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Abstract. We prove a version of the associated sheaf functor theo-
rem in Algebraic Set Theory. The proof is established working within
a Heyting pretopos equipped with a system of small maps satisfying
the axioms originally introduced by Joyal and Moerdijk. This result
improves on the existing developments by avoiding the assumption of
additional axioms for small maps and the use of collection sites.

1. Introduction

The associated sheaf functor theorem asserts that the inclusion functor
from the category of sheaves over a site into the corresponding category of
presheaves has a left adjoint which preserves finite limits, and it implies
that categories of sheaves have small colimits [24, Chapter 3]. In topos
theory, the construction of internal sheaves provides a method to define
new elementary toposes from old ones, analogous to the method of forcing
extensions for models of Zermelo-Frankel set theory. Indeed, sheaf toposes
have been widely used to prove independence results [8, 9, 10, 12, 33]. Within
this context, sites are considered as being internal to an elementary topos,
and the notions of presheaf and sheaf are also defined internally, without
reference to the category of sets. Categories of internal sheaves have finite
colimits since they form elementary toposes, and the topos-theoretic version
of the associated sheaf functor theorem [11, 17, 22] provides a way to describe
these colimits in terms of those of the ambient topos.

Versions of the associated sheaf functor theorem in Algebraic Set Theory
involve replacing elementary toposes by pairs (E ,S) consisting of a cate-
gory E equipped with a distinguished family of maps S. The category E is
thought of as a category of classes, and the family S, whose elements are
referred to as small maps, is thought of as the family of functions between
classes whose fibers are sets [20]. Within this context, sites are considered
as being internal to E and therefore may be required to satisfy appropriate
smallness conditions. Since the category E is not generally assumed to be
an elementary topos, versions of the associated sheaf functor theorem are
essential to prove that categories of internal sheaves inherit the structure
that E is assumed to have, thus making it possible to obtain independence
results.

Although Algebraic Set Theory has proved to be a flexible framework to
study category-theoretic models of various set theories [3, 4, 6, 7, 13, 21,

Date: August 5th, 2007.
2000 Mathematics Subject Classification. 03G30, 03E99, 18C50, 18F10, 18F20.
Key words and phrases. Algebraic Set Theory, sheaves, presheaves, Grothendieck site.

1



2 NICOLA GAMBINO

27, 31], a general treatment of sheaf constructions does not seem to have
emerged yet. Such a development would have a natural application in the
development of a theory of forcing extensions for models of constructive and
intuitionistic set theories [2, 16, 23, 32]. We aim to improve on this situa-
tion by establishing a new version of the associated sheaf functor theorem
in Algebraic Set Theory. Our version is proved working within a Heyting
pretopos E equipped with a class of small maps S satisfying just the basic
axioms for small maps originally introduced in [20]. Therefore, we avoid the
assumption of the structure of a ΠW-pretopos on E or of additional axioms
for small maps on S. Furthermore, our proof will be simpler than the exist-
ing ones, since we avoid any use of the notion of a collection site, and work
instead with Grothendieck sites with small covers.

The notion of a collection site was introduced by Ieke Moerdijk and Erik
Palmgren in [27] in order to establish a version of the associated sheaf functor
theorem for sites with small covers within a stratified pseudotopos, a possible
predicative counterpart of the notion of an elementary topos [26, 27]. Their
proof proceeds in two steps. First, they proved a version of the theorem
for collection sites with small covers. Secondly, they showed that every site
with small covers is equivalent to a collection site with small covers. In [27],
the reduction of a site with small covers to a collection site with small covers
relies on an application of the Axiom of Multiple Choice, a new axiom for
small maps that is assumed to hold in a stratified pseudotopos, which has
subsequently been studied also from a set-theoretic perspective [29]. By a
result of Benno van den Berg [5], the reduction of sites with small covers
to collection sites with small covers can also be carried out with a weaker
axiom for small maps, asserting that the universal small map is a collection
map, which is equivalent to the Collection Axiom. However, until now it has
been an open problem whether it is possible to prove the associated sheaf
functor theorem avoiding the use of collection sites. One motivation to have
such a proof is that the notion of a collection site is rather complex, and
hence difficult to work with.

