
THE GENERALISED TYPE-THEORETIC
INTERPRETATION OF CONSTRUCTIVE SET THEORY

NICOLA GAMBINO AND PETER ACZEL

Abstract. We present a generalisation of the type-theoretic interpre-
tation of constructive set theory into Martin-Löf type theory. The
original interpretation treated logic in Martin-Löf type theory via the
propositions-as-types interpretation. The generalisation involves replac-
ing Martin-Löf type theory with a new type theory in which logic is
treated as primitive. The primitive treatment of logic in type theories
allows us to study reinterpretations of logic, such as the double-negation
translation.

Introduction

The type-theoretic interpretation of Constructive Zermelo-Frankel set the-
ory, or CZF for short, provides an explicit link between constructive set the-
ory and Martin-Löf type theory [1, 2, 3]. This interpretation is a useful tool
in the proof-theoretical investigations of constructive formal systems [17]
and allows us to relate the set-theoretic and type-theoretic approaches to
the development of constructive mathematics [5, 28, 32].

A crucial component of the original type-theoretic interpretation of CZF is
the propositions-as-types interpretation of logic. Under this interpretation,
arbitrary formulas of CZF are interpreted as types, and restricted formulas
as small types. By a small type we mean here a type represented by an
element of the type universe that is part of the type theory in which CZF
is interpreted. The propositions-as-types representation of logic is used in
proving the validity of three schemes of CZF, namely Restricted Separation,
Strong Collection, and Subset Collection. Validity of Restricted Separation
follows from the representation of restricted propositions as small types,
while the validity of both Strong Collection and Subset Collection follow
from the type-theoretic axiom of choice, that holds in the propositions-as-
types interpretation of logic [28]. Another ingredient of the original type-
theoretic interpretation is the definition of a type V, called the type of
iterative sets, that is used to interpret the universe of sets of CZF. In this
way, it is possible to obtain a valid interpretation of CZF in the Martin-Löf
type theory ML1 + W, which has rules for the usual forms of type, for a

Date: October 12th, 2005.
2000 Mathematics Subject Classification. 03F25 (Relative consistency and interpreta-

tions), 03F50 (Metamathematics of constructive systems).
Key words and phrases. Constructive Set Theory, Dependent Type Theory.

1

2 GAMBINO AND ACZEL

type universe reflecting these forms of type, and for W-types (see Section 1
for details).

Our first aim here is to present a new type-theoretic interpretation of CZF.
The novelty lies in replacing the pure type theory like ML1 + W with a suit-
able logic-enriched type theory. By a logic-enriched intuitionistic type theory
we mean an intuitionistic type theory like ML1 + W that is extended with
judgement forms that allow us to express, relative to a context of variable
declarations, the notion of proposition and assertions that one proposition
follows from others. Logic-enriched type theories have a straighforward in-
terpretation in their pure counterparts that is obtained by following the
propositions-as-types idea. When formulating logic-enriched type theories
that extend pure type theories with rules for a type universe, like ML1 + W,
it is natural to have rules for a proposition universe to match the type
universe. Elements of the proposition universe should be thought of as rep-
resentatives for propositions whose quantifiers range over small types.

The new interpretation generalises the original type-theoretic interpreta-
tion in that logic is treated as primitive and not via the propositions-as-types
interpretation. In particular, we will introduce a logic-enriched type theory,
called ML(COLL), that has two collection rules, corresponding to the collec-
tion axiom schemes of CZF. Within the type theory ML(COLL) we define a
type V, called the type of iterative small classes, that can be used to interpret
the universe of sets of CZF. The particular definition of V allows us to prove
the validity of Restricted Separation without assuming the propositions-as-
types interpretation of logic, and the collection rules of ML(COLL) allow
us to prove the validity of Strong Collection and Subset Collection. We will
therefore obtain a type-theoretic interpretation of CZF that does not rely
on the propositions-as-types treatment of logic and in particular avoids any
use of the type-theoretic axiom of choice.

A fundamental reason for the interest in the generalised interpretation
is that it allows us to provide an analysis of the original interpretation.
This is obtained by considering a logic-enriched type theory ML(AC + PU)
with special rules expressing the axiom of choice and a correspondence
between the proposition and type universes. These rules are valid under
the proposition-as-types interpretation, so that ML(AC + PU) can be in-
tepreted in the pure type theory ML1 + W. Furthermore, the collection
rules of ML(COLL) follow from the special rules of ML(AC + PU), and
therefore it is possible to view the generalised interpretation of CZF as tak-
ing place in ML(AC + PU). We then prove that the original interpretation of
CZF in ML1 + W can be seen as the result of composing the generalised in-
terpretation of CZF in ML(AC + PU) followed by the propositions-as-types
interpretation of ML(AC + PU) into ML1 + W.

Another goal of this paper is to describe how logic-enriched type theo-
ries with collection rules, like ML(COLL), have a key advantage over logic-
enriched type theories with the axiom of choice, like ML(AC + PU). The
advantage is that the former can accomodate reinterpretations of their logic,

THE GENERALISED TYPE-THEORETIC INTERPRETATION 3

while the latter cannot. We focus our attention on reinterpretations of logic
as determined by a map j that satisfies a type-theoretic version of the prop-
erties of a Lawvere-Tierney local operator in an elementary topos [21] or of a
nucleus on a frame [19]. We will call such a j a local operator, and the rein-
terpretation of logic determined by it will be called the j-interpretation. A
typical example of such an operator is provided by double-negation. In our
development, we consider initially a subsystem ML(COLL−) of ML(COLL),
and ML(COLL) at a later stage. There are two main reasons for doing so.
A first reason is that the Strong Collection rule is sufficient to prove the
basic properties of j-interpretations. A second reason is that the Strong
Collection rule is preserved by the j-interpretation determined by any lo-
cal operator j, while the Subset Collection rule is not. In order to obtain
the derivability of the j-interpretation of the Subset Collection rule, we will
introduce a natural further assumption. These results allow us to define
a type-theoretic version of the double-negation translation, which in turn
leads to a proof-theoretic application.

The generalised type-theoretic interpretation is related to the study of
categorical models for constructive set theories [7, 29, 30, 13]. Indeed, one
of our initial motivations was to study whether it was possible to obtain
a type-theoretic version of the results in [30] concerning the interpretation
of CZF in categories whose internal logic does not satisfy the axiom of
choice. An essential difference, however, between the development presented
here and the results in the existing literature on categorical models is that
the interaction between propositions and types is more restricted in logic-
enriched type theories than in categories when logic is treated assuming
the proposition-as-subobjects approach to propositions. In particular, logic-
enriched type theories do not generally have rules that allow us to form
types by separation, something that is instead a direct consequence of the
proposition-as-subobjects representation of logic in categories [29, 30]. The
category-theoretic counterpart to the logic-enrichment of a pure dependent
type theory is roughly a first-order fibration over a category that is already
the base category of a fibration representing the dependent type theory. See,
for example, [18, Chapter 11] or [22, 23].

Extensions of pure type theories that allow the formation of types by
separation have already been studied. One approach is via minimal type
theories [24, 39]. Minimal type theories may be understood as extensions
of logic-enriched type theories with extra rules asserting that each propo-
sition represents a type, that is to be thought of as the types of proofs of
the proposition. Using these rules and the standard rules for Σ-types of
the underlying pure type theory, the formation of types by separation can
be easily obtained. Another approach is offered by the pure type theories
with bracket types [6]. These are obtained by extending pure type theories
with rules for a new form of type, called bracket type, that allows the repre-
sentation of propositions as types with at most one element. This approach
provides essentially a type-theoretic version of the proposition-as-subobjects

4 GAMBINO AND ACZEL

idea. In the development of the generalised type-theoretic interpretation we
preferred however to work within logic-enriched type theories, and avoid the
assumption of extra rules allowing formation of types by separation. In this
respect, the generalised type-theoretic interpretation presented here is more
general than the existing categorical models for CZF.

The results presented here are part of a wider research programme, orig-
inally sketched in [4]. The present paper contributes to that programme in
two respects: first, by giving precise proofs of the results announced in [4]
regarding the generalised type-theoretic interpretation of CZF and the rein-
terpretations of logic, and secondly by presenting new results concerning
the analysis of the original type-theoretic interpretation via the generalised
one. We regard these new results as fundamental, since they show that
the generalised intepretation allows us to gain further insight into the orig-
inal intepretation. Section 6 contains an informal discussion of the overall
research effort.

For the convenience of the reader, we present here a concise review of the
axiom system of CZF. For a discussion of the development of constructive
mathematics in constructive set theories, see [5]. For proof-theoretical in-
vestigations on constructive set theories we invite the reader to refer also
to [10, 14, 20, 34, 35, 33, 36]. The axioms of CZF are presented below in
an extension of the language of first-order logic with primitive restricted
quantifiers (∀x ∈ α) and (∃x ∈ α). The membership relation can then be
defined by letting

α ∈ β =def (∃x ∈ β)(x = α)
A formula is said to be restricted if all the quantifiers in it are restricted.
We use letters u, v, z, x, y, w, . . . for variables of the language, and greek
letters α, β, γ, . . . to denote sets. Other greek letters are used to denote
formulas. For formulas φ and ψ, we write φ ⊃ ψ for their implication and
define φ ≡ ψ =def (φ ⊃ ψ) ∧ (ψ ⊃ φ).

The axiom system of CZF includes both logical and set-theoretic axioms
and schemes. We will refer to axioms and schemes collectively as axiom
schemes. The logical axioms schemes include the standard ones for intu-
itionistic logic with equality and the following axiom schemes for restricted
quantifiers:

(∀x ∈ α)φ ≡ (∀x)(x ∈ α ⊃ φ) , (∃x ∈ α)φ ≡ (∃x)(x ∈ α ∧ φ)

The set-theoretic axiom schemes of CZF can be conceptually divided into
three groups: structural, basic set existence, and collection. The structural
axiom schemes of CZF are Extensionality (1) and Set Induction (2).

(∀x)(x ∈ α ≡ x ∈ β) ⊃ (α = β) (1)

(∀x)
(
(∀y ∈ x)φ[y/x] ⊃ φ

)
⊃ (∀x)φ (2)

The Extensionality axiom asserts that if two sets have the same elements,
then they are equal. The Set Induction scheme is the intuitionistic counter-
part of the classical Foundation axiom, and it is formulated as a scheme in

THE GENERALISED TYPE-THEORETIC INTERPRETATION 5

which φ is an arbitrary formula. The first basic set existence axioms of CZF
are Pairing (3), Union (4), and Infinity (5).

(∃u)(∀x)(x ∈ u ≡ (x = α ∨ x = β)) (3)

(∃u)(∀x)(x ∈ u ≡ (∃y ∈ α)(x ∈ y)) (4)

(∃u)((∃x)(x ∈ u) ∧ (∀x ∈ u)(∃y ∈ u)(x ∈ y)) (5)

They are formulated as in classical set theory. A further basic set existence
scheme of CZF is Restricted Separation. It is the scheme in (6), where θ is
a restricted formula in which the variable u does not appear free.

(∃u)(∀x)(x ∈ u ≡ x ∈ α ∧ θ) (6)

The Restricted Separation scheme is a weakening of the classical scheme
of Full Separation, obtained by limiting the kind of formulas allowed in
the scheme. To formulate the two collection schemes of CZF we use the
abbreviation

(∀∃ x∈α
y∈β)φ =def (∀x ∈ α)(∃y ∈ β)φ ∧ (∀y ∈ β)(∃x ∈ α)φ

where φ is an arbitrary formula. Note that in the formula

(∀∃ x∈α
y∈β)φ

free occurrences of x and y in φ get bound by the operator (∀∃ x∈α
y∈β) . The

Strong Collection (7) and Subset Collection (8) schemes are given below.

