown in [22] architectural
approaches support dynamic evolution as required for agility and
reconfigurability.

In our approach, the mechanisms that are required for regulating
the relationships, functioning and cooperation of services are ex-
ternalised from business rules in terms of semantic primitives that
we call coordination laws. These describe composition mecha-
nisms in terms of event-condition-action (ECA) rules that can be
superposed dynamically on stable core business entities. Super-
position [16] is non-intrusive on the code that implements the
services. Therefore, business architectures can be dynamically

evolved, as volatile business rules change or new cross-
organisational links come into force, while ensuring compliance to
core business invariants.

However, business activities depend on business channels and
networks in ways that are orthogonal to the interactions that busi-
ness relationships impose. For instance, depending on the loca-
tion where the banking process is requested, identification and
authentication can consist of:

(1) A simple “hello” when the request is made by the customer
in person at the desk of the branch where the account has
been held for 20 years.

(2) The presentation of a personal identity document if the clerk
has only recently joined that branch or if the customer at a
different branch makes the request.

(3) A complex transaction involving debit cards and codes if the
request is made at an ATM (not necessarily by the cus-
tomer).

(4) A collection of passwords, security codes and pre-
determined personal questions if the request is made through
the Internet (again, not necessarily by the customer).

In terms of a service-oriented architecture, this means that the way
composite services need to be constructed should obey not only a
composition logic derived from coordination concerns, but also a
distribution logic derived from location concerns. Indeed, loca-
tion-awareness is common to business channels (e.g. ATM,
Branch, Pay-TV), mobile devices (e.g. PDA), internet-based fa-
cilities/software, and sensors, inter alia. The presence and quality
of communication with other partners as well as the ability to
migrate or move to other locations are among the crucial features
that need to be taken into account at the level of this distribution
logic.

Notice that, by location, we do not mean necessarily the space of
addresses typically used in the Web. In the literature, service-
oriented modelling is almost always instantiated to “Web Serv-
ices”, i.e. “software that can process XML documents it receives
through some combination of transport and application protocols”
[31]. Such services need to be located and invoked over the Web
using addresses and referencing mechanisms that identify where
services can be found using a given protocol like TCP or HTTP.

We have already motivated that this is a rather low-level view of
what can be called the “service-oriented paradigm”, which we
would like to explore from the point of view of business process
modelling in the architectural approach that we motivated. In
particular, we would like to distance ourselves from both the
XML-centred view of information exchange, and the Web-
oriented notions of location and reference protocols. Our proposal
is to work on a space in which locations correspond to business
entities and channels organised according to a given business
domain. Therefore, we do not work with a fixed notion of loca-
tion at all. We propose that, as part of business modelling, the
notion of location and distribution network that best applies to the
business domain be specified in abstract terms through data sorts
and operations.

To the best of our knowledge there is no conceptual modelling
approach that addresses location-awareness in business processes
in the sense that we have motivated, except for the work in [2],
one of our main sources of inspiration. This work invokes the
notion of “channel” for addressing location-awareness. It is, alto-
gether, rather “operational”, not as declarative as we wish ours to

be, because it uses state machines as a modelling tool. It does not
cope with the evolutionary side either, and it has not been inte-
grated within an architectural approach that provides explicit con-
nectors that can handle location-dependency aspects.

This is why, in what concerns the distribution logic that captures
the dependency on the business channels and networks, we pro-
pose an approach based on explicit connectors that we call loca-
tion laws. As with coordination laws, these connectors can be
superposed dynamically and evolved independently of the other
business aspects, allowing systems to self-adapt or be adapted to
changes that occur at the distribution level without interfering
with the core business policies.

The semantics of our distribution logic builds on our recent work
around CommUnity, a formal approach that we have been devel-
oping for architectural description [14]. CommUnity includes
primitives that capture distribution and mobility aspects [4,19].
The whole approach has a mathematical semantics defined over
Category Theory [13]. We borrow in particular the notion of
space of mobility (location structure) and corresponding contexts
with the "be-in-touch" and "reach" relationships as preconditions
for communication and mobility. These ingredients are then com-
bined in a new format for condition-action rules that model the
way service composition depends on the properties of the current
context.

3. COORDINATION CONCERNS
Coordination primitives, as we have been promoting in recent
work [5], provide a clean separation between the modelling of the
computations performed by stable core entities on the running
business configuration to ensure the functionality of basic busi-
ness services, and the mechanisms that reflect how the (intra- or
cross-organisational) interactions between these business services
should be coordinated according to given business rules.

The emphasis is, therefore, on the aspects that subsume what in
the literature has become known as the “Service Composition
Layer” of Service-Oriented Architectures [27], i.e. the level at
which business processes can be put together from elementary
services. We aim for the level at which so-called business pro-
tocols and processes [11] are addressed. What we have in mind is
the definition of processes or workflows that interact with sets of
Web services to achieve certain goals in terms of abstract service
descriptions, separated from specific deployments. In our ap-
proach, such interactions are captured using the concepts of coor-
dination laws and interfaces. In terms of architecture description
languages, these correspond to connector types and roles. In
terms of business modelling, they capture business rules that regu-
late and compose required and provided services by the core enti-
ties that instantiate the roles.