Here we work with Grothendieck sites with small covers. This notion
seems to capture an appropriate level of generality. The assumption that
the Grothendieck site is small seems instead to be too restrictive. The reason
for this is closely related to the procedure of generating Grothendieck sites by
closing off a site that satisfies only the Local Character condition under the
Maximality and Transitivity conditions of a Grothendieck site [18, Chapter
C.2]. While the generating site can be safely assumed to be small, it does not
seem possible to show that the associated Grothendieck site is again small
without assuming that W -types of small maps with small codomain are again
small [5, 26, 27]. Another advantage of working with Grothendieck sites
with small covers is that, by simply adding a further smallness condition,
it is possible to obtain a version of the associated sheaf functor theorem
that works in the context of Heyting categories with a restricted form of
exactness, generalising the version of the associated sheaf functor theorem
implicit in the results announced in [7].
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Before concluding these introductory remarks, let us point out that we do
not consider here the problem of isolating an appropriate notion of small map
between sheaves, and leave the treatment of this issue to future research.

2. Heyting pretoposes with small maps

2.1. Axioms for small maps. Let E be a Heyting pretopos [20, 25]. The
pullback functor along f : B → A is denoted here as f∗ : E/A → E/B. Its re-
striction to subobjects, written f−1 : Sub(A) → Sub(B), has both a left and
a right adjoint, written ∃f : Sub(B) → Sub(A) and ∀f : Sub(B) → Sub(A),
respectively. As usual, A+B denotes the coproduct of A,B ∈ E . The initial
and terminal object of E are written 0 and 1, respectively.

We recall the axioms for open and small maps [19, 20]. A class of maps
S in E is said to be a class of open maps if it satisfies the axioms (A1)-(A7)
stated below.

(A1): The class S contains isomorphisms and is closed under compo-
sition.

(A2): For every pullback square of the form

(1) D
k //

g

��

B

f

��
C

h
// A

if f : B → A is in S, then g : D → C is in S.
(A3): For every pullback square as (1), if h : C → A is an epimorphism

and g : D → C is in S, then f : B → A is in S.
(A4): The maps 0 → 1 and 1 + 1 → 1 are in S.
(A5): If f : B → A and g : D → C are in S, then f+g : B+D → A+C

is in S.
(A6): For every commutative triangle of the form

B
p //

f ��?
??

??
??

? B′

f ′
~~}}

}}
}}

}

A

if p : B → B′ is an epimorphism and f : B → A is in S, then
f ′ : B′ → A is in S.

(A7): For every small map f : B → A and every epimorphism p :
X → B, there exists a quasi-pullback diagram of the form

D //

g

��

X
p // B

f
��

C
h

// A

where g : D → C is in S and h : C → A is an epimorphism.
A class of open maps S is said to be a class of small maps if it satisfies

also the axioms (S1)-(S2) stated below.
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(S1): If f : B → A is in S, then the pullback functor f∗ : E/A → E/B
has a right adjoint, which we write Πf : E/B → E/A.

(S2): There exists a map u : E → U in S such that every map f :
B → A in S fits in a diagram of form

(2) B

f
��

Doo //

��

E

u

��
A C

h
oo // U

where h : C → A is an epimorphism and both squares are pullbacks.
We refer to (A6) as the Quotients Axiom, to (A7) as the Collection Axiom,

to (S1) as the Exponentiability Axiom, and to (S2) as the Representability
Axiom. As we will see, the Collection Axiom plays an essential role in the
proof of the associated sheaf functor theorem.

Let (E ,S) be a Heyting pretopos equipped with a class of small maps.
We say that an object A is small if the unique map A → 1 is small. A small
subobject of an object A is a subobject R � A such that R is a small object.
A small map of the form R � X × A → X, where X × A → X is the first
projection, will be referred to an X-indexed family of small subobjects of A.
As shown in [20, §I.3], indexed families of small subobjects can be classified.
This means that for every object A there exists an object, written P(A) and
called the power-object of A, and a P(A)-indexed family of small subobjects
of A, written 3A� P(A)× A → P(A) and called the membership relation
of A, such that for every X-indexed family of small subobjects of A, say
R � X × A → X, there exists a unique map χR : X → P(A) fitting in
commutative diagram of form

R //

��

3A

��
X ×A //

��

P(A)×A

��
X χR

// P(A)

where both squares are pullbacks.
From now on, we work with a Heyting pretopos E equipped with a class of

small maps S. Let us point out, however, that Benno van den Berg observed
that the proof in [20, §I.3] that indexed families of small subobjects can be
classified carries over even if the Representability Axiom is replaced by the
Weak Representability Axiom, which is obtained from the Representability
Axiom by requiring the square on the left-hand side of the diagram in (2)
to be a quasi-pullback rather than a pullback. This observation implies
that all the results in what follows hold also when S satisfies the Weak
Representability Axiom rather than the Representability Axiom.

