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Abstract

In his PhD thesis [10] Dick de Jongh proved a syntactic characteriza-
tion of intuitionistic propositional calculus IPC in terms of the Kleene
slash. In this note we give a proof of this result using the technique of the
universal models.

1 Introduction

The problem of a syntactic characterization of intuitionistic propositional cal-
culus IPC goes back to Lukasiewicz. In [14], Lukasiewicz conjectured that IPC
is the only intermediate logic1 having the disjunction property, i.e., if ` φ ∨ ψ,
then ` φ or ` ψ. However, Kreisel and Putnam [13] disproved this conjecture by
constructing a proper extension of intuitionistic logic satisfying the disjunction
property. Later, Wronski [17] showed that there are in fact continuum many
intermediate logics with the disjunction property. In [12], Kleene defined the
Kleene slash | which is a stronger notion than `, i.e., for every set of fomulas
Γ, Γ|φ implies Γ ` φ. He proved that in intuitionistic logic, φ|φ iff φ has the
disjunction property and conjectured that this property uniquely characterizes
intuitionistic logic among intermediate logics. In his PhD thesis [10], de Jongh
confirmed this conjecture, thus providing a pure syntactic characterization of
IPC. Recently, Iemhoff obtained a different syntactic characterization of IPC in
terms of admissible rules (see [6] and [7]). In this note we will give a proof of the
de Jongh theorem using the technique of the universal models. The proof is the
same as in [10] and [11], with the single difference that our proof uses universal
and Henkin models, unlike the original one, which used algebraic terminology.

For the basic notions such as intuitionistic Kripke frames (models), generated
subframes (submodels), p-morphism, bisimulations, etc., the reader is referred
to [3] and [2].

The paper is organized as follows. In §2, we recall the structure of the
n-universal model and its main properties. The de Jongh formulas will be
introduced and a connection with Jankov’s characteristic formulas will be shown.
In §3, we prove de Jongh’s characterization theorem.

1Recall that an intermediate logic L is a set of formulas closed under substitution and
modus ponens such that IPC ⊆ L ⊆ CPC, where CPC is the classical propositional calculus.
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2 n-universal models

2.1 The structure of U(n)

Fix a propositional language Ln consisting of finitely many propositional letters
p1, . . . , pn for n ∈ ω, the connectives ∧, ∨ and →, and the constant ⊥. Let M
be an intuitionistic Kripke model. With every point w of M, we associate a
sequence i1 . . . in such that for k = 1, . . . , n:

ik =
{

1 if w |= pk,
0 if w 6|= pk

We call the sequence i1 . . . in associated with w the color of w and denote it by
col(w).

Colors are ordered according to the relation ≤ such that i1 . . . in ≤ i′1 . . . i
′
n

if for every k = 1, . . . , n we have that ik ≤ i′k. Thus, the set of colors of length n
ordered by ≤ forms an n-element Boolean algebra. We write i1 . . . in < i′1 . . . i

′
n

if i1 . . . in ≤ i′1 . . . i
′
n and i1 . . . in 6= i′1 . . . i

′
n.

For a Kripke frame F = (W,R) and w, v ∈ W , we say that a point w is an
immediate successor of a point v if w 6= v, vRw, and there does not exist u ∈W
with u 6= v, u 6= w, vRu and uRw. We say that a set A totally covers a point
v and write v ≺ A if A is the set of all immediate successors of v. We say that
v @ w if v ≺ A and w ∈ A, that is if w is an immediate successor of v. It is
easy to see that R is the reflexive and transitive closure of @. Therefore, R is
uniquely defined by @ and vice versa. Thus, to define a Kripke frame (W,R),
it is sufficient to define the relation ≺.

A ⊆ W is an anti-chain if |A| > 1 and for every w, v ∈ A, w 6= v implies
¬(wRv) and ¬(vRw). A point w of a Kripke frame (Kripke model) is called
maximal if wRv implies w = v for every v ∈ W . The set of all maximal points
of a frame F (model M) we denote by max(F) (max(M)).

Now we are ready to define the n-universal model of IPC for every n ∈ ω.
As we mentioned above, to define U(n) = (U(n), R, V ), it is sufficient to define
the set U(n), relation ≺ and valuation V on U(n). The n-universal model U(n)
is the smallest Kripke model satisfying the following three conditions:

1. max(U(n)) consists of 2n points of distinct colors.

2. If w ∈ U(n) and col(w) 6= 0 . . . 0︸ ︷︷ ︸
n−times

, then for every color i1 . . . in < col(w),

there exists v ∈ U(n) such that v ≺ w and col(v) = i1 . . . in.

