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Abstract

Over the past century, formal systems based on intuitionistic logic have been the focus
of much research in mathematical logic; in recent years, however, they have attracted
interest also in computing because of their applications to computer-assisted formali-
sation of mathematics. The class of intuitionistic formal systems that are generalised

predicative has emerged as particularly relevant both in mathematical logic and in
computer science, as witnessed by the interest in Myhill-Aczel constructive set theories
and Martin-Löf pure type theories.

A wide gap in our knowledge of this class of systems is due both to a scarce de-
velopment of sheaf interpretations at the generalised predicative level, and to an
unsystematic account of the connections between type theory, set theory and category
theory. This gap prevents us from obtaining proof-theoretic results and from gaining
conceptual insight into generalised predicative systems. The present work sets out to
improve on this unsatisfactory situation.

The first main result of this thesis is the definition of sheaf interpretations for
constructive set theories. We consider two kinds of sheaf interpretations: the first one is
more explicit and lends itself more directly to applications, while the second one is more
abstract and offers a clearer conceptual picture. We also apply sheaf interpretations to
obtain relative consistency and independence proofs for constructive set theories.

A generalised type-theoretic interpretation of constructive set theories constitutes
our second main result. To obtain it, we introduce logic-enriched type theories, which
extend Martin-Löf pure type theories with judgements to express logic. One of the
reasons for the interest in this generalised interpretation is that it leads to a precise
match between set theories and type theories. Finally, we show how logic-enriched type
theories can accommodate reinterpretations of logic, as inspired by sheaf interpretations
in set theory.
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Chapter 1

Introduction

1.1 The variety of intuitionistic systems

Intuitionistic mathematics is not a uniform body of knowledge. A number of different,
often competing, styles of intuitionistic mathematics have stemmed from Brouwer’s
pioneering work [13]. The plethora of alternative approaches is reflected in the variety
of systems that have been formulated to support the development of intuitionistic
mathematics [10]. The present work sets out to investigate intuitionistic formal systems.
The motivations for our undertaking derive mainly from two areas: mathematical logic
and theoretical computer science. Research concerning intuitionistic systems has led
to a deeper insight into the differences between alternative approaches to intuitionistic
mathematics and has been one of the central themes of mathematical logic over the
past century. More recently, however, intuitionistic systems have also become of interest
in theoretical computer science, where they have been applied to the formalisation of
mathematics and to the verification of software.

The propositions-as-types idea has played a crucial role in gaining insight into
the informal explanations for the axioms of intuitionistic logic [44, 76] and may indeed
be considered to represent the essence of the ‘constructive’ content that intuitionistic
proofs claim to have. We therefore reserve the word constructive for formal systems
in which the propositions-as-types idea is assumed. We instead use the notion of in-

tuitionistic system to mean something more general, where other treatments of logic
are also possible. A key difference between constructive and intuitionistic systems is
that various choice principles are allowed in the former, but not in the latter. Choice
principles are indeed justified by the propositions-as-types idea [59], but not in general.
For example Martin-Löf pure type theories are constructive systems [65], while the in-
ternal logic of an elementary topos is simply an intuitionistic system [12]. This thesis
will focus mainly on intuitionistic systems: one of our aims is indeed to indicate that it
is fruitful to allow other treatments of logic apart from the propositions-as-types one.
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The systems we will consider are part of a family that is of particular relevance
for intuitionistic mathematics. In order to isolate this family, it is convenient to con-
sider an extension of the Weyl-Feferman-Schütte notion of predicative system [26].
Recall, for example, that the pure type theory ML<ω is a predicative system, while
its extensions with rules for W -types, i.e. types of well-founded trees, are not [40].
We adopt the notion of generalised predicative system to mean systems that allow
generalised inductive definitions and generalised reflection. For instance, extensions
of pure type theories with W -types, as discussed above, and Mahlo universe types are
generalised predicative systems [67]. Remarkably, the exact upper bound for the notion
of generalised predicative system is however still to be determined. We will therefore
introduce a working definition and say that a system is fully impredicative if the sys-
tem of second-order arithmetic is proof-theoretically reducible to it [27]. For example,
extensions of Martin-Löf pure type theories with the rules for a type of propositions in
the style of the Calculus of Constructions [18] and the internal logic of a topos with a
natural number object are fully impredicative systems [56].

In the following, we will investigate generalised predicative systems. Considerable
evidence suggests indeed that large parts of classical and intuitionistic mathematics
may be developed at the generalised predicative level [28]. In spite of this, there is a
wide gap in our knowledge of generalised predicative systems. For example, many of
the techniques available in the study of fully impredicative systems, such as sheaf and
realisability interpretations, have not been developed yet for generalised predicative
systems. As a consequence of this situation, many problems concerning these systems
are still open. For example, important questions on the status of real numbers in
intuitionistic mathematics are still to be settled [25]. Addressing these theoretical
issues might contribute also to concrete applications. As already happened in the past
[42, 55], a better understanding of the treatment of logic in intuitionistic systems could
lead to further developments in the formalisation of mathematics using proof-checkers.