This view addresses the emphasis put by BPEL [9] on the defini-
tion of service compositions in terms of processes that interact
with partners that are external to the composition itself and identi-
fied only in terms of abstract interfaces. Indeed, it is particularly
important that we are able to separate the definition of the "com-
position logic" from the run-time composition of specific services
as part of a process that is being executed to fulfil a specific busi-
ness goal. We address the former in terms of "coordination laws"
that capture the business rules according to which complex busi-
ness activities are put together from more basic services. The pur-
pose of this section is to focus on the coordination model that we
adopt for composing abstract services according to business rules.

In fact, in our approach, we go one step further and assign part-
ners not to the business process as a whole but to the activities
that are performed as part of the process. This recognises the fact
that the partners involved in one activity may be different from
those in another activity within the same process. Moreover, it
may not be possible to pre-determine which partners will become
involved in a given activity as this may depend on what has hap-
pened in the process so far.

The abstract description of the services that are partners in a given
business is made in terms of what in [5] we called coordination
interface. For instance, as a business activity, a withdrawal in-
volves both an account and a customer regardless of the way the
withdrawal is requested, if by the customer proper or anyone else.
The purpose of the identification activity is, precisely, to deter-
mine the business entity that is involved in the business activity.
Hence, in the case of a withdrawal, two coordination interfaces
are required: one catering for the account service through which
the debit needs to be performed, and the other for the customer
service that is invoked as a result of the identification and authen-
tication activity.

Note that these are “business” partners, not software components
that offer operations as in object-oriented approaches. We fully
support the distinction made in [31] between Web-services and
distributed objects. In this paper, we are in no way concerned
with the way services are programmed and deployed. For us, an
account is not a software component that instantiates an object
class. An account is understood as a business service, a unit of
organisation around which a number of operations are grouped
together to fulfil certain goals.

Such business partners are not units of execution either. A cus-
tomer does not perform a withdrawal by calling the account to
execute a debit. It is the composition logic, as captured by a coor-
dination law, that dictates that a debit, as an operation of the ac-
count service, needs to be invoked whenever a customer issues a
request for a withdrawal, say at an ATM through some combina-
tion of keys and buttons. The debit is to be located according to
the account as a business entity, not as a software component that
stores the code of the debit operation.

The trigger/reaction mode of coordination that our approach sup-
ports requires that each coordination interface identifies which
events produced at execution time are required to be detected as
triggers for the process to react, and which operations must be
made available for the reaction to superpose the required effects.
Notice that this separation is supported, for instance, in BPEL
processes, by distinguishing between different kinds of actions
(e.g. synchronous request/response or asynchronous one-way
operation) that implement interactions among the process and its
partners. Indeed, in BPEL, this separation occurs at a lower level
of abstraction and has to be set in a pre-defined, static way. The
same applies to the identification of the exchange of messages that
such modes of interaction may require between the partners in-
volved: in WSDL, each operation/event in our sense is a sequence
of input and output messages.

The two composition interfaces that we have in mind can be de-
scribed as follows:

coordination interface CW-CI
partner type CUSTOMER
operations owns(a:ACCOUNT):Boolean
events withdraw(n:money; a:ACCOUNT)
end interface

coordination interface AW-CI
partner type ACCOUNT
operations
 balance():money
 debit(a:money) post balance() = old balance()-a
end interface

Each interface identifies the type of the partner that it models. A
coordination interface does not identify a specific instance of this
type, just the operations and events that partner instances are re-
quired to make available. Notice how the properties of the opera-
tions that are required are specified in an abstract way in terms of
pre- and post-conditions.

This type should be specified in terms of a sort of business identi-
ties and functions that can relate the partner to other business enti-
ties as required by the application domain. For instance, the sort
ACCOUNT should be provided with a function bank of type
BANK identifying the bank in which it resides, again as business
entity, not as a software component. To be more precise, as dis-
cussed in section 5, a:ACCOUNT may identify a service that is
running as part of a bigger service bank(a):BANK. That is, we are
not necessarily committed to creating a new independent service
upon instantiation of a coordination interface: we may bind the
interface to a running service that will take the instance of the
interface as a sub-service. In this way, we may cater for situations
in which the bank, as an organisation, runs a separate service for
each account, one single (complex) service for all accounts, one
single (huge) service for the whole bank, and so on.

Another important requirement for the intended composition logic
is that the activity, as a composite service itself, should be de-
scribed only on the basis of the interfaces and the data and control
flow aspects that the coordination mechanisms put in place to
ensure the underlying business goal. This is what, in BPEL,
would be called the “state and logic” necessary for coordinating
the interactions between the process and the partners. This “com-
position logic” can be described in terms of what we call a coor-
dination law [5]:

coordination law SW-CL
partners acco:AW-CI; cust:CW-CI
rules
when cust.withdraw(n,acco)
 with acco.balance() ≥ n &
 cust.owns(acco)
 do acco.debit(n)
end law

Besides identifying the coordination interfaces, a coordination law
specifies the rules that define the behaviour of the service. Such
coordination rules are of the form:

when event
 with condition
 do set of operation invocations

Each coordination rule identifies, under the “when” clause, a trig-
ger to which the contracts that instantiate the law will react – a
request by the customer for a withdrawal in the case at hand. The
trigger can be just an event observed directly over one of the part-
ners or a more complex condition built from one or more events.
Under the “with” clause, we include conditions (guards) that
should be observed for the reaction to be performed. If any of the
conditions fails, the reaction is not performed and the occurrence
of the trigger fails. Failure is handled through whatever mecha-
nisms are provided by the language used for deployment. See [9]
for explicit handling of faults within BPEL.