3. For every finite anti-chain A ⊂ U(n) and every color i1 . . . in, such that
i1 . . . in ≤ col(u) for all u ∈ A, there exists v ∈ U(n) such that v ≺ A and
col(v) = i1 . . . in.

In the remainder of this section, we state the main properties of the n-
universal model without proof. All the proofs can be found in [3, Sections 8.6
and 8.7], [4], [1], [16] or [15].
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If two models M and M′ are bisimilar in the language Ln we call them
Ln-bisimilar. Now we state the crucial property of n-universal models.

Theorem 2.1. 1. For every Kripke model M = (F, V ), there exists a Kripke
model M′ = (F′, V ′) such that M′ is a generated submodel of U(n), M and
M′ are Ln-bisimilar and F′ is a p-morphic image of F.

2. For every finite Kripke frame F, there exists a valuation V , and n ≤ |F|
such that M = (F, V ) is a generated submodel of U(n).

Theorem 2.1(1) immediately implies the following corollary.

Corollary 2.2. For every formula φ in the language Ln, we have that

`IPC φ iff U(n) |= φ.

We say that a frame F = (W,R) is of depth n < ω, and write d(F) = n if
there is a chain of n points in F and no other chain in F contains more than n
points. If for every n ∈ ω, F contains a chain consisting of n points, then F is
said to be of infinite depth. The depth of a point w ∈ W is the depth of the
w-generated subframe of F, i.e. the depth of the subframe of F based on the set
R(w) = {v ∈W : wRv}. The depth of w we denote by d(w).

Let H(n) = (H(n), R, V ) be the Henkin model of IPC in the language Ln

(for details about the Henkin model see, e.g, [3, §5.1]). Then, the generated
sumbodel of H(n) consisting of all the points of finite depth is (isomorphic to)
U(n). Therefore, H(n) can be represented as a union H(n) = U(n) ∪ T (n),
where T (n) is a submodel of H(n) consisting of all the points of infinite depth.
Moreover, it can be shown that for every point w in T (n), there exists a point
v ∈ U(n) such that wRv. In other words, universal models are “upper parts”
of Henkin models.

As we saw in Corollary 2.2, the n-universal model of IPC carries all the
information about the formulas in n-variables. Unfortunately, this is not the case
for intermediate logics. The analogue of Corollary 2.2 holds for an intermediate
logic L iff L has the finite model property. Nevertheless, using the standard
Henkin construction one can prove:

Theorem 2.3. For every intermediate logic L and every formula φ in the lan-
guage Ln:

`L φ iff HL(n) |= φ

where HL(n) is the Henkin model of L in the language Ln.

The next technical facts will be used in the proof of Theorem 3.1 below.

Proposition 2.4. For every intermediate logic L, HL(n) is a generated sub-
model of H(n).

Proposition 2.5. For every n ∈ ω and 1 ≤ k ≤ n, the submodels of U(n) with
the carrier sets V (pk) = {w ∈ U(n) : w |= pk} and V̂ (pk) = {w ∈ H(n) : w |=
pk} are isomorphic to U(n− 1) and H(n− 1), respectively.



2 N -UNIVERSAL MODELS 4

2.2 Formulas characterizing point generated subsets

In this section, we will introduce the so-called De Jongh formulas of IPC and
prove that they define point generated submodels of universal models. We will
also show that they do the same job as Jankov’s characteristic formulas for IPC.
For more details on this topic, we refer to [5, §2.5].

Let w be a point in the n-universal model (a point of finite depth in the
Henkin model). Let R(w) = {v ∈ U(n) : wRv} and R−1(w) = {v ∈ U(n) :
vRw}. Now we define formulas φw and ψw inductively. If d(w) = 1 then let

φw :=
∧
{pk : w |= pk} ∧

∧
{¬pj : w 6|= pj} for each k, j = 1, . . . , n

and
ψw = ¬φw.

If d(w) > 1, then let {w1, . . . , wm} be the set of all immediate successors of w.
Let

prop(w) := {pk : w |= pk}

and

newprop(w) := {pk : w 6|= pk and for all i such that 1 ≤ i ≤ m, wi |= pk}.

Let

φw :=
∧
prop(w) ∧

(
(
∨
newprop(w) ∨

m∨
i=1

ψwi
) →

m∨
i=1

φwi

)
and

ψw := φw →
m∨

i=1

φwi

We call φw and ψw the de Jongh formulas.