2.2. The internal language. As in [26, 27] we use extensively the internal
language of (E ,S). This allows us to treat E as if it were a category of ‘sets’
equipped with a distinguished family of maps that gives rise to a notion of
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‘small set’. Here, ‘sets’ will support all of the operations that are part of the
structure of a Heyting pretopos. In particular, we can interpret any first-
order logical formula and form quotients of arbitrary equivalence relations.
The closure properties of ‘small sets’ are determined by the axioms for small
maps. Details of the formulation of the axioms for small maps in the internal
language can be found in [4, 27].

We frequently define subobjects S � A in E using explicit definitions of
the form S =def {x ∈ A | φ(x)}, where φ(x) is a formula of the internal
language of E with a free variable x ranging over elements of A. For a
generalised element a ∈ A, given by an arrow a : X → A in E , we then
write either φ(a) or a ∈ S to express that a : X → A factors through
S � X. This convention allows us to use some standard abbreviations.
For example, given two subobjects S � A and T � A, we abbreviate
(∀x ∈ A)(x ∈ S ⇒ x ∈ T ) by simply writing S ⊆ T .

3. Grothendieck sites

3.1. Presheaves. Let C be a small category in (E ,S). This means that
both the ‘object of objects’ C0 and the ‘object of arrows’ C1 are small
objects in E . Furthermore, we assume that C has small diagonals, which
means that the diagonal maps ∆C0 : C0 � C0×C0 and ∆C1 : C1 � C1×C1

are small maps. We write PshE(C) for the category of internal presheaves
over C, defined as in [24, §V.7]. It is well-known that PshE(C) is a Heyting
pretopos. For a presheaf F , the result of the action on x ∈ F (a) of an arrow
f : b → a in C will be written as x · f ∈ F (b). Thus, the associativity and
unit axioms for presheaves can be written as follows:

(x · f) · g = x · (fg) , x · 1a = x ,

where 1a : a → a is the identity map on a, and f : b → a, g : c → b
are composable maps in C. The Yoneda embedding of an object a ∈ C is
denoted as yC(a) ∈ PshE(C).

3.2. Covering sieves. For a ∈ C, a sieve on a is a subobject P � yC(a).
It will be convenient to identify a sieve P � yC(a) with a subobject of the
object of arrows of C, which we denote also by P , whose elements are arrows
with codomain a and such that for every f : b → a and every g : c → b, if
f ∈ P then fg ∈ P . For a sieve P � yC(a) and an arrow f : b → a, we
write P · f � yC(b) for the sieve defined by letting

(3) P · f =def {g : c → b | f g : c → a ∈ P} .

A small sieve is a sieve S � yC(a) for which S(b) is small for every b ∈ C.
Since C0 is small and has a small diagonal, this holds if and only S is small
as an object of E . Since C1 has a small diagonal, the operation defined
in (3) restricts to an operation on small sieves, and therefore the definition
Ω(a) =def {S � yC(a) | S small sieve}, for a ∈ C, determines a presheaf Ω.

A site consists of a small category with small diagonals and of a cover-
age. Here we consider coverages that are sifted, in the sense that we work
with covering sieves and not with covering families. Furthermore, we con-
sider coverages that satisfy not only the Local Character property (L), but
also the Maximality (M) and Transitivity (T) properties. Following [18,
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Chapter C.2], we refer to them as Grothendieck coverages. For each object
a ∈ C, we write Ma � yC(a) for the maximal sieve on a, which is given by
the identity map.

Definition 3.1. Let C be a small category with small diagonals in E . A Gro-
thendieck coverage with small covers on C consists of a family (Cov(a) | a ∈
C) such that elements of Cov(a) are small sieves, and the following hold:

(M) Ma ∈ Cov(a).
(L) If f : b → a and S ∈ Cov(a), then S · f ∈ Cov(b).
(T) If S ∈ Cov(a), T is a small sieve on a, and for all f : b → a ∈ S we

have T · f ∈ Cov(b), then T ∈ Cov(a).
A Grothendieck site with small covers is a pair (C,Cov), where C is a small
category with small diagonals and Cov is a Grothendieck coverage with small
covers on C.