The reaction to be performed by the composite service is identi-
fied under the “do” clause as a set of elementary activities. This
set may include calls to operations provided by one or more of the
partners as well as actions that are internal to the “composition
logic” of the business activity itself. The whole interaction is
handled as a single transaction, i.e. it consists of an atomic event
in the sense that the trigger reports a success only if all the actions
identified in the reaction execute successfully and the conditions
identified under the “with” clause are satisfied. Details on transac-
tion protocols for web-service interactions can be found in [36].

In what concerns the language in which the reactions are defined,
we normally use an abstract notation for defining the synchronisa-
tion set as above. This is important for bringing to a more ab-
stract modelling level the definitions of business processes that
recent languages for “orchestration” like BizTalk [8] promote, in
terms of algebras and models for concurrency. Our opinion and
experience is that the architectural modelling level at which we
promote the representation of business interactions makes it easier
to bridge the gap from the more organisational high-level goals
and policies that dictate how business should be run to the choice
of particular control and synchronisation structures that can make
specific processes run.

The externalisation of this composition logic in a coordination law
is decisive for supporting the required agility in terms of dynamic
business evolution. The fact that the conditions on which an ac-
count may be debited by its owners are not hard-coded in the op-
erations made available by the account, make it possible for these
conditions to be changed without interfering with the deployment
of these services. For instance, in order to offer a VIP-withdrawal
in which a given credit limit is allowed, we just have to change
the composition logic as modelled by the coordination rule; the
basic debit operation does not need to be changed.

coordination law VIPW-CL
partners acco:AW-CI; cust:cCW-CI
rules
when cust.withdraw(n,acco)
 with acco.balance()+cust.credit()≥ n &
 cust.owns(acco)
 do if acco.balance()≥ n
 then acco.debit(n)
 else acco.debit(1.01*n)
end law

Notice that a different partner is now required to play the role of
the customer: we need a service that offers an operation for ob-
taining the credit limit currently assigned to the customer:

coordination interface cCW-CI
partner type CUSTOMER
operations owns(a:ACCOUNT):Boolean
 credit():money
events withdraw(n:money; a:ACCOUNT)
end interface

Coordination interfaces can be hierarchically organised so as to
facilitate location and binding of specific concrete services. We
leave such matters to a subsequent paper.

4. LOCATION CONCERNS
This section puts forward the concepts and constructions that we
are developing for addressing location-awareness in service-
oriented business modelling. As emphasized in the introduction,
our purpose is to provide elements for a “distribution logic” that
can capture the way service composition needs to take into ac-
count properties of the underlying business channels and commu-

nication infrastructure. Just like coordination mechanisms that
separate service functionality from the "composition logic", which
we illustrated in the previous section, we want to define location
primitives that can externalise the way business activities depend
on properties of the distribution topology over which services are
composed. The properties that we address in the paper are:

(1) The communication status, i.e. the presence, absence, or
quality of the communication link between locations where
given services are executing but require data to be ex-
changed and synchronisation protocols to be observed as
part of the composition logic.

(2) The ability to continue the execution of an activity at another
location, which requires the new location to be reachable
from the present one for the execution context to be moved.

For this purpose, we capitalise on the work developed around
CommUnity [19]. Although, for simplicity, we will not address
this specific aspect in depth, the space of locations can be defined
by the user as an abstract data type with a sort loc and functions
that capture the properties of the notion of location that are suit-
able for the application domain at hand. This is because, typically,
different kinds of applications require different notions of loca-
tion. When a specific notion of location is fixed, as for instance in
Ambients [10], modelling a different space of mobility requires
the encoding of a different notion of location, which can be cum-
bersome and interfere with other aspects. Two observables cap-
ture location awareness as discussed above: communication is
handled through BT:set(Loc) and movement/reachability through
REACH:Loc×Loc.

As we did for the composition logic through coordination laws,
location laws are the means through which we model the distribu-
tion logic of a given business domain. Whereas coordination laws
interconnect partners that are meaningful for the underlying com-
position logic, e.g. customers and accounts in the case of the
withdrawal, the partners involved in location laws derive from the
distribution logic and, therefore reflect business channels like
ATMs, bank branches, etc.

That is to say, for the distribution logic of a withdrawal, what is
important is not if the customer has a VIP-contract with the ac-
count, but whether the ATM at which the request for the with-
drawal is made has enough cash in store and is in touch with the
branch in which the account is held. The composition logic will
determine whether the withdrawal can proceed according to the
relationship that exists between the customer and the account,
whereas the distribution law will determine how much money can
be given according to the context in which the transaction is being
made (cash available at the ATM and status of the communication
between the ATM and the branch).

Just like with coordination laws, locations laws are associated
with business activities within a process, not with the process as a
whole. This is because we want to allow for business entities to
change location during the process. For instance, we may well
envisage an instantiation of the banking process in which the cus-
tomer is a mobile entity that starts the process and performs some
activities through a PDA while driving to the bank where, upon
arrival, he continues by performing other activities until he even-
tually finishes the process over the internet in his office where he
needed to retrieve information that he was lacking at the bank.
The modelling of this kind of mobility within a business process
is still under active research and will not be further discussed in
the paper. See [4,19] for the mathematical domain over which we
are defining these aspects and early insights on how to use them.

Requirements on the location of the distribution partner is an
obligatory feature in every location interface. These requirements
consist in the definition of the type of the location as a subtype of
loc, including any relevant functions and properties. For instance,
if a location is required to handle high-precision calculations, its
type needs to be such that, upon instantiation, service operations
are executed on hardware that complies with the required proper-
ties. Security requirements may be reflected in other properties
and functions on the data that is transmitted.

location interface ATMW-LI
location type ATM
operations
 default(),cash():money
 acco():ACCOUNT
 give(n:money) post cash() = old cash()-n
events withdraw(n:money)
end interface

The event that is being required is self-evident and, as we shall see
in the next section, refers to the business activity for which we
have already defined coordination laws. When this interface is
instantiated, this event can be refined in many different ways de-
pending on the actual machine at which the business activity is
being performed: the pressing of a button in the keyboard, the
filling of a menu on the screen, etc. The parameter of the event
will also need to be provided on instantiation.

The ATM is required to make available two services: the amount
of cash available inside the machine and the default maximum
amount that the machine gives if there is no connection to the
account. The ATM service is also required to make available the
number of the account that is currently being serviced. This data
will have been stored upon identification through the ATM card.
We will see in the next section that location (and coordination)
interfaces are instantiated in run-time to services that may be run-
ning, i.e. instantiation does not mean creation of a service. In the
case at hand, the instance of ATM will be the service that will
have been running when the ATM was “switched on” and that
will have accepted and authenticated the card involved in the first
activity of the specific banking process at stake.

The location interface that applies to the bank is as follows:

location interface rBANKW-LI
location type BANK
operations internal(n:money; a:ACCOUNT)
 maxatm(a:ACCOUNT): money
end interface

That is, the bank is required to be make available, for every ac-
count, the maximum amount that can be debited from an ATM, as
well as accommodate executions of withdrawals internally. This
is because we want to be able to move withdrawals to the bank
when they are requested at the ATM and there is no communica-
tion between the two locations.

These two location interfaces are brought together in the location
law that defines the distribution logic of the withdrawal activity
when performed at an ATM:

location law ATMW-LL
locations bank: rBANKW-LI; atm: ATMW-LI
rules
when atm.withdraw(n) &
 BT(atm,bank)
 with n ≤ bank.maxatm(atm.acco()) &
 n ≤ atm.cash()
 do atm.give(n)

when atm.withdraw(n) & ¬BT(atm,bank)&
 REACH(atm,bank)
 let N=min(atm.default(),n) in
 with N ≤ atm.cash()
 do atm.give(N)
 mv bank.internal(N, atm.acco()))
end law

As in coordination laws, location laws declare a number of part-
ners (called locations) and their interfaces. The ECA rules that we
use for describing the distribution logic in location laws differ
from the ones used in coordination laws because the composition
logic does not require the communication and reachability status
to be taken into account. On the contrary, in location laws, we
need to take into account the properties of the context in which the
trigger occurs, the condition needs to be evaluated, and the action
needs to be performed.

Indeed, as neither the presence nor the quality of communication
can be taken for granted in location-aware business components,
we have to take explicit account of the communication status be-
tween any involved interfaces using their locations. For instance,
depending on whether given locations are in touch, either a full
composition of operations is performed across all locations in-
volved thus synchronising the services in execution at these loca-
tions, or just a composition of the operations available at the loca-
tion where the trigger is perceived can be performed.

This dependency is made explicit through the use of BT. In the
location law, two different rules are considered depending on
whether the two locations are in touch when the request for the
withdrawal is detected. Notice that the distinction is made at the
level of the trigger (the event of the ECA), not the guard (condi-
tion). This is because each case needs to be treated differently, in
particular through different guards: when BT holds, the guard
concerns upholding the maximum withdrawal permitted by the
bank at an ATM whereas, when BT does not hold, it is the maxi-
mum allowed by the ATM itself that needs to be upheld.

The fact that two locations are not “in touch” (BT) does not mean
that one cannot be reached from the other (REACH). Reachabil-
ity allows for mobility of services, namely for service execution to
be moved to other locations as an instance of another service. In
the case that concerns us, even in the absence of communication
with the bank, ATMs can provide a limited amount of cash as
long as there is a protocol with the bank for remote/delayed
transmission of the corresponding withdrawal. The operations
that continue the execution of the activity at a different location
are declared under mv whereas those that are executed locally are
identified under do as usual.

Notice that what is being moved for execution at the bank con-
cerns a full withdrawal service, not the elementary debit operation
that we discussed in the previous section. Indeed, the required
service needs to be executed in the right context, which means
taking into account the coordination and location rules that apply,
internally at the bank, to that specific client and account. The way
the service is moved from the ATM to the bank is left unspecified:
it should be handled at the level of the definition of the location
types, namely the topology of movement that applies. In the case
of current Web services, these are rather trivial situations as
reachability is, once again, handled at the level of network ad-
dresses. In our example, this movement can be just the storage of
a request until communication becomes available (lightweight
mobility), or the print out of instructions that are delivered in hand
at the bank and executed on arrival at the end of the day (strong

snail mobility), just to name a few and stress that we are model-
ling services that are not necessarily deployed over the Web!

As discussed in the next section, the transaction to be executed
may involve whatever operations are required by the composition
logic through the coordination rules that react to the same trigger.
Indeed, the location rules above are not concerned with the con-
tracts that the customer has with the bank with respect to with-
drawals from the specific account that is involved as a partner,
just as the coordination rules discussed in the previous section
were not concerned with distribution. This separation of concerns
is, precisely, what the paper aims to explain.

Before we discuss the integration of separately modelled con-
cerns, consider a few more examples that illustrate other situa-
tions. For instance, consider the situation in which the request for
the withdrawal is made at a branch of the bank, although not nec-
essarily the one in which the account is held. We still need two
location interfaces because two locations are involved:

location interface BRW-LI
location type BANK
operations
 cash():money
 give(n:money) post cash() = old cash()-n
events withdraw(n:money; a:ACCOUNT)
end interface

location interface BANKW-LI
location type BANK
end interface

In this case, nothing is required of the bank location that concerns
the distribution logic; only the coordination rules will apply as
discussed in the next section. This becomes evident in the loca-
tion law itself:

location law BRW-LL
locations bank: BANKW-LI; branch: BRW-LI
rules
when branch.withdraw(n,a) &
 BT(branch,bank)
 with n ≤ branch.cash()
 do branch.give(n)
end law

In this case, there is no location rule for the situation in which the
branch is not in touch with the “bank”, i.e. with the location in
which the account is held. This means that, in those circum-
stances, the request for the withdrawal is not recognised, i.e. does
not constitute a trigger (the clerk at the branch just says “sorry: the
system is down again”...)

Consider now a different business activity – identification. At an
ATM, two locations are involved: the ATM itself and the card.

location interface ATMId-LI
location type ATM
operations
 acco():ACCOUNT;
 cust():CUSTOMER;
 accept(c:CARD) post acco()=ac(c) & cust()=ct(c)
events enter(n:PIN)
end interface

location interface CARD-LI
location type CARD
operations attempts():nat
 code():PIN
 reject post attempts() = old attempts()+1
 accept post attempts()=0
end interface

The interface for the ATM detects the entering of a pin number. as
an event. As elementary services, it involves the acceptance of a
card, which implies retrieving from the card the identities of the
account and the customer. This is done through operations
ac:CARD→ACCOUNT and ct:CARD→CUSTOMER available at
the level of the data types provided as part of the underlying busi-
ness model. On the side of the card, elementary operations handle
attempts at guessing the code that is stored.

The corresponding location law is pretty intuitive:

location law ATMId-LL
locations atm: ATMId-LI; card: CARD-LI
rules
when enter(n) &
 BT(atm,card)
 with card.attempts() ≤ 3
 do if n = card.code()
 then card.accept() &
 atm.accept(card)
 else card.reject()
end law

Notice that, in this case, BT means that the ATM is able to recog-
nise the card and, hence, “communicate” with it, namely to extract
information from it as done through the action accept. If the card
is not recognised, then the trigger is not recognised either and the
evaluation of the guard is not even attempted.

5. INTEGRATION OF CONCERNS
So far we proposed a set of semantic primitives through which we
can separate two different concerns in business modelling: the
coordination mechanisms that should be put in place to compose
services (composition logic or layer) and the location-aware as-
pects that handle the dependency on the business channels across
which services are distributed (distribution logic or layer).

This separation of concerns seems to be rather intuitive. As a
business activity, a withdrawal from a bank account should in-
volve a number of partners that execute required services in a
coordinated way, i.e. according to certain logic, regardless of
where they are located. For instance, the use of a credit facility is
part of a business contract between the customer and the bank
regardless of the channel through which withdrawals are made.
Likewise, the limitations that the absence of communication be-
tween an ATM and a bank imposes on the activity is independent
of the existence of a credit allowance.

This is why it is important to support this separation of concerns
at the level of business modelling. On the one hand, each dimen-
sion can be refined independently of the other. On the other hand,
changes in one dimension can be done without interfering with
decisions made in the other.

Being able to model these concerns separately does not mean that
they are independent. The way a business activity is performed
within a process system emerges from the coordination and loca-
tion laws that jointly apply to that activity. In this section, we
discuss this mechanism of emergence, i.e. we are concerned with
the away both concerns get integrated in a model of the business
activity as it ends up being executed.

As an example, consider the withdrawal once again. At run-time,
the way the withdrawal is processed is determined not by inde-
pendent partners and locations but by located partners: for in-
stance, cust@atm and acco@bank. That is, both coordination and
location interfaces need to be instantiated by the same run-time
services. In particular, because the ATM component identifies a

customer and an account, we have cust=atm.cust() and
acco=atm.acco(), i.e. a single customer service and a single ac-
count service. This makes it clear that the business partner that is
involved in the activity is not necessarily the person standing in
front of the ATM but the customer identified in the card.

To be more precise, the instantiation of the coordination and loca-
tion laws means binding the coordination and location interfaces
to services that are running on the current system configuration.
Hence, in the case of a withdrawal, we will have services running:
one that binds cust and atm; the other binds acco and bank.

As already mentioned, these services are not necessarily disjoint
or independent, and they are not necessarily created upon instan-
tiation. For instance, as discussed in section 3, acco may be a
service running autonomously within bank. On the other hand,
the ATM service atm will have started when the ATM was
switched on; when the binding of the location interface ATMW-LI
takes place, it will have a context in which atm.acco() and
atm.cust() will hold the identities of the account and customer to
which the withdrawal applies. This is because, through the loca-
tion law ATMId-LL, this data will have been retrieved from the
card during the identification activity. Moreover, the binding also
establishes that the value of cust.owns(acco) is true. Notice that,
at a branch, the binding of cust would not necessarily establish
this equality: in the case of the ATM, it is the use of the card that
authenticates the pair (cust.acco). This is another reason in sup-
port of making business processes location-aware.

The way a process activity like a withdrawal interacts with these
services in described in the coordination and location rules ac-
cording to the events that are detected in the run-time configura-
tion. For instance, the event that triggers the withdrawal business
activity instantiates as atm.withdraw(n) in the location interface
and cust.withdraw(n,acco) in the coordination interface Assum-
ing that the coordination law that is active in the run-time configu-
ration is SW-CL (see section 3), the occurrence of the event is
subject to the following rules:

when cust.withdraw(n,acco)
 with acco.balance() ≥ n &
 cust.owns(acco)
 do acco.debit(n)

when atm.withdraw(n) & BT(atm,bank)
 with n ≤ bank.maxatm(atm.acco()) &
 n ≤ atm.cash()
 do atm.give(n)

when atm.withdraw(n) & ¬BT(atm,bank)& REACH(atm,bank)
 let N=min(atm.default(),n) in
 with N ≤ atm.cash()
 do atm.give(N)
 mv bank.internal(N,atm.acco()))

The joint execution of ECA rules that we have in mind, as formal-
ised in [14], takes the conjunction of the guards and the parallel
composition of the actions (i.e. the union of the corresponding
synchronisation sets) when BT holds. When the located partners
are not in touch, i.e. cannot communicate, the coordination rules
do not apply. As a result, the rules according to which a with-
drawal is performed are:

when atm.withdraw(n) & BT(atm,bank)
 with n ≤ acco.balance() &
 n ≤ bank.maxatm(acco) &
 n ≤ atm.cash()
 do atm.give(n) &
 acco.debit(n)

when atm.withdraw(n) & ¬BT(atm,bank)& REACH(atm,bank)
 let N=min(atm.default(),n) in
 with N ≤ atm.cash()
 do atm.give(N)
 mv bank.internal(N,acco)

That is, when the ATM is in communication with the bank, the
withdrawal is performed according to the coordination rule of a
standard withdrawal and the location rule of the ATM. Notice,
however, that cust.owns(acco) holds as a result of the binding and,
hence, was omitted from the “with” condition. The need for com-
munication is obvious in the guard condition, which requires the
balance of the account to be checked and the action, which re-
quires the account to be debited. In the case of the joint execution
of the guard, BT is necessary to ensure synchronous, atomic exe-
cution of the reaction. Notice that synchronous execution does not
involve REACH because the service is not being moved from one
location to another: both services are executed, each in its loca-
tion, but atomically, which is what requires communication.
Naturally, this semantics requires a proper distributed transaction
management system to be in place. See [20] for transaction pro-
tocols in the scope of Web services.

Summarising, as claimed in section 2, our approach is activity-
oriented in the sense that, for each activity within a business proc-
ess, we identify which are the location and coordination concerns
that apply to the business entities involved, and how they are put
together to enforce the business process logic (e.g. the activity
ordering). In general, there is a 0-N correspondence between each
business process activity and coordination / location laws. That
is, depending on the semantics of each activity, we may have no
coordination laws (which is the case of identification in the exam-
ple) or one or more coordination laws (case of withdrawals); and
the same for location laws.

We have to emphasize that, depending on the business entities
involved in a specific activity, not every law applies at each con-
figuration. Determining which laws should apply and, for those
that apply, how the business entities instantiate the interfaces (lo-
cation and coordination), and how the corresponding instantiated
coordination and location laws bind the entities together with
contracts, is out of the scope of this paper. See [5,6] for configura-
tion management primitives that apply to coordination laws. In
what concerns location laws, we are now developing similar con-
figuration primitives.

6. CONCLUDING REMARKS
In this paper, we discussed a service-oriented architectural-based
approach that addresses current challenges in modern business
process modelling for reflecting dynamic cross- and intra-
organisational interactions as well as dependencies on the busi-
ness channels and networks over which organisations operate.
Our approach is inspired in the rich set of specifications that is
currently available for software development over Web services,
i.e. “software that can process XML documents it receives
through some combination of transport and application protocols”
[31]. Languages and techniques as made available by BPEL4WS
[9], WS-Coordination [35] and WS-Transaction [36], inter alia,
remain too close on this narrow view of services that need to be
located and invoked over the Web using addresses and referencing
mechanisms that identify where services can be found using a
given protocol like TCP or HTTP. As a consequence, they offer
little support to the higher-levels of abstraction in which business
rules and organisational infrastructures need to be modelled.

This is why we decided to distance ourselves from both the XML-
centred view of information exchange, and the Web-oriented no-
tions of location and reference protocols. Our proposal addresses
a rule-based approach to business modelling and addresses a space
in which locations correspond to business entities and channels
organised according to a given organisational communication and
distribution network.

The semantic primitives that we proposed for business modelling
capture structural features of architectural connectors in separating
concerns and addressing business rules as first-class entities.
Following our approach, the aspects that relate to the way busi-
ness rules determine how the services involved in a business ac-
tivity need to be orchestrated fall under what we call “coordina-
tion laws”. These are semantic primitives that are used for model-
ling the “service composition layer” of service-oriented architec-
tures or, for short, their “composition logic”.

In what concerns the “distribution logic” that captures the depend-
ency on the business channels and networks (e.g. properties of the
computational platform and communication network, mobility of
devices/sensors, inter alia), we proposed a similar approach based
on explicit connectors we called location laws. As with coordina-
tion laws, these connectors can be superposed dynamically and
evolved independently of the other business aspects, allowing
systems to self-adapt or be adapted to changes that occur at the
distribution level without interfering with the core business poli-
cies.

The semantics of both the composition and distribution logic, and
of coordination and location laws, builds on recent work around
CommUnity, a formal approach that we have been developing for
architectural description [14]. CommUnity includes primitives
that capture distribution and mobility aspects [19], and explicitly
separate between components computation, coordination and dis-
tribution/mobility. Besides recently forwarded operational seman-
tics—including graph transformations, Tile and rewriting logic—
the main strength of CommUnity lies in its logic of interactions,
which is based on Category Theory [13]. CommUnity is also
endowed with a software tool for editing, simulating and validat-
ing distributed software architectures. Extensions of CommUnity
towards context-aware computing are now being explored that
will further enrich this architectural approach.

We are currently working on more case studies in order to con-
solidate and validate this service-oriented architectural approach.
We are also collaborating with ATX Software, the IT company
with whom we developed the Coordination primitives, on the
methodological aspects of location laws; one of our main goals is
to develop a deeper understanding and classification of business
rules so that semi-automatic derivation of coordination and loca-
tion laws can be ultimately achieved. In this sense, the work for-
warded in [26] on classifying Web Services-oriented rules could
be a significant input for us. Last but not least, extensions to
modelling languages like the UML with coordination and distribu-
tion laws are also being investigated at Leicester.

Acknowledgements
N..Aoumeur was supported by the European Commission through
the contract IST-2001-32747 (AGILE: Architectures for Mobil-
ity). C.Oliveira was supported by Fundação para a Ciência e Tec-
nologia, Portugal, through the PhD Scholarship
SFRH/BD/6241/2001, and the European Science Foundation
through the Scientific Network RELEASE. The authors would
like to thank P.Kosiuczenko and A.Lopes for many insights and
suggestions on the work reported in this paper.

7. REFERENCES
 1. W.Aalst, A.T.Hofstede and M.Weske, “Business Process

Management: A Survey”, in International Conference on
Business Process Management (BPM 2003), LNCS 2678,
Springer 2003, 1-12.

 2. L.Abom, “Frameworking RM-ODP in Banking”, in
A.M.Cordeiro and H.Kilov (eds) WOODPECKER 2001,
ICEIS Press 2001.

 3. R.Allen and D.Garlan, "A Formal Basis for Architectural
Connectors", ACM TOSEM, 6(3), 1997, 213-249.

 4. L.Andrade, J.L.Fiadeiro, A.Lopes and M.Wermelinger,
“Coordination for Distributed Business Systems”, in Infor-
mation Systems for a Connected Society, J.Eder,
R.Mittermeir and B.Pernici (eds), University of Maribor
Press 2003, 27-37.

 5. L.F.Andrade and J.L.Fiadeiro, “Service-Oriented Business
and System Specification: Beyond Object-orientation”, in
H.Kilov and K.Baclwaski (eds), Practical Foundations of
Business and System Specifications, Kluwer Academic Pub-
lishers 2003, 1-23.

 6. L.F.Andrade and J.L.Fiadeiro, “Composition Contracts for
Service Interaction”, Journal of Universal Computer Sci-
ence, in print.

 7. A Baina, S. Tata, and K. Benali, “A Model for Process
Service Interaction”, in International Conference on Busi-
ness Process Management (BPM 2003), LNCS 2678,
Springer 2003, 261-275.

 8. BizTalk Orchestration – a new technology for orchestrating
business interactions, Microsoft Research 2000.

 9. Business Process Execution Language for Web Services,
version 1.1, May 2003, IBM

10. L.Cardelli and A.Gordon, “Mobile Ambients”, in Nivat
(ed), FoSSACs’98, LNCS 1378, 140-155, Springer-, 1998.

11. F.Curbera, R.Khalaf, N.Mukhi, S.Tai and S.Weerewarana,
“The Next Step in Web Services”, in [27], 41-47.

12. T.Elrad, R.Filman and A.Bader (Guest editors). Special
Issue on Aspect Oriented Programming. Communications
of the ACM 44(10) 2001.

13. J.L.Fiadeiro, Categories for Software Engineering, Springer
2004.

14. J.L.Fiadeiro, A.Lopes and M.Wermelinger, “A Mathemati-
cal Semantics for Architectural Connectors”, in Generic
Programming, R.Backhouse and J.Gibbons (eds), LNCS
2793, Springer 2003, 190-234.

15. P.Kardasis and P.Loucopoulos, “Expressing and Organising
Business Rules”, Information and Software Technology, in
press.

16. S.Katz, "A Superimposition Control Construct for Distrib-
uted Systems", ACM TOPLAS 15(2), 1993, 337-356.

17. Z.Kleppe, J.Warmer and W.Bast, MDA Explained: The
Model Driven Architecture--Practice and Promise,
Addison-Wesley 2003.

18. A.Lindsay, D.Downs and K.Dunn, “Business Processes –
attempts to find a definition”, Information and Software
Technology 45(1):1015-1019, 2003.

19. A.Lopes and J.L.Fiadeiro, “On how Distribution and Mobil-
ity interfere with Coordination", in Recent Trends in Alge-

braic Development Techniques, M.Wirsing, D.Pattinson,
R.Hennicker (eds), LNCS 2755, Springer 2003, 343-358.

20. M.Little, “Transactions and Web Services”, in [27], 49-54.
21. P.Loucopoulos, “The S3 (Strategy-Service-Support)

Framework for Business Process Modelling”, in CAiSE
Workshops – Information Systems for a Connected Society,
CEUR Workshop Proceedings vol. 75, Technical University
of Aachen (RWTH), 2003.

22. J.Magee and J.Kramer, "Dynamic Structure in Software
Architectures", in 4th Symp. on Foundations of Software
Engineering, ACM Press 1996, 3-14.

23. A.Maurino, B.Pernici and F.Schreiber, “Adaptive Channel
Behavior in Financial Information Systems”, in CAiSE
Workshops – Information Systems for a Connected Society,
CEUR Workshop Proceedings vol 75, Technical University
of Aachen (RWTH), 2003.

24. G.Meredith and S.Bjorg, “Contracts and Types”, in [27], 41-
47.

25. B.Orrinsi, J.Yang, and M.Papazoglou, “A Framework for
Business Rule Driven Web Service Composition”, in Proc.
of Conceptual Modeling for Novel Application Domains,
LNCS 2814 Springer 2003, 52-64.

26. B.Orrinsi, J.Yang, and M.Papazoglou, “A Framework for
Business Rule Driven Web Service Composition”, in Proc.
of Conceptual Modeling for Novel Application Domains,
LNCS 2814 Springer 2003, 52-64.

27. M.Papazoglou and D.Georgakopoulos (guest editors), Spe-
cial Issue on Service-Oriented Computing, Communications
of the ACM 46(10), 2003.

28. G.-C.Roman, C.Julien and J.Payton, “A Formal Treatment
of Context-Awareness”, Proc. FASE 2004, LNCS 2984, 12-
36, Springer-Verlag, 2004

29. D.Rosca and C.Wild, “Towards a Flexible Deployment of
Business Rules”, Expert Systems with Applications 23:385--
394, 2002.

30. M.Shaw, "Procedure Calls are the Assembly Language of
Software Interconnection: Connectors Deserve First-Class
Status", in D.A. Lamb (Ed.), Studies of Software Design,
LNCS 1078, Springer 1996.

31. W.Vogel, “Web Services Are Not Distributed Objects”,
IEEE Internet Computing 2003.

32. J.Yang, “Web Service Componentization”, in [27], 35-40.
33. W.Wan-Kadir and P.Loucopoulos, “Relating Evolving

Business Rules to Software Design”, Journal of Systems Ar-
chitecture, 2003.

34. Web Services architecture overview – the next stage of evo-
lution for e-business, September 2000,
http://www.ibm.com/developerworks/web/library/w-ovr/

35. Web Services Coordination, version 1.0,
http://www.ibm.com/developerworks/web/library/ws-coor/

36. Web Services Transaction, version 1.0,
http://www.ibm.com/developerworks/web/library/ws-
transpec/