Theorem 2.6. For every w ∈ U(n) (w ∈ H(n) such that d(w) is finite):

• R(w) = {v ∈ U(n) : v |= φw}, i.e., φw defines R(w).

• U(n) \R−1(w) = {v ∈ U(n) : v |= ψw}, i.e., ψw defines U(n) \R−1(w).

Proof. We will prove the theorem only for universal models. The proof for
Henkin models is similar. We prove the theorem by induction on the depth of
w. If the depth of w is 1, the theorem holds (every element of the maximum of
U(n) is defined by φw).

Now suppose the depth of w is greater than 1 and the theorem holds for
those points with depth strictly less than d(w). This means that the theorem
holds for every wi, i.e., for each i = 1, . . . ,m, φwi

defines R(wi) and ψwi
defines

U(n) \R−1(wi).
First note that by the induction hypothesis, w 6|=

∨m
i=1 ψwi ; hence w 6|=∨

newprop(w)∨
∨m

i=1 ψwi
. Therefore, w |= φw. On the other hand, if v ∈ U(n),
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wRv and w 6= v, so again by the induction hypothesis, v |=
∨m

i=1 φwi , and thus
v |= φw. Therefore, every point in R(w) satisfies φw.

Now let v /∈ R(w). We specify two cases: either there exists a point u ∈ U(n)
such that vRu and u /∈ R(w)∪

⋃m
i=1R

−1(wi) or such a point does not exist. In
the first case, by the induction hypothesis, u |=

∨m
i=1 ψwi

and u 6|=
∨m

i=1 φwi
.

Therefore, v 6|= φw. In the latter case, we again specify two cases: there exists
k ∈ ω such that either v≺ . . . ≺︸ ︷︷ ︸

k−times

w or v≺ . . . ≺︸ ︷︷ ︸
k−times

A where A is a finite anti-chain

containing w and for every u′ ∈ A we have u′ ≺ {w1, . . . , wm}. In the first case,
by the definition of U(n), col(v) < col(w); hence v 6|=

∧
prop(w). In the latter

case, there exists a point u′ ∈ U(n) such that vRu′ and u′ and w are totally
covered by the same anti-chain. If col(u′) 6≥ col(w), then by the definition
of ≤ we have that u′ 6|=

∧
prop(w), which implies that v 6|=

∧
prop(w). If

col(u′) > col(w), then by the definition of U(n) we have that u′ |=
∨
newprop(w)

and u′ 6|=
∨m

i=1 φwi
. Hence v 6|= φw. Thus, φw defines R(w).

Finally, we show that ψw defines U(n)\R−1(w). For every v ∈ U(n), v 6|= ψw

iff there exists u ∈ U(n) such that u |= φw and u 6|=
∨m

i=1 φwi , which holds iff
u ∈ R(w) and u /∈

⋃m
i=1R(wi), which, in turn, holds iff u = w. Hence, v 6|= ψw

iff v ∈ R−1(w). This finishes the proof of the theorem.

2.3 The Jankov formulas

In this subsection we show that the de Jongh formulas do the same job as
Jankov’s characteristic formulas for IPC. We first recall the theorem of Jankov.

Theorem 2.7. (see Jankov [8] and [9]) For every finite rooted frame F there
exists a formula χ(F) such that for every frame G

G 6|= χ(F) iff F is a generated subframe of a p-morphic image of G.

Now we will give an alternative proof of this theorem using the de Jongh
formulas.

Proof of Theorem 2.7:

By Theorem 2.1(2) there exists n ∈ ω such that F is (isomorphic to) a
generated subframe of U(n). Let w ∈ U(n) be the root of F. We show that for
every frame G:

G 6|= ψw iff F is a generated subframe of a p-morphic image of G.

Suppose F is a generated subframe of a p-morphic image of G. Clearly, w 6|= ψw;
hence F 6|= ψw, and since p-morphisms preserve the validity of formulas G 6|= ψw.

Now suppose G 6|= ψw. Then, there exists a model M = (G, V ) such that
M 6|= ψw. By Theorem 2.1(1), there exists a submodel M′ = (G′, V ′) of U(n)
such that G′ is a p-morphic image of G and M and M′ are Ln-bisimilar. This
means that M′ 6|= ψw. Now, M′ 6|= ψw iff there exists v in G′ such that vRw,
which holds iff w belongs to G′. Therefore, w is in G′, and F is a generated
subframe of G′. Thus, F is a generated subframe of a p-morphic image of G.
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Remark 2.8. Note that there is one essential difference between the Jankov and
de Jongh formulas: the number of propositional variables used in the Jankov
formula depends on (is equal to) the cardinality of F, whereas the number
of variables in the de Jongh formula depends on which U(n) contains F as
a generated submodel. Therefore, in general, the de Jongh formula contains
fewer variables than the Jankov formula.