From now on, we fix a Grothendieck site with small covers (C,Cov). For
a ∈ C, an element S ∈ Cov(a) will be referred to as a small covering sieve
on a. For our development, it is essential to define what it means for a sieve
that is not necessarily small to be a covering sieve: we will say that a sieve
P � yC(a) on a is a covering sieve if there exists S ∈ Cov(a) such that
S ⊆ P . We introduce a minor abuse of notation and write P ∈ COV(a) to
mean that P is a covering sieve on a. Formally, this is defined by letting

(4) P ∈ COV(a) =def (∃S ∈ Cov(a)) S ⊆ P .

Note that if S � yC(a) is a small sieve, we have that S ∈ Cov(a) is equiv-
alent to S ∈ COV(a). A key ingredient in the proof of the associated sheaf
functor theorem is the fact, stated in Proposition 3.3, that general cover-
ing sieves satisfy Maximality, Local Character, and Transitivity properties
analogous to those in Definition 3.1. In order to prove Proposition 3.3, we
need the following technical lemma.

Lemma 3.2. Let S ∈ Cov(a) and Q be a sieve on a. If

(∀f : b → a ∈ S) Q · f ∈ COV(b)

then there exists a family of small sieves (Vf | f : b → a ∈ S) such that

(∀f : b → a ∈ S)
[
Vf ⊆ Q · f , Vf ∈ Cov(b)

]
.

Proof. See Appendix A. �

Let us point out that the proof of Lemma 3.2 makes essential use of the
Collection Axiom. In fact, the proof concentrates all the uses of the Collec-
tion Axiom necessary to establish the associated sheaf functor theorem. We
use Lemma 3.2 to establish that general covering sieves satisfy the Transi-
tivity property (T) of Proposition 3.3.

Proposition 3.3. The following properties hold.
(M) Ma ∈ COV(a),
(L) If f : b → a and P ∈ COV(a), then P · f ∈ COV(b).
(T) If P ∈ COV(a), Q is a sieve on a, and for all f : b → a ∈ P we

have Q · f ∈ COV(b), then Q ∈ COV(a).
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Proof. Both (M) and (L) are immediate consequences of the definition in (4)
and the corresponding properties of the Grothendieck site (C,Cov). To
prove (T), let P ∈ COV(a) and let Q be a sieve on a such that

(∀f : b → a ∈ P ) Q · f ∈ COV(b) .

Since P ∈ COV(a), there exists S ∈ Cov(a) such that S ⊆ P . Lemma 3.2
implies that there exists a family of small sieves (Vf | f : b → a ∈ S) such
that

(∀f : b → a ∈ S)
[
Vf ⊆ Q · f , Vf ∈ Cov(b)

]
.

Note that the elements of the family (Vf | f : b → a ∈ S) are small covering
sieves. Using the Quotients Axiom, we define a small sieve V by letting

V =def {h : c → a | (∃f : b → a ∈ S)(∃g : c → b ∈ Vf ) h = fg} .

Once we prove that V ∈ Cov(a) and that V ⊆ Q, the definition in (4)
implies that Q ∈ COV(a), and the proof will be complete. To show that
V ∈ Cov(a), we use Transitivity of the Grothendieck site. We know that
S ∈ Cov(a) and that V is a sieve, so it suffices to show that

(∀f : b → a ∈ S)
[
V · f ∈ Cov(b)

]
.

This follows because Vf ⊆ V · f for every f : b → a ∈ S. Finally, to check
that V ⊆ Q, it suffices to recall that for f : b → a ∈ S, we have that
Vf ⊆ Q · f . �

Since the proof of the Transitivity property (T) in Proposition 3.3 makes
use of Lemma 3.2, it relies essentially on the Collection Axiom. The idea of
extending the notion of a covering sieve from small sieves to general sieves
as done here generalises, and is inspired by, the idea of extending a nu-
cleus operator from small lower sections to general lower sections of a poset,
which arose originally in the study of formal topology within constructive
set theories [14, 15]. Indeed, as explained in [28], the notion of a formal
topology [30] is essentially a special case of that of a Grothendieck site.

4. The associated sheaf functor theorem

4.1. Sheaves. The notion of a sheaf will be formulated as usual in topos
theory. However, we require only the existence of amalgamations for match-
ing families of elements indexed by small covering sieves. In order to make
this precise, let us fix a presheaf F and a small covering sieve S ∈ Cov(a).
A family x = (xf | f : b → a ∈ S), where xf ∈ F (b) if f : b → a ∈ S, is said
to be matching if it satisfies the following compatibility condition: for every
f : b → a ∈ S and every g : c → b it holds that

xf · g = xfg .

An amalgamation for a matching family x as above is an element x ∈ F (a)
such that for all f : b → a ∈ S we have x · f = xf . We say that a presheaf F
is separated if every matching family admits at most one amalgamation, and
that it is a sheaf if every matching family has a unique amalgamation. Thus,
a separated presheaf is a sheaf if and only if every matching family admits
at least one amalgamation. It should be noted that here, as elsewhere,
satisfaction of these conditions is understood as validity of the corresponding
expressions in the internal language of (E ,S), which can be formulated in
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terms of equivalent elementary diagrammatic conditions in the familiar way.
We write ShE(C,Cov) for the full subcategory of PshE(C) whose objects are
sheaves. The goal of the reminder of this section is to prove the following
result.

Theorem 4.1. Let (E ,S) be a Heyting pretopos with a class of small maps.
For every Grothendieck site with small covers (C,Cov) in E, the inclusion
functor ShE(C,Cov) → PshE(C) has a left adjoint which preserves finite
limits.

The proof of Theorem 4.1 uses Grothendieck’s double-plus construction [24,
Chapter 3], but exploits in a crucial way the properties of general covering
sieves established in Proposition 3.3.

4.2. Grothendieck’s double-plus construction. Let F be a presheaf.
We define an equivalence relation on matching families of F by letting, for
x = (xf | f : b → a ∈ S) and x′ = (x′f | f : b → a ∈ S′),

(5) x ∼ x′ =def

(
∃V ∈ Cov(a)

)(
V ⊆ S ∩ S′ , (∀f : b → a ∈ V ) xf = x′f

)
.

For a matching family x = (xf | f : b → a ∈ S), we write [x] for its
equivalence class under the equivalence relation in (5). We define F+(a) as
the object of equivalence classes of the equivalence relation defined in (5).
This object can be given as a quotient of the object of matching families
of F (a), and exists since E is an exact category. In turn, the object of
matching families of F (a) can be constructed using the Exponentiability
Axiom, since we are considering matching families indexed by small covering
sieves.

Observe that objects of matching families admit an evident presheaf struc-
ture. Given a matching family x = (xf | f : b → a ∈ S), and an arrow
f : b → a, we obtain a new matching family by letting x · f =def (xgf | g :
c → b ∈ S · f). Note that S · f ∈ Cov(b) by the Local Character property
of the Grothendieck site. This action is clearly compatible with the equiv-
alence relation defined in (5) and hence it determines a presheaf structure
on F+.

Lemma 4.2. For every presheaf F , the presheaf F+ is separated.

Proof. Let x = (xf | f : b → a ∈ S), where S ∈ Cov(a), and x′ = (x′f | f :
b → a ∈ S′), where S′ ∈ Cov(a), be matching families of elements of F .
Assuming that [x] and [x′] are amalgamations of a matching family of ele-
ments of F+(a), we need to show that x ∼ x′. By the assumption, there
exists V ∈ Cov(a) such that for all f : b → a ∈ V , we have x · f ∼ x′ · f . We
define a sieve Q by letting

Q =def {f : b → a ∈ S ∩ S′ | xf = x′f} .

Observe that Q need not be small since the diagonal map ∆F : F � F×F is
not assumed to be small. We prove that Q ∈ COV(a) using the Transitivity
property of Proposition 3.3. Since V ∈ Cov(a) and Q is a sieve, it is sufficient
to show that Q · f ∈ COV(b) for every f : b → a ∈ V . If f : b → a ∈ V ,
we have x · f ∼ x′ · f , and so there exists W ∈ Cov(b) such that W ⊆
(S · f) ∩ (S′ · f) and for all g : c → b ∈ W it holds that xfg = x′fg.
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Hence, we have found W ∈ Cov(b) such that W ⊆ Q · f . By (4) we obtain
that Q · f ∈ COV(b), as required.

Since we have shown that Q ∈ COV(a), we can apply again the definition
in (4) and derive that there exists T ∈ Cov(a) such that T ⊆ Q. Therefore
we have T ⊆ S ∩ S′ and we have xf = x′f for every f : b → a ∈ T . By the
definition in (5), we have x ∼ x′, as required. �

Lemma 4.3. For every separated presheaf F , the presheaf F+ is a sheaf.

Proof. Let S ∈ Cov(a) and let (σf | f : b → a ∈ S) be a matching family of
elements of F+. We wish to show that this family admits an amalgamation.
We define a covering sieve Q ∈ COV(a) by letting

Q =def

{
h : c → a | ∃f : b → a ∈ S , ∃V ∈ Cov(b) ,

∃y = (yg | g : c → b ∈ V ) matching family such that

σf = [y] and (∃g : c → b ∈ V ) h = fg
}

.

To show that Q ∈ COV(a) we use the Transitivity property of Proposi-
tion 3.3. Since S ∈ Cov(a) and Q is a sieve on a, we need to show that
Q · f ∈ COV(b) for every f : b → a ∈ S. Given f : b → a ∈ S, let
y = (yg | g : c → b ∈ V ), for V ∈ Cov(b), such that σf = [y]. Since
Q · f = {g : c → b | f g ∈ Q}, it follows that V ⊆ Q · f . By the defi-
nition (4), we get that Q · f ∈ COV(b), as required. Having shown that
Q ∈ COV(a), we can apply again the definition in (4) and deduce that there
exists T ∈ Cov(a) such that T ⊆ Q.

To define an amalgamation for the matching family (σf | f : b → a ∈ S),
consider the matching family x = (xh | h : c → a ∈ T ) defined by

(6) xh =def yg ,

where g : c → b is any arrow for which there exist an arrow f : b → a ∈ S,
a small covering sieve V ∈ Cov(b), and a matching family y = (yg | g : c →
b ∈ V ), such that g : c → b ∈ V , σf = [y], and h = fg. Such a g : c → b
exists since h : c → a ∈ T and T ⊆ Q. We now use the assumption that F
is separated to verify that the family x is well-defined. In order to do so, we
need to show that

(7) yg = y′g′ .

where y = (yg | g : c → b ∈ V ) and y′ = (y′g′ | g′ : c′ → b′ ∈ V ′) are
matching families defined on covering sieves V ∈ Cov(b) and V ′ ∈ Cov(b′),
respectively, such that g : c → b ∈ V , g′ : c′ → b′ ∈ V ′, and we have that
σf = [y] and σf ′ = [y′], and that both h = fg and h = f ′g′, for arrows
f : b → a ∈ S and f ′ : b′ → a ∈ S. Since fg = f ′g′, we have a commutative
diagram of the form

(8) c
g //

g′

��

b

f

��
b′

f ′
// a
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Since F is separated, in order to prove (7) it suffices to exhibit both yg and
y′g′ as amalgamations for a matching family of elements of F . First, observe
that the commutativity of the diagram in (8) and the compatibility of the
family (σf | f : b → a ∈ S) implies that

[y] · g = σf · g = σfg = σf ′g′ = σf ′ · g′ = [y′] · g′ .

Hence, there exists W ∈ Cov(c), such that W ⊆ (V · g) ∩ (V ′ · g′) and such
that for all h : d → c ∈ W we have

ygh = y′g′h .

It is now clear that we have a matching family (ygh | h : d → c ∈ W ).
Next, we prove that both yg and y′g′ are amalgamations for this family. This
follows from the observation that for h : d → c ∈ W we have

yg · h = ygh = y′g′h = yg′ · h .

The final steps of the proof involve the verification that the family x defined
by x = (xh | h : c → a ∈ T ) is indeed matching, and that σ =def [x] is
an amalgamation for the given matching family (σf | f : b → a ∈ S). We
provide the details for completeness. To show that (xh | h : c → a ∈ T ) is a
matching family, we need to consider h : c → a ∈ T and k : d → c and prove
that

xh · k = xhk .

The left-hand side equals yg ·k, where y = (yg | g : c → b ∈ V ) is a matching
family defined on a covering sieve V ∈ Cov(b) such that g : c → b ∈ V and
σf = [y] for some f : b → a ∈ S such that h = fg. The right-hand side
equals yg′ , where y′ = (y′g′ | g′ : c′ → b′ ∈ V ′) is a matching family defined
on a covering sieve V ′ ∈ Cov(b′) such that g′ : d → b′ ∈ V ′ and σf ′ = [y′] for
some f ′ : b′ → a ∈ S such that hk = f ′g′. We show that yg · k = y′g′ using
again that F is separated. Indeed, both yg ·k and y′g′ are amalgamations for
the matching family

(ygkj | j : e → d ∈ W ) = (y′g′j | j : e → d ∈ W ) ,

where W ∈ Cov(d) is a covering sieve such that W ⊆ (V ·gk)∩(V ′ ·g′) and for
which all j : e → d ∈ W satisfy ygkj = y′g′j . Such W ∈ Cov(d) exists because
(σf | f : b → a ∈ S) is a matching family, and we have fgk = hk = f ′g′.
Finally, to prove that σ is an amalgamation of (σf | f : b → a ∈ S), we show
that if σf = [y], where y = (yg | g : c → b ∈ V ) for some V ∈ Cov(b), then

(9) [x] · f = σf .

Define R =def V ∩ (T · f) and observe that R ∈ COV(b), since V ∈ Cov(b)
and T · f ∈ Cov(b). By (4), there exists W ∈ Cov(b) such that W ⊆ R. In
particular, W ⊆ V since W ⊆ R ⊆ V . We claim that for every g : c → b ∈
W , we have

(10) xfg = yg .

This holds by the definition in (6), since we have an arrow f : b → a ∈ S, a
small covering sieve V ∈ Cov(b), and a matching family y = (yg | g : c → b ∈
V ) such that g : c → b ∈ V and σf = [y]. Note that g : c → b ∈ V follows
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from W ⊆ V . We have therefore proved that x · f ∼ y, which implies (9),
as required. �

The rest of the proof follows the same steps as the standard proof of the
associated sheaf functor theorem [24, Chapter III]. In particular, we have the
following lemma, where we use ηF : F → F+ for the natural transformation
whose component (ηF )a : F (a) → F+(a) maps x ∈ F (a) into the equivalence
class of the matching family (x · f | f : b → a ∈ Ma).

Lemma 4.4. Let F and G be presheaves. If G is a sheaf, every natural
transformation φ : F → G factors uniquely through ηF : F → F+, making
the following diagram commute

F
ηF //

φ
  B

BB
BB

BB
B F+

φ̄
��
G

Proof. Given σ ∈ F+(a), let x = (xf | f : b → a ∈ S) such that σ = [x].
Define φ̄a(σ) ∈ G(a) as the unique amalgamation of the matching family
y =def (φb(xf ) | f : b → a ∈ S). The compatibility of the family y follows
from the compatibility of x and the naturality of φ : F → G. This definition
can be shown to be independent of the choice of x such that σ = [x].
The diagram commutes since, for x ∈ F (a), φa(x) ∈ G(a) provides an
amalgamation for the matching family (φb(x · f) | f : b → a ∈ Ma). �

We have an adjunction of the form

PshE(C)
a

⊥
//
ShE(C,Cov) .oo

The right adjoint is the inclusion and the left adjoint, called the associated
sheaf functor, is defined by letting a(F ) =def (F+)+. The unit is the natural
transformation with components given by the composites

F
ηF // F+

ηF+ // (F+)+ .

To complete the proof of Theorem 4.1, it remains to show that the associated
sheaf functor preserves finite limits. This follows from the fact that the plus
construction preserves finite limits, which can be easily proved via a direct
calculation.

Corollary 4.5. Let (E ,S) be a Heyting pretopos with a class of small maps.
For every Grothendieck site with small covers (C,Cov) in E, the category
ShE(C,Cov) is a Heyting pretopos.

Proof. Finite limits in ShE(C,Cov) are computed as in PshE(C). Finite
sums in ShE(C,Cov) are obtained by applying the associated sheaf functor
to sums in PshE(C), so for example the coproduct of two sheaves F and G
is obtained by applying the associated sheaf functor to the coproduct of F
and G in PshE(C). Quotients of equivalence relations are computed similarly.
The definition of universal quantification is standard [24, §III.8]. �
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4.3. Small-presentable Grothendieck sites. The version of the associ-
ated sheaf functor theorem stated in Theorem 4.1 can be readily adapted to
the setting considered in [7]. That setting can be obtained by making the
following changes to the one considered here.

(1) Assume that E has stable quotients only of equivalence relations
R � X×X given by small monomorphisms, rather than of arbitrary
ones. In particular, E is a Heyting category, not a Heyting pretopos.
Accordingly, replace epimorphisms by regular epimorphisms in the
formulation of the axioms for small maps.

(2) Assume that the class S of small maps satisfies the additional prop-
erty that all diagonal maps ∆A : A � A×A are small.

(3) Assume that for every small map f : B → A, the functor ∀f :
Sub(B) → Sub(A) preserves smallness of monomorphisms.