(∀x ∈ α)(∃y)φ ⊃ (∃u)(∀∃ x∈α
y∈u)φ (7)

(∃v)(∀z)[(∀x ∈ α)(∃y ∈ β)φ ⊃ (∃u ∈ v)(∀∃ x∈α
y∈u)φ] (8)

Note that in the Subset Collection scheme (8) the formula φ may have free
occurrences of z which get bound by the universal quantifier (∀z). The
Strong Collection scheme is a mild strengthening of the Collection scheme,
needed in order to derive the Replacement scheme in a set theory without
the Full Separation scheme [10]. The Subset Collection scheme is instead a
weakening of the Power Set axiom and a strengthening of Myhill’s Exponen-
tiation axiom, which asserts that the class of functions between two sets is
again a set [31]. In [20] it is shown that, in the presence of axioms (1) – (7),
the Subset Collection scheme is independent of the Exponentiation axiom.

Outline of the paper. A review of Martin-Löf pure type theories is presented
in Section 1, which also serves to fix the notation used in the reminder of the
paper, while the list of rules for the type theories used here is contained in
Appendix A. Logic-enriched type theories are introduced in Section 2, where
we also describe their propositions-as-types interpretation. In Section 3 we
define the generalised type-theoretic interpretation of CZF. The relationship
between the original and the generalised type-theoretic interpretations is
then described in Section 4. Section 5 discusses the reinterpretations of
logic. The paper ends in Section 6 with conclusions and a perspective of
future work.

6 GAMBINO AND ACZEL

1. Pure type theories

Standard pure type theories. A standard pure type theory has judge-
ments of form (Γ) B, where Γ is a context consisting of a list of declarations
x1 : A1, . . . , xn : An of distinct variables x1, . . . , xn, and B has one of the
following forms.

A : type A = A′ : type a : A a = a′ : A (9)

For the context Γ to be well-formed it is required that the judgements

()A1 : type (x1 : A1)A2 : type . . . (x1 : A1, . . . , xn−1 : An−1)An : type

are derivable. The well-formedness of the forms of judgement in (9) has other
presuppositions: in a well-formed context Γ, the judgement A = A′ : type
presupposes that A : type and A′ : type, the judgement a : A presup-
poses that A : type, and the judgement a = a′ : A presupposes that a : A
and a′ : A. In the rest of the paper we prefer to leave out the empty context
whenever possible, so that () A : type will be written simply as A : type.

Any standard type theory will have certain general rules for deriving well-
formed judgements, each instance of a rule having the form

J1 · · · Jk

J

where J1, . . . , Jk, J are all judgements. In stating a rule of a standard type
theory it is convenient to suppress mention of a context that is common to
both the premisses and the conclusion of the rule. For example we write the
reflexivity rule for type equality as just

A : type

A = A : type
but when we apply this rule we are allowed to infer (Γ) A = A : type
from (Γ) A : type for any well-formed context Γ.

Martin-Löf type theory. We use ML to stand for a variant of Martin-
Löf’s standard type theory without universes or W-types [28, 32]. We prefer
to avoid having any identity types. Also, rather than have finite types Nk

for all k = 0, 1, . . . we will just have them for k = 0, 1, 2 and use the notation
O,1,2 for them. We do not assume binary sums as primitive but define
them. To do so, we allow dependent types to be defined by cases on 2 as
follows: under the assumption that A1 : type and A2 : type we allow the
formation of R2(c, A1, A2) : type whenever c : 2. Furthermore there are
rules stating that the judgements

R2(12, A1, A2) = A1 : type R2(22, A1, A2) = A2 : type

are derivable. Here 12 : 2 and 22 : 2 are the canonical elements of the type 2.
This form of type allows us to define binary sums. For types A1 and A2 we
define

A1 +A2 =def (Σz : 2)R2(z,A1, A2)

THE GENERALISED TYPE-THEORETIC INTERPRETATION 7

Binary product and function types are defined as usual

A1 ×A2 =def (Σ : A1)A2 A1 → A2 =def (Π : A1)A2

Here and in the following the symbol indicates an anonymous bound vari-
able. To fix notation let us also recall that there are derivable rules express-
ing the first and second projection of an element of a Σ-type, as follows

c : (Σx : A)B

c.1 : A

c : (Σx : A)B

c.2 : B[c.1/x]
(10)

In summary, the primitive forms of type of ML are

O , 1 , 2 , R2(e,A1, A2) , (Σx : A)B , (Πx : A)B

Table 1 presents the raw syntax for the expressions of ML that we are
going to use throughout the paper. For the convenience of the readers, the
complete set of rules of ML is recalled in Appendix A.

Form of type Canonical expression Eliminating expression
O r0(e)
1 01 r1(e, c)
2 12, 22 r2(e, c1, c2)
N 0, succ(e) rN(e, c, (x, y)d)

(Σx : A)B pair(a, b) split(e, (x, y)c)
(Πx : A)B (λx : A)b app(f, a)

Table 1. Types and expressions of the ML type theory.

Wellfounded trees. Types of wellfounded trees, or W-types for short, play
a crucial role in the intrerpretation of constructive set theories in dependent
type theories. Let us then briefly review the rules concerning this form
of type. The formation rule and introduction rules for W-types are the
following

A : type (x : A) B : type

(Wx : A)B : type

a : A t : B[a/x] → (Wx : A)B

sup(a, t) : (Wx : A)B
A canonical element sup(a, t) of W =def (Wx : A)B should be thought of as
the tree with a root labelled by sup(a, t). The branches departing from the
root are indexed by elements of B[a/x] with nodes labelled by the elements
app(t, b) for b : B[a/x].

In the formulation of the elimination and computation rules, we suppress
mention of the judgement (z : W) C : type that is part of the premisses.
Let (Γ) =def (x : A , u : B → W , v : (Πy : B)C[app(u, y)/z]) so that we
can write the elimination rule as

e : W (Γ) c : C[sup(x, u)/z]

rW(e, (x, u, v)c) : C[e/z]

8 GAMBINO AND ACZEL

and the computation rule as

a : A t : B[a/x] →W (Γ) c : C[sup(x, u)/z]

rec(sup(a, t)) = c[a, t, (λy : B[a/x])rec(app(t, y))/x, u, v] : C[sup(a, t)/z]

where rec(e) =def rW(e, (x, u, v)c), for e : W .

Type universes. We will consider type theories that include rules for a
type universe U of small types, or rather of representatives for small types.
We adopt a slight variant of the so-called Tarski-style formulation of type
universes, that we now present. The type universe has formation rule

U : type

For each a : U, we write T(a) : type for the small type represented by a.
Therefore, the elimination rule for the type universe is stated as

a : U

T(a) : type

The introduction and computation rules for the type universe express that U
reflects all the forms of type of ML. For example, to express that U reflects
the type O we have the introduction rule

Ô : U

which has an associated computation rule asserting

T(Ô) = O : type

To reflect Σ-types, there is the introduction rule

a : U (x : T(a)) b : U

(Σx : a)b : U
and its associated computation rule

T((Σx : a)b) = (Σx : T(a)) T(b) : type

The complete set of rules for the type universe is given in Appendix A.
Note that the symbol Σ appears both in the judgement (Σx : a)b : U and
in the judgement (Σx : T(a)) T(b) : type. Similar notation is used to reflect
the type formation rules of ML in the type universe. Since the forms of
judgement in which the same symbol appears are different, there is no reason
for confusion.

We write MLW and ML1 for the type theories that are obtained from ML
by adding rules for W-types and rules for a type universe, respectively. The
type theory MLW1 is like ML1 except that the rules for the W-types are
added and the type universe U also reflects W-types. A particularly impor-
tant role will be played in the following by the natural subtheory ML1 + W
of MLW1, which has W-types but they are not reflected in U. Many proof-
theoretical results concerning these pure type theories are presented in [17].

THE GENERALISED TYPE-THEORETIC INTERPRETATION 9

2. Logic-enriched type theories

Adding Predicate Logic. Given a standard pure type theory we may
consider extending it with two additional forms of judgement (Γ) B, where
Γ should be a well-formed context as before, and B has one of the forms

φ : prop φ1, . . . , φm ⇒ φ

These judgements express, relative to the context (Γ), that φ is a proposition
and that φ follows from φ1, . . . , φm, respectively. In the context Γ, the well-
formedness of the judgement φ1, . . . , φm ⇒ φ presupposes that φi : prop
(for i = 1, . . . ,m) and φ : prop. Using these new judgement forms it is
straightforward to add the standard formation and inference rules for the
intuitionistic logical constants, i.e. the canonical true and false propositions
>,⊥, the binary connectives ∧,∨,⊃ and the quantifiers (∀x : A), (∃x : A)
for each type A. For example, the rules for the existential quantifier are as
follows.

A : type (x : A) φ : prop

(∃x : A) φ : prop

(x : A) φ : prop a : A φ[a/x]

(∃x : A)φ

(∃x : A)φ ψ : prop (x : A) φ⇒ ψ

ψ

The negation ¬φ of a proposition φ is defined by letting ¬φ =def φ ⊃ ⊥,
and logical equivalence is expressed with the proposition

φ ≡ ψ =def (φ ⊃ ψ) ∧ (ψ ⊃ φ) (11)

where φ and ψ are propositions. As always, in the statement of formation
rules we suppress a context that is common to the premisses and conclusion.
In the inference rules we will also suppress a list of assumptions appearing
on the left hand side of ⇒ in the logical premisses and conclusion of each
inference rule. Moreover we will write (Γ) φ rather than (Γ) ⇒ φ and just φ
rather than the judgement ⇒ φ.

Induction Rules. It is possible to extend a standard logic-enriched type
theory with additional non-logical rules to express properties of the various
forms of type. For example, it is natural to add a rule for mathematical
induction to the rules concerning the type of natural numbers and there
are similar rules for the other inductive forms of type. For each inductive
type C of MLW, we have an induction rule of the form

(z : C) φ : prop e : C INDC

φ[e/z]
where the correspondence between the form of C and the premisses INDC is
described in Table 2. Note that Π-types are absent from this correspondence,
since they are not an inductive form of type.

10 GAMBINO AND ACZEL

C INDC

O

1 φ[01/z]
2 φ[12/z] , φ[22/z]
N φ[0/z] , (x : N) φ[x/z] ⇒ φ[succ(x)/z]

(Σx : A)B (x : A, y : B) φ[pair(x, y)/z]
(Wx : A)B (x : A, u : B → C) (∀y : B)φ[app(u, y)/z] ⇒ φ[sup(x, u)/z]

Table 2. Inductive types and premisses of their induction rules.

The proposition universe. When adding logic to a standard pure type
theory T that includes ML1 it is natural to also add a proposition universe P
to match the type universe U. The formation rule for this type is

P : type

The rules for P express that elements of this type are to be thought of as
representatives for propositions whose quantifiers range over small types.
Indeed, the elimination rule

p : P

τ(p) : prop
expresses that each object p : P represents a proposition. To express that
the false proposition has a representative in P we have the introduction rule

⊥̂ : P
For the type P it seems convenient to avoid the use of an equality form of
judgement for propositions in order to express that P reflects logic. Instead
we use logical equivalence as defined in (11). For example, the rule relative
to the false proposition is

τ(⊥̂) ≡ ⊥
Similarly, existential quantification over small types is reflected in P with
the introduction rule

a : U (x : T(a)) p : P

(∃x : a)p : P
and the rule

τ((∃x : a)p) ≡ (∃x : T(a))τ(p)
The set of rules for the proposition universe P is presented in Appendix A.

Some logic-enriched type theories. Given a pure type theory T, we
write T + IL for the logic-enriched type theory that is obtained from T
by adding rules for predicate logic. We then write T + IL + IND for the
logic-enriched type theory that has induction rules for each of the forms
of inductive type of T. When the pure type theory T includes ML1 then

THE GENERALISED TYPE-THEORETIC INTERPRETATION 11

we write T + IL1 for the enrichment of T with intuitionistic predicate logic
and also the rules for P, and T + IL1 + IND for its extension with induction
rules.

In the following we will be interested in an extension of the logic-enriched
type theory ML1 + W + IL1 + IND, whose primitive forms of type are the
following.

O, 1, 2, N, R2(A1, A2, e), (Σx : A)B, (Πx : A)B (Wx : A)B , U, T(e) , P
There are predicate logic rules, induction rules for O, 1, 2, N, (Σx : A)B
and (Wx : A)B, and rules for the type P. We will work informally in the
logic-enriched type theory ML1 + W + IL1 + IND in Section 3.

Propositions-as-types. The logic-enriched type theory ML + IL has a
straightforward interpretation into the pure type theory ML that is ob-
tained by following the propositions-as-types idea. Each induction rule can
also be justified under the propositions-as-types interpretation of logic by
using the elimination rule of the inductive type to which the induction rule
is associated. Furthermore, the derivability of the type-theoretic axiom of
choice [28] implies that the rule

A : type (x : A) B : type (x : A, y : B) φ : prop

(∀x : A)(∃y : B)φ ⊃
(
∃u : (Πx : A)B

)
(∀x : A)φ[app(u, x)/y]

(AC)

has a valid propositions-as-types interpretation in the pure type theory ML.
Hence, the propositions-as-types interpretation reduces the logic-enriched
type theory ML + IL + IND + AC to the pure type theory ML. An analo-
gous result holds when we add rules for W-types on both sides.

The propositions-as-types idea extends to logic-enriched type theories
with a proposition universe. The extension is obtained by interpreting
the proposition universe P as the type universe U, and representatives for
small propositions as representatives for small types, again following the
propositions-as-types idea. The logic-enriched type theory ML1 + IL1 has
then an interpretation into the pure type theory ML1. Since the rules for
the proposition universe P are completely analogous to the rules for the type
universe U it is possible to see that also the proposition

(∀p : P)(∃u : U)
(
τ(p) ≡ (∃ : T(u))>

)
(PU)

is interpreted as an inhabited type by this extension of the propositions-
as-types interpretation. As a consequence of these facts, the logic-enriched
type theory ML(AC + PU) =def ML1 + W + IL1 + IND + AC + PU admits
an interpretation into the pure type theory ML1 + W. In Section 3 we will
introduce collection principles and show that the rules (AC) and (PU) allow
us to derive them. The following lemma will be helpful to do so.

Lemma 2.1. Assuming (AC) and (PU) there exists t : P → U such that,
for p : P, the judgement τ(p) ≡ (∃ : T(app(t, p))> is derivable.

Proof. To prove the claim, it is suffient to apply (AC) to (PU). �

12 GAMBINO AND ACZEL

3. The generalised type-theoretic interpretation

Some notions of collection. Given a type A what is a collection of objects
of type A? We may consider three approaches to this question: logical,
combinatorial, and hybrid. The logical approach is to take a collection to
be a class on A, i.e. a propositional function (x : A) φ : prop. The objects
of such a collection are the a : A such that φ[a/x] holds. By contrast the
combinatorial approach is to take a collection to be a family (x : I) b : A
indexed by a type I. This time the objects are the b[i/x] : A for i : I.
Finally, the hybrid approach takes a collection to consist of a pair given by
a family (x : I) b : A and a class (x : I) φ : prop on the index type I. The
objects of such a collection are the b[i/x] : A for those i : I such that φ[i/x]
holds.

A problem with each of these notions of collection is that we cannot
generally expect there to be a type of all collections of objects of type A
for all types A. What we can expect is to be able to form types of small
collections using the type and proposition universes. For example, the type
of small collections for the logical approach is given by

Cla(A) =def A→ P
We get the following types of small collections for the combinatorial and
hybrid notions of small collection of objects of type A. We shall refer to
these types as the types of small families and of small subclasses of A,
respectively:

Fam(A) =def (Σx : U)(T(x) → A) (12)
Sub(A) =def (Σx : U)

(
(T(x) → P)× (T(x) → A)

)
(13)

The properties of these types play an essential role in the development
of the original and generalised type-theoretic interpretations of CZF, and it
is therefore convenient to introduce some notation to manipulate efficiently
their elements. We do so by exploiting the notation for projections of ele-
ments of Σ-types as given in (10). Given α : Fam(A) define

el(α) =def α.1 : U
We will write el(α) : type to denote also the small type T(el(α)), associated
with el(α) : U, since the judgement makes clear whether we are considering
a small type or the element in the type universe that represents it. We deal
analogously with the elements in type and proposition universes that we
define below. For x : el(α), let

val(α, x) =def app(α.2, x) : A

Using the definitions introduced above, we can form propositions by quan-
tifying over a small family, i.e. if (x : A) φ : prop and α : Fam(A) we can
define the propositions (∀x ∈ α)φ and (∃x ∈ α)φ as follows.

(∀x ∈ α) φ =def (∀x : el(α)) φ[val(α, x)/x] : prop
(∃x ∈ α) φ =def (∃x : el(α)) φ[val(α, x)/x] : prop (14)

THE GENERALISED TYPE-THEORETIC INTERPRETATION 13

In a similar way, it is possible to form elements of the proposition universe
by quantifying over a small family. For (x : A) p : P we define

(∀x ∈ α) p =def (∀x : el(α)) p[val(α, x)/x] : P
(∃x ∈ α) p =def (∃x : el(α)) p[val(α, x)/x] : P (15)

The notation introduced in (14) and (15) does not lead to confusion, since
the rules for the proposition universe P imply that the judgements

(∀x ∈ α) τ(p) ≡ τ
(
(∀x ∈ α)p

)
(∃x ∈ α) τ(p) ≡ τ

(
(∃x ∈ α)p

) (16)

are derivable. We now develop an analogous system of abbreviations for the
type of small subclasses of a type, as defined in (13). For α : Sub(A) we
define

el(α) =def α.1 : U
For x : el(α) we define

dom(α, x) =def app(α.2.1, x) : P
val(α, x) =def app(α.2.2, x) : A

For (x : A) φ : prop we define

(∀x ∈ α) φ =def (∀x : el(α)) (dom(α, x) ⊃ φ[val(α, x)/x]) : prop
(∃x ∈ α) φ =def (∃x : el(α)) (dom(α, x) ∧ φ[val(α, x)/x]) : prop (17)

Finally, for (x : A) p : P we define

(∀x ∈ α) p =def (∀x : el(α)) (dom(α, x) ⊃ p[val(α, x)/x]) : P
(∃x ∈ α) p =def (∃x : el(α)) (dom(α, x) ∧ p[val(α, x)/x]) : P (18)

Judgements analogous to those in (16) are easily derivable, so that the def-
initions in (17) and (18) are compatible.

Separation in type theory. The set theory CZF, like the systems of
classical axiomatic set theory, allows the formation of sets of sets of sets
of . . . but does not allow non-well-founded sets. So to interpret the universe
of sets of CZF as a type in type theory we need a type of iterative sets
obtained by inductively iterating some notion of ‘set of’. When we use the
combinatorial approach to interpret the notion of ‘set of’ there is a problem
with the justification of the Restricted Separation scheme of CZF if we wish
to avoid the propositions-as-types representation of logic. The problem can
be explained as follows. In CZF, for a set α and a restricted formula θ,
Restricted Separation, as stated in (6), asserts that there is a set γ such
that (∀x)

(
x ∈ γ ≡ (x ∈ α ∧ θ)

)
. It is then straightforward to see that for a

formula φ the following sentences are provable in CZF.

(∀x ∈ γ) φ ≡ (∀x ∈ α) (θ ⊃ φ)
(∃x ∈ γ) φ ≡ (∃x ∈ α) (θ ∧ φ) (19)

An analogous fact holds in the logic-enriched type theory ML(AC + PU).
Given α : Fam(A) and (x : A) p : P, let θ =def τ(p) for x : el(α).

14 GAMBINO AND ACZEL

We can then define γ : Fam(A) such that for (x : A) φ : prop the fol-
lowing judgements, corresponding to the sentences in (19), are derivable in
ML(AC + PU)

(∀x ∈ γ) φ ≡ (∀x ∈ α) (θ ⊃ φ)
(∃x ∈ γ) φ ≡ (∃x ∈ α) (θ ∧ φ)

The reason is that in ML(AC + PU) it is possible to prove the existence of
a function t : P → U as in Lemma 2.1, and so to define γ : Fam(A) such
that

el(γ) = (Σx : el(α)) app(t, p[val(α, x)/x]) : U (20)
and

val(γ, z) = val(α, z.1) : A (21)
for z : el(γ). But without the assumption of (AC) and (PU), the proof of
Lemma 2.1 cannot be carried out. To overcome this difficulty we adopt the
hybrid notion of small collection instead of the combinatorial one. Note that
the purely logical notion of small collection cannot be used to get any kind
of iterative notion of set essentially because Cla(A) is not positive in A. So
it seems that the use of the hybrid notion is the natural way to incorporate
the necessary logical ingredient in the notion of small collection. We are
therefore led to study the properties of small subclasses of a type.

Small subclasses. To define explicitly small subclasses of a type A it will
be convenient to adopt the following convention. For derivable judgements
of the form a : U, (x : T(a)) p : P, and (x : T(a)) t : A, we will define an
element of Sub(A) by saying that it is the small subclass γ such that

el(γ) = T(a) : type (22)

and that, for x : T(a), the judgements

dom(γ, x) ≡ τ(p)
val(γ, x) = t : A (23)

are derivable. Note that if γ = δ : Sub(A), where

δ =def pair(a,pair((λx : T(a))p, (λx : T(a))t)) : Sub(A)

then the judgements in (22) and (23) can actually be derived. We begin
our discussion of set-theoretic constructs with the empty set. Recalling that
T(Ô) = O : type, we define

∅A : Sub(A)
to be the small subclass γ of A such that el(γ) = O : type and, for x : O,
the judgements dom(γ, x) ≡ ⊥ and val(γ, x) = r0(x) : A are derivable.

Lemma 3.1. There exists γ : Sub(A) such that the judgements

(∀x ∈ γ) φ ≡ >
(∃x ∈ γ) φ ≡ ⊥

are derivable.

THE GENERALISED TYPE-THEORETIC INTERPRETATION 15

Proof. Let γ = ∅A : Sub(A). The required conclusion follows directly by the
definition of quantification over small subclasses in (17). �

To introduce the pairing operation, let us recall that T(2̂) = 2 : type.
For a1, a2 : A we can then define

{a1, a2} : Sub(A)

as the small subclass γ of A such that el(γ) = 2 : type and, for x : 2, the
judgements dom(γ, x) ≡ > and val(γ, x) = r2(x, a1, a2) : A are derivable.
The properties of this operation are stated in the next lemma.

Lemma 3.2. Let a1, a2 : A. There exists γ : Sub(A) such that

(∀x ∈ γ) φ ≡ φ[a1/x] ∧ φ[a2/x]
(∃x ∈ γ) φ ≡ φ[a1/x] ∨ φ[a2/x]

are derivable.

Proof. Let γ = {a1, a2} : Sub(A). Unfolding the definition of quantification
over γ, we derive the following judgement.

(∀x ∈ γ) φ ≡ (∀x : 2) φ[r2(a1, a2, x)/x]

Now, note that the following holds.

(∀x : 2) φ[r2(a1, a2, x)/x] ≡ φ[a1/x] ∧ φ[a2/x]

The left-to-right implication is obtained with the ∀-elimination, and the
right-to-left implication follows by the 2-induction rule. We have therefore
obtained that (∀x ∈ γ) φ is equivalent to φ[a1/x] ∧ φ[a2/x] as required. We
can derive the equivalence between (∃x ∈ γ) φ and φ[a1/x] ∨ φ[a2/x] with
an analogous reasoning: first unfold the definitions of restricted quantifiers,
then use the 2-induction rule and the ∨-elimination rule. �

As a special case of the pairing operation defined above, we obtain the
definition of singletons. For a : A, we define

{a} =def {a, a} : Sub(A)

Lemma 3.3. Let a : A. There exists γ : Sub(A) such that the judgements

(∀x ∈ γ) φ ≡ φ[a/x]
(∃x ∈ γ) φ ≡ φ[a/x]

are derivable.

Proof. Let γ =def {a} : Sub(A). The proofs of the claims follow directly
from Lemma 3.2. �

Let Sub2(A) =def Sub(Sub(A)). For α : Sub2(A) we define⋃
α : Sub(A)

16 GAMBINO AND ACZEL

as the small subclass γ of A such that el(γ) = (Σy : el(α)) el(val(α, y)) and,
for z : el(γ), the judgements

dom(γ, z) ≡ dom(α, z.1) ∧ dom(val(α, z.1), z.2)

val(γ, z) = val(val(α, z.1), z.2) : A

are derivable. The next lemma shows that this operation has the properties
of the set-theoretic union.

Lemma 3.4. Let α : Sub2(A). There exists γ : Sub(A) such that the
judgements

(∀x ∈ γ) φ ≡ (∀y ∈ α)(∀x ∈ y) φ
(∃x ∈ γ) φ ≡ (∃y ∈ α)(∃x ∈ y) φ

are derivable.

Proof. Let γ =
⋃
α : Sub(A). By the computation rules for Σ-types we

obtain that for y : el(α) and x : el(val(α, y))

val(γ,pair(x, y)) = val(val(a, y), x) : A

holds. We want to show that (∀x ∈ γ)φ is equivalent to (∀y ∈ α)(∀x ∈ y)φ.
It is convenient to consider ψ =def (∀z : el(γ)) dom(γ, z) ⊃ φ[val(γ, z)/x].
Let θ =def dom(α, y) : prop, η =def dom(val(α, y), x) : prop, for y : el(α)
and x : el(val(α, y)), and consider

ξ =def (∀y : el(α))(∀x : el(val(α, y))) (θ ∧ η ⊃ φ[val(γ,pair(x, y))/x]) .

We claim that (∀x ∈ α)φ ≡ ψ ≡ ξ ≡ (∀y ∈ a)(∀x ∈ y)φ holds, which would
give us the desired result. The first equivalence follows by simply unfolding
the definitions, ψ implies ξ by the ∀-elimination rule and ξ implies ψ by the
Σ-induction rule, and the third equivalence is a consequence of predicate
logic rules. The proof of the claim involving the existential quantifier follows
the same pattern of reasoning. �

To define a separation operation we exploit essentially that we are assum-
ing the hybrid approach to the problem of representing the notion of a small
collection of elements of a type. Let α : Sub(A) and (x : A) p : P. We define

{x ∈ α | p } : Sub(A)

as the small subclass γ of A such that el(γ) = el(α) : type and, for x : el(α),
the judgements dom(γ, x) ≡ dom(α, x) ∧ τ(p) and val(γ, x) = val(α, x) : A
are derivable.

Lemma 3.5. Let α : Sub(A) and (x : A) p : P. There exists γ : Sub(A)
such that the judgements

(∀x ∈ γ)φ ≡ (∀x ∈ α)(τ(p) ⊃ φ)
(∃x ∈ γ)φ ≡ (∃x ∈ α)(τ(p) ∧ φ)

are derivable.

THE GENERALISED TYPE-THEORETIC INTERPRETATION 17

Proof. If γ = {x ∈ α | p} : Sub(A) then it holds that

(∀x ∈ γ)φ ≡ (∀x : el(α))
((

dom(α, x) ∧ τ p[val(α, x)/x]
)
⊃ φ[val(α, x)/x]

)
The rules of predicate logic imply that the right-hand side in the above
equivalence is in turn equivalent to (∀x ∈ α)(τ(p) ⊃ φ) as required. The
proof of the statement involving existential quantification is analogous. �

The next definition introduces a type-theoretic analog of the construc-
tions allowed by the Replacement axiom of set theory [5]. For A,B : type,
α : Sub(A) and (x : A) b : B, define

{b | x ∈ α} : Sub(B)

as the small subclass β of B such that el(β) = el(α) : type and, for x : el(α),
the judgements dom(β, x) ≡ dom(α, x) and val(β, x) = b[val(α, x)/x] : B
are derivable.

Lemma 3.6. Let α : Sub(A), (x : A) b : B and (y : B) ψ : prop. There
exists β : Sub(B) such that the judgements

(∀y ∈ β)ψ ≡ (∀x ∈ α)ψ[b/y]
(∃y ∈ β)ψ ≡ (∃x ∈ α)ψ[b/y]

are derivable.

Proof. First of all, observe that we can assume that x is not a free variable
in ψ. Let β =def {b | x ∈ α} : Sub(B), By unfolding definitions and
performing the appropriate substitutions we can derive that (∀y ∈ β)ψ is
logically equivalent to

(∀y : el(α))(dom(α, y) ⊃ ψ[b[val(α, y)/x]/y])

and this is in turn equivalent to (∀x ∈ α)ψ[b/y], since we assumed that x is
not a free variable in ψ. The statement involving existential quantification
can be proved in a similar way. �

We conclude this series of lemmas by transferring to logic-enriched type
theories a familiar fact of constructive set theories: the correspondence be-
tween the class of subsets of a singleton set and restricted sentences, as
discussed in [5] and [12, Section 2.3]. In logic-enriched type theories the role
of the class of all subsets of a singleton set is played by the type of small
subclasses of the type 1 and the role of restricted sentences is played by
elements of P. Define

ext(p) : Sub(1)
as the small subclass γ of 1 such that el(γ) = 1̂ : type and, for x : 1, the
judgements dom(γ, x) ≡ τ(p) and val(γ, x) = x : 1 are derivable.

Lemma 3.7. Let p : P and ψ : prop. There is γ : Sub(1) such that the
judgements

(∀ ∈ γ) ψ ≡ τ(p) ⊃ ψ

(∃ ∈ γ) ψ ≡ τ(p) ∧ ψ

18 GAMBINO AND ACZEL

are derivable.

Proof. Let γ = ext(p) : Sub(1). The conclusion then follows by unfolding
the definitions. �

We now formulate the collection rules for small subclasses. GivenA : type,
B : type, and (x : A, y : B)φ : prop, for α : Sub(A) and β : Sub(B) we define

(∀∃ x∈α
y∈β)φ =def (∀x ∈ α) (∃y ∈ β)φ ∧ (∀y ∈ β) (∃x ∈ α)φ : prop

The Strong Collection rule is
A,B : type α : Sub(A) (x : A, y : B) φ : prop

(∀x ∈ α)(∃y : B)φ ⇒ (∃v : Sub(B))(∀∃ x∈α
y∈v)φ

and the Subset Collection rule is
A,B,C : type α : Sub(A) β : Sub(B) (x : A, y : B, z : C) φ : prop

(∃u : Sub2(B))(∀z : C)
(
(∀x ∈ α)(∃y ∈ β)φ ⊃ (∃v ∈ u)(∀∃ x∈α

y∈v) φ
)

We will show in Section 4 that these rules are derivable under the proposi-
tions-as-types interpretation of logic. We write ML(COLL) for the extension
of the logic-enriched type theory ML1 + W + IL1 + IND obtained by adding
the Strong Collection and the Subset Collection rules. Recalling that CZF−

is the subsystem of CZF obtained from CZF by leaving out the Subset
Collection axiom scheme, and that in CZF− it is not possible to derive the
Exponentiation axiom, asserting that the class of functions from a set to a
set is again a set [20], it is natural to define ML(COLL−) as the type theory
obtained from ML(COLL) by omitting the Subset Collection rule and the
rules reflecting Π-types in the type universe.

Iterative small classes. Let us begin by defining the type

V =def

(
Wz : (Σx : U)(T(x) → P)

)
T(z.1)

A canonical element of V has form sup(pair(a, p), f) : V where a : U, p :
T(a) → P and f : T(a) → V. Such an object can be thought of as the ‘set
of’ app(f, x) : V for x : T(a) such that τ(app(p, x)) holds. We will refer to
the elements of this type as iterative small classes. As usual, it is convenient
to introduce some explicitly defined expressions. We define, for α : Sub(V)

set(α) =def sup(pair(α.1, α.2.1), α.2.2) : V
and, for α : V

sub(α) =def rW(α, (u, v) pair(u.1,pair(u.2, v)) : Sub(V)

Observe that there is a correspondence between elements of V and elements
of Sub(V). The next lemma shows a first property of this correspondence.

Lemma 3.8. For a : U, p : T(a) → P, and f : T(a) → V the judgements

set(pair(a,pair(p, f))) = sup(pair(a, p), f) : V
sub(sup(pair(a, p), f) = pair(a,pair(p, f)) : Sub(V)

THE GENERALISED TYPE-THEORETIC INTERPRETATION 19

are derivable.

Proof. The judgements follow from the computation rules for W-types and
Σ-types. �

Lemma 3.9. For (x : V) φ : prop and (y : Sub V) ψ : prop the judgements

(∀x : V)φ ≡ (∀y : Sub(V))φ[set(y)/x]
(∃x : V)φ ≡ (∃y : Sub(V))φ[set(y)/x]

are derivable.

Proof. To prove the judgement

(∀x : V)φ ≡ (∀y : Sub(V))φ[set(y)/x]

we consider

ψ =def (∀x : U)(∀y : T(x) → P)(∀z : T(x) → V)φ[sup(pair(x, y), z)/x]

We show that

(∀x : V)φ ≡ ψ ≡ (∀y : Sub(V))φ[set(y)/x] (24)

The first equivalence in (24) can be proved as follows: the left-to-right impli-
cation is proved with the ∀-elimination rule, while the right-to-left is proved
by W-induction. The second equivalence in (24) can instead be obtained as
we describe now. The left-to-right implication is a consequence of the Σ-
induction rule, while the right-to-left implication follows by the ∀-elimination
rule and Lemma 3.8. �

We introduce versions of quantification over iterative small classes using
Lemma 3.8 and the definitions expressing quantification over a small subclass
of a type in (17) and (18). For α : V, and (x : V)φ : prop we define

(∀x ∈ α)φ =def (∀x ∈ sub(α))φ : prop
(∃x ∈ α)φ =def (∃x ∈ sub(α))φ : prop

and, for (x : V) p : P, we let

(∀x ∈ α)p =def (∀x ∈ sub(α))p : P
(∃x ∈ α)p =def (∃x ∈ sub(α))p : P

Again, these definitions can easily be shown to be compatible.
We now want to apply a special instance of the elimination rule for the

W-type V of iterative small classes and define a type-theoretic counterpart
to the set-theoretic extensional equality relation. To do so, let us introduce
some auxiliary definitions. Define A =def (Σx : U)(T(x) → P) and, for u : A,
let

B =def T(u.1) → P
C =def T(u.1) → (V → P)

and finally D =def V → P. For u : A, z : B, and w : C we can then define

g =def (λv : V)(g1 ∧ g2) : D

20 GAMBINO AND ACZEL

where, for v : V we let

g1 =def (∀x : u.1) app(u.2, x) ⊃ (∃y ∈ v) app(app(w, x), y) : P
g2 =def (∀y ∈ v)(∃x : u.1) app(u.2, x) ∧ app(app(w, x), y) : P

We can then apply the following instance of the elimination rule for V
D : type (u : A, z : B,w : C) g : D α : V

rW(α, (u, z, w)d) : D
and define

α≈β =def app(rW(α, (u, z, w)g), β) : P (25)
for α, β : V.

Lemma 3.10. For α, β : V the judgement

α≈β ≡ (∀∃ x∈α
y∈β) x≈y

is derivable.

Proof. The proof involves unfolding the appropriate definitions and applying
the computation rule for the W-type V of iterative small classes. �

Sets-as-trees. We now define the generalized type-theoretic interpretation
of CZF. Recall from the introduction that we are assuming that CZF is
formulated in a language L with equality and primitive restricted quantifiers,
in which the membership relation is defined. Let us also assume that the
symbols for variables for sets of CZF coincide with the symbols for variables
of type V. We define two interpretations. The first is indicated with J·K and
applies to arbitrary formulas. The second is indicated with L·M and applies
only to restricted formulas. Both interpretations are defined in Table 3,
where ? is ∧, ∨ or ⊃, and ∇ is ∀ or ∃.

Jx = yK =def x≈y Lx = yM =def x≈y
Jφ1 ? φ2K =def Jφ1K ? Jφ2K Lθ1 ? θ2M =def Lθ1M ? Lθ2M

J(∇x ∈ α)φK =def (∇x ∈ α)JφK L(∇x ∈ α)θM =def (∇x ∈ α)LθM
J(∇x)φK =def (∇x : V)JφK

Table 3. Interpretation of the language of CZF.

Lemma 3.11. Let θ, φ be formulas of L with free variables x1, . . . , xn, and
assume that θ is restricted. Then the judgements

(x1 : V, . . . , xn : V) JφK : prop
(x1 : V, . . . , xn : V) LθM : P
(x1 : V, . . . , xn : V) τLθM ≡ JθK

are derivable.

Proof. Reasoning by structural induction suffices to prove the claim. �

THE GENERALISED TYPE-THEORETIC INTERPRETATION 21

Definition 3.12. A formula φ of L with free variables x1, . . . , xn will be
said to be valid if the judgement

(x1 : V, . . . , xn : V) JφK

is derivable. We say that the generalized type-theoretic interpretation of CZF
is valid if each axiom scheme is valid.

We begin by establishing that the logical axioms of CZF are valid.

Lemma 3.13. Let (x : V) φ : prop and α, β : V. Then the judgement

Jφ[α/x]K ∧ Jα = βK ⊃ Jφ[β/x]K

is derivable.

Proof. The claim follows by structural induction on φ. �

Given Lemma 3.13, the predicate logic rules imply that all the logical
axioms for CZF, and in particular the ones regarding restricted quantifiers,
are valid. The next lemma takes care of the structural axioms of CZF.

Lemma 3.14. Extensionality and Set Induction are valid.

Proof. Validity of Extensionality follows from Lemma 3.10. Validity of Set
Induction is a consequence of the induction rule for the W-type V of iterative
small classes. �

Lemma 3.15. Pairing, Union, Infinity and Restricted Separation are valid.

Proof. Lemma 3.2 helps us to prove validity of Pairing. Let α, β : V and
define γ =def set({α, β}) : V. By Lemma 3.2 we have

(∀x ∈ γ)(x≈α ∨ x≈β) ≡ (∀x ∈ {α, β})(x≈α ∨ x≈β)
≡ (α≈α ∨ α≈β) ∧ (β≈α ∨ β≈β)

Similarly we get

α ∈ γ ∧ β ∈ γ ≡ (∃x ∈ {α, β})(x≈α) ∧ (∃x ∈ {α, β})(x≈β)
≡ (α≈α ∨ α≈β) ∧ (β≈α ∨ β≈β)

as required. Soundness of Union follows in a similar way from Lemma 3.4.
For Infinity we exploit Lemma 3.1 and Corollary 3.3. We let ω : Sub(V)
be the small subclass of V such that el(ω) = N : type, and for n : N, the
judgements dom(ω, n) ≡ > and

val(ω, n) = rN(n, set(∅V), (x, y) set({y})) : V
are derivable, where we used the elimination rule for the type N given in
Appendix A. It is immediate to see that set(ω) : V can be used to show
the soundness of Infinity. Validity of Restricted Separation follows from
Lemma 3.5. �

The collection rules for small subclasses that are part of ML(COLL) allow
us to prove the validity of all the instances of the collection axiom schemes
of CZF.

22 GAMBINO AND ACZEL

Lemma 3.16. Strong Collection and Subset Collection are valid.

Proof. The interpretation of each instance of these axiom schemes can be
proved from a suitable instance of the corresponding type-theoretic rule
using the correspondence between V and Sub(V). �

These results provide a proof of our first main result.

Theorem 3.17. The logic-enriched type theory ML(COLL) proves that the
generalised type-theoretic interpretation of CZF in (V,≈) is valid.

4. An analysis of the original type-theoretic interpretation

The original interpretation of CZF in the type theory ML1 + W can be
viewed as taking place in two steps: an interpretation of CZF in the logic-
enriched type theory ML(AC + PU) followed by the propositions-as-types
interpretation of ML(AC + PU) in ML1 + W. The generalised interpreta-
tion of CZF presented in Section 3 is concerned with a strengthening of the
interpretation of CZF into ML(AC + PU) so as to interpret CZF in the logic-
enriched type theory ML(COLL) obtained from ML1 + W + IL1 + IND by
adding two type-theoretic collection principles corresponding to the two col-
lection principles of CZF. In this section we describe how the interpretations
of CZF in ML(COLL) and in ML(AC + PU) are related. In particular, we
will prove that the two type-theoretic collection principles can be derived in
ML(AC + PU) so that the new interpretation is indeed a refinement of the
old one.

The interpretation of CZF in the logic-enriched type theory ML(AC + PU)
assumes the combinatorial notion of small collection, as discussed in Sec-
tion 3, to interpret the notion of ‘set of’. We will therefore refer to this
interpretation as the combinatorial interpretation of CZF. The combinato-
rial approach leads naturally to the use of the type V =def (Wx : U) T(x)
to interpret the universe of sets of CZF. Indeed, for each small collection
pair(a, f) : Fam(V), there is sup(a, f) : V. Each formula φ of CZF with free
variables x1, . . . , xn is then interpreted as JφK such that the judgement

(x1 : V, . . . , xn : V) JφK : prop

can be derived, and each restricted formula θ with free variables x1, . . . , xn

is interpreted as LθM such that the judgements

(x1 : V, . . . , xn : V) LθM : P

and
(x1 : V, . . . , xn : V) τLθM ≡ JθK

can be derived. The validity of the axioms of CZF under the original type-
theoretic interpretation relies on the properties of the types of small families
of objects. We isolate the relevant properties below, but we prefer to avoid
giving detailed proofs, since we have presented detailed proofs of the corre-
sponding statements for small subclasses in Section 3.

THE GENERALISED TYPE-THEORETIC INTERPRETATION 23

Small families. The next lemma states that small families support the
definition of some basic set-theoretical constructs: the empty set, pairing,
and union.

Lemma 4.1. Let A : type and (x : A) φ : prop.

(i) There exists γ : Fam(A) such that the judgements

(∀x ∈ γ) φ ≡ >
(∃x ∈ γ) φ ≡ ⊥

are derivable.
(ii) Let a1, a2 : A. There exists γ : Fam(A) such that the judgements

(∀x ∈ γ) φ ≡ φ[a1/x] ∧ φ[a2/x]
(∃x ∈ γ) φ ≡ φ[a1/x] ∨ φ[a2/x]

are derivable.
(iii) Let α : Fam2(A), where Fam2(A) = Fam(Fam(A)). There exists γ :

Fam(A) such that the judgements

(∀x ∈ γ) φ ≡ (∀y ∈ α)(∀x ∈ y) φ
(∃x ∈ γ) φ ≡ (∃y ∈ α)(∃x ∈ y) φ

are derivable.

Proof. The proofs of the three parts of the Lemma are analogous to the ones
of Lemma 3.1, Lemma 3.2, and Lemma 3.4 respectively. �

The previous lemma states the key facts needed to obtain the validity
of Pairing and Union in the original type-theoretic interpretation. As we
discussed in Section 3 it is necessary to assume the rule (PU) in order to
obtain a version of Restricted Separation when the combinatorial notion of
small collection is assumed.

Lemma 4.2. Let A : type, α : Fam(A) and (x : A) p : P. Assuming (PU)
there exists γ : Fam(A) such that, for (x : A) φ : prop, the judgements

(∀x ∈ γ) φ ≡ (∀x ∈ α)(τ(p) ⊃ φ)
(∃x ∈ γ) φ ≡ (∃x ∈ α)(τ(p) ∧ φ)

can be derived.

Proof. The definition of the appropriate γ : Sub(A) is given in (20) and (21).
The required judgements follow by unfolding the relevant definitions. �

The type-theoretic axiom of choice is crucial to prove the validity of the
two collection schemes of CZF in the original type-theoretic interpretation.
Indeed, the rule (AC) allows us to prove the next lemma, from which the
two collection rules concerning small families follow easily.

24 GAMBINO AND ACZEL

Lemma 4.3. Assuming (AC), the rules
α : Fam(A) B : type (x : A, y : B) φ : prop

(∀x ∈ α)(∃y : B) ⇒ (∃f : el(α) → B)(∀x ∈ α)φ[app(f, x)/y]
and

α : Fam(A) β : Fam(B) (x : A, y : B) φ : prop

(∀x ∈ α)(∃y ∈ β)φ⇒ (∃f : el(α) → el(β))(∀x ∈ α)φ[val(β, app(f, x))/y]
are derivable.

For types A and B, α : Fam(A) and β : Fam(B) and (x : A, y : B) φ : prop
we define

(∀∃ x∈α
y∈β) φ =def (∀x ∈ α)(∃y ∈ β)φ ∧ (∀y ∈ β)(∃x ∈ α)φ : prop

We can now obtain the collection rules for small families. These rules are
formulated just like those rules for small collections presented in Section 3.

Proposition 4.4. Assuming (AC), the rules
A,B : type α : Fam(A) (x : A, y : B) φ : prop

(∀x ∈ α)(∃y : B)φ⇒ (∃v : Fam(B))(∀∃ x∈a
y∈v)φ

and
A,B,C : type α : Fam(A) β : Fam(B) (x : A, y : B, z : C) ψ : prop

(∃u : Fam2(B))(∀z : C)
(
(∀x ∈ α)(∃y ∈ β)ψ ⊃ (∃v ∈ u)(∀∃ x∈α

y∈v) ψ
)

are derivable.

Proof. To derive the Strong Collection rule for small families, let us assume
that (∀x ∈ α) (∃y : B)φ holds. By Lemma 4.3 there is f : el(α) → B such
that (∀x ∈ α) φ[app(f, x)/y] holds. Once we define

β =def pair(el(α), f) : Fam(B)

it is straightforward to show that (∀∃ x∈α
y∈β) φ holds, as required.

We now derive the Subset Collection rule for small families. Let z : C
and assume (∀x ∈ α)(∃y ∈ β)φ. An application of Lemma 4.3 shows that
there is f : el(α) → el(β) such that

(∀x ∈ el(α))φ[val(β, app(f, x))/y]

holds. Define

β′ =def pair(el(α), (λx : el(α)) val(β, app(f, x))) : Fam(B)

We define an element δ : Fam2(B), independent of φ and z : C, such that
el(δ) = el(α) → el(β) : U and, for k : el(α) → el(β)

val(δ, k) = pair(el(α), (λx : el(α)) val(β, app(k, x)))) : Fam(B)

Observe that f : el(α) → el(β) and val(δ, f) = β′ : Fam(B). We have
therefore obtained δ : Fam2(B) such that

(∃v ∈ δ)(∀∃ x∈α
y∈v)φ

THE GENERALISED TYPE-THEORETIC INTERPRETATION 25

holds, as required. �

The interpretation of CZF in ML(AC + PU) can now be developed anal-
ogously to the generalised type-theoretic interpretation of Section 3, except
that we use the type V =def (Wx : U) T(x) instead of the type V to inter-
pret the universe of sets of CZF. Let us sketch the general outline of this
interpretation. First, it is necessary to develop the appropriate notation to
express quantification over an element of V. This involves proving counter-
parts of Lemma 3.8 and Lemma 3.9. Secondly, one defines an analog for the
type V of the extensional equality that we defined for the type V in (25).
For α1, α2 : V we write α1≈α2 : prop to denote it. Finally, one gives an
interpretation of the language of CZF in ML(AC + PU) as in Table 3 ex-
cept that the type V is used instead of the type V to interpret unrestricted
quantifiers. The following result can then be proved.

Theorem 4.5. The logic-enriched type theory ML(AC + PU) proves that
the combinatorial interpretation of CZF in (V,≈) is valid.

Proof. Validity of Extensionality and Set Induction follows from the defini-
tion of the extensional equality on V and from the induction rule of the W-
type V, respectively. Lemma 4.1 implies the validity of Pairing and Union,
and Lemma 4.2 the validity of Restricted Separation. The proof of validity
of Infinity is essentially as in the generalised type-theoretic interpretation.
Finally, the validity of the Strong Collection and Subset Collection schemes
follows from Proposition 4.4. �

Propositions-as-types interpretation of collection rules for small
subclasses. We now want to relate the interpretations of CZF in ML(COLL)
and in ML(AC + PU). To do so, we show that the Strong Collection and
Subset Collection rules for small subclasses are justified under the proposi-
tions-as-types interpretation of logic. Let us use the function t : P → U of
Lemma 2.1 to define, for α : Sub(A)

comp(α) =def (Σx : el(α)) app(t,dom(α, x)) : U

For α : Sub(A) and σ : Fam(A) we can then let

i(α) =def pair(comp(α), (λz : comp(α)) val(α, z.1)) : Fam(A)
j(σ) =def pair(el(σ),pair((λ : el(σ))>, (λx : el(σ)) val(σ, x))) : Sub(A)

The next lemma relates the definitions in (14) and (15) with the ones in (17)
and (18).

Lemma 4.6. Let (x : A) φ : prop. Assuming (AC) and (PU), for α : Sub(A)
and σ : Fam(A) the judgements

(∇x ∈ α)φ ≡ (∇x ∈ i(α))φ
(∇x ∈ σ)φ ≡ (∇x ∈ j(σ))φ

where ∇ is either ∀ or ∃, are derivable.

26 GAMBINO AND ACZEL

Proof. Let us prove the judgements involving universal quantification. For
the first part, observe that the rule (PU) implies

(∀x : el(α)) dom(α, x) ⊃ φ[val(α, x)/x] ≡ (∀z : comp(α))φ[val(α, z.1)/x]

By unfolding the definitions it follows that (∀x ∈ α)φ ≡ (∀x ∈ i(α))φ holds.
For the second part, observe that

(∀x ∈ el(σ))φ[val(σ, x)/x] ≡ (∀x ∈ j(σ))φ

holds, and this proves the desired claim. �

Theorem 4.7. Assuming (AC) and (PU), the Strong Collection and Subset
Collection rules are derivable.

Proof. The claim follows from Proposition 4.4 and Lemma 4.6. �

We now have two interpretations of CZF in ML(AC + PU), one using V
and the other using V. But in fact these are essentially the same. This is
because in ML(AC + PU) one can prove that there are inverse isomorphisms
between the structure on V with extensional equality and extensional mem-
bership and the same structure on V. The key advantage of ML(COLL)
over ML(AC + PU) is the fact that the former allows for reinterpretations
of the logic which are not available for the latter, as we discuss in Section 5.

5. Reinterpreting logic

Local operators in logic-enriched type theories. In this section we
introduce the notion of a local operator on the proposition universe, and
discuss the reinterpreation of logic determined by it. Before introducing
local operators, however, it is convenient to fix some notation and establish
a simple fact that will be useful in the development of reinterpretations of
logic. For p, q : P we define p ≤ q =def τ(p) ⊃ τ(q) : prop. It is also
convenient to define, for p : P and φ : prop

p ≤ φ =def τ(p) ⊃ φ .

We then have the following result.

Lemma 5.1. Let B : type, p : P and (y : B) ψ : prop such that

p ≤ (∃y : B)ψ .

Then there is β : Sub(B) such that p ≤ (∃y ∈ β)ψ and (∀y ∈ β)(τ(p) ∧ ψ).

Proof. Let α =def ext(p) : Sub(1). Use Lemma 3.7 and then apply the
Strong Collection Rule to (∀ ∈ α)(∃y : B)ψ. �

Definition 5.2. We say that j : P → P is a local operator if the following
judgements

(i) p ≤ jp
(ii) p ≤ q ⇒ jp ≤ jq
(iii) jp ∧ jq ≤ j(p ∧ q)
(iv) j(jp) ≤ jp

THE GENERALISED TYPE-THEORETIC INTERPRETATION 27

are derivable, where jp =def app(j, p), for p : P.

From now on we assume given an arbitrary local operator j. For φ : prop
we define

Jφ =def (∃y : P)[τ(jy) ∧ (τ(y) ⊃ φ)]

First of all, we note that J and j are extensionally equal on elements of the
proposition universe. The following result can be obtained by expanding the
relevant definitions.

Lemma 5.3. For p : P, the judgement J(τ(p)) ≡ τ(jp) is derivable.

We now show that the operator J inherits all the properties of the local
operator j.

Lemma 5.4. Let φ : prop and p : P such that p ≤ Jφ.Then there is q ∈ P
such that q ≤ φ and p ≤ jq.

Proof. As p ≤ Jφ, we have that p ≤ (∃y : P)ψ, where ψ =def (τ(jy)∧y ≤ φ).
Then, by Lemma 5.1, there is β : Sub(P) such that

p ≤ (∃y ∈ β)ψ (26)

and
(∀y ∈ β)(τ(p) ∧ ψ). (27)

Let q =def (∃y ∈ β)y : P. Then q ≤ φ, as (∀y ∈ β)(y ≤ φ), by (27). Also,
by (26), p ≤ (∃y ∈ β)τ(jy). As (∀y ∈ β)(y ≤ q) and j is monotone we get
that (∀y ∈ β)(jy ≤ jq) and hence p ≤ jq. �

The next proposition shows that the properties of j can be lifted to J .
In its proof we will apply Lemma 5.4, and thus make use of the Strong
Collection rule.

Proposition 5.5. For φ, ψ : prop, the judgements

(i) φ ⊃ Jφ
(ii) φ ⊃ ψ ⇒ Jφ ⊃ Jψ

(iii) Jφ ∧ Jψ ⊃ J(φ ∧ ψ)
(iv) J(Jφ) ⊃ Jφ

are derivable.

Proof. Direct derivations suffice to prove the first three claims. The proof
of the last one uses Lemma 5.4 and the fact that j is monotone. �

We define the j-interpretation of ML(COLL−) into itself determined by
the local operator j. This interpretation acts solely on the logic, leaving
types unchanged. We define the j-interpretation by structural induction on
the raw syntax of the type theory. The interpretation on formulae is defined
in Table 4, where ? is either ∧,∨ or ⊃ and ∇ is either ∀ or ∃.

28 GAMBINO AND ACZEL

〈>〉j =def >
〈⊥〉j =def ⊥

〈φ ? ψ〉j =def J〈φ〉j ? J〈ψ〉j
〈(∇x : A)φ〉j =def (∇x : A) J〈φ〉j

〈τ(a)〉j =def τ(a)

Table 4. Definition of the j-interpretation of formulas.

〈A : type〉j =def A : type
〈A = A′ : type〉j =def A = A′ : type

〈a : A〉j =def a : A
〈a = a′ : A〉j =def a = a′ : A
〈φ : prop〉j =def 〈φ〉j : prop

〈
(
φ1, · · · , φn ⇒ φ

)
〉j =def J〈φ1〉j , · · · , J〈φn〉j ⇒ J〈φ〉j

Table 5. Definition of the j-interpretation of judgment bodies

The definition of the j-interpretation of judgement bodies follows in Ta-
ble 5. Given these definitions, we let the j-interpretation of judgements to
be defined as follows:

〈 (Γ) B 〉j =def (Γ) 〈B〉j

Definition 5.6. The j-interpretation of a rule
(Γ1) B1 · · · (Γn) Bn

(Γ) B
is said to be sound if the judgement 〈(Γ) B〉j is derivable from the judgements
〈(Γ1) B1〉j , . . . , 〈(Γn) Bn〉j .

Proposition 5.7. The j-interpretation of the predicate logic and induction
rules of ML(COLL)is sound.

Proof. The result follows by a series of routine calculations. �

We now prove three lemmas that will lead us to a proof of the result that
the j-interpretation of the Strong Collection rule is sound. For z ∈ Sub(1),
let

σ(z) =def J(∃ ∈ z)> : prop.

Lemma 5.8. For φ : prop, the judgement

Jφ ≡ (∃z : Sub(1))
(
σ(z) ∧ (∀ ∈ z)φ

)
is derivable.

THE GENERALISED TYPE-THEORETIC INTERPRETATION 29

Proof. This is a consequence of the definition of J and of Lemma 3.7. �

Lemma 5.9. For A,B : type, (x : A, y : B) φ : prop, α : Sub(A) and
γ : Sub2(B), the judgement

(1) =⇒ (2)

can be derived, where

(1) =def (∀∃ x∈α
w∈γ) (∃z : Sub(1))[σ(z) ∧ (∀∃ ∈z

y∈w)φ]
and

(2) =def (∀x ∈ α)J(∃y ∈
⋃
γ)φ ∧ (∀y ∈

⋃
γ)(∃x ∈ α)φ.

Proof. Assume (1). Then

(∀x ∈ α)(∃w ∈ γ)(∃z : Sub(1)[σ(z) ∧ (∀ ∈ z)(∃y ∈ w)φ]

so that

(∀x ∈ α)(∃z : Sub(1))[σ(z) ∧ (∀ ∈ z)(∃w ∈ γ)(∃y ∈ w)φ]

and hence, by Lemma 5.8,

(∀x ∈ α)J(∃y ∈
⋃
γ)φ.

Also,

(∀w ∈ γ)(∃x ∈ α)(∃z : Sub(1))[σ(z) ∧ (∀y ∈ w)(∃ ∈ z)φ]

so that (∀w ∈ γ)(∀y ∈ w)(∃x ∈ α)φ and hence

(∀y ∈
⋃
γ)(∃x ∈ α)φ.

Thus we have proved (2). �

Lemma 5.10. For A,B : type, (x : A, y : B) φ : prop, α : Sub(A), the
judgement

(∀x ∈ α) J(∃y : B) φ⇒
(∃v : Sub(B))

(
(∀x ∈ α) J(∃y ∈ v) φ ∧ (∀y ∈ v)(∃x ∈ α) φ

)
is derivable.

Proof. Assume (∀x ∈ α) J(∃y : B) φ. By Lemma 5.9 it suffices to show that
there is γ : Sub2(B) such that (1) of that lemma holds. By Lemma 5.8

(∀x ∈ α)(∃z : Sub(1)) [σ(z) ∧ (∀ ∈ z)(∃y : B) φ].

By Strong Collection

(∀x ∈ α)(∃z : Sub(1)) [σ(z) ∧ (∃w : Sub(B))(∀∃ ∈z
y∈w) φ]

so that

(∀x ∈ α)(∃w : Sub(B))(∃z : Sub(1)) [σ(z) ∧ (∀∃ ∈z
y∈w) φ].

By Strong Collection again there is γ : Sub2(B) such that (1) of Lemma 5.9
holds. �

30 GAMBINO AND ACZEL

Proposition 5.11. The j-interpretation of the Strong Collection rule is
sound.

Proof. The claim is a direct consequence of Lemma 5.10. �

As we will see, it is not possible to prove that the j-interpretation of
the Subset Collection rule is sound for an arbitrary local operator j. We
therefore introduce the notion of a set-presented local operator and show
that if j is set-presented then the j-interpretation of the Subset Collection
rule is sound. The notion of set-presented local operator is closely related
to the notion of set-presented closure operator or nucleus [5, 12, 16] and
inductively generated formal topology [8, 37, 38].

Definition 5.12. A local operator j on P is said to be set-presentable if
there exists ρ : Sub(P) such that the judgement

(∀p : P) τ(jp) ≡ (∃q ∈ ρ)(q ≤ p)

is derivable.

From now on we work assuming the Subset Collection rule.

Proposition 5.13. Let A,B,C : type and (x : A, y : B, z : C) ψ : prop.
If α : Sub2(A) and β : Sub(B) then there is γ : Sub2(B) such that the
judgement

(∀w ∈ α)(∀z : C)
(
(∀x ∈ w)(∃y ∈ β) ψ ⊃ (∃v ∈ γ)(∀∃ x∈w

y∈v) ψ
)

is derivable.

Proof. For w : Sub(A), u : Sub2(B), z : C let

θ(w, u, z) =def [(∀x ∈ w)(∃y ∈ β) ψ ⊃ (∃v ∈ u)(∀∃ x∈w
y∈v) ψ].

By Subset Collection

(∀w ∈ α)(∃u : Sub2(B))(∀z : C) θ(w, u, z).

By Strong Collection there is δ : Sub(Sub2(B)) such that

(∀w ∈ α)(∃u ∈ δ)(∀z : C) θ(w, u, z).

Let γ =def
⋃
δ : Sub2(B). Then

(∀w ∈ α)(∀z : C)θ(w, γ, z)

as desired. �

The next lemma is a consequence of Lemma 3.6 and Lemma 3.7.

Lemma 5.14. If j is a set-presentable local operator, then there exists κ :
Sub2(1) such that, for φ : prop the judgements

Jφ ≡ (∃u ∈ κ)(∀ ∈ u) φ
and

(∀u ∈ κ) σ(u)
are derivable.

THE GENERALISED TYPE-THEORETIC INTERPRETATION 31

Let us now assume that the local operator j is set-presentable and that
κ : Sub2(1) satisfies the properties of Lemma 5.14.

Lemma 5.15. Let A,B,C : type and (x : A, y : B, z : C) φ : prop. If
α : Sub(A) and β : Sub(B) then there is γ : Sub2(B) such that the judgement

(∀z : C)
{
(∀x ∈ α)J(∃y ∈ β) φ ⊃

(∃v ∈ γ)[(∀x ∈ α)J(∃y ∈ v) φ ∧ (∀y ∈ v)(∃x ∈ α) φ]
}

is derivable.

Proof. Let κ : Sub2(1) satisfy the properties of Lemma 5.14. For y : B, z′ :
A× C let

φ′ =def φ[z′.1, z′.2/x, z].

By Proposition 5.13 there is γ0 : Sub2(B) such that

(∀u ∈ κ)(∀z′ : A× C) [(∀ ∈ u)(∃y ∈ β) φ′ ⊃ (∃v ∈ γ0)(∀∃ ∈u
y∈v) φ′]

It follows that

(∀u ∈ κ)(∀x : A)(∀z : C) [(∀ ∈ u)(∃y ∈ β) φ ⊃ (∃v ∈ γ0)(∀∃ ∈u
y∈v) φ].

For x : A, z : C, v : Sub(B) let

ψ =def (∃u : Sub(1)) [σ(u) ∧ (∀∃ ∈u
y∈v) φ.]

By Subset Collection there is δ : Sub(Sub2(B)) such that

(∀z : C) [(∀x ∈ α)(∃v ∈ γ0) ψ ⊃ (∃w ∈ δ)(∀∃ x∈α
v∈w) ψ].

Let γ =def {
⋃
w | w ∈ δ} : Sub2(B). To complete the proof of the lemma

let z : C such that (∀x ∈ α)J(∃y ∈ β) φ. By Lemma 5.14

(∀x ∈ α)(∃u ∈ κ)(∀ ∈ u)(∃y ∈ β) φ.

so that
(∀x ∈ α)(∃u ∈ κ)(∃v ∈ γ0)(∀∃ ∈u

y∈v) φ.

As (∀u ∈ κ) σ(u)
(∀x ∈ α)(∃v ∈ γ0) ψ

so that
(∃w ∈ δ)(∀∃ x∈α

v∈w) ψ

and hence, by Lemma 5.9,

(∃w ∈ δ)[(∀x ∈ α)J(∃y ∈
⋃
w) φ ∧ (∀y ∈

⋃
w)(∃x ∈ α) φ].

It follows that

(∃v ∈ γ)[(∀x ∈ α)J(∃y ∈ v) φ ∧ (∀y ∈ v)(∃x ∈ α) φ].

�

32 GAMBINO AND ACZEL

Observe that the soundness of the j-interpretation of the Subset Collec-
tion rule follows directly from the previous lemma. We can then summarise
the results obtained in this section in the next theorem, that is our second
main result.

Theorem 5.16. Let j be a local operator.

(i) The j-interpretation of each rule of ML(COLL−) is sound.
(ii) Assuming the Subset Collection rule of ML(COLL), if j is set-presentable,

then the j-interpretation of the Subset Collection rule is sound.

Double-negation interpretation. As an application of the results just
obtained we present a type-theoretic version of the double-negation inter-
pretation. We define the double-negation local operator as follows:

(x : P) jx =def ¬¬x : P

where

¬x =def x ⊃ ⊥ : P

for x : P. It is easy to prove that j is a local operator.
Let us point out that the operator J determined by the double negation

local operator need not to be logically equivalent to double negation. In
fact, for φ : prop it holds

Jφ ≡ (∃p : P)
(
¬¬ τ(p) ∧ τ(p) ⊃ φ

)
where ¬φ =def φ ⊃ ⊥, for φ : prop. In general it will hold only that Jφ
implies ¬¬φ but not viceversa. This observation seems to isolate the main
reason for which it is possible to prove the soundness of the j-interpretation
of the Strong Collection rule. Since [9] it is well-known that there is a
standard double-negation translation of classical Zermelo-Frankel set the-
ory, ZF, into its intuitionistic counterpart, IZF. A close inspection of the
proofs reveals however that the derivation of the standard double-negation
interpretation of Collection makes use not only of the Collection axiom but
also of the Full Separation axiom scheme of IZF, that is not available in gen-
eralised predicative systems like CZF or ML(COLL). This use of Full Sep-
aration seems essential if one is working with the standard double-negation
translation [11]. Our definition of a variant of the double-negation transla-
tion overcomes this problem. These observations arose first in connection
with the development of Heyting-valued interpretations for CZF [14]. The
double-negation nucleus on the Heyting algebra of truth values corresponds
indeed to a double-negation interpretation [9, 15].

Since the j-interpretation of a proposition is logically equivalent to its
double-negation only for small propositions, it is natural to consider the
following Restricted Excluded Middle principle (REM),

(x : P) τ(x) ∨ ¬ τ(x) (REM)

THE GENERALISED TYPE-THEORETIC INTERPRETATION 33

and we can also consider a type-theoretic principle asserting that the double-
negation local operator is set-presentable

(∃r : Sub(P))(∀p : P) ¬¬ τ(p) ≡ (∃q ∈ r) q ⊃ τ(p) . (DNSP)

Theorem 5.17.
(i) The double-negation interpretation of ML(COLL−) + REM is sound.
(ii) Assuming (DNSP), the double-negation interpretation of ML(COLL)+

REM is sound.

Proof. The claims are direct consequences of Theorem 5.16. �

We conclude the paper with a lower bound for the proof-theoretic strength
of the logic-enriched type theory ML(COLL) + DNSP.

Corollary 5.18. Second-order arithmetic is proof-theoretically reducible to
the logic-enriched type theory ML(COLL) + DNSP.

Proof. Consider the set theory CZF + REM that is obtained from CZF by
adding a scheme asserting the law of exclued middle for restricted formu-
las. Using the generalised type-theoretic interpretation, this semi-classical
set theory is interpretable in the logic-enriched type theory ML(COLL) +
REM, which can in turn be interpreted in ML(COLL) + DNSP via the
double-negation translation. The set theory CZF+REM has proof-theoretic
strength at least above that of Bounded Zermelo set theory, which is ob-
tained from Zermelo set theory by replacing the Full Separation axiom
scheme with its restricted counterpart. This is because the Power Set ax-
iom is derivable in CZF + REM, and Bounded Zermelo set theory has a
double-negation interpretation into its intuitionistic counterpart, which is a
subsystem of CZF + REM. �

6. Conclusions and Future work

This paper is the first in a series of papers developing a research effort
intended to contribute to establishing the exact relationship between differ-
ent settings for constructive mathematics. These different settings are the
type-theoretical, set-theoretical, and categorical. Our effort is concerned
with getting a precise result relating CZF and a suitably formulated type
theory. A sketch of the ideas involved in getting this result was presented
without proofs in [4]. In the present paper we have focussed on two of the
crucial ingredients in our effort, namely the introduction of logic-enriched
type theories and the generalised type-theoretic interpretation.

In a sequel to this paper, we will treat the other two main ideas involved
in proving the precise result relating CZF and a logic-enriched type the-
ory. The first idea is to weaken the type-theoretic rules concerning Π-types
and W-types so as to allow the development of a types-as-classes interpre-
tation of the resulting logic-enriched type theory into CZF. The second
idea is the development of the generalised type-theoretic interpretation with

34 GAMBINO AND ACZEL

these weaker rules, so as to bring CZF in exact correspondence with a logic-
enriched type theory. The planned sequel to the present paper will also
contain detailed results characterising the propositions-as-types translation
of a logic-enriched type theory into its pure part.

A related topic is the development a general theory of dependently-sorted
logic, which could be applied to logic-enriched type theories as a special case.
The study of such a theory, only hinted at in [4], was originally explored by
the second author in an unpublished note, and developed further by his PhD
student Joao Belo. This dependently-sorted logic can be compared with the
the formulation of First-Order Logic with Dependent Sorts (FOLDS) [25,
26, 27]. The motivation for FOLDS is quite different to ours, and leads
to a different technical focus. In particular, the development of FOLDS
does not involve languages that have function symbols. This simplifies the
formulation of the syntax. From the point of view of logic-enriched type
theories functions symbols are essential and cannot be avoided, thus leading
to a more complex theory, which will be the subject of a further paper.

Acknowledgements. The first author wishes to thank the Department of
Computer Science, University of Manchester, where part of the research
described here was carried out.

Appendix A. Type-theoretic rules

The pure type theory ML. We present the rules of the pure type theory
ML, discussed in Section 1. Informal explanations for the rules of this type
theory can be found in [28].

Assumption rule. The following rule applies under the side-condition that
x /∈ FV(Γ) ∪ FV(∆).

(Γ,∆) B A : type

(Γ, x : A,∆) B

Equality rules. From now on we suppress mention of a context that is com-
mon to both the premisses and the conclusion of a rule.

A : type

A = A : type

A1 = A2 : type

A2 = A1 : type

A1 = A2 : type A2 = A3 : type

A1 = A3 : type

a : A

a = a : A

a1 = a2 : A

a2 = a1 : A

a1 = a2 : A a2 = a3 : A

a1 = a3 : A
a : A1 A1 = A2

a : A2

a1 = a2 : A1 A1 = A2

a1 = a2 : A2

Substitution rule.
(x : A,∆) B a : A

(∆[a/x]) B[a/x]

THE GENERALISED TYPE-THEORETIC INTERPRETATION 35

Congruence rules.

(x : A,∆) C : type a1 = a2 : A

(∆[a1/x]) C[a1/x] = C[a2/x] : type

(x : A,∆) c : C a1 = a2 : A

(∆[a1/x]) c[a1/x] = c[a2/x] : C[a1/x]

For ∇ that is either Π, Σ or W:

(x : A) B1 = B2 : type

(∇x : A)B1 = (∇x : A)B2 : type

(x : A) b1 = b2 : B

(λx : A)b1 = (λx : A)b2 : (Πx : A)B

Analogous rules should also be formulated for other symbols, but we omit
for brevity.

Basic types. We write O, 1, and 2 for the types with zero, one, and two
canonical elements, respectively. We thus have the following formation and
introduction rules.

O : type 1 : type 2 : type

The type with no canonical elements does not have an introduction rule.
We thus have only the following introduction rules.

01 : 1 12 : 2 22 : 2

The elimination rules follow the usual pattern.

(z : O) C : type e : O

r0(e) : C[e/z]

(z : 1) C : type e : 1 c : C[01/z]

r1(e, c) : C[e/z]

(z : 2) C : type e : 2 c1 : C[12/z] c2 : C[22/z]

r2(e, c1, c2) : C[e/z]

Finally, we give the computation rules for these types.

(z : 1) C : type c : C[01/z]

r1(0, c) = c : C[01/z]

(z : 2) C : type c1 : C[12/z] c2 : C[22/z]

r2(12, c1, c2) = c1 : C[12/z]

(z : 2) C : type c1 : C[12/z] c2 : C[22/z]

r2(22, c1, c2) = c2 : C[22/z]

36 GAMBINO AND ACZEL

Natural numbers type.

N : type

The introduction rules for this type are standard.

0N : N
n : N

succ(n) : N

In the elination and computation rules below the premisses should include
the judgement (z : N) C : type that we omit for brevity.

n : N c : C[0/z] (x : N, y : C[x/z]) d : C[succ(x)/z]

rN(n, c, (x, y)d) : C[n/z]

0 : N c : C[0/z] (x : N, y : C[x/z]) d : C[succ(x)/z]

rN(0, c, (x, y)d) = c : C[0/z]

n : N c : C[0/z] (x : N, y : C[x/z]) d : C[succ(x)/z]

rN(succ(n), c, (x, y)d) = d[n, rN(n, c, (x, y)d)/x, y] : C[succ(n)/z]

R2-rules.

e : 2 A1 : type A2 : type

R2(e,A1, A2) : type

R2(12, A1, A2) = A1 R2(22, A1, A2) = A2

Σ-rules.
A : type (x : A) B : type

(Σx : A)B : type

a : A b : B[a/x]

pair(a, b) : (Σx : A)B

Similarly to what we did for the natural numbers type, we suppress the
premiss (z : (Σx : A)) C : type in the elimination and computation rules.

e : (Σx : A)B (x : A, y : B) c : C[pair(x, y)/z]

split(e, (x, y)c) : C[e/z]

a : A b : B[a/x] (x : A, y : B) c : C[pair(x, y)/z]

split((pair(a, b), (x, y)c) = c[a, b/x, y] : C[pair(a, b)/z]

THE GENERALISED TYPE-THEORETIC INTERPRETATION 37

Π-rules.
A : type (x : A) B : type

(Πx : A)B : type

(x : A) b : B

(λx : A)b : (Πx : A)B

f : (Πx : A)B a : A

app(f, a) : B[a/x]

(x : A) b : B a : A

app((λx : A)b, a) = b[a/x] : B[a/x]

Rules for the type universe.

Formation rule.

U : type

Introduction rules.

Ô : U 1̂ : U 2̂ : U N̂ : U

e : 2 a1 : U a2 : U

R2(e, a1, a2) : U

a : U (x : T(a)) b : U

(Σx : a)b : U

a : U (x : T(a)) b : U

(Πx : a)b : U

Elimination rule.
a : U

T(a) : type

Computation rules.

T(Ô) = O : type T(1̂) = 1 : type T(2̂) = 2 : type T(N̂) = N : type

e : 2 a1 : U a2 : U

T(R2(e, a1, a2)) = R2(e,T(a1),T(a2)) : type

a : U (x : T(a)) b : U

T((Σx : a)b) = (Σx : T(a)) T b : type

a : U (x : T(a)) b : U

T((Πx : a)b) = (Πx : T(a)) T(b) : type

38 GAMBINO AND ACZEL

Rules for the proposition universe.

Formation rule.
P : type

Introduction rules.
>̂ : P ⊥̂ : P

p1 : P p2 : P

p1 ∧ p2 : P

p1 : P p2 : P

p1 ∨ p2 : P

p1 : P p2 : P

p1 ⊃ p2 : P

a : U (x : T(a)) p : P

(∀x : a)p : P

a : U (x : T(a)) p : P

(∃x : a)p : P

Elimination rule.
p : P

τ(p) : prop

Computation rules.
τ(>̂) ≡ > τ(⊥̂) ≡ ⊥

p1 : P p2 : P

τ(p1 ∧ p2) ≡ τ(p1) ∧ τ(p2)

p1 : P p2 : P

τ(p1 ∨ p2) ≡ τ(p1) ∨ τ(p2)

p1 : P p2 : P

τ(p1 ⊃ p2) ≡ τ(p1) ⊃ τ(p2)

a : U (x : T(a)) p : P

τ((∀x : a)p) ≡ (∀x : T(a)) τ(p)

a : U (x : T(a)) p : P

τ((∃x : a)p) ≡ (∃x : T(a)) τ(p)

References

[1] P. Aczel. The type theoretic interpretation of constructive set theory. In A. MacIntyre,
L. Pacholski, and J. Paris, editors, Logic Colloquium ’77, pages 55 – 66. North-
Holland, 1978.

[2] P. Aczel. The type theoretic interpretation of constructive set theory: choice princi-
ples. In A. S. Troelstra and D. van Dalen, editors, The L. E. J. Brouwer Centenary
Symposium, pages 1 – 40. North-Holland, 1982.

[3] P. Aczel. The type theoretic interpretation of constructive set theory: inductive def-
initions. In R. Barcan Marcus, G.J.W. Dorn, and P. Weinegartner, editors, Logic,
Methodology and Philosophy of Science VII, pages 17 – 49. North-Holland, 1986.

[4] P. Aczel and N. Gambino. Collection principles in Dependent Type Theory. In
P. Callaghan, Z. Luo, J. McKinna, and R. Pollack, editors, Types for Proofs and
Programs, volume 2277 of Lecture Notes in Computer Science, pages 1 – 23. Springer,
2002.

[5] P. Aczel and M. Rathjen. Notes on Constructive Set Theory. Technical Report 40,
Mittag-Leffler Institute, The Swedish Royal Academy of Sciences, 2001. Available
from the first author’s web page at http://www.cs.man.ac.uk/~petera/papers.

html.

THE GENERALISED TYPE-THEORETIC INTERPRETATION 39

[6] S. Awodey and A. Bauer. Propositions as [types]. Journal of Logic and Computation,
14(4):447 – 471, 2004.

[7] S. Awodey and M. Warren. Predicative algebraic set theory. Theory and applications
of categories, 15(1):1 – 39, 2005.

[8] T. Coquand, G. Sambin, J. M. Smith, and S. Valentini. Inductively generated formal
topologies. Annals of Pure and Applied Logic, 124(1-3):71–106, 2003.

[9] H. M. Friedman. The consistency of classical set theory relative to a set theory with
intuitionistic logic. Journal of Symbolic Logic, 38:315–319, 1973.

[10] H. M. Friedman. Set theoretic foundations of constructive analysis. Annals of Math-
ematics, 105:1–28, 1977.

[11] N. Gambino. Types and sets: a study on the jump to full impredicativity, 1999.
Laurea dissertation, Dipartimento di Matematica Pura e Applicata, Università degli
Studi di Padova.

[12] N. Gambino. Sheaf interpretations for generalised predicative intuitionistic systems.
PhD thesis, University of Manchester, 2002. Available from the author’s web page.

[13] N. Gambino. Presheaf models for constructive set theory. In L. Crosilla and P. Schus-
ter, editors, From Sets and Types to Topology and Analysis. Oxford University Press,
2005.

[14] N. Gambino. Heyting-valued interpretations for Constructive Set Theory. Annals of
Pure and Applied Logic, To appear.

[15] R. J. Grayson. Heyting-valued models for Intuitionistic Set Theory. In M. P. Fourman,
C. J. Mulvey, and D. S. Scott, editors, Applications of Sheaves, volume 753 of Lecture
Notes in Mathematics, pages 402 – 414. Springer, 1979.

[16] R. J. Grayson. Forcing in intuitionistic systems without power-set. Journal of Sym-
bolic Logic, 48(3):670–682, 1983.

[17] E. R. Griffor and M. Rathjen. The strength of some Martin-Löf type theories. Archive
for Mathematical Logic, 33:347 – 385, 1994.

[18] B. Jacobs. Categorical Logic and Type Theory. North-Holland, 1999.
[19] P. T. Johnstone. Stone Spaces. Cambridge University Press, 1982.
[20] R. S. Lubarsky. Independence results around constructive ZF. Annals of Pure and

Applied Logic, 132(2-3):209 – 225, 2005.
[21] S. MacLane and I. Moerdijk. Sheaves in Geometry and Logic. Springer, 1992.
[22] M. E. Maietti. The type theory of categorical universes. PhD thesis, Dipartimento di

Matematica Pura e Applicata, Università degli Studi di Padova, 1998. Available from
the author’s web page.

[23] M. E. Maietti. Modular correspondence between dependent type theories and cate-
gories including pretopoi and topoi. Mathematical Structures in Computer Science,
To appear.

[24] M. E. Maietti and G. Sambin. Towards a minimalistic foundation for constructive
mathematics. In L. Crosilla and P. Schuster, editors, From Sets and Types to Topology
and Analysis. Oxford University Press, 2005.

[25] M. Makkai. First-order logic with dependent sorts, with applications to category
theory. Available from the author’s web page, 1995.

[26] M. Makkai. Towards a categorical foundation of mathematics. In J. A. Makowsky
and E. V. Ravve, editors, Logic Colloquium ’95, volume 11 of Lecture Notes in Logic,
pages 153 – 190. Association for Symbolic Logic, 1998.

[27] M. Makkai. On comparing definitions of weak n-category. Available from the author’s
web page, 2001.

[28] P. Martin-Löf. Intuitionistic Type Theory — Notes by G. Sambin of a series of lectures
given in Padua, June 1980. Bibliopolis, 1984.

[29] I. Moerdijk and E. Palmgren. Wellfounded trees in categories. Journal of Pure and
Applied Logic, 104:189 – 218, 2000.

40 GAMBINO AND ACZEL

[30] I. Moerdijk and E. Palmgren. Type theories, toposes and Constructive Set Theory:
predicative aspects of AST. Annals of Pure and Applied Logic, 114(1-3):155–201,
2002.

[31] J.R. Myhill. Constructive Set Theory. Journal of Symbolic Logic, 40(3):347–382, 1975.
[32] B. Nordström, K. Petersson, and J. M. Smith. Martin-Löf Type Theory. In S. Abram-

ski, D. M. Gabbay, and T. S. E. Maibaum, editors, Handbook of Logic in Computer
Science, volume 5. Oxford University Press, 2000.

[33] M. Rathjen. Replacement versus Collection in Constructive Zermelo-Fraenkel Set
Theory. Annals of Pure and Applied Logic, 136(1–2):156–174, 2005.

[34] M. Rathjen. The disjunction and other properties for Constructive Zermelo-Frankel
Set Theory. Journal of Symbolic Logic, To appear.

[35] M. Rathjen. Realizability for Constructive Zermelo-Fraenkel Set Theory. In
J. Väänänen and V. Stoltenberg-Hansen, editors, Proceedings of the Logic Colloquium
2003. Association for Symbolic Logic, To appear.

[36] M. Rathjen and R. S. Lubarsky. On the regular extension axiom and its variants.
Mathematical Logic Quarterly, 49(5):511–518, 2003.

[37] G. Sambin. Intuitionistic formal spaces – A first communication. In D. Skordev, edi-
tor, Mathematical Logic and its Applications, pages 87 – 204. Plenum, 1987.

[38] G. Sambin. Some points in formal topology. Theoretical Computer Science, 305(1–
3):347–408, 2003.

[39] G. Sambin and S. Valentini. Building up a toolbox for Martin-Löf’s type theory: sub-
set theory. In G. Sambin and J. M. Smith, editors, Twenty-five Years of Constructive
Type Theory, pages 221–244. Oxford University Press, 1998.

Laboratoire de Combinatoire et Informatique Mathématique, Université du
Québec à Montréal, Case Postale 8888, Succursale Centre-Ville, Montréal
(Québec) H3C 3P8, Canada

E-mail address: gambino@math.uqam.ca

Schools of Mathematics and Computer Science, University of Manchester,
Manchester M13 9PL, England

E-mail address: petera@cs.man.ac.uk