3 Characterization of IPC

3.1 Characterization using the de Jongh formulas

In this subsection, we prove a characterization of IPC using the de Jongh
formulas.

Let L be an intermediate logic. A formula φ is said to have the L-disjunction
property if for all ψ and χ, if `L φ→ ψ ∨ χ, then `L φ→ ψ or `L φ→ χ.

Theorem 3.1. Let L be an intermediate logic. L = IPC iff for all m ∈ ω,
φ1, . . . , φm, and ψ

if 6`L (
m∨

j=1

φj → ψ) → φi for every i ≤ m,

then
m∨

j=1

φj → ψ has the L-disjunction property.

Proof. ⇒ Suppose L = IPC and there are m ∈ ω, φ1, . . . , φm and ψ falsifying
the right hand side of the bi-conditional statement of the theorem. Let φ :=∨m

j=1 φj → ψ. Then for every i ≤ m 6`IPC φ → φi, and there exist χ1 and χ2

such that `IPC φ → χ1 ∨ χ2, but 6`IPC φ → χ1 and 6`IPC φ → χ2. Therefore,
there exist finite rooted Kripke models M1, . . . ,Mm and M′

1, M′
2 such that

wi |= φ and wi 6|= φi, where wi is the root of Mi, and vk |= φ and vk 6|= χk for
k = 1, 2, where v1 and v2 are the roots of M′

1 and M′
2, respectively. Take the

disjoint union of the models M1, . . . ,Mn, M′
1 and M′

2 and add a new root w
to it. Extend the valuation to w (this can be done by letting w 6|= pk for every
proposition letter pk). Then, w 6|=

∨m
j=1 φj ; hence, w |= φ. On the other hand,

w 6|= χ1 ∨ χ2, therefore w 6|= φ→ χ1 ∨ χ2, which is a contradiction.
⇐ Suppose L ⊃ IPC. Since IPC is complete with respect to finite rooted

Kripke frames, there exists a finite rooted Kripke frame F such that F is not an
L-frame. Without loss of generality, we can assume that every proper generated
subframe of F is an L-frame. Let n be the smallest natural number such that F
is (isomorphic to) a generated subframe of U(n). Let w ∈ U(n) be the root of F
and {w1, . . . , wm} be the set of all immediate successors of w. We can assume
that m > 1; otherwise, instead of F we take the disjoint union of F minus w
with itself and add a new root to it.

First, we show that in this case the de Jongh formula φw can be simplified. As
we mentioned above, we can assume that w has at least two successors. If there
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exists a propositional letter pk such that for every i ≤ m we have wi |= pk, then
every wi belongs to the set V (pk) = {u ∈ U(n) : u |= pk}. By Proposition 2.5
the submodel of U(n) with the carrier set V (pk) is isomorphic to U(n − 1).
Therefore,

⋃m
i=1R(wi) is (isomorphic to) a generated subframe of U(n − 1).

Then, there exists a point v ∈ U(n− 1) totally covered by {w1, . . . , wm}. This
implies that R(v) is isomorphic to F. This is a contradiction since n is the least
natural number such that F is a generated subframe of U(n). Therefore, for
every proposition letter pk, there is an immediate successor of w falsifying pk.
This implies that newprop(w) = ∅. On the other hand, if there is a pk such
that w |= pk, then every immediate successor of w also satisfies pk, which is
a contradiction. Hence, prop(w) = ∅. Thus, the formula φw is equal to the
formula

∨m
i=1 ψwi →

∨m
i=1 φwi .

Let φi := ψwi
for i ≤ m and ψ :=

∨m
j=1 φwj

. Now we show that the de
Jongh formula φw =

∨m
j=1 φj → ψ does not have the L-disjunction property,

even though, for each i ≤ m we have 6`L φw → φi. Let χ1 :=
∨m−1

j=1 φwj and
χ2 := φwm

.
The following three claims will finish the proof of the theorem:

1. 6`L φw → ψwi
for each i ≤ m.

2. `L φw → χ1 ∨ χ2, i.e., `L ψw.

3. 6`L φw → χ1 and 6`L φw → χ2.

