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Abstract

Coordination and distribution of computations and interactions are still raising major
challenges in the development of complex software-intensive systems. In this paper we
use a case study to show how a component-based approach that promotes coordination
and distribution as separate architectural concerns can lead to new levels of adaptivity,
agility and openess in system construction and evolution. The case study is a variant of
the so-called Multi-User Dungeon (MUD) game. We Illustrate how two semantic primi-
tives – coordination and location laws – can be used to modelcoordination and distribution
as separate concerns as they arise in the rules of game, and how they can be composed
and evolved, at runtime, to reflect mobility and other changes on the configuration of the
domain that result from playing the game.

Keyword: Composition, Coordination, Distribution, Interaction, Location-awareness,
Mobility, MUD game, Reconfiguration, Superposition.

1 Introduction and motivation

It is widely recognized that coordination and distribution of computations and interactions
are core concerns for achieving the higher levels of adaptivity, agility and openness required of
software-intensive systems operating in the new ages of global, pervasive and ubiquitous com-
puting. In order to cope with the new levels of complexity raised by these concerns, the AG-
ILE 1 consortium [ABB+03]. [ABB+03] investigated the use of methods and techniques simi-
lar to those developed in the field of Software Architecture (e.g. Allen02,Garlan04,Nenad03).
More precisely, we adhered to the use of architectural connectors [AG97] as first-class enti-
ties that coordinate interactions independently of the way components perform their local
computations.

This separation between computation and coordination concerns has been extensively
explored as a means of increasing the level of agility through which systems can evolve in
reaction to changes in the business rules according to which they are required to operate

∗Supported by the European Commission through the contract IST-2001-32747 (AGILE: Architectures for

Mobility)
†Supported by FCT, Portugal, through the PhD Scholarship SFRH/BD/6241/2001.
1IST-FET-GC1 project, URL:http://www.pst.informatik.uni-muenchen.de/projekte/agile.

1



[AF02, AF03]. So-called ”Coordination Laws” have been developed as semantic primitives
for modelling business rules and other volatile aspects of the application domain. Their
instances, called ”Coordination Contracts”, can be superposed dynamically over the system
configuration without interfering with the computations that implement the core services that
components provide. A software development environment supports the approach [AGKF02].
Its use in industrial-size projects has been documented [WKA+03]. The formal semantics of
the approach has been developed over the architectural description language CommUnity

using category theory [FLW03, Fia04].
The main challenge addressed in AGILE concerned the extension of this architectural ap-

proach to the distribution dimension. This concerns the way business rules or other aspects
of the application domain depend on the locations where computations are performed and
the properties of the network across which interactions need to be coordinated. For instance,
when modelling a banking application, a simple operation like a withdrawal involves compu-
tational aspects that are quite stable (the way the account is debited), coordination aspects
that can vary (e.g. the package that the customer has negotiated with the bank, including
overdrafts and other business aspects that interfere with the withdrawal), as well as distri-
bution aspects that are location-dependent (e.g. the business channel that is being used for
the operation – at the counter, at an ATM, through the internet, and so on). The way the
system behaves at any given state emerges from the composition of these three dimensions.

This is why we developed new conceptual modelling primitives for location concerns, what
we have called location laws. Their instances are a new kind of architectural connectors called
location contracts that superpose the dependencies of computations and interactions on distri-
bution. These have been motivated and characterised at an intuitive level in [AFO04b]. More
specifically, we demonstrated how a coordination/location-driven architectural approach can
be put to an effective use in modelling distributed business processes within the service-
oriented computing paradigm [AFO04a]. The semantics of this new architectural dimension
has been defined over an extension of CommUnity [LFW02, FL04]. Meseguer’s Rewriting
Logic [Mes92] has also been used to capture the operational aspects and validation of the
superposition of the three dimensions: computation, coordination and distribution [AF05].

The purpose of this paper is twofold. One the one hand, to present a comprehensive
account of the approach around a single example, bringing together aspects that are scattered
in shorter publications and illustrated with several different examples [AFO04b, AFO04a,
FL04, ?]. On the other hand, to show how the approach copes with the challenges raised
by a totally different case study, one in which distribution and mobility are intrinsic to the
”rules of the game”: a Multi-User Dungeon (MUD).

The rest of this paper is organised as follows. In Section 2, we start by giving an informal
description of the case-study. Then, we provide more motivation for the need to separate
Coordination and Distribution as architectural dimensions. In Section 3, we present the
semantic primitives that we developed for coordination and location aspects around a simple
action of the MUD game. Sections 4, 5 and 6 detail how coordination and distribution
concerns are separately modelled, and how they are integrated to account for each action of
the game. The paper concludes by summarising what we consider to have been achieved and
highlighting different directions for further work.
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2 Overview of the MUD game

We present SWEPMUD as a multi-user dungeon (MUD) game that is played with mobile
phones [BBH+04]. This is one of the case studies used in AGILE [ABB+03]. In this version,
the player registers once for the game and can then use his/her cell phone to play. The ”field
of play” is partitioned into different levels. Each level consists of several rooms. The rooms
are connected by doors that allow players to move from one room to another. Inside a room,
a player can interact with other players as well as take, use, or release objects. The goal is to
traverse all levels and complete with success the task of the special room at the final level.

The main entities involved in the game are the following:

Rooms Rooms are ranked in levels. For a given level, rooms can be organised in an undi-
rected connected graph where the edges correspond to doors. There are two special
rooms at each level: the starting room, which is also where players are thrown into
when they ”die”, and a special room that gives access to the starting room of the next
level.

Players Players have a number of characteristics such as strength, agility and life points.
Inside a room, players can communicate with each other, trade objects for other objects
or money, and fight each other using the weapons that they have available. Players can
also move between rooms. When they die, they are moved to the starting room. When
reaching the special room of one level, a player can move to the starting room of the
next level.

Objects Objects reside in rooms and, depending on the circumstances, can be carried by
players when they move between rooms. Objects are used by players for different pur-
poses. For instance, healing potions give life points. Weapons, like swords, knives,
shields and armours, can be used in a fight. Objects have states indicating their condi-
tion, which can change as players use them.

An architectural analysis of the different functional aspects of the game can be made in
each of the three dimensions already motivated:

Computation By ”computation” we mean any transformation that a component operates
on its state such as players’ life points and objects’ condition. The separation of concerns
that we are enforcing means that these operations cannot engage the component in
interactions; there is no explicit invocation of services provided by other components;
components can only use operations on data as made available by local libraries.

Coordination Interactions in this system concern the relationships player-to-player (e.g.
while fighting or trading) and player-to-object (e.g a player using a weapon). The
way these relationships need to be coordinated derives from the rules of the game and
is captured in ”laws” that can be superposed at runtime according to the ”state of
play”. Interactions are triggered by events published by components or the system
environment.

Distribution Rooms are clear candidates for playing the role of locations because the way
components behave and interact depends on the room in which they are located. For
instance, movement (of players) is possible only between neighbouring rooms endowed
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with doors. Trading, fighting, and talking (between players) are only possible within
the same room.

We claim that these aspects should be modelled independently of one another at design
time, and brought together at runtime as required by the ”state of play”. For instance,
the transformations through which player’s life points are updated depend only on the local
representation of the player’s data. The amount of points earned or lost depends on the
interactions, and the ability for these interactions to take place depends on the locations of
the components involved. In the rest of the paper, we model several rules of the game as a
means of illustrating our approach and justifying our claim.

3 Overview of the Architectural Approach

In this section we start by presenting the primitives used for modelling the coordination
aspects. Then, we give an overview of the location primitives and explain how global system
behaviour emerges, at each state, from the combined effect of the coordination and location
contracts that are present in the configuration of the system.

3.1 Coordination concerns

A set of semantic primitives have been put forward in [AF02, AF03] with the aim of supporting
an architectural approach to system modelling based on the separation between coordina-
tion of interactions among components from the computation of service functionalities within
individual components. For instance, in the case of information systems, computations of ba-
sic functionalities are usually performed by relatively stable core business entities. Business
rules are much more volatile because they have to keep changing for the business to remain
competitive. Therefore, they should be modelled separately from the core business services.
This clean separation permits the more volatile domain aspects to evolve with minimal im-
pact on core services. Instances of these primitives capture business contracts that can be
superimposed dynamically on the relevant core business entities considered as black-boxes
[AFLW03].

In order to make precise what we mean by ”separation”, consider traditional object-
oriented modelling (OO). Interactions in OO are established by objects (clients) calling named
services of named objects (servers). Such calls are placed during the execution of the methods
of the client and, therefore, interactions are not separated from the code that implements the
computations. This leads to very tight coupling between components [?], not only because any
changes on the nature of these interactions requires code to be rewritten, therefore interfering
with the computations on the client side, but also because it is very difficult to understand at
the conceptual level which interactions are in place at any given state of the system. Another
aspect of this tight coupling is the fact that the client needs to know the identity of the
server. See [?] for a more thorough discussion. The proposed coordination primitives adopt
instead an event-base approach [?], externalise any interactions among system components
as first-class entities and make them explicit in configurations.

Coordination Law : These primitives model rules according to which components can
be interconnected. The interconnections are established by what we call coordination
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contracts through event-condition-action (ECA) rules. Contracts instantiate laws for
particular components that we call partners. The components that can become partners
of a law are not identified at instance level but by the roles that they are required to
play, what we call ”coordination interfaces”. Auxiliary attributes and operations may
also be defined when needed to support the kind of coordination that is required.

Coordination Interface : A coordination interface identifies what is normally called a role
in Software Architecture. It identifies a class of components in terms of the set of
services, events and invariants that need to be provided, either directly or indirectly
through refinement, for a component to become coordinated as described by the inter-
action rules of the law.

Example 3.1 An elementary interaction between two players is talking with each other.
Under this form of interaction, a player decides to initiate a dialogue with another player of
his/her choice by broadcasting a message. Depending on the caller and/or the message, the
player named in the call can decide to be available for engaging in the dialogue or not. The
dialogue is initiated by accepting the message.

coordination interface player1TK-CI

partner type PLAYER

datatypes MESSAGE

events

send(play:PLAYER,ms:MESSAGE)

end interface

coordination interface player2TK-CI

partner type PLAYER

datatypes MESSAGE

services

ready2tk(play:PLAYER,ms:MESSAGE): BOOL

receive-tk(play:PLAYER,ms:MESSAGE)

end interface

Each coordination interface identifies a role. An initiator (an instance of the role player1TK-CI)
expresses its intention to engage in a dialogue M with player P by publishing the event
send(P,M). A responder (an instance of the role player2TK-CI) receives requests through the
operation or service receive-tk. A responder is also required to provide a service ready2tk

to indicate with which players and for which messages it is available to engage in a dialogue.
The datatype clauses indicate the data sorts and operations that the partners need to have
available to interact; in this case, a sort for the messages exchanged.

coordination law PlayerTK-CL

partners

play1:player1TK-CI;

play2:player2TK-CI

rule Player’s talking

when play1.send2tk(play2,ms)

with play2.ready2tk(play1,ms)

do play2.receive-tk(play1,ms)

end law

PlayerTK−CL

PLAYER

    Plyer2TK−CI
    Plyer1TK−CI

PLAYER

PlyId()
PlyId()

send2tk(PlyId, ms)
ready2tk(PlyId) : bool

receive−tk(PlyId, ms)

The coordination rule in this law specifies that when the initiator publishes an invitation,
the player identified in the event (the responder) decides if it is ready to engage in a dialogue
with the initiatior (with part). If it is, the responder receives the message. (do part).

Even if the example is very simple, it is worth stressing some of the main advantages
of externalising interactions. The first advantage is, precisely, what makes the example so
simple! Issues such as pricing, message support (SMS, Voice, Multimedia), and so on, can
be left to other coordination laws. This allows us not only to concentrate in one aspect at
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a time when modelling the application and its domain, but also to evolve them separately.
Hence, we may decide to change the way talking is priced or add new message supports
without interfering with the protocol followed to engage in a dialogue. The second advantage
concerns the distribution dimension. As shown in the next section, this externalisation allows
for the rules that determine from which rooms players can talk to other players to be modelled
independently of the protocol.

3.2 Distribution Concerns

As emphasised in the introduction, the purpose of location primitives is to enhance archi-
tectural mechanisms to deal not only with the coordination of interactions but also with the
distribution/mobility dimension. By this we mean aspects usually concerned with the com-
munication infrastructure, including advanced ICT-based elements such as mobile devices,
sensors, and so on. However, we wish to support more abstract levels of distribution such as
business channels, i.e. dependencies that computations and interactions may have on notions
of location that apply to the application domain. This is why we do not work with a fixed
notion of location but, instead, provide primitives through which these dependencies can be
modelled.

For that purpose, we rely on an abstract specification of a data type that involves a fixed
sort LOC for locations and whatever operations are required for modelling the properties of
the distribution topology as it applies to the application domain. We can specify subsorts
of LOC to model specific kinds of locations such ROOM in our example. Two operations
are fixed and used to capture essential aspects for the characterisation of the architectural
connectors that handle distribution, what we call location contracts:

• The communication status, i.e the presence, absence, or quality of the link between
locations where given services are executing but require data to be exchanged and
synchronisation of services to be observed as part of a distributed interaction. This
is captured through the ”be-in-touch” construct BT : set(LOC) → BOOL, that is, a
boolean operation over locations.

• The ability to continue the execution of an activity at another location, which requires
that the new location is reachable from the present one so that the execution context
can be moved. This is captured by the construct REACH : LOC × LOC → BOOL

that returns whether a given location is reachable from another one.

These primitives have been formalised in CommUnity [LFW02].
As for the coordination dimension, location laws are the conceptual modelling primitives

through which we capture distribution concerns. We use ECA-like rules triggered by the same
kind of events used for coordination laws but, this time, we are concerned with superposing the
aspects that are location-dependent. The corresponding location interfaces are now concerned
with the events and services that characterise the activities from the distribution viewpoint.

Example 3.2 The location-dependent aspects of the interaction that we analised in the
previous section, players engaging is a dialogue with another player, concerns the rooms in
which the players are acting. Therefore, we need two location interfaces, one for the room of
the initiator of the call and one of the room of the responder.
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location interface Talk1Room-LI

location type ROOM

datatypes

PLAYER

services

nbCalls() : INT;

maxCalls() : INT;

incCalls() :

post nbCalls() = old nbCalls()+1;

hasplay(play:PLAYER) : BOOL;

events

call(play1,play2 : PLAYER)

end interface

location interface Talk2Room-LI

location type ROOM

datatypes PLAYER

services

nbCalls() : INT;

maxCalls() : INT;

incCalls() :

post nbCalls() = old nbCalls()+1;

hasplay(play:PLAYER) : BOOL;

end interface

The only difference between the two location interfaces is in the ability to detect calls as
events, which only makes sense for the initiator. Otherwise, both interfaces require services
that return the number of calls active in the room (nbCalls), the maximum number of active
calls allowed at any one time (maxCalls) and the players currently in the room (hasplay),
as well as a service that increments the number of calls (incCalls).

These two location interfaces are used in the following location law.

location law TalkRm-LL

locations

rm1: Talk1Room-LI;

rm2: Talk2Room-LI;

rule : Talking from Room(s)

when rm1.call(play1,play2)

and rm1.hasplay(play1)

and rm2.hasplay(play2)

with rm1.nbCalls() < rm1.maxCalls()

and rm2.nbCalls() < rm2.maxCalls()

and BT(rm1,rm2)

do rm1.incCalls and rm2.incCalls

end law

         ROOM          ROOM

RoomPlys() RoomPlys()

RoomId() RoomId()

Talk1Room−LI Talk2Room−LI

TalkRm−LL 

talk(plyId1, plyId2)

The trigger of the location rule (specified under when) is any call detected in rm1 from a
player in rm1 to a player in rm2. Calls made in other rooms or when the players are in other
rooms are ignored by this law. The trigger is rejected (i.e. the call does not go through) if
the number of active calls in either of the rooms has reached the allowed maximum or the
rooms are not in touch. If the trigger is accepted, both rooms increment the number of
active calls.

Notice the use of the operator BT in the with clause, rejecting the trigger if the rooms
are not in touch. Different definitions of BT provide us with different variants of the rules
of the game. For instance, in order to set that talking is only allowed within the same room,
we just have to specify that:

BT (rm1, rm2) ⇔ rm1 = rm2

3.3 Integration of concerns

In the two previous subsections, we discussed semantic primitives through which we can
separate two different architectural concerns when modelling software systems:
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• The mechanisms that should be put in place to coordinate interactions within the
system;

• The mechanisms that reflect the dependency of the application domain on a distrib-
ution topology that constrains the way computations are performed in locations and
interactions take place across locations.

Although there are clear advantages in addressing each of these concerns separately,
namely to allow them to evolve independently, it is necessary to bring them together to
understand which global system properties emerge at any given state. The fact that we have
modelled coordination and location concerns through ECA rules makes it easier to under-
stand how laws compose and which behaviour emerges from their composition. Basically, one
has to look for the rules (coordination and location) that are triggered by the same activities.

The joint execution of ECA rules that we have in mind, as formalised in [FLW03] for
coordination, takes the conjunction of the guards (with clauses) and the parallel composition
of the reactions (i.e. the union of the synchronisation sets specified in the do clauses).
However, in the presence of location rules, we need to take into account that coordination
can only be effective when the locations are in touch. That is, when located partners are not
in touch, the coordination rules involving the partners do not apply.

Example 3.3 Figure 1 depicts a configuration in which two located players, play1@rm1

and play2@rm2 are subject to instances (contracts) of the coordination and location laws
discussed in the previous sections. The instantiation of a law over a given set of runtime
components requires that the events and services identified in the interfaces of the laws be
mapped to runtime activities and actual services provided by the components. For instance,
the events send2tk(play2,ms) and call(play1,play2) required by the coordination inter-
face player1TK-CI and the location interface Talk1Room-LI, respectively, are both mapped
to the same activity of play1@rm1 that consists in calling play2@rm2 with a message ms.

The reaction to the occurrence of this event depends on whether the locations are in touch
or not. If they are, both location and coordination rules apply. Otherwise, only the location
rule is activated. In our example, the latter case implies that the guard (with clause) of the
location rule is false and, hence, the trigger is rejected and nothing happens.

Consider the case in which BT (rm1, rm2) holds, in which case both coordination and
location rules apply. The joint guard is the conjunction of the with clauses:

play2.ready2tk(play1) and rm1.nbCalls() < rm1.maxCalls()

and rm2.nbCalls() < rm2.maxCalls().
That is, the call is only allowed to proceed if the responder is willing to talk with the

initiator for that particular message, and both rooms can accommodate another call. If this
joint guard holds, the reaction is given by the union of the two synchronisation sets:

play2.receive-tk(play1,ms) and rm1.incCalls and rm2.incCalls.
That is, the responder receives the call and both rooms increment the number of active

calls. Note that if the two rooms are the same, there is only one call because both services
identified in the location interfaces are instantiated by the same operation rm.incCalls.
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PLAYER

PlyId()

    Plyer1TK−CI

send2tk(PlyId , ms)

         ROOM

RoomPlys()

RoomId()

Talk1Room−LI

talk(plyId, plyId)

    Plyer2TK−CI

PLAYER

PlyId()

receive−tk(PlyId, ms)

ready2tk(PlyId) : bool

         ROOM

RoomPlys()

RoomId()

Talk2Room−LI

TalkRm−LL 

PLAYER @ROOM

PlayerTK−CL

Players talking witthin a room

Figure 1: Integration of coordination and location contracts

4 Coordination concerns in the MUD game

In this section, we discuss the coordination dimension in more depth by modelling other rules
of the MUD game. Interactions in the game can be classified in two main classes:

Player-player This category includes : (1) players talking to each other as already pre-
sented; (2) players moving around (rooms).

Player-object This category concerns: (3) acquisition of (new) objects by a player; (4)
release of objects by player; (5) trading objects with other players; (6) using weapons
to fight;

We present below the specification of the most representative interactions: trading objects,
movement between neighboring rooms and release/acquisition of objects by players. The
other forms of interaction are presented in the Appendix.

4.1 Trading objects

Trading involves two players and two objects that have to be in their possession and in a
non-broken state. We are going to model the way the exchange is coordinated but not the
negotiation process itself. As before, we start by defining the coordination interfaces that
specify what is required of each of the partners involved in the interaction.

For the player initiating the trade, we need to know the identity of the objects in its
possession (a set denoted hasObj). In addition, the event of trading (denoted trd) has to
be identified and a service for capturing the result of the exchange of objects (denoted by
exchg) has to be provided.
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coordination interface player1TrdObj-CI

partner type PLAYER

Datatypes

OBJECT;

services

hasObj(obj:OBJECT) : BOOL;

acquire(obj:OBJECT)

pre ¬hasObj(obj)
post hasObj(obj);

release(obj:OBJECT)

pre hasObj(obj)

post ¬hasObj(obj);
events

trd(playId:PLAYER,obj1,obj2:OBJECT)

end interface

Notice that the purpose of the coordination interfaces is to specify what events and
services are required of the partners, not how they are provided. The ”how” needs to be
made explicit during instantiation, which is performed at run-time, by binding these event
and service declarations to what the run-time components provide. This means that the
binding mechanisms may require additional computations from the more basic services on
offer. For instance, checking that an object is in possession of a player depends on the way
the ownership relation is represented in the system. It does not make sense to commit for a
particular representation at the conceptual modelling level.

Also note that we can specify requirements on the services through pre/post-conditions.
Again, it does not make sense to specify how these specifications are implemented.

The same features are required of the second player except for the event through which the
trade is initiated. Instead, a service for accepting the trade (denoted by accept) is required.

coordination interface player2TrdObj-CI

partner type PLAYER

Datatypes

OBJECT;

services

hasObj(obj:OBJECT) : BOOL;

acquire(obj:OBJECT)

pre ¬hasObj(obj)
post hasObj(obj);

release(obj:OBJECT)

pre hasObj(obj)

post ¬hasObj(obj);
accept(playId:PLAYER,obj1,obj2:OBJECT)

end interface

To be sure that the objects being traded are not broken, we are going to define a coordi-
nation interface that will allow objects to be directly involved in the law as partners:

coordination interface ObjectTrded-CI

partner type OBJECT

services broken() : BOOL

end interface

Again, we refrain from making explicit how the fact that object is broken is derived from
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its state. This has to be provided through the binding mechanisms only at run-time through
instantiation.

The law that coordinates trading objects can now be defined:

coordination law TradeObjs-CL

partners

play1:player1Trdo-CI;

play2:player2Trdo-CI

obj1,obj2: ObjectTrded-CI

rule Trade-objects

when play1.trd(play2,obj1,obj2)

with ¬obj1.broken() and ¬obj2.broken() and

play2.accept(play1,obj2,obj1) and

play1.hasObj(obj1) and play2.hasObj(obj2)

do play1.acquire(obj2) and

play2.acquire(obj1) and

play1.release(obj1) and

play2.release(obj2)

end law

The trigger of this coordination law is the event through which player play1 proposes
player play2 to trade obj1 for obj2. The trigger is refused if the objects do not belong to
the players, the second player does not accept the trade, or any of the objects is broken.
Otherwise, the exchange takes place.

4.2 Players acquiring/releasing objects

The coordination interfaces player1Trdo-CI and player2Trdo-CI defined above request
services that account for acquisition and release objects, which are used in the reaction to
the trigger of the law to perform an exchange. As already mentioned, the reaction to the
trigger is performed as an atomic transaction. Therefore, it may fail if, for some reason, one
the acquisitions or releases is not enable. Indeed, other coordination rules may apply to one
of these operations that depends on the nature of the object or the player. This is how we
can model rules of the game that apply to certain classes of players and objects.

Just to give a very simple example, consider a rule that restricts objects of weight greater
than 100 to be acquired by players with strength greater than 10:

coordination interface playerStrength-CI

partner type PLAYER

datatypes OBJECT

services

strength() : [1..12];

events

acquire(obj:OBJECT)

end interface

coordination interface objectWeight-CI

partner type OBJECT

services weight() : NAT

end interface
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coordination law acqStreWei-CL

partners

play: playerStrength-CI;

obj: objectWeight-CI

rule

when play.aquire(obj)

with (obj.weight() ≥ 100) or play.strength() ≥ 10 do true

end law

The coordination rule blocks the acquisition if the object has weight greater than 100 and
the player has strength less than 10.

4.3 Moving between rooms

Although, at first glance, the movement of players between rooms seems to be of a pure
distribution concern, the following observations demonstrate that it concerns coordination
as well. For instance, if a player moves to the next level, it has to release all objects in his
possession. If a player moves to a neighbouring room, the objects follow the player but have
to be registered in the new room. One may think of changing these rules to define variants of
the game without having to change the way the movement takes place in terms of locations.

Another example can be given in terms of a player’s death. The rules of the game concern
both distribution (the dead player moves to the starting room) and coordination (all objects
need to be released). One may well think of changing one dimension (e.g. allowing the dead
player to keep objects of a given class) without changing the other (e.g. the fact that the
dead player goes back to the start).

In summary, it makes sense to separate the two concerns. We consider below only the
movement between neighbouring rooms. The other two cases are treated in the appendix.

As already mentioned, the coordination aspects involved in a movement between rooms
concerns the interactions between players and objects. This gives rise to a coordination law
for pairs player-object triggered by requests from players to move to another room. This law
requires two coordination interfaces, one for the player and one for the object, each of which
offers services for the move to be effected. The player is also required to publish the request
to move as an event.

coordination interface player2Mv-CI

partner type PLAYER

Datatypes OBJECT, ROOM;

services

hasObj(obj:OBJECT) : BOOL;

playRoom() : ROOM;

enter2Rm(r:ROOM)

post playRoom = r

events

move2(r:ROOM)

end interface

coordination interface Objsplay2Mv-CI

partner type OBJECT

Datatypes ROOM;

services

ObjRoom() : ROOM;

ChgRm(r:ROOM)

post ObjRoom() = r

end interface

The corresponding coordination law is as follows:
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coordination law Player2Move-CL

partners

play:Player2Mv-CI;

obj:Objsplay2Mv-CI

rule Mvt-player

when play.move2(r) and play.hasObj(obj)

do obj.ChgRm(r) and

play.enter2Rm(r)

end law

PLAYER

PlyRoom()

PlyObjs()

PlyId()
OBJECT

ObjId()

enter2Rm(r) Post..

move2(r)

ObjRoom()

ChgRm(r)  Post..

Player2Move−CL

    Player2Mv−CI     ObjsPly2Mv−CI

It is important to stress that coordination laws are types in the sense that they model
generic forms of interaction. Hence, the law above concerns any pair player-object, i.e. any
instances of the declared coordination interfaces. However, any instance of the law is only
triggered for players that publish a request to move and the objects that they have in their
possession. That is, at run-time, only the objects belonging to a player are concerned when
that player requests to move.

Furthermore, the trigger may be refused if, for some reason, either the player or the object
cannot move. For instance, one may wish to impose restrictions on certain objects to move
to certain rooms, say by virtue of size or substance. In this case, the player will not be
able to move until the object is released. Indeed, as already explained, the superposition of
contracts that share the same trigger required the synchronisation of their reactions. Hence,
it is enough that one of the object of the player cannot move for the player not to be able to
move.

Notice that no considerations are made as to the nature of the room as a location; such
information is to be considered in the location laws that apply to that trigger.

5 Location concerns in the MUD game

We have already justified why we take rooms to provide the locations of the distribution
dimension. In this section, we illustrate how this dimension needs to be addressed to provide
a correct model of the game as captured by its rules. More precisely, we focus on the rules
used in the previous section to illustrate the modelling of coordination concerns. A more
complete account is left to the appendix.

5.1 Players’ trading

Principally, the main ideas we already presented about location concerns for talking are to
be applied for the trading action. The only difference here is that we have two cases (trading
with objects and trading with money), and that the traded objects should reside with their
respective players in the same room. As we pointed out, the trading with money is specified
in the appendix.
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5.1.1 Trading objects

From the location perspective, for trading objects between players, each player and its corre-
sponding to-be-traded object should be in the same room. As we have done for the talking,
we let open the fact that both players have to be in the same room, so that different variant
could be conceived while precisely stating the definition of the ”be-in-touch” relationship. in
other words, we consider two room location interfaces.

location interface TradeO1Room-LI

location type ROOM

datatypes

ROOM-ID, PLAYER-ID, OBJECT-ID

services

RoomId() : ROOM-ID;

Roomplays() : List[PLAYER-ID];

RoomObjs() : List[OBJECT-ID];

events

tradeO(play1, play2 : PLAYER-ID,

obj1, obj2: OBJECT-ID)

end interface

location interface TradeO2Room-LI

location type ROOM

datatypes

ROOM-ID, PLAYER-ID, OBJECT-ID

services

RoomId() : ROOM-ID;

Roomplays() : List[PLAYER-ID];

RoomObjs() : List[OBJECT-ID];

end interface

In the corresponding location law, two object identifiers are required each assumed to be
in the possession of one of two players. Besides the communication status that should be true
within/between such room(s), i.e. BT(rm1.RoomId(),rm2.RoomId()), the objects have to
belong to the room(s) of their respective players. Please be aware finally that the fact that
the objects should be in the possession of the respective players is not a location concerns,
but instead an interaction concerns we already addressed in the respective coordination law.
That is, it is only at the integration phase that all these functionalities/constraints have to
be merged to reflect the correct meaning of the action.

location law TradeObjRm-LL

locations

rm1: TradeO1Room-LI;

rm2: TradeO2Room-LI;

rule : Talk from Room(s)

when rm1.tradeO(play1,play2, obj1, obj2)

and BT(rm1.RoomId(),rm2.RoomId())

with (play1 ∈ rm1.Roomplays()) and

(play2 ∈ rm2.Roomplays()) and

(obj1 ∈ rm1.RoomObjs()) and

(obj2 ∈ rm2.RoomObjs())

do return true

when rm1.tradeO(play1,play2, obj1, obj2)

and ¬ BT(rm1.RoomId(),rm2.RoomId())

with false

do return false

end law

         ROOM          ROOM

RoomPlys() RoomPlys()

RoomId() RoomId()

RoomObjs() RoomObjs()

tradeO(ply1, ply2, obj1, obj2)

TradeO1Room−LI TradeO2Room−LI

TradeObjRm−LL 

5.2 Player’s Moving

The movement of players involves two rooms, which should have doors to each other. This
rule concerns a ”normal” move between two neighboring rooms. That is why we have also
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to consider the movement of a dead player, which is from any room to the starting room in
the same level. The movement to a next level is also slightly different from these two ones.
These two later kind of movement are specified in the appendix.

5.2.1 Neighboring Movement

All what is required for such a move is the list of players (identities) from the concerned
rooms and the doors for each room. For a given room, the doors can simplay be specified by
the list of accessible rooms (identities).

location interface Move2Room1-LI

location type ROOM

datatypes

ROOM-ID, PLAYER-ID

services

RoomId() : ROOM-ID;

Roomplays() : List[PLAYER-ID];

RoomDrs() : List[ROOM-ID];

chgRmplays(play:PLAYER-ID)

post remove(play, Roomplays())

events

move2N(play:PLAYER-ID, r:ROOM-ID)

end interface

location interface Move2Room2-LI

location type ROOM

datatypes

ROOM-ID, PLAYER-ID, ROOM-NAME

services

RoomId() : ROOM-ID;

Roomplays() : List[PLAYER-ID];

RoomNm() : List[ROOM-NAME];

chgRmplays(play:PLAYER-ID)

post add(play, Roomplays())

end interface

The service chgRmplays allows updating the list of the players in the room after a player
has left or entered a new room. The location law calls these services after it checks the
existence of a door between them. We have added the room name (e.g. ”starting”, ”special”,
etc) to prevent any player to be back to a starting room even if there is a door leading to
it—as imposed by the game.

location law MoveNRm-LL

locations

rm1: MoveN2Room1-LL;

rm2: MoveN2Room2-LL;

rule : Normal room moving

when rm1.Move2N(play, r)

and REACH(rm1.RoomId(),rm2.RoomId())

with (play ∈ rm1.Roomplays()) and

(rm2.RoomId() ∈ rm1.RoomDrs()) and

(rm2.RoomNm() 6= "starting") and

(rm1.RoomNm() 6= "special")

do rm1.chgRmplays(play) and

rm2.chgRmplays(play)

when rm1.Move2N(play, r)

and ¬ REACH(rm1.RoomId(),rm2.RoomId())

with false

do return false

end law

         ROOM          ROOM

RoomPlys() RoomPlys()

RoomId() RoomId()

RoomDrs()

Post.. Post..

MoveNRm−LL 

MoveN2Room1−LI MoveN2Room2−LI

RoomNm()

chgRmPlys(PlyId) chgRmPlys(PlyId)

move2N(PlyId, r)

Finally is very relevant to imprecise that, as we are dealing with a movement, in this
location law a reachability between the rooms is required rather than a communication as
it was the case for talking and trading. The second important observation concerns the
specification of the reachability itself. In fact, the reachability REACH(rm1, rm2) between
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the rooms rm1 and rm2 is equivalent to the existence of a door from rm1 to rm2. We have
to check the following equivalence:

REACH(rm1, rm2) = true ⇔ rm2.RoomId() ∈ rm1.RoomDrs.

5.3 Player’s acquiring/releasing objects

The location imposes that players acquire and release objects only within a same room.
Nevertheless, for the same raison invoked in the players talking location modelling, we use
two interfaces to allow a direct extension of the game rules where players in given room could
acquire/release objects from another “in touch” room.

location interface playGetObjRoom1-LI

location type ROOM

datatypes

ROOM-ID, PLAYER-ID, OBJECT-ID

services

RoomId() : ROOM-ID;

Roomplays() : List[PLAYER-ID];

events

getObj(play:PLAYER-ID,

obj:OBJECT-ID)

end interface

location interface playGetObjRoom2-LI

location type ROOM

datatypes

ROOM-ID, PLAYER-ID, OBJECT-ID

services

RoomId() : ROOM-ID;

RoomObjs() : List[OBJECT-ID];

end interface

location interface playRelObjRoom1-LI

location type ROOM

datatypes

ROOM-ID, PLAYER-ID, OBJECT-ID

services

RoomId() : ROOM-ID;

Roomplays() : List[PLAYER-ID];

events

releaseObj(play:PLAYER-ID,

obj:OBJECT-ID)

end interface

location interface playRelObjRoom2-LI

location type ROOM

datatypes

ROOM-ID, PLAYER-ID, OBJECT-ID

services

RoomId() : ROOM-ID;

RoomObjs() : List[OBJECT-ID];

end interface

         ROOM          ROOM

RoomPlys()

RoomId() RoomId()

PlyGetObjRoom1−LI PlyGetObjRoom2−LI

RoomObjs()

GetObjRm−LL 

         ROOM          ROOM

RoomPlys()

RoomId() RoomId()

RoomObjs()

RelObjRm−LL 

PlyRelObjRoom1−LI PlyRelObjRoom2−LI

getObj(PlyId, obj) releaseObj(PlyId, obj)

In contrast to the coordination perspective, in the location laws below, for acquiring/releasing
objects by players we have just to check the room(s) where these objects and players are re-
siding are in touch, that is:

(1) BT(rm1.RoomId(),rm2.RoomId())=True; and

(2) (play ∈ rm1.Roomplays()) and (obj ∈ rm2.RoomObjs())
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In such positive case, we just return a true indicating that the acquire/release is authorized.

location law GetObjRm-LL

locations rm1: playGetObjRoom1-LL;

rm2: playGetObjRoom1-LL;

rule : Acquiring Objects

when rm1.GetObj(play, obj)

and BT(rm1.RoomId(),rm2.RoomId())

with (play ∈ rm1.Roomplays()) and

(obj ∈ rm2.RoomObjs())

do retrun true

when rm1.getObj(play, obj)

and ¬ BT(rm1.RoomId(),rm2.RoomId())

with false

do return false

end law

location law RelObjRm-LL

locations rm1: playRelObjRoom1-LL;

rm2: playGetObjRoom1-LL;

rule : Acquiring Objects

when rm1.releaseObj(play, obj)

and BT(rm1.RoomId(),rm2.RoomId())

with (play ∈ rm1.Roomplays()) and

(obj ∈ rm2.RoomObjs())

do retrun true

when rm1.releaseObj(play, obj)

and ¬ BT(rm1.RoomId(),rm2.RoomId())

with false

do return false

end law

We again recall that, for the considered variant of the game, the existence of communi-
cation is restricted to same room, that is:

BT (rm1, rm2) = true ⇔ rm1.RoomId() = rm2.RoomId()

6 Integration of Concerns in the MUD game

After specifying each of the involved interaction and location concerns in terms of coordi-
nation and location laws respectively, the next step is to accordingly bring together these
concerns around each game action. In this way and only after this integration the complete
functionality of each action is correctly captured.

Subsequently we go therefore through the already specified actions and integrate their
coordination laws and respective location laws. This integration consists in: (1) unifying the
(coordination and location) events triggering the action and (2) synchronizing the different
parts of the law accordingly (i.e. a conjunction of the with and do parts of the involved
coordination and location laws when the BT or REACH holds).

6.1 The player talking action at rooms

Although we have already addressed the integration of concerns with respect to this action, in
the following we want just to emphasize the fact that the modeling of this case study through
architectural techniques and more specifically interaction and location primitives, presents
many advantages and flexibility compared to the modeling of the same case study using for
instance the KLAIM approach (i.e. KLAVA implementation) [BDNP02] or UML [BJR98] as
it has been achieved by our project partners in Pisa and Munich.

Indeed, by separating both concerns and integrating them at runtime we easily adapt
them when the game rules change. As illustration of this fact is the possibility of dealing
with the ”real” (i.e. physical) player locations (i.e. mobile phones). In such case, as depicted
in Figure 2 we have just to adapt the location law by introducing two corresponding new
locations (i.e. LOC1 and LOC2) and consider the room just for registering the players. In the
location law we then require that BT (rm, loc1, loc2) holds, that is, (from his/her mobile) a
player can communicate in the room where he is registered and with other players for talking
(trading or fighting).
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PLAYER

PlyId()

send2tk(PlyId, ms)

    Plyer1TK−CI PLAYER

    Plyer2TK−CI

PlyId()

receive−tk(PlyId, ms)

ready2tk(PlyId) : bool

PlayerTK−CL

ROOM LOC2@PLAYER 

         ROOM

RoomId()

RoomRegPlys()

PlysRegRoom−LITalkPly2Loc2−LI

LocId()

Region()

Position()

         LOC2

TalkPly1Loc1−LI

LocId()

Region()

Position()

         LOC1

talk(PlyId, PlyId)

TalkLocRm−LL 

@PLAYER LOC1

Players talking witthin a room

Figure 2: The C/L-based talking action with different players locations

6.2 Trading action at rooms

As we have developed, the trading could be either using objects or by exchanging objects
with money. The integration of concerns associated with the first case is depicted in the
following Figures 3. As the synchronization of the corresponding could easily be achieved in
the way as above, we have just brought the two laws to stress the need for integrating them.

coordination law PlayerTRDO-CL

partners

play1:player1Trdo-CI;

play2:player2Trdo-CI

objplay1,objplay2: ObjectTrded-CI

rule Trade-objects

when play1.trd(play2.playId(),obj1)

with (objplay1.ObjState()

∧ objplay2.ObjState() 6= "broken")

and objplay1.ObjAssign() = play1.playId()

∧ objplay2.ObjAssign() =play2.playId())

do play1.exchg(obj1, objplay2.ObjId())

and play2.exchg(objplay2.ObjId(), obj1)

and objplay1.traded(play2.playId())

and objplay2.traded(play1.playId())

end law

location law TradeORm-LL

locations

rm1: TradeO1Room-LI;

rm2: TradeO2Room-LI;

rule : Talk from Room(s)

when rm1.tradeO(play1,play2, obj1, obj2)

and BT(rm1.RoomId(),rm2.RoomId())

with (play1 ∈ rm1.Roomplays()) and

(play2 ∈ rm2.Roomplays()) and

(obj1 ∈ rm1.RoomObjs()) and

(obj2 ∈ rm2.RoomObjs())

do return true

when rm1.tradeO(play1,play2, obj1, obj2)

and ¬ BT(rm1.RoomId(),rm2.RoomId())

with false

do return false

end law
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@ROOMPLAYER−OBJECT 

         ROOM

RoomPlys()

RoomId()

RoomObjs()

tradeO(ply1, ply2, obj1, obj2)

TradeO1Room−LI
         ROOM

RoomPlys()

RoomId()

RoomObjs()

TradeO2Room−LI

TradeObjRm−LL 

PLAYER

    Plyer1Trdo−CI

PlyId()

PlyObjs()

PLAYER

    Plyer2Trdo−CI

PlyObjs()

PlyId()

OBJECT

    ObjectTrded−CI

ObjId()

ObjAssign()

ObjState()
Pre.. Post..

Pre.. Post..
Post..

exchg(Obj2, m)

exchg(Obj1, Obj2) 

TradeObjs−CL

trd(PlyId, Obj1, Obj2)

accept−trd(PlyId, Obj1, Obj2)

traded(PlyId) 

Player trading Objects at Rooms

Figure 3: The C/L-based object trading action at rooms

6.3 The player moving action at rooms

As we have developed, the moving could be either to a neighboring, to the starting or
to a next level. The integration of concerns for the first case is depicted in the follow-
ing Figures 4. Their associated coordination and location laws could be recalled as below:

coordination law playMv2Rm-CL

partners

play:PlayerMv2Rm-CI;

Objsplay[|play.playObjs|]:

Objsplay2Release-CI

rule Mvt-player

when play.move2(r)

with

for i:= 1 to |play.playObjs|

(Objsplay[i].ObjId() ∈ playObjs)

do Objsplay[i].ChgRm(r)

play.enter2Rm(r)

end law

location law MoveNRm-LL

locations rm1: MoveN2Room1-LL;

rm2: MoveN2Room2-LL;

rule : Normal room moving

when rm1.Move2N(playId, r)

and REACH(rm1.RoomId(),rm2.RoomId())

with (playId ∈ rm1.Roomplays()) and

(rm2.RoomId() ∈ rm1.RoomDrs()) and

(rm2.RoomNm() 6= "strating")

do rm1.chgRmplays(play) and

rm2.chgRmplays(play)

when rm1.Move2N(playId, r)

and ¬ REACH(rm1.RoomId(),rm2.RoomId())

with false

do return false

end law

Their synchronisation in the case of the availability of reachability between the two con-
cerned rooms, starts by unifying their triggering to a single common. We denote such event
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as play@rm1.Move2N(play, r) (i.e. the one from the location as it contains all information).
The synchronisation itself could be described as follows:

Normal moving between rooms

when play@rm1.Move2N(play, r)

and REACH(rm1.RoomId(),rm2.RoomId())

with (playId ∈ rm1.Roomplays()) and (rm2.RoomId() ∈ rm1.RoomDrs())

and (rm2.RoomNm() 6= "strating")

and for i:= 1 to |play.playObjs| (Objsplay[i].ObjId() ∈ playObjs)

do rm1.chgRmplays(play) and rm2.chgRmplays(play)

and for i:= 1 to |play.playObjs| (Objsplay[i].ChgRm(r) and play.enter2Rm(r)

end synchronisation

That is, by receiving the movement event, and under the availability of reachability be-
tween the two rooms, first we have to check that there is a door between the two concerned
rooms (i.e. they are neighboring rooms) and that we are not going back to the starting room.
This test concerns the location concern. On the coordination side, we have to check that all
the object (identity) instances are selected to be moved with the player. The do part also
deal with both concerns. That is, from the location side, we have to update the two rooms’
players list. From the coordination side, we have to update the player’s objects location, with
the new room, and finally update the player room.

@ROOMPLAYER−OBJECT 

MoveNRm−LL 

Player2Move−CL
PLAYER

PlyRoom()

PlyObjs()

PlyId() OBJECT

ObjId()

Post..

    Player2Mv−CI
    ObjsPly2Mv−CI

ObjRoom()

ChgRm()  
enter2Rm(r) Post..

move2(r)

Players Neigboring Rooms Movement

         ROOM

RoomPlys()

RoomId()

RoomDrs()

Post..

MoveN2Room1−LI

         ROOM

RoomPlys()

RoomId()

Post..

MoveN2Room2−LI

RoomNm()
chgRmPlys(PlyId)

chgRmPlys(PlyId)
move2N(plyId, r)

Figure 4: The C/L-based neighboring moving action at rooms
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6.4 The players acquiring/releasing objects action at rooms

In the same way we bring together the associated coordination and location law to correctly
reflect these two related actions. We depict them in the following Figures 5.

@ROOMPLAYER−OBJECT 

         ROOM

RoomPlys()

RoomId()

PlyRelObjRoom1−LI

releaseObj(ply, obj)

         ROOM

RoomId()

PlyGetObjRoom2−LI

RoomObjs()

PlyGetObj−CL

PLAYER

PlyId()

PlyObjs()

Post..getObj(obj)

get(obj)

    PlyerGetObj−CI
OBJECT

ObjAssign()

ObjId()

    Obj2Get−CI

Post..assigned(Player)  

PLAYER

PlyId()

PlyObjs()

releaseObj(obj) Pre..Post..

release(obj)

    PlyerReleaseObj−CI

OBJECT

ObjAssign()

ObjId()

released()  

    Obj2Release−CI

Post..

PlyReleaseObj−CL

         ROOM

RoomPlys()

RoomId()

PlyGetObjRoom1−LI

getObj(ply, obj)

         ROOM

RoomId()

RoomObjs()

PlyRelObjRoom2−LI

GetObjRm−LL RelObjRm−LL 

Player Acquiring/releasing Objects at Rooms

Figure 5: The C/L-based acquring/releasing action at rooms

7 Conclusions

In this paper we put forward a dynamically adapted specification of the MUD game through
our architectural conceptual primitives of location and coordination laws. We also showed
how both concerns are separately specified and brought together to capture the correct func-
tionality of each action in the game. The main benefits of our approach reside in its intrinsic
flexibility by allowing different variants of the game to be easily adopted. It also demonstrates
that game descriptions are in general intrinsically rule-based oriented and should therefore
be so in their specification/implementation.

The benefits of tackling this particular case study are manyfold. First, through this
application we show how interaction and location concerns are naturally specified/adapted
in a separate and independent way following the game rules associated with each concern.
Second, in order to correctly reflect the functionality and meaning of each action/step of the
game, these concerns are to be integrated by unifying the triggering events in each concern.
Third, we demonstrate how the externalization of these interaction and distribution/mobility
concerns at the architectural level results in very simple and flexible specification, where
different variants of the game can easily be conceived—without resorting to changing the
computational components which become very minimal and secondary.

In the near future we are planning to implement this detailed specification within the
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location environment that our ATX colleagues are developing by extending the CDE envi-
ronment that deals just with coordination [AGKF02]. Another perspective consists in im-
plementing this conceptual solution directly in the CommUnity Workbench [OW04] using
the distributed tuple-based implementation of KLAVA [BDNP02] environment. Besides that
we are also working on implementing this case study into the Maude language [CDE+99]
following the axiomatization we recently put forward for the approach using tailored rewrite
theories[AF05], in Meseguer’s rewrite logic [Mes92].
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A Interaction concerns : Continuation

A.1 Object trading

A.1.1 Trading with Money

In contrast to the trading of object/object, the trading object/money involves just one object
(assigned to the player triggering the trade) and money from both players.
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coordination interface player1Trdm-CI

partner type PLAYER

Datatypes

PLAYER-ID, OBJECT-ID, MONEY;

services

playId(): PLAYER-ID;

playObjs() : List(OBJECT-ID);

Money() : MONEY;

Exchg(obj:OBJECT-ID, m:MONEY)

pre obj ∈ playObjs()

post remove(obj, playObjs()) and Money+ = m;

events

trd(play2:PLAYER-ID; obj:OBJECT-ID, m:MONEY)

end interface

coordination interface player2Trdo-CI

partner type PLAYER

Datatypes

PLAYER-ID, OBJECT-ID;

services

playId(): PLAYER-ID;

playObjs() : List(OBJECT-ID);

Money() : MONEY;

Exchg(obj:OBJECT-ID, m:MONEY)

pre obj 6∈ playObjs()

post add(obj, playObjs()) and Money− = m;

accept-trd(play1:PLAYER-ID, obj:OBJECT-ID,

m:MONEY): Boolean

end interface

coordination interface ObjectTrdo-CI

partner type OBJECT

Datatypes

PLAYER-ID, OBJECT-ID;

services

ObjId(): OBJECT-ID;

ObjAssign() : PLAYER-ID;

ObjState() : OBJECT-STATE;

traded(play:PLAYER-ID) post ObjAssign() := play

end interface

The requirements for trading objects with money is the same as trading object/object
except that now the second player has to pay money for the object. That is, the two services
Exchg allow now for exchanging the traded object with money.

PlayerTRDm−CL

PLAYEROBJECT PLAYER

    Plyer1Trdm−CI     Plyer2Trdm−CI    ObjectTrded−CI

ObjId()

ObjAssign()

ObjState()

PlyObjs()

PlyId() PlyId()

PlyObjs()

Post..

money()

exchg(Obj2, m)

money()

trd(PlyId,Obj,  m)

Pre.. Post.. accept−trd(PlyId, Obj1, m)

Pre.. Post..

exchg(Obj1,  m)traded(PlyId) 

Figure 6: The Object/Money Trading coordination law

coordination law PlayerTRDM-CL

partners play1:player1Trdo-CI; play2:player2Trdo-CI

objplay1 : ObjectTrdo

rule Trade-Money

when play1.trd(play2.playId(),obj, m)

with (objplay1.ObjState() 6= "broken") and

(objplay1.ObjAssign() = play1.playId())
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do play1.exchg(obj, m) and

play2.exchg(obj, m) and

objplay1.traded2(play2.playId())

end law

A.2 Object moving

A.2.1 Moving Dead Player

As stated in the game description a dying player must be brought to the initial starting room
of that level. Moreover, his points such as agility and strength are to initialized to default
initial values, which we denote respectively by Dfagl and Dfstg. Besides that, in contrast to
neighboring move we already conceived, on the one hand, a dying player has to release all his
objects before being moved to the initial room. On the other hand, the event triggering this
move is a proactive one and corresponds to the life points reaching zero (i.e. declared dead).

coordination interface playerMv2RmI-CI

partner type PLAYER

Datatypes

PLAYER-ID, OBJECT-ID, ROOM-ID;

services

playId(): PLAYER-ID;

Life-Pt() : Natural;

Strength() : Natural;

Agility() : Natural;

playObjs() : List(OBJECT-ID);

playRoom() : ROOM-ID;

release-all(playObjs)

post playObjs() := nil

enter2RmI(r) post playRoom := r

loseSt()post (Strength():= Dfstg)

and (Agility():= Dfagl)

events

(Life-Pt() = 0)

end interface

coordination interface Objsplay2Release-CI

partner type OBJECT

Datatypes

PLAYER-ID, OBJECT-ID;

services

ObjId(): OBJECT-ID;

ObjAssign() : PLAYER-ID;

released() post ObjAssign() := nil

end interface

Apart from that specificities, all other features remain the same as in neighboring move-
ment leading to the following coordination law.
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coordination law Move2RmI-CL

partners

play:PlayerMv2RmI-CI;

Objsplay[|play.playObjs|]:Objsplay2Release-CI

rule Mvt-dead.player

when (play.Life-Pt()=0)

with

for i:= 1 to |play.playObjs|

(Objsplay[i].ObjId() ∈ playObjs) and

(Objsplay[i].ObjAssign() = play.playId())

do play.release-all()

for i:= 1 to |play.playObjs|

(Objsplay[i].ObjAssign()= nil) and

play.enter2RmI(r)

play.loseSt()

end law

PLAYER

PlyId()
OBJECT

ObjAssign()

ObjId()

Released()  Post..

    ObjsPly2Release−CI
    PlayerMv2RmI−CI

PlyRoom()

PlyObjs()

Life−Pt()

Strength()

Agility()

(Life−Pt=0)

loseSt()

release−all() .

enter2Rm(r) Post..

Post..

Pre..  Post..

Move2RmI−CL

A.2.2 Next Level Player Move

A player jumping to a next level gains state points (i.e. agility and strength). Besides that,
the level identity is required so that it can be changed in the law. The moving player has also
to release all objects before jumping to the starting room in the next level, and may increase
his state by gaining some points in life,agility and/or strength (we use for that the service
gainSt()).

coordination interface playerMv2RmLv-CI

partner type PLAYER

Datatypes

PLAYER-ID, OBJECT-ID, ROOM-ID, LEVEL-ID;

services

playId(): PLAYER-ID;

Life-Pt() : Natural;

Strength() : Natural;

Agility() : Natural;

playObjs() : List(OBJECT-ID);

playRoom() : ROOM-ID;

playRmLevel() : LEVEL-ID;

release-all(playObjs)

post playObjs() := nil

enter2RmLv(r)

post playRoom := r and playRmLevel():=+1

gainSt()

pre (Let s > Strength() and a > Agility()

and p > Life-Pt())

post (Strength():= s) and Agility():= a)

and Life-Pt():= p)

events move2nx(r)

end interface

coordination interface Objsplay2Release-CI

partner type OBJECT

Datatypes

PLAYER-ID, OBJECT-ID;

services

ObjId(): OBJECT-ID;

ObjAssign() : PLAYER-ID;

released() post ObjAssign() := nil

end interface

26



coordination law Move2RmS-CL

partners

play:PlayerMv2RmS-CI;

Objsplay[|play.playObjs|]:Objsplay2Release-CI

rule Mvt-NxtLevel.player

when (play.move2nx())

with

for i:= 1 to |play.playObjs|

(Objsplay[i].ObjId() ∈ playObjs) and

(Objsplay[i].ObjAssign() = play.playId())

do play.release-all()

for i:= 1 to |play.playObjs|

(Objsplay[i].ObjAssign()= nil) and

play.enter2RmLv(r)

play.gainSt()

end law

PLAYER

PlyId()
OBJECT

ObjAssign()

ObjId()

Released()  Post..

    ObjsPly2Release−CI

PlyRoom()

PlyObjs()

Life−Pt()

Strength()

Agility()

gainSt()

release−all() .

enter2RmLv(r)

move2nx(r)

Post..

Post..

Pre..  Post..

PlyRmLevel()

Move2RmS−CL

    PlayerMv2RmS−CI

A.3 Players’ fighting

The fighting is a complex action composed of several sub-actions. First, one of the player
invites another for a fight. Once this invitation is accepted by the second player (i.e. de-
fender), the first player (i.e. the attacker) constructs his strategy by choosing two objects in
his possession, and communicates one of them to the defender. The fight properly saying is
composed of two rounds unless one of the two players is hit in the first round.

In the following we specify the interaction involved in each of these four sub-actions in
detail.

A.3.1 Invitation to Fighting

An invitation for fighting consists in sending a fighting invitation from a player (attacker) to
another one (defender). When the later is ready for such a fight (e.g. not already engaged in
other actions such fighting, talking with other players or has just finished a fight) the next
step in the fight can be reached.

coordination interface Player2AttackInvite-CI

partner type PLAYER

Datatypes

PLAYER-ID;

services

playId(): PLAYER-ID;

Life-Pt() : Natural;

events

invite2fight(play:PLAYER-ID)

end interface

coordination interface Player2DefendAccept-CI

partner type PLAYER

Datatypes

PLAYER-ID;

services

playId(): PLAYER-ID;

Life-Pt() : Natural;

ready2fight() : Boolean;

accept2fight(play:PLAYER-ID)

end interface
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coordination law Invite2Fight-CL

partners play1 : Player2AttackInvite-CI;

play2 : Player2DefendAccept-CI;

rule Invitation4Fight

when (play1.invite2fight(play2.playId())

with (play2.ready2defend() = true)

and (play*.Life-Pt()>0)

do play2.accept2fight(play1.playId())

end law

PLAYER

PlyId()

Life−Pt()

ready2defend()

    Player2DefendAccept−CI

Invite2Fight−CL

accept2fight(PlyId) 

PLAYER

PlyId()

Life−Pt()

Invite2fight(PlyId)

    Player2AttackInvite−CI

(play*.Life-Pt()>0) is equivalent to (play1.Life-Pt()>0 and play2.Life-Pt()>0),
that is, both players life-points is greater than zero (they are alive).

A.3.2 Choosing Fighting Strategy

After the invitation fight being accepted by the defender, the next step is for the attacker to
construct his strategy by choosing two objects in his possession (using the service CpStrategy).
One of these two selected objects has to be communicated to the defender (using the service
cmnStrategy) so that he can choose in his turn the appropriate object to defend himself.

coordination interface Strategy2Attack-CI

partner type PLAYER

Datatypes

PLAYER-ID, OBJECT-ID;

services

playId(): PLAYER-ID;

playObjs() : List[OBJECT-ID];

Strategy() : List[OBJECT-ID];

CpStrategy(Obj1, Obj2: OBJECT-ID)

pre (Obj1, Obj2 ∈ playObjs())

post Strategy() := [Obj1.Obj2]

events

cmnStrategy(play:PLAYER-ID,

obj1:OBJECT-ID)

end interface

coordination interface Strategy2Defend-CI

partner type PLAYER

Datatypes

PLAYER-ID, OBJECT-ID;

services

playId(): PLAYER-ID;

playObjs() : List[OBJECT-ID];

Strategy() : List[OBJECT-ID];

accept2fight(play:PLAYER-ID)

ChsDfSrategy(ObjD:OBJECT-ID)

pre (ObjD ∈ playObjs())

post Strategy() := [ObjD]

end interface

coordination law Strategy2Fight-CL

partners

play1 : Strategy2Attack-CI;

play2 : Strategy2Defend-CI;

rule Strategy for Fight

when (play1.cmnStrategy(play1.playId(),

obj1))

with (play2.accept2fight(play1.playId()))

do play1.cpStrategy(obj1, obj2)

and (play2.chsDfStrategy(objD))

end law

PLAYER

PlyId()

PlyObjs()

Strategy()

cpStrategy(Obj1, Obj2) Pre.. Post..

    Strategy2Attack−CI

cmnStrategy(PlyId, Obj1)

PLAYER

chsDfStrategy(Obj) Pre.. Post..

Strategy()

PlyObjs()

PlyId()

Strategy2Fight−CL

    Strategy2Defend−CI

accept2fight(PlyId)

A.3.3 Fighting: First Round

Once the attacker and the defender have chosen their respective strategies, a first round of
fighting may take place. The states of the chosen objects for fighting as well as for defending
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play a relevant role. In addition, a specific agility points may be required for using some
particular objects (we denote by rqAgility-Pt). The final result could either be a win for
the attacker (i.e. loss for the defender) or for the defender (resp. loss for attacker). That is,
for sake of simplicity we do not consider the case of neutral result.

coordination interface Attacking1StRd-CI

partner type PLAYER

Datatypes

PLAYER-ID, OBJECT-ID;

services

playId(): PLAYER-ID;

playObjs() : List[OBJECT-ID];

Agilty-Pt() : List[OBJECT-ID];

Strategy() : List[OBJECT-ID];

win1st()

post (Let p > 0, Life-Pt() := +p)

lose1st()

post (Let p > 0, Life-Pt() := -p)

events

fight1stRd(play:PLAYER-ID,

obj1:OBJECT-ID)

end interface

coordination interface Defending1StRd-CI

partner type PLAYER

Datatypes

PLAYER-ID, OBJECT-ID;

services

playId(): PLAYER-ID;

playObjs() : List[OBJECT-ID];

Agility-Pt() : List[OBJECT-ID];

Strategy() : List[OBJECT-ID];

defend1st()

post (Let p > 0, Life-Pt() := +p)

Hit1st()

post (Let p > 0, Life-Pt() := -p)

end interface

coordination interface Obj4Fight&Defend-CI

partner type OBJECT

Datatypes

PLAYER-ID, OBJECT-ID; OBJECT-ST

services

ObjId(): OBJECT-ID;

ObjState() : OBJECT-ST;

ObjAssign() : PLAYER-ID;

rqAgility-Pt() : natural

Hit()

pre (ObjAssign() = nil)

post ObjState() := "broken"

end interface

PLAYER

PlyId()

Srategy()

PLAYER

PlyId()

Srategy()

OBJECT

ObjId()

ObjAssign()

ObjState()

Hit() 

    Objs4Fight&Defend−CI

Post..

win1st()

lose1st() defend1st()

Hit1st()

Post..Post..

Post..

Fighting1StRd−CL

    Attacking1sRd−CI     Defending1sRd−CI

fight1stRd(PlyId, obj1)

Accept2fight(PlyId)

Agility−Pt()

rqAgility−Pt()

Agility−Pt()

Figure 7: The Interaction Requirements for the fight first round.
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coordination law Fighting1StRd-CL

partners play1 : Attacking1StRd-CI;

play2 : Defending1StRd-CI;

obj2play1, obj2play2 : Objs4Attack&Defend-CI;

rule Fight1stRound

when (play1.fight1stRd(play2.playId(), obj1))

with (play2.accept2fight(play1.playId())) and

obj2play1.ObjAssign()=play1.playId()) and

obj2play2.ObjAssign()=play2.playId()) and

obj2play1.rqAgility-pt() < play1.Agility-Pt()) and

obj2play2.rqAgility-pt() < play2.Agility-Pt()) and

obj2play1.ObjSate() 6= "broken" and

obj2play1.ObjSate() 6= "broken" and

do

if (obj2play1.Agility-Pt() > obj2play2.Agility-Pt())

then play1.win1st() and

play2.Hit1st() and obj2play2.Hit()

if (obj2play2.Agility-Pt() > obj2play1.Agility-Pt())

then play2.defend1st() and

play1.lose1st() and obj2play1.Hit()

end law

A.3.4 Fighting: Second Round

The second round of fighting does not present any special features with respect to the first
round. For that reason we skip it and let it as simple exercise for the reader, by depicting
just the required services from the players and respective involved objects.