Within this context, it does not seem possible to define the quotient of the
equivalence relation in (5) without further assumptions on the Grothendieck
site. Let us call a Grothendieck site (C,Cov) small-presentable if there exists
a family (BCov(a) | a ∈ C) such that BCov(a) is small for every a ∈ C and
for every small sieve P � yC(a) we have

P ∈ Cov(a) ⇔ (∃U ∈ BCov(a))
[
U ⊆ P

]
.

Assuming the Grothendieck site to be small-presentable allows us to form
the quotient of the equivalence relation in (5), since the formula defining it
is equivalent to one defining a small monomorphism. The rest of the proof of
the associated sheaf functor theorem carries over unchanged. Furthermore,
the small sites considered in [7] give rise to small-presentable Grothendieck
sites, and hence we derive a version of the associated sheaf functor for them.
The notion of a small-presentable Grothendieck site on partially ordered
sets dates back essentially to [16]. Variants of it have been formulated and
considered in the study of formal topology within constructive set theory [1,
2, 14].
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Appendix A. Proof of a technical lemma

We prove Lemma 3.2.

Proof. Let S ∈ Cov(a), let Q be a sieve on a, and assume that

(11) (∀f : b → a ∈ S) Q · f ∈ COV(b)
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We need to show that there exists a family of small sieves (Vf | f : b → a ∈ S)
such that

(∀f : b → a ∈ S)
[
Vf ⊆ Q · f , Vf ∈ Cov(b)

]
.

Note that we have

(12) (∀f : b → a ∈ S)(∀T , T ′ ∈ Ω(b))[(
T ⊆ T ′ ⊆ Q · f , T ∈ Cov(b)

)
⇒ T ′ ∈ Cov(b)

]
.

For f : b → a ∈ S and u ∈ Σf ′:b′→a∈SΩ(b′), define

(13) φ(f, u) =def (∃T ∈ Ω(b))
[
u = (f, T ) , T ⊆ Q · f , T ∈ Cov(b)

]
.

By (11) we know that(
∀f : b → a ∈ S

)(
∃u ∈ Σf ′:b′→a∈S Ω(b)

)
φ(f, u) .

The Collection Axiom implies that there exists P ∈ P
(
Σf ′:b′→a∈S Ω(b′)

)
such that

(14) (∀f : b → a ∈ S)(∃u ∈ P )φ(f, u) , (∀u ∈ P )(∃f : b → a ∈ S)φ(f, u) .

Using the Quotients Axiom, we define the family (τf | f : b → a ∈ S) by
letting

τf =def {T ∈ Ω(b) | (f, T ) ∈ P} .

We claim that for all f : b → a ∈ S, it holds that

(15) τf ⊆ Ω(b) , ∃T ∈ Ω(b)(T ∈ τf ) , ∀T ∈ τf

(
T ⊆ Q ·f , T ∈ Cov(b)

)
.

For f : b → a ∈ S, by (14), we have that there exists u ∈ P such that
φ(f, u) holds. By the definition of φ(f, u) in (13), it follows that there is
T ∈ Ω(b) such that u = (f, T ), T ⊆ Q · f and T ∈ Cov(b). Since u = (f, T )
and u ∈ P , it follows that (f, T ) ∈ P and so T ∈ τf , as required. To
conclude the verification of (15), let T ∈ τf . We need to show that T ⊆ Q ·f
and T ∈ Cov(b). In order to do so, define u =def (f, T ). Since T ∈ τf , we
have u ∈ P . By (14) there exists f ′ : b′ → a such that φ(f ′, u). By the
definition of φ in (13), we must have that f : b → a and f ′ : b′ → a are
equal, and so T ⊆ Q · f and T ∈ Cov(b), as required.

Finally, the required family (Vf | f : b → a ∈ S) is defined by letting, for
f : b → a ∈ S

Vf =def {g : c → b | (∃T ∈ τf )(g : c → b ∈ T )} .

First, we show that Vf ⊆ Q · f . For g : c → b ∈ Vf , there exists T ∈ τf

such that g : c → b ∈ T . Since T ∈ τf , by (15) we have T ⊆ Q · f , and thus
Vf ⊆ Q · f . Secondly, we show that Vf ∈ Cov(b). By (15), we know that
there exists T ∈ τf such that T ⊆ Q · f and that T ∈ Cov(b). But we have
also T ⊆ Vf ⊆ Q · f and so, by (12), we get Vf ∈ Cov(b), as required. �
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