(1) By the definition of φw and ψw, for each i ≤ m, we have that wi |= φw

and wi 6|= ψwi . Every proper generated subframe of F is an L-frame; thus,
6`L φw → ψwi

for each i ≤ m.
(2) By Theorem 2.3, it is sufficient to show that HL(n) |= ψw. By Proposi-

tion 2.4, we know that HL(n) is a generated subframe of H(n). It is well known
that if a finite model M = (F, V ) is a generated submodel of HL(n), then F is an
L-frame (see, e.g., [2, Lemma 3.27]). Suppose there is a point v ∈ HL(n) such
that v 6|= ψw. Then, by Theorem 2.6, we have vRw. But then the submodel of
H(n) with the carrier set R(w) is a finite generated submodel of HL(n). This
implies that F (which is isomorphic to the subframe of H(n) with the carrier
set R(w)) is an L-frame. This is a contradiction, since F is not an L-frame.

(3) As we mentioned above, wi |= φw for each i ≤ m. On the other hand,
w1 6|= φwm and wm 6|= φwi for each i ≤ m − 1. Therefore, 6`L φw → χ1 and
6`L φw → χ2.

3.2 The Characterization of IPC by the Kleene slash

In this subsection, we prove the de Jongh characterization of IPC. Let L be an
intermediate logic. Recall from [12] the defintion of the Kleene slash.

Definition 3.2. For every intermediate logic L and a set of formulas Γ we say
that
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• Γ |L ⊥ if ⊥ ∈ Γ.

• Γ |L p if p ∈ Γ for every proposition letter p.

• Γ |L φ ∧ ψ if Γ |L φ and Γ |L ψ.

• Γ |L φ ∨ ψ if Γ |L φ or Γ |L ψ.

• Γ |L φ→ ψ if (Γ |L φ implies Γ |L ψ) and Γ `L φ→ ψ.2

Theorem 3.3. For every intermediate logic L, every set of formulas Γ and
every formula φ, we have Γ |L φ implies Γ `L φ.

Proof. A straightforward induction on the complexity of φ.

If Γ consists of formulas with the L-disjunction property, then the converse
of Theorem 3.3 also holds. We formulate this result only for the case in which
Γ is a singleton set.

Theorem 3.4. For every intermediate logic L and formulas φ and ψ. If φ has
the L-disjunction property, then

1. φ |L ψ iff φ `L ψ.

2. φ |L φ.

Proof. (1) easy induction on the complexity of ψ.
(2) follows from (1).

Now we show that the converse to Theorem 3.4(2), i.e., if φ |L φ, then φ has
the L-disjunction property, holds only in the case of IPC.

Theorem 3.5. For every set of formulas Γ such that for every ψ ∈ Γ we have
Γ |IPC ψ, it is the case that for every formula φ, Γ `IPC φ implies Γ |IPC φ.

Proof. The theorem is proved by a straightforward induction on the depth of
the proof of φ. First, one has to choose his/her favorite proof system of IPC
and then check that the theorem holds for every axiom of IPC and that the
required property is preserved by the rules of inference.

Theorem 3.6. Let L be an intermediate logic. Then L = IPC iff

for every formula φ, φ |L φ iff φ has the L-disjunction property.

Proof. Suppose L = IPC. By Theorem 3.5 φ |IPC φ and φ `IPC ψ∨χ together
imply that φ |IPC ψ∨χ. By the definition of the Kleene slash, this implies that
φ |IPC ψ or φ |IPC χ. By Theorem 3.3 we then have that φ `IPC ψ or
φ `IPC ψ.

2The condition Γ `L φ→ ψ was added by Aczel, in order to prove Theorem 3.3 (de Jongh,
P.C.)
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Now suppose L ⊃ IPC. Then take the formula φw =
∨m

j=1 φj → ψ con-
structed in the proof of Theorem 3.1. As was shown in the proof of Theo-
rem 3.1, φw does not have the L-disjunction property. Now we will show that
φw |L φw. Since φw =

∨m
j=1 φj → ψ, for showing φw |L φw, we need to prove

that φw `L

∨m
j=1 φj → ψ and that if φw |L

∨m
j=1 φj , then φw |L ψ. It is obvious

that φw `L φw. Thus, φw `L

∨m
i=1 φi → ψ. In the proof of Theorem 3.1 we

showed that for each i ≤ m, φw 6` φi. This implies that φw 6 |L
∨m

i=j φj . Hence,
if φw |L

∨m
j=1 φj , then φw |L ψ. This, by the definition of the Kleene slash,

yields φw |L φw. Therefore, we have found a formula φw such that φw |L φw

and φw does not have the L-disjunction property.
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