PLAYER

PlyId()

Srategy()

PLAYER

PlyId()

Srategy()

OBJECT

ObjId()

ObjAssign()

ObjState()

Hit() 

    Objs4Fight&Defend−CI

Post..

Accept2fight(Player)

Post..Post..

Post..

fight2ndRd(Player, obj1)

lose2nd()

win2nd()

defend2nd()

Hit2nd()

Fighting2ndRd−CL

    Attacking2ndRd−CI     Defending2ndRd−CI

rqAgility−Pt()

Agility−Pt() Agility−Pt()

Figure 8: The Interaction Requirements for the second round.

Fighting as a whole action. We close this section by recalling the four steps required for
fighting in the Figure 9 below.
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Figure 9: The four fighting steps as a package of interactions

B Location concerns : Continuation

B.1 Object trading

B.1.1 Trading with money

location interface TradeM1Room-LI

location type ROOM

datatypes

ROOM-ID, PLAYER-ID, OBJECT-ID

services

RoomId() : ROOM-ID;

Roomplays() : List[PLAYER-ID];

RoomObjs() : List[OBJECT-ID];

events tradeM(play1, play2 : PLAYER-ID,

obj :OBJECT-ID)

end interface

location interface TradeM2Room-LI

location type ROOM

datatypes

ROOM-ID, PLAYER-ID

services

RoomId() : ROOM-ID;

Roomplays() : List[PLAYER-ID];

end interface

In the corresponding location law just one object identifier is required, which has to belong
the room of the first player. We note here that like for ”message” in talking, the ”money” is
not of interest to the location concerns.
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location law TradeMRm-LL

locations rm1: TradeM1Room-LI;

rm2: TradeM2Room-LI;

rule : Talk from Room(s)

when rm1.tradeM(play1,play2, obj)

and BT(rm1.RoomId(),rm2.RoomId())

with (play1 ∈ rm1.Roomplays()) and

(play2 ∈ rm2.Roomplays()) and

(obj ∈ rm1.RoomObjs())

do return true

when rm1.tradeM(play1,play2, obj)

and ¬ BT(rm1.RoomId(),rm2.RoomId())

with false

do return false

end law

         ROOM          ROOM

RoomPlys() RoomPlys()

RoomId() RoomId()

RoomObjs()

TradeMRm−LL 

TradeM1Room−LI TradeM2Room−LI

tradeM(plyId1, plyId2, obj1)

B.2 Player’s Moving

B.2.1 Moving to the Initial Room

To capture the movement of a dead player to the starting room practically all information
we required for a neighboring move are required except that there is no need for doors as the
jump is a forced one.

location interface MoveI2Room1-LI

location type ROOM

datatypes

ROOM-ID, PLAYER-ID

services

RoomId() : ROOM-ID;

Roomplays() : List[PLAYER-ID];

chgRmplays(play:PLAYER-ID)

post remove(play, Roomplays())

events

move2I(play, PLAYER-ID, r : ROOM-ID)

end interface

location interface MoveI2Room2-LI

location type ROOM

datatypes

ROOM-ID, PLAYER-ID, ROOM-NAME

services

RoomId() : ROOM-ID;

Roomplays() : List[PLAYER-ID];

RoomNm() : ROOM-NAME;

chgRmplays(play:PLAYER-ID)

post add(play, Roomplays())

end interface

location law MoveIRm-LL

locations rm1: MoveI2Room1-LL;

rm2: MoveI2Room2-LL;

rule : Moving to starting room

when rm1.Move2N(play :PLAYER-ID, r:ROOM-ID)

and REACH(rm1.RoomId(),rm2.RoomId())

with (play ∈ rm1.Roomplays()) and

(rm2.RoomNm() = "starting")

do rm1.chgRmplays(play) and

rm2.chgRmplays(play)

when rm1.Move2I(play :PLAYER-ID, r:ROOM-ID)

and ¬ REACH(rm1.RoomId(),rm2.RoomId())

with false

do return false

end law

         ROOM          ROOM

RoomPlys() RoomPlys()

RoomId() RoomId()

Post..

RoomNm()

MoveI2Room1−LI

MoveIRm−LL 

Post..

MoveI2Room2−LI

chgRmPlys(PlyId)
move2N(plyId, r)

chgRmPlys(PlyId)

32



The reachability here should exist between any room and the starting room so that any
dead player can be moved in consequence.

B.2.2 Moving to Next Level

To move for next level, the source room name should be ”special”. We also require the current
level of that special room so that the move (to next level starting room) can be controlled.

location interface MoveLv2Room1-LI

location type ROOM

datatypes

ROOM-ID, PLAYER-ID,

ROOM-NAME,ROOM-LEVEL

services

RoomId() : ROOM-ID;

Roomplays() : List[PLAYER-ID];

RoomNm() : ROOM-NAME;

RoomLvl() : ROOM-LEVEL;

chgRmplays(play:PLAYER-ID)

post remove(play,Roomplays())

events

move2Lv(play:PLAYER-ID, r : ROOM-ID)

end interface

location interface MoveLv2Room2-LI

location type ROOM

datatypes

ROOM-ID, PLAYER-ID,

ROOM-NAME, ROOM-LEVEL

services

RoomId() : ROOM-ID;

Roomplays() : List[PLAYER-ID];

RoomNm() : ROOM-NAME;

RoomLvl() : ROOM-LEVEL;

chgRmplays(play:PLAYER-ID)

post add(play, Roomplays())

end interface

location law MoveLvRm-LL

locations rm1: MoveLv2Room1-LL;

rm2: MoveLv2Room2-LL;

rule : Next level moving

when rm1.Move2Lv(play :PLAYER-ID, r:ROOM-ID)

and REACH(rm1.RoomId(),rm2.RoomId())

with (play ∈ rm1.Roomplays()) and

(rm1.RoomNm() = "special") and

(rm2.RoomNm() = "starting") and

(rm2.RoomLvl() = rm2.RoomLvl()+1)

do rm1.chgRmplays(play) and

rm2.chgRmplays(play)

when rm1.Move2Lv(play :PLAYER-ID, r:ROOM-ID)

and ¬ REACH(rm1.RoomId(),rm2.RoomId())

with false

do return false

end law

         ROOM          ROOM

RoomPlys() RoomPlys()

RoomId() RoomId()

RoomNm()

chgRmPlys(Player) Post..

RoomLvl()

MoveLvRm−LL 

MoveLv2Room1−LI MoveLv2Room2−LI

chgRmPlys(Player) Post..

RoomLvl()

RoomNm()

move2Lv(ply, r)

B.3 Players’ fighting

¿From the location perspective, the fighting between players just imposes that they and their
(used) objects must be in the same room.
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location interface Roomplay1Fight-LI

location type ROOM

datatypes

ROOM-ID, PLAYER-ID, OBJECT-ID

services

RoomId() : ROOM-ID;

Roomplays() : List[PLAYER-ID];

RoomObjs() : List[OBJECT-ID];

events fight(play1, play2:PLAYER-ID,

obj1, obj2:OBJECT-ID)

end interface

location interface Roomplay2Fight-LI

location type ROOM

datatypes

ROOM-ID, PLAYER-ID, OBJECT-ID

services

RoomId() : ROOM-ID;

Roomplays() : List[PLAYER-ID];

RoomObjs() : List[OBJECT-ID];

end interface

location law FightRm-LL

locations rm1: Roomplay1Fight-LI;

rm2: Roomplay1Fight-LI;

rule : Fighting

when rm1.fight(play1,play2, obj1,obj2)

and BT(rm1.RoomId(),rm2.RoomId())

with (play1 ∈ rm1.Roomplays()) and

(play2 ∈ rm2.Roomplays()) and

(obj1 ∈ rm1.RoomObjs()) and

(obj2 ∈ rm2.RoomObjs()) and

do return true

when rm1.fight(play1,play2, obj1,obj2)

and ¬ BT(rm1.RoomId(),rm2.RoomId())

with true

do return false

end law

         ROOM          ROOM

RoomPlys()

RoomId() RoomId()

RoomObjs()RoomObjs()

RoomPlys()

fight(ply1, ply2, obj1, obj2)

FightRm−LL 

RoomPly1Fight−LI RoomPly2Fight−LI

C Integration of Concerns : Continuation

C.1 The players fighting action at rooms

As we have developed, the fighting from the coordination perspective is a complete package
of laws that have to be superposed and performed in a sequence but as an atomic action. To
reflect the exact fight rules of the game, this package has to be synchronized the corresponding
single location law. The integration of these two concerns for fighting is illustrated through
the Figure 10
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Figure 10: The C/L-based fighting action at rooms
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