One of the challenges in the study of intuitionistic formal systems is that they may
arise in three possible settings: type theory, set theory and category theory. There
are good reasons to consider all of these settings, and the interplay between them
will play a crucial role in this thesis. Type theory allows to express most directly
foundational ideas and is best suited for the implementation in computer systems. Set
theory, instead, is closest to idealised mathematical practice and provides a convenient
setting for developing informally intuitionistic mathematics. Finally, category theory is
most abstract and allows us to capture some of the essential properties of intuitionistic
formal systems in a mathematically efficient way.
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1.2 Sheaf and realisability interpretations

When considering intuitionistic formal systems, it is essential to distinguish between
semantical explanations and interpretations. By means of illustration, we sketch
this distinction for first-order intuitionistic logic. A semantical explanation of intu-
itionistic logic consists in a collection of informal explanations that serve to introduce
and justify its axioms. The Brouwer-Heyting-Kolmogorov discussion of intuitionistic
connectives is an example of semantical explanation, since it is intended to justify the
assumption of the axioms of intuitionistic logic and explain the rejection of the law of
the excluded middle.

By an interpretation we mean instead a formal assignment of mathematical objects
to propositions, together with a notion of validity that specifies what it means for
an axiom to hold under the interpretation. The well-known assignment of open sets
of a topological space to propositions is an example of interpretation. It goes without
saying that the notions of semantical explanation and of interpretation can be extended
to formal systems that are more complex than first-order logic. For example, Martin-
Löf’s meaning explanations for his pure type theories are semantical explanations that
are intended to convince us of their consistency [59]. Similarly, we can extend the
notion of interpretation and, for example, speak of interpretations of type theories.

It is straightforward, but important, to observe that when we define an interpreta-
tion, we are developing some mathematics. For example, the topological interpretation
of intuitionistic logic is usually defined working in set theory, manipulating open sets
and operations on them. The question of which mathematical principles are used to
define interpretations is rather subtle, since interpretations are often defined work-
ing informally in an unspecified formal system. If the formal system in which we are
working informally coincides with the one whose interpretation we are defining, then
we will speak of a reinterpretation. Kleene’s realisability interpretation of Heyting
arithmetic is an example of reinterpretation [52].

Of course, the definition of the interpretation cannot be fully formalised within the
theory that is being interpreted because of Tarski’s theorem on non-definability of truth
and Gödel’s incompleteness theorems [53, Chapter I, §14]. Considerations analogous
to the ones that apply to Boolean-valued interpretations of classical set theories [11,
pages 14 – 15] apply however to intuitionistic formal systems and reinterpretations may
therefore be considered as leading either to syntactic translations or model-theoretic
constructions.

Reinterpretations are an essential tool in the study of intuitionistic formal systems.
They provide mathematically precise methods to establish proof-theoretic properties
of formal systems, such as relative consistency and independence results. There are
also conceptual reasons for the interest in reinterpretations, since they can be used to
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corroborate the informal semantical explanations given to introduce a formal system.
Using a similitude, one might also say that reinterpretations show how formal systems
behave like other mathematical structures in that they are ‘invariant by change of base’
[17].

Two main classes of reinterpretations have been considered in relation to intuition-
istic formal systems. These are distinguished according to the mathematical structure
that underlies their definition. On the one hand, we have realisability interpreta-

tions, i.e. interpretations whose underlying structure is a partial combinatory algebra
or variations thereof [82]. On the other hand, we use the notion of sheaf interpreta-

tions to include interpretations based on topological spaces, complete Heyting algebras
and sites, i.e categories equipped with a coverage [49]. These two families of interpre-
tations have been considered in all of the three settings of type theory, set theory or
category theory, but with different depth and alternative methods. Syntactic methods
have been generally used in type theory and set theory, while categorical methods have
been used in category theory.

Both sheaf and realisability interpretations seem to have been widely investigated
for fully impredicative systems, while they have been rarely and unsystematically re-
searched for generalised predicative ones. The absence of a comprehensive account of
these interpretations at the generalised predicative level represents a serious obstacle
to investigations into the proof-theoretic properties of generalised predicative systems,
and prevents us from gaining further insight into the informal explanations that have
been introduced to justify their introduction. This thesis aims at improving on this
situation.

Let us conclude these general remarks on realisability and sheaf interpretations by
pointing out that, although it is generally believed that only the former are related to
the Brouwer-Heyting-Kolmogorov explanations for intuitionistic logic, also the latter
bear some connection to the informal notion of ‘proof’ used in these explanations. We
invite the interested reader to refer to [75] for further information.

1.3 On relating types, sets and categories

Until now, we have discussed interpretations within a fixed setting, but we may also
consider the possibility of developing interpretations from one setting to another. At a
first glance, the differences between type theory, set theory and category theory may
seem to prevent this possibility. For example, note that while both type theories and
the internal languages of categories may possess a rich type structure, set theories are
generally formulated in a language with a unique and implicit type. Relating types, sets
and categories is however possible and constitutes indeed one of the most important
methods to extract information about intuitionistic formal systems. This is not an
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easy task: many of the intuitive, informal connections between the three settings do
not seem to lead to precise statements, and the existing research on relating type
theory, set theory and category theory does not seem to be completely satisfactory,
even if it has been one of the main themes of research in intuitionistic systems over the
past twenty-five years. An informal overview of these connections illuminates further
motivations and goals of the work described in this thesis.

Deeply illuminating in its conceptual simplicity, the type-theoretic interpretation
of Constructive Set Theory (CST) constitutes a fundamental link between set theories
and type theories [2, 3, 4]. This interpretation presents however two aspects that
motivate further research. Firstly, it rests on the assumption of the propositions-as-
types treatment of logic in type theory. Secondly, when combined with a types-as-sets
interpretation in the reverse direction, it leads to a mismatch between set theories and
type theories [5]. These two aspects are actually related, and one might expect to
obtain a precise match once the propositions-as-types treatment of logic is avoided.

The recent development of Algebraic Set Theory (AST) represents a robust ap-
proach to obtain connections between category theory and set theory [51]. Rather than
attempting to isolate the categorical properties of categories of sets, as in Topos The-
ory, AST focuses on the categorical properties of categories of classes. The properties
of sets are then described by axiomatising a distinguished class of maps, called small
maps. While the axioms for the ambient category are meant to be fixed, axioms for
small maps can be specified according to the set theory that is under consideration. At
the fully impredicative level the connection between AST and Intuitionistic Set Theory
(IST) is rather satisfactory, since we have axioms for small maps that correspond to
intuitionistic set theories [51, 81] and that relate them with elementary toposes [8]. A
first connection between set theories and categories at the generalised predicative level
has been obtained in [62]. Although axioms for the ambient category and for small
maps correspond well to the properties of the category of setoids in Martin-Löf pure
type theories, the relationship with CST seems amenable of some improvements. A
point originally remarked in [81] in relation to IST applies to CST as well. Although
concrete categories of classes do not seem to be exact, exactness is one of the properties
of the family of categories axiomatised in [62].

The relationship between type theory and categorical structures is a paradigmatic
example of the difficulties in refining intuitive connections to establish precise state-
ments relating different settings. The original connection between locally Cartesian
closed categories and type theories [79] was very intuitive, and had the appeal of relat-
ing type theories to a well-known family of categories. Unfortunately, such a connection
was flawed by subtle problems concerning the interpretation of substitutions in type
theory. This problem was solved by replacing locally Cartesian categories with another
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family of categories [41, 43]. This family, however, does not seem to support in a natu-
ral way the categorical constructions that are available for locally Cartesian categories.
This prevent us from transferring directly techniques from the categorical to the type-
theoretic setting. Two approaches, motivated by different issues, have been proposed
to recover the connection between well-known families of categorical structures and
type theories. A first possibility is to shift the focus from categories of contexts to
categories of setoids [42, 61, 62], while a second possibility is to formulate extensional
type theories that are directly related to categorical structures [57, 58]. Let us finally
mention that a potentially promising, but not yet widely explored, way to relate non-
extensional type theories to categorical structures is suggested by the theory of exact
completions [14, 15, 16, 60].

1.4 Aims of the thesis

The absence of a systematic account of sheaf and realisability interpretations and the
problems in relating type theory, set theory, and category theory at the generalised
predicative level motivates us to pursue a long-term project whose goals are:

(i) to isolate appropriate formal systems in the three settings,

(ii) to relate these formal systems with mutual interpretations,

(iii) to develop sheaf and realisability reinterpretations in each setting and to obtain
proof-theoretic results as an application thereof,

(iv) to relate the reinterpretations developed in different settings.

The present thesis aims to contribute to this project. We will focus on sheaf interpre-
tations for generalised predicative intuitionistic systems. Before describing our goals in
more detail, we isolate the formal systems that we consider in the following and justify
the reasons for the interest in them.

In set theory, our focus will be on the subject of Constructive Set Theory (CST).
The pioneering works on CST were intended to formulate predicative or generalised
predicative formal systems that could support the development of intuitionistic math-
ematics in set theory [35, 63]. More specifically, we will study set theories related to
the formal system CZF, i.e. Constructive Zermelo-Frankel set theory [7]. The rea-
sons for this choice are both mathematical and conceptual. First, the axioms for this
set theory seem to correspond naturally to the principