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Abstract

Most of present-day software systems are data-intensive and fully distributed. Moreover,
such systems are often layered into several towers depending on the features they may offer
to their users. This latter characterization induce challenging problems to designers of real-
world distributed systems, including how should given features be dynamically introduced,
modified, interact with existing ones? and so on.

In this paper we propose a true-concurrent object Petri-net-based framework for ad-
dressing such challenges. The model, referred to as CO-NETS, integrates object-orientation
concepts with modularity aspects into an appropriate algebraic Petri nets variant, and it is
semantically interpreted in rewrite logic. This integration suffices for adequately address-
ing the data-intensive and full distribution. For dynamically introducing and modifying
features, we soundly extend this integration with some reflection capabilities. Moreover, we
present how to interact different features using strategies on the rewriting logic reflection
level. All the proposed ideas are illustrated using a system with several lifts.
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Chapter 1

Introduction

Most of present-day software systems are characterized as reactive systems with large
amount of data and complex and fully distributed behaviour. Moreover, besides these key
aspects, system designers are also facing another crucial challengings, namely the dynamic
evolution of such systems in terms of different features they may offer to their users. In
fact in most cases, real-world complex systems, such as telecommunication applications,
are structured into a hierarchy of layers, each one is mainly distinguished by the features
that may offer. Among the conceptual challenges involving features are particularly: how
to dynamically express them, to introduce them, to modify them and how to coherently
integrating them with each others 7.

Although the discipline for coping with feature aspects is quite new—often referred to
as feature interaction— there have been severals interesting proposals, in terms of appro-
priate formal languages [GRS96][Rya97]|[Hei98]. However, due to the complexity of the
problem we are far from a widely accepted framework. Moreover, most of existing propos-
als have concentrated more on the features themselves, while ignoring or disadvantaging
the structural and behavioural aspects of the system. With the aim to overcome such
limitations, we propose in this paper an appropriate framework that aims to cover most of
the mentioned aspects. The model, referred to as Co-NETS [AS99b], consists in a sound
and complete integration of object oriented constructions with some modularity concepts
into a well-suited variety of algebraic Petri nets. The model is semantically interpreted in
rewriting logic. Moreover, recently we have enhanced this proposal with some reflection
capabilities allowing runtime modification of existing behaviour [Aou00]. In some detail,
the suitability of this framework for covering most of the above challenging problems, could
be highlighted by the following:

e As we pointed out, the Co-NETS approach is based on integrating object-oriented
structuring mechanisms with high level Petri nets. Thus, while the object-oriented
concepts (i.e. classification, object composition, etc) are the best abstraction mech-
anisms for coping with any a huge amount of data and knowledge, the Petri nets are
the leading for expressing distribution and concurrency. Moreover, for allowing in-
cremental constructions of complex systems as interacting components—where each
component is regarded as a hierarchy of classes— we enrich each class with explicit
interface (including structural as well as dynamic aspects).

e Because any suitable specification framework should be endowed with deduction rules



for rapid-prototyping purpose, the proposed integration is soundly interpreted in true
concurrency way using rewriting logic [Mes92]. This allow us to execute our specifica-
tion using concurrent rewriting techniques and, in particular, current implementation
of the MAUDE language [CDE"99).

e For dynamically introducing, modifying or deleting new features, as an appropriate
behaviour, we have extended this integration by some reflection capabilities. The
main ideas here are, first, the distinction between a fixed 'forever’ features and fea-
tures which may be subject to evolutions. Second, for this latter category, we have
introduced a meta-level composed of meta-places that contain a behaviour as to-
kens, and three associated transitions for dynamically adding, deleting or modifying
such behaviour. Third, we relate the usual object-level with this meta-level using
syntactically appropriate read-arcs and semantically suitable inference rules: two
constructions that suffice for propagating a given behaviour from the meta-level to
the object-level.

e Besides these CO-NETS capabilities for dealing with complex distributed systems and
their features, we introduce in this paper another necessary extension for managing
features interaction and composition. This sound extension consists in using the
reflection capabilities of rewriting logic [CM96]. More precisely, given rewrite rules
governing different transitions behaviour of a given CO-NETS, we can formulate ex-
pressions over these behaviour. Each expression reflects the way on which different
transitions (in this expression) should be performed. In this way we free the Co-
NETS from controlling strategies for performing different transition, but also we offer
a flexible way for dynamically selecting or modifying any strategy.

The rest of this paper is organized as follows. The next section presents an overview of
some basic CO-NETS concepts. Also, we introduce and specify a simplified version of the
lift system using this CO-NETS framework. In the third section, we addresses the problem
of how features may be dynamically manipulated. The fourth section focuses on strategies
as a way for composing and interacting system features. We conclude this paper with some
remarks and outlying our future work.
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Chapter 2

CoO-NETS : A short Overview

We recall in this section some basic aspects of the CO-NETS approach, and apply them to
the running example. In this sense, first, we present how template signatures, describing
structural and functional aspects of a given distributed system, are specified. Second, we
comment on the construction of object Petri nets from such templates. Finally, we present
the true concurrency semantics associated with the behaviour of such nets. More detail
about different forms of inheritance and interaction among components may be found in
[AS00a] [AS99D).

2.1 Template Signature

A template signature defines the structure of object states and the form of operations
which have to be accepted by such states. Basically, we follow the general object signature
proposed for MAUDE [Mes93|. That is, object states are regarded as algebraic terms —
precisely as tuples— and messages as operations sent or received by objects. More precisely,
we adopt the following:

e The object states are algebraic terms of the form
(Id|atry : valy, ..., atry, : valy, at_bsy : valy, ..., at_bsy : vall)

— Id is an observed object identity taking its values from an appropriate abstract
data type defining the sort OId;

— atry, .., atry are the local (i.e. hidden from the outside) attribute identifiers having
as current values respectively valy, .., valy.

— The observed part of an object state is identified by at_bsy, ..., at_bsy, while their
associated current values are valj, ..val},.

— Also, we assume that all attribute identifiers (local or observed) range their values
over a suitable sort denoted AId, while their associated values are ranged over
the sort Value with OId < Value (i.e. OId is a subsort of Value) in order to
allow object valued attributes.

e In contrast to the indivisible object state proposed in MAUDE which avoids any form
of intra-object concurrency, we introduce a simple deduction rule, we called ‘object-
state splitting / merging’ rule, that permits to split (resp. recombine) the object state
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as needed. Moreover, it provides a meaning to our notion of observed attributes by
allowing separation between intra- and inter-component states. This deduction rule
may be described as follows: (Id|attrsy, attrss) = (Id|attrs;)® (Id|attrss); with attr;
as an abbreviation of atr;; : val;, ..., atry, : val.

e In addition of conceiving messages as terms —that consist of message name, ob-
ject identifiers to which the message is addressed, and, possibly, parameters— we
make a clear distinction between internal, local messages and external as imported
or exported messages. Local messages allow to evolve object states of a given com-
ponent, while external ones allow communication between different components by
exclusively using their observed attributes.

Noting that this distinction between local and observed features in a given template is
mainly dictated by the aforementioned requirements, and it represents the kernel towards
the notion of a component. Such distinction was already explicitly realized, for instance in
the ALBERT language [DB95] [AS99a).

Remark 2.1.1 For object state operations, we adopt a mix-fix notation, where as men-
tioned each object state is described as a tuple of the form (Id|atry : valy, ..,at bs; : vall,...).
More precisely, by adopting the OBJ language for describing the data level as well as tem-
plate signatures, an object state definition can be described as follows— where the operator
_, _ 18 defined in a generic way, and the Id-attributes sort allows for capturing a part (i.e.
external or local attributes) of an object state.

obj object-state is
sort AId .
subsort 0Id < Value .
subsort Attribute < Attridbutes .
subsort Id_Attributes < object .
subsort Local_attributes External_attributes < Id_Attributes .
protecting Value 0Id AId .

op _:_ : AId Value — Attridbute .
op _,- : Attribute Attributes — Attributes [associ. commu. Id:nil] .
op (_|.) : 0Id Attributes — Id Attributes .

endo.

In addition to this notion of object state signature, a template signature is obtained
by defining different messages (i.e. method invocations) which may be received or send by
object(s). Also, for modularity purpose we distinguish between local messages and external
messages as mentioned above. All in all the general form in specifying a given template
respects the following:

obj Template-Signature is
protecting object-state, s-atr;,...,s-atr,, s-argyii,.., sS-argpu i,
.yS-argi1,1s .- -,5-argi1,41 - --
subsort Mes;;, Mes;2,...,Mes; < Local Messages .
subsort Mes.;, Mes¢s,...,Mes.. < Exported Messages .
subsort Mes;;, Mes;s,...,Mes;; < Imported Messages .
subsort local-attributes obs-attributes < Id-attributes .
(* local attributes *)
op (_|atr;:_,..,atry:_) : 0Id s-atr; ... s-atry — Local-Attributes.
(* observed attributes *)
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op (_|atrbsy :, ...,atrbsy : ) : 0Id s-atbs; ... s-atbsy — obs-Attributes.
(* local messages *)
op ms;;: O0Id ... s-argp,; ... s-argp g — Mes;p . ...
(* export messages *)
op mse;: 0Id ... OId ... s-arge1,1 ... S-argeler — Meser . ...
(* import messages *)
op ms;:0Id ... 0Id ... s-arg;, ... s-argij ;i — Mes; . ...
endo.

2.1.1 Application to the lift system

In the following, first, we present informally the running case study, afterwards we present
its data level and template signature.

Informal description of the case study

As we pointed out the case study we use throughout this paper for illustrating the developed
ideas consists in a distributed system with several lifts. Thinking in an object oriented
way [Weg90] [RBP*91], the simplified (and initial) version we treat in this paper may be
informally described as follows:

e Each lift is structurally characterized by its identity (name or number), by the current
floor it is on (shortly Cur_F), by its state expressing if it is idle, going up or going
down (shortly St), by the current state of its door (St), and by its current weight
(Wg).

e The operations or methods that may offer each lift are the following. The lift can
open or close its door, go to any called floor with respect to a given direction (up
or down) and stop at intermediate floors if there have been a corresponding call
meanwhile. Moreover, each lift is able to cancel calls from the same floor. Also,
to make a distinction between a request inside the lift (i.e. a goto) or a call from
the outside, we use for both a method we denote by Goto_F(Id-1ift, dest-floor,
call-or-goto); where the value of the parameter call-or-goto allows to distin-
guish between the two kinds of request. Finally, for technically keeping trace of a
given call while serving its intermediate floors, we introduce another variant of goto,
that is Goto_F(Id-1ift, dest-floor, direction), where direction stands for
the direction (i.e. Up or Dw) and dest-floor is the selected floor (which should be
the max (resp. min) when the direction is Up (resp. Dw) from current calls).

Data specification for the lift signature

The different data sorts we need for the template signature are the following. For describing
different floor levels, we use the sort Floors whose elements are natural constants (0,1,
2, .., k). For capturing different states a given lift may be in, we use the StateF whose
elements are also constants, namely (the self-explained ones) idle or Up or Dw. The doors
state is captured by a data sort Door, with two values: op for open and c1 for closed. Also,
we denote by Wmx, the maximal weight tolerated by each lift, which has to be a positive
real constant. For distinguishing between a call from outside the lift and goto from the
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inside, we use a data sort denoted Call-or-Goto with two values: out for a call from the
outside and in for a goto from the inside of the lift. Besides these data sorts, for capturing
correctly the behaviour of a given lift we present in the next subsection, we need a function
we called 1less(K1, K2), where K1 denote final destination of the lift and K2 the current
floor of the lift. This function has to return the first minimal next floor number between
K1 and K2 which is currently requested. The two equations corresponds to the two cases
. the lift is going up (i.e. K1 > K2) or the lift is going down (i.e. K1 < K2). All in all
this level is:

obj Lift-Data is
protecting Real+ nat .
sort Door StateF Call-or-Goto.
op 0,1, 2, 3, 4,5, .. , k: — Floors .
op idle, Up, Dw : — StateF .
op op, ¢l : — Door .
op in, out : — Call-or-Goto .
opopeidle, Up, Dw : — StateF .
op Wmx : — Real+ .
vars 0 : Call-or-Goto .
vars K1, K2 : Floors .
eq less(K1, K2) == if K1 > K2 then K2 + 1 or

K2+2 or ... or K1 - 1 endif .
eq less(K1, K2) == if K1 < K2 then K2 - 1 or
K2 - 20or ... or K1 - 1 endif .

endo.

The lift template signature

Using this data level and the informal OO description, the template signature correspond-
ing to the lift can be given as follows.

obj Lift is
extending Object-State .
protecting Lift-Data .
sort Id.Lift < 0Id .
sort GOTO TEST LIFT .
(* the Lift object state declaration *)
op {(|Cur_ F:_St: _,Dr:_ Wg:_): Id.Lift
Floors StateF DoorSt Real+ — Lift .
(* Messages declaration *)
op GotoF : Id.Lift Floors Call-or-Goto — GOTO .
op GotoF : Id.Lift Floors StateF — GOTO .
op TestF : Id.Lift Floors Floors nat — TEST .
vars L : Id.Lift .
vars S, D : StateF .

vars W, W’ : Real+ .
vars K, K1, K2, K’ : Floors .
endo.

We note that all the specified variables will be used in the corresponding nets later.
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2.2 Template specification

Given a template signature denoted by 7'S that captures the structural aspects of a dis-
tributed system, its behaviour is constructed by associating a CO-NET with this signature—
leading to the notion of template specification that we denote by SP =< TS, Net >.
Informally speaking, the net associated with a given template signature is constructed as
follows.

e The places of the net are precisely defined by associating with each message generator
one ‘message’ place. Also, with each object state sort an ‘object’ place is associated.
We denote the set of all places by P.

e Transitions, which may include conditions, reflect the effect of messages on object
states (i.e. method body) to which they are addressed. Note that, for distinguishing
between local messages and external ones we draw the later with bold lines.

2.2.1 The object net of the lift system

Following these very simplified rules for deducing an object net from a given template,
in Figure 2.1 we depict the corresponding net modeling the dynamic of a system with
several lifts. First with the object sort Lift we have associated a corresponding place
which contains the current component-state of each lift. Also, with the message sort GOTO
we have associated a corresponding place.

The behaviour of this variant of systems with several lifts is captured by different
transitions. The transitions Go-in-out, Close-Dr and Open are self-explained, they
respectively reflect: the change of the weight (by going in and out) when the door is open;
the close of the door unless the maximal weight is exceeded, and the openness of the
door. Note that in these transitions, we have selected just the necessary attributes; this
is possible due to the splitting / recombining deduction rule. Also, in these transitions
we did not care about the state, because if these parts of state (in these transitions) are
selected then automatically the lift is a in particular floor and not in between; otherwise
these parts would be under processing by other transitions.

For the move of the lift we have associated five transitions. The transition Tidle simply
drops any call form the same floor. The transition Tnxt corresponding to a receive of a
Goto (inside or outside) for a next or a precedent floor provided that the door is close and
the state of the lift is idle. It is possible to associate a time value to a given transition
[ASO0b], representing here by Tmf and corresponding to a time-stamp for going to a next
or a precedent floor. The transition Tfar has to capture the going to floor different form
the precedent or the next ones. This case is more complex due to the fact that we have
to ’serve’ all current requests between the current floor and this final floor. The solution
we propose consists, first, in detecting the direction for such a final request—using a
comparison between the current floor and this called floor in the condition of transition
Tfar. Second, depending on this comparison we save this goto message; where the
information about the source of the call (i.e. in or out), which became irrelevant here,
is replaced by the direction of the lift (i.e. Up or Dw). We have also associated a time,
Tmf-03, to this transition, where 3 represent a short time (seconds) before arriving to a
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given floor in which the lift tests, through the next following transitions, whether there
are intermediate requests or not. These transitions that are systematically performed after
the transition Tfar are either Tint or Tfinal—this is because the state of this lift is now
Up or Dw, whereas the transitions Tnxt and Tfar require an idle state.

Of course the transitions Go-in-out, Close-Dr, Open-Dr or Tidle may be performed when
the lift is in an intermediate floor. The transition Tint(ermediate) is first performed as
many time as there are requests between the current floor and the final floor (i.e. K1).
This is ensured using the function less(final-floor, current-floor) which allow for
traversing all requests in the place GOTO, and selecting each time the minimal floor in-
between, if any there is one. In this case, the current floor will be this minimal floor as
illustrated in the lower part of Figure 2.1. If there is no (or no-more) such an intermediate
floor then the transition Tfinal is performed, and thereby the state of the lift is again set
to idle and henceforth all transitions may be performed.

2.3 CO-NETS: Semantical Aspects

Given a OB-NET associated with a template specification, its semantics should provide us
the permissible states which a marked CO-NET may be in. On the other hand, it should
allow us for formally deducing from an initial state, in a true concurrency way, any any
other permissible reachable state. By permissible, we mainly understand the respect of the
uniqueness of object identities and the respects of the encapsulation property during state
evolution.

2.3.1 Objects creation and deletion

Regarding a marked CO-NET as a society of objects and messages imply that each object
must have its proper identity that persists through a change. In order to ensure the unique-
ness of object identities and their dynamic creation / deletion, we propose the following
conceptualization:

1. We associate with each a marked CO-NET modeling a component denoted as C'p a new
place of sort Id.obj (< OId). Such place contains then the current object identifiers of
objects in Cp.

2. For the creation of new objects, we introduce a new message sort denoted Ad¢, and an
associated symbol operation (i.e. creation message) adc, indexed by Id.obj x Adcy.

3. Each object state creation should be performed through the net depicted in the left
hand side of Figure 2.2. The intended semantics (we present later) for the notation ™~
is that for firing the transition NEW the identifier Id should not already exist in the
place Id.obj (i.e. the notation ™~ captures the notion of inhibitor arc). After firing this
transition, there is an addition of the new identifier Id to the place Id.obj and creation of
a new object namely (Id | atr; : iny, ..., atry : ing), where ing, ..., in; are optional initial
attribute values.
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(L|Dr : op,Wg : W)
—Clowr
(L|Dr :cl,Wgq : W)

(1f1|Cur_F : 4, St : idle, Dr : Op, Wg : 125)

Goin-out

(L|Dr : op, Wg : W')
(L|Dr : op,Wg : W)

(Ifj|Cur_F :9,St:Up,Dr: Cl, Wg : 40) T4
T 3k
(L|Cur_F : K)
Goto_F(L, K, O)
Tidle
(0 =in)V (O =aut)| (L|Cur_F : K, St : idle, Dr : cl)
Goto_F(L, K1, —)
Tnxt [Tm f]
| (K1=K +1)Vv (K1 =K — 1)
| (L|Cur_F : K1, St : idle, Dr : cl)
Goto F(L, K1, —) . (L|Cur_F : K, St : idle, Dr : cl)
Thar [Tmf - Al
| (K1> K +1) ‘(K1<K—1) |
GotoF(L, K1, Up) ‘ [ (L|Cur-F : K. St : Dw, Dr : cl
K1,
(L|Cur_F : K,St : Up,Dr : cl)
Goto-F(L, K1, Dw)
GotoF(L,K1,D) ® Goto_F(L,less(K1,K), —)

(L|Cur_F : K,St:S,Dr :cl)
Tint \4

|[B + Tmf * |less(K1,K) — K — 1|]

| (D=8 =Up)V (D =S5 = Duw)

Goto_F (L, K1, D) ‘ ’ (L|Cur_F : Less(K1,K),St:S,Dr :cl)
Goto_F(L,K1, D) (L|Cur-F : K,St:S,Dr :cl)

Tfinal L l (Tm#]
|(D=S=Up)V(D=S=Dw) |

’ (L|Cur-F : K1, St : idle, Dr : cl)
X vless(Kl,K) x

-

A
less(K1,less(K1, K))

Figure 2.1: The Lift Component as a CO-NET.

2.3.2 Evolution of object States

For the evolution of object states in a given component, we propose an appropriate gen-
eral pattern for the form of ‘local’ transitions. This pattern has to be be respected in
order to ensure the encapsulation property—in the sense that no object states or messages
from other components participate during such state evolution— and to preserve object
identities uniqueness, with exhibiting a maximal of intra- and inter-object concurrency.
This evolution schema, as depicted in Figure 2.3, can be intuitively explained as follows.
The contact of the only relevant parts—possible due to the object-state splitting/merging
deduction rule— of some object states, namely (Id,|attrs,), .., (Id|attrsy) with some mes-
sages, namely ms;,, .., ms;,, declared in this component, and under some conditions on the
invoked attributes and message parameters, results in the following effect: (1) the mes-
sages ms;,, .., ms;, disappear; (2) the states of some (parts of) objects participating in the
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DEL Y(Id|atry : valy, ..., atry, : valg)

(Id|atry : valy,...,atry : valg)

Figure 2.2: Objects creation and deletion using OB-NETS

communication change, namely I,,, .., I,,. Such change is symbolized by attrs, , .., attrs],
instead of attrss,, .., attrss,. The other (unchanged parts of) object states are denoted by
attrs;,, .., attrs;, so that {iy,...i,} U {s1, .., 8:} = {1, .., k}'; (3) new messages (local or ex-
ported) are sent to object of the component C'p, namely msy,, .., msy,, which may include
(explicit) deletion and/or creation of some objects.

Mes;, Mesip

k
'EBI(Idi\attrsi) T
i=
ms;
. i P
ObJ ¢ ms 1

Conditions on attributes values
----- and messages parameters

f mspy msn,
8t ir
@ (Id;|atirs}) @ & (Idj|atirs;)
=81 i=iq [

Mesp,, Mesp,,

(Idjlatr;, :

Figure 2.3: A particular intra-component evolution pattern

Following our approach for generating rewrite rules gouverning a given transition (see
[AS99b] [AS00a]), the corresponding rewrite rule for this general form of transition (de-
picted in Figure 2.3) is:

k P t r
t: (obj, @ (Id;|attrs;)) ® ® (Mes;,, msy) = (obj, kEBl<Idsk|attrs'sk) ® k@1<1dik|attrsik>)

K3

=1
® ké) (Mesp, ,msp,) if Condition AN M(Ad.Cp) =0 A M(DI.Cp) = 0.
=1

In addition to this case, it is quite possible to capture the intuitive semantics of input
tokens IT preceded to the special unary operator ~ (used in object creation net in figure
2.2). That is, IT should not be in the corresponding marking. By assuming without loss
of generality that, for instance, only the input tokens associated with the message place
Mes;; is preceded by the notation ~, the associated rewrite rule is then:

. ~ p . r
t: (Ob],ITobj)(X)(MeSil, ITMesi1)®k(§?2(Mesik,ITMegik) = (Ob], CTobj)®®kQ_§1(MeshkaCTMeshk)
if Condition N M(Ad.Cp) =0AN M(DI.Cp) = 0N ITnes;, € M(Mes;1)

In other words, there is no implicit creation or deletion of (parts) of object states— that would lead
to inconsistency w.r.t. the described creation/deletion schema in Figure 2.2.
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Remark 2.3.1 The operator @ is defined as a multiset union and allows for relating dif-
ferent places identifiers with their current marking. Moreover, we assume that ® is dis-
tributive over & i.e. (p, mty ® mitz) = (p, mt1) ® (p, mta) with mty, mts multisets of terms
over @ and p a place identifier. The condition (M(Ad.Cp) =0 A M(DI.Cp) = () ensures
that any deletion and creation message should be performed at first; and this in order to
avoid any form of inconsistency like the manipulation of an object already logically deleted
and physically still existing (i.e. there is a sending message for deleting this object but
not already performed). Note that in the last rewrite rule we have added the condition
ITres,, & M(Mes;1) to ensure that the input tokens preceded by ~ should not be in the cor-
responding marking. It is also worth mentioning that, due to the state splitting / merging
deduction rule, we should avoid any deletion of just a part of a given object state. For this
aim, we require that before performing any deletion of an object Id (i.e. firing the transi-
tion DEL) we should ‘gather’ all its eventually split part. We achieve that by applying this
deduction rule rather as a rewrite rule: (Id | attrs,) @ (Id | attrss) = (I | attrsy,attrss),
until obtaining the corresponding normal form (which always ezists in this case); this en-
sures that the whole object state is deleted after. Finally, we define a CO-NETS state with
respect to a given component as the multiset of all pairs of (places, current marking). That
is, a CO-NETS state denoted s is equal to s = Q(p;, M (p;)), Vp; € P.

Example 2.3.2 By applying this general form of rewrite rule to our case study, we result
in the following rewrite rules:

Go-in-out: (Lift,(L|Dr :op,Wg: W)) = (Lift,(L|Dr : op, Wg : W'))
Close-Dr: (Lift,(L|Dr:op,Wg:W)) = (Lift,(L|Dr:cl,Wg:W)) if W < Wmz
Open-Dr: (Lift,(L|Dr : cl)) = (Lift, (L|Dr : op))

Tidle: (GOTO,Goto_F(L,K1,0)® (Lift,(L|Cur_F : K)) =
(Lift,(L|Cur_F : K)) if (O =in)V (O = out)

Taoxt: (GOTO,Goto F(L,K1,~) ® (Lift,(L|Cur_F : K, St : idle, Dr : cl)) "=/
(Lift,(L|Cur_F : K1,St :idle,Dr : cl)) if (K1=K+1)V (K1=K —1)
Tfar: (GOTO,Goto_F(L,K1,—) ® (Lift,(L|Cur_F : K, St : idle, Dr : cl)) [rmi=#]
if (K1 > K + 1) then (GOTO, Goto_F(L,K1,Up)®
(Lift,(L|Cur_F : K, St :Up,Dr : cl)) else if
(K1 < K —1) then (GOTO, Goto_F(L,K1, Dw)®
(Lift,(L|Cur_F : K,St: Dw,Dr : cl)) endif .

Tint: (GOTO,Goto_F(L,K1,D®Goto_F(L,less(K1,K,—))®(Lift,(L|Cur_F : K,St: S, Dr :
cl))

[ﬂ+|less(K1,Ig—K—1|*Tmf]
(GOTO,Goto_F(L,K1,D) ® (Lift,(L|Cur_F : less(K1,K),St : S,Dr : cl))// if (D =
S=Up)V(D=S=Dw)

Tfinal: (GOTO, Goto_F(L,K1,D)) ® (Lift,(L|Cur_F : K,St: S,Dr : cl))
[Tm f]
=

(Lift,(L|Cur_F : K1,St :idle,Dr : cl))// if (D =S =Up)V (D =S = Dw)
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Chapter 3

Runtime manipulation of features

The purpose of this section is, first, to review the main ideas and corresponding construc-
tions for handling runtime modification that we proposed in [Aou00]. Then, we propose a
more adequate inference rule for propagating a given behaviour from the meta-level to the
object level.

3.1 Meta-places and non-instantiated transitions con-
structions

For handling runtime modification of CO-NETS component specifications, the constructions
we proposed in [Aou00] may be summarized as follows:

1. In order to free some CO-NETS transitions' from their rigidity, we propose to replace
each of their three components— namely input tokens inscribing their input arcs, out-
put tokens inscribing their output arcs and their conditions— by appropriate variables
those sorts are exactly the sorts of different inscriptions. Such transitions with only
variable inscriptions, are referred to as non-instantiated transitions, and their general
form is sketched in the lower right hand-side of Figure 3.1. In this general pattern
for non-instantiated transitions, all (arc-) inscriptions, namely ICe;, IC;,, .., IC;, for
input arcs, CT,y;, CT},, .., CTh, for output arcs and T'C for the condition, should be
regarded as appropriate variables.

2. Second, we gather all (input and output) arc inscriptions as well as condition, those
variable inscriptions have taken their places, into a single tuple: (transition id,
version | (input-)multiset, (output-)multiset, condition ). In particular,
such a tuple for (the general pattern in) transition ¢ in Figure 2.3, takes the following
form, where the index ¢ represent a particular version of such transition.

(t 10| (obj, ICw;) & (Mesy,ICy), (0bj, CTuy) & (Mesy, CTy), Cond.)

=11 k=j1

In the same spirit as in [SRSS98], we assume that some behaviour, i.e. transitions, is fixed forever
reflecting minimal properties of the specified application.
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3. Third, we consider such ‘behaviour’ tuples as tokens w.r.t. a corresponding place
namely meta-place in Figure 3.1, that constitutes the first element of our meta-
level. On the basis of this behaviour tokens, it became quite possible to delete some
of them, modify some of them or introduce new ones: This corresponds respectively to
the transitions DEL, MODIF and ADD? and their corresponding places Del-Bh, Chg-Bh
and Add-bh.

4. Finally, we relate to two levels, i.e. the meta-place in the meta-level with each non-
instantiated transition in the object level, using an appropriate read-arc.

Del-Bh The Meta-object Level Gouverning the Modified Behaviour
Del-Bh(T,.. MetaPlace

(Ty + m1l(obj, @(Tdy|attrs; ) @ (Mes; ,mes; ), Chg-Bh

(obj, %(Id’“attrs,’ih ) ‘? (Mesp, ,mesp, ), TC1)

Del_Bh(T, i) A b 44

(T 2 iley oy )

Chg-Bh(T, i, ®(P},IC}), %(QL,CT,’L), Tc')
J

(T =il ® (P;,IC;), @(Qr, CTr), TC)
7

Add_Bh(T, ®(P;,1C;),®(Q;,CT;), TC)
i J

True MODIF
(T : k|IC,CT,TC)

TAT: RIIC, OT, TC) (T il @ (P, ICh), ®(Q},, o)), TC")
J h

Y

l Troe IADD2 ADD1

(T :1] @ (P;,IC;), ®(Q;,CT;), TCy))
i Fi

(T k41§ (P, 1C0), 8(Q;, C€T;), TC;)

B

ip r
(T +il(0bj, ICop;) & (Mes;, IC;), (b, CTop;) © (Mes;,CT;), TC)

i=iq j=hq
Mes; Mes; k . Mes; Mes;
" ® @ (Id;|attrs;) obj ICob; i1 P
i=1
msiy ms;, 1 ICil IC,-P
Conditions on attributes values T | Tc | T(i)
and messages parameters
ms crT
hy msp, T, h1 CTy,,
.. 2 ) st iy ( : ..
Mesp;” Mesp”  © (Idilattrs)) ® © (Idi|attrs;) Mesp; Mesy, ,
1=381 1=1%1
General Pattern of rigid I nternal Behaviour General Pattern of Run-time Modified I nternal behaviour

Figure 3.1: The general pattern for handling dynamic behaviour in CO-NETS

3.1.1 Application for manipulating the lift features

Applied to the lift system, the proposed approach allows us to manipulate any feature
of the system in a very flexible way, which is moreover achieved while the system is still
running. This manipulation concerns different kinds of operations on features, namely the
addition of new features without resorting to stopping the system, the deletion of existing

2In fact the transition ADD is composed of two transitions ADD1 and ADD2 corresponding to the cases of
adding a new version for an existing transition behaviour or a (first version for) new transition.
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features, and finally the modification, that is, the update of some outdated features. In a
more detail, the features we propose to deal with to illustrate the appropriateness of this
approach, are the following:

e First, we would like to introduce a feature that allows for some particular lifts (se-
lected using their identities) to go to a ’stationary’ floor when there is no call inside
or outside. But, we would at the same time let this stationary floor modifiable, for
instance, depending on the rush time—the underground floor in the morning and
the appropriate one in the evening. This of course cannot be specified using a fixed
transition, rather it should be considered as a token that can be update whenever
necessary. Such a token may have the following form:

(Reset : 1/(GOTO,” Goto_F(L,—,—)) ® (Lift,(L|Cur_.F : K,Dr : cl,Wg
0)), (Lift,(L|Cur_F : 0,Dr : cl,Wg:0)), K # 0)

In this token, we have chosen for instance as stationary floor the ground one (i.e. F
=0). We also note that the condition ~Goto_F (L, —,—) implies that no requests are
currently existing (in the place GOTQ). Of course, now using the transition MODIF at
the meta-level, we can add more complex conditions, depending for instance on the
time as well as changing the stationary floor in consequence.

e In the initial specification, we have included the possibility of canceling any requests
from (inside or outside) the same floor where the lift is. An improvement of this
feature may be the cancellation also of any request from inside the lift when it is
empty (i.e. its weight is set to zero). For this, we propose to consider the transition
Tidle as non-instantiated one, and introduce its new behaviour as a token. This
behaviour takes the following form:

(Tidle : 1|(GOTO,Goto_F(L,K1,0)) ® (Lift,(L|Cur_F : K,Dr : c,Wg
W), (Lift,(L|Cur_F : K,Dr :cl,Wg: W)),(K1=K)V (0 =in AW =0))

e The feature that we would also like for some lifts (we denote by LsLf as a list of
identities of some selected lifts), is that, when their weights are greater than the 2/3
of the their maximal weight they skipped intermediate floors. This feature concerns
directly the transition Tnxt that has to be now considered as a non-instantiated. In
this behaviour as a token, we should add the weight attribute in input arc from the
lift place and add the condition W < 2/3Wmz to the transition. That is to say the
taken would be now as follows:

(Tnzt : 1/(GOTO, Goto_F(L, K1, D) & Goto_(L,less(K1,K),—))®
(Lift,(L|Cur_F : K,St : S,Dr : c,Wg : W)),(GOTO,Goto F(L,K1,D) &
(Lift,(L|Cur_F : K,Dr: cl,Wg:W)),(D=S=Up)V(D=S=Duw)A W<
2/3Wmzx)

All these features are illustrated in Figure 3.2, where ICyq,, CTyer and TCy,, are of
course appropriate variables for capturing changing input inscriptions, output inscriptions
and conditions respectively. Also, we note that all unchanged transition in the net depicted
in Figure 2.1 have been ignored for getting a simple net.
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3.2 Semantical part : the meta-inference rule

For theoretical underpinning of these constructions, we propose in the following, with
respect to the same CO-NETS semantic rewrite logic framework an adequate inference
rule that can be regarded as a more flexible formulation of the one proposed in [Aou00].
The main ideas under this reformulation as described below are the following. First, we
generate the rewrite rule associated with the non-instantiated transition in Figure 3.1 in
the same way as we done for usual CO-NETS transitions, except that we introduce a new
binary operator denoted ||, separating the other pairs of place-tokens and the read-arc
inscription. This operator is necessary because we should express the fact that tokens
brought using read-arc are not from the object level (i.e. the CO-NETS state), but from
the meta-level state. We have called this rule as non-instantiated rewrite rule, namely
t"ins because it cannot be applied directly. From this non-instantiated transition, we can
obtain a usual transition by selecting one behaviour as a token, from the meta-place, by
applying different corresponding substitutions to different variables in the read-arc token.
This fact is reflected by the inference rule, where M (P,,¢t,) represents the current marking
of the place meta-place, while the notation |[Typ,)]|e represents a class of (multiset) term
(over the associativity, commutativity of &) those sort is exactly the one of the place p;.

For each (meta-)rewrite rule :
, k k !
£ 1118, (pos TG lr(Prmeta, (¢ 4 [ [ (i ICII, L & (95, CT)]|, TC))

l
= (@@ CT) 1t TG

We have:
do; € [Ts(p,’)]@a ..,E|0'j S [Ts(qj)]@,ﬂa S [Tbool]/\

(¢ || & (i :(IODIL [ &, (05,03 (CT)), (TC) € M(Prct)

b [ (UG = [ 8 (4, 05(CT)]| 12 o(TC)
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The Meta-object Level Gouverning the Modified Behaviour of the Account Specification

Meta-Place

(Reset : 1|{(GOTO, ~ Goto_F(L,—,—))®
(Lift,{L|Cur_F : K,Dr : cl,Wg : 0)),
(Lift,(L|Cur_F :0,Dr : cl,Wg :0)), K # 0)

(Tidle : 1{(GOTO, Goto_F(L,K1,0)) ® (Lift,(L|Cur_F : K,Dr : cl,Wg : W)),
(Lift,(L|Cur_F : K,Dr : cl, Wg : W)), (KL = K)V (O =in AW = 0))

(Tnzt : 1|/(GOTO, Goto_F (L, K1, D) & Goto(L,less(K1,K), —))®

(Lift,(L|Cur_F : K, St : §,Dr : cl, Wg : W)), (GOTO, Goto_F(L, K1, D)®

(Lift,(L|Cur_F : K,Dr : cl, Wg : W)),
(D=S=Up)V(D=S8=Dw))AN(W < 2/3Wmz)

) A LA A
(T :d|oy - =) . 1 1 ] r ’
Chg_Bh(T,z,®(Pj,ch),g(Qh,CTh)aTC )
DEL !
(T +i] ® (P;,1C;), ®(Qr, CTr), TC)
k2
Add_Bh(T,§>(Pi,ICi),§(Qj,CTj),TCj) vy ODIF
True
(T : k|IC,CT, TC) (T :i| ® (P}, 1ch), ®(Q% , cTl), Tc’)
j J J h
~(T : k|IC,CT, TC)
Y ADD2 {
True I I True ADDL
1

(T : 1] ® (P;, IC;), ®(Qj,CT;), TCy))
i J

(T b +1] ® (P;,1C;), ®(Qj, OT;), TC;))
2 J

(Tidle : i|(GOTO,IC;;) ® (LIFT, IC;,), (LIFT,CT;, , TC;, )

(Reset : i (GOTO,1Cq,) ® (LIFT,I1Cy,), (LIFT,CTy, ,TCyq, )

1Cyq,

cTy,

(1f1|Cur_F : 4, St : idle, Dr : Op, Wg : 125)

(1fj|Cur_F :9,St: Up, Dr : Cl, Wg : 40)

105
41_1 1, |
Tidle( vy
TC;,

— cr;y

IC
ICn, n2

Tint( ! l
TCny
[ CTny
-~

(Tint : i|(GOTO,1Cn,) ® (LIFT, ICn,), (GOTO,CTn,) ® (LIFT, CTy, , TCy))

Figure 3.2: Dynamic manipulation of the lift system features
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Chapter 4

Strategies in CO-NETS as features
interaction

Besides its true concurrency nature and its operationality allowing generation of rapid-
prototypes, the key feature of rewriting logic is also its intrinsic reflection capabilities. For
our CO-NETS framework, the crucial advantage of this second meta-level is the possibility
of introducing appropriate strategies for controlling the way in which different transitions
should be fired. This is of great benefit for reflecting a current functioning of a given
system, without resorting to fix forever a particular way of functioning. Moreover, this
allows to free as much as possible the net from such control—this of course led to a very
simple and flexible net specification. In the following, we give more detail about this level,
then we apply it to the case study.

4.1 Strategies using reflection in rewrite logic

Rewriting logic is reflective [MOMO96], that is, there is a finitely presented rewrite theory
U that is universal in the sense that we can represent in U/ any finitely presented rewrite
theory R (including U itself) as a term R, any terms ¢, ' in R as terms %, ¥, and any pair
(R,U) as a term (R, ), in such a way that we have the following equivalence

HRFt—t <= UF(R,T) — (R,

In the same way this equivalence may be applied between the meta-level and the meta-
meta.level, and so on, leading to a reflective that may be illustrated as follows:

HREt—t = UF(R,T) — (Rt) <= UFU,(R,T)) — (U,R,))

For a system of rewrite rules, gouverning transitions behaviour as in our case, it is now
possible to represent it as (a pair of) datatypes, and the rewriting of any CO-NETS state
representing the current marking can be now completely controlled. In this sense, an
expressive language for composing different rewrite rules has be developed for the MAUDE
language; that we adopt here. First a kernel is defined stating how rewriting in the object
level is accomplished at the metalevel. In particular, Maude supports a strategy language
kernel which defines the operation:



20 4.2. APPLICATION TO THE LIFT SYSTEM

op meta-apply : Term Label Nat — > Term.

A term meta-apply(t,l,n) is evaluated by converting the metaterm ¢ to the term it
represents’ and matching the resulting term against all rules with the given label I. The
first n successful matches are discarded, and if there is an (n + 1)th successful match its
rule is applied, and the resulting term is converted to a metaterm and returned; otherwise,
errorx is returned.

The strategy language STRAT defined in [CDE"99] extends the kernel with operations
to compose strategies, and also with operations to create and manipulate a solution tree
obtained by the application of a strategy. It defines sorts Strategy and StrategyExp for
strategies, and sorts SolTree and SolTreeExp for the solution tree. The main operations
defined on strategies are:

e operations defining basic strategies:

op idle : — > Strategy . //* idle is an empty strategy *//

op apply : Label — > Strategy // application fo a given rule // .

op rew_ =>_with_: Term SolTreeExp Strategy — > StrategyExp .
failure : — > StrategyExp .

e operations defining solution trees :

op ? : — > SolTreeExp .

op apply : Label — > Strategy .

op rew_ =>_with_: Term SolTreeExp Strategy — > StrategyExp .
failure : — > StrategyExp .

e operations that compose strategies:
op _; _: Strategy Strategy — > Strategy // application of two strategies in sequence //

op _;;_orelse_ : Strategy Strategy Strategy — > Strategy // a choice between two
strategies //.

op iterate : Strategy — > Strategy // application repetitive of a given strategy until is
nomore applied //.

For a more detail about the semantics of these operations, the reader may particularly
consult [CDE*99].

4.2 Application to the lift system

As we pointed out the meta-level we propose for dynamically evolving CO-NETS specifi-
cation, is in itself not sufficient for expressing particularly how different system features
interact with each other. In this paragraph, using the running case study, we show how
the above meta-level for reasoning about rewrite rules gouverning different transitions be-
haviour, when applied to a given CO-NETS state, is of great help. Indeed, first recalling

!The datatype meta-representation of an object term is a list based one; for instance, a natural term
s(s(0)) + s(0) is represented by '_+ _['s_['s_['0]]," s_['0]]-
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that usually in Petri nets a transition may be fired as soon as it become fireable, and there
is no way for controlling the order in which transitions are fired. This difficulties induce
that designer of the net should decided whether (s)he let irrelevant such order or opt for
a default order and integrate it directly in the model—leading in most of real-case to very
complex net which works only for this default strategy.

To be more explicit, in the CO-NETS specification of the lift system in Figure 2.1
obviously we have decided for the first solution, that is, no control at all of different system
features. In fact, we did not state, for instance, when should the door be opened, closed,
or should the lift first ’serves’ the next / precedent floors or those which are far at first.
Imagine that we have decided for a particular strategy; for instance, first serve the next /
precedent floors, then open the floor then close the door (after some time), and then if any
serve more far floors, and make that repeatedly. It is very hard to imagine how complex
and artificial would be the resulting net for such a default strategy. For instance, for firing
the transition Door-Op we have to be sure that the transition Tnxt has be fired. This
means that we should add an artificial place and two transitions and relate them to the
transition Tnxt as input and to the place Door-0p as output, and so on for the remaining.

Fortunately thanks to this rewrite logic meta-reflection, the lift specification in Figure
2.1 remains unchanged while we can formulate any strategy we would like to have. For
instance, taking into account as label the name of different transitions, the above ’default’
strategy we would like to have may be simply expressed by the following:

iterate(Tnxt; Door — Op; Door — Cl; (T far; Tint; T final)*)

The meta-level of rewriting logic would respects this strategy. Moreover, we can associate
complex conditions on applying such strategies.
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Chapter 5

Conclusions

We presented in this paper a general-purpose framework, referred to as CO-NETS, particu-
larly suited for specifying complex distributed systems, and for dynamically manipulating
their features. Methodological this framework may be regarded as three layer-based one.
The first layer is a sound integration object oriented abstractions mechanism with mod-
ularity constructs into an appropriate variety of algebraic Petri nets. The second layer is
meta-level one, and it allows for dynamically creating, modifying and/or deleting features
while the system is still running. The third layer takes profit of the reflection capabilities
of rewrite logic—as semantics for CO-NETS behaviour—for dynamically composing and
interacting strategies, as appropriate and complex features.

We have illustrated this framework using a non trivial specification of a variant of a
system with several lifts. This case study shown us in particular the suitability of this
framework for dealing complex real-world distributed systems and their features. How-
ever, after achieving this first step we are conscious that much more work remains ahead.
Particularly, we are planning to extend this case study to more complex one. Also, we
are focusing on the integration of temporal aspects for verifying, and not only validating,
system properties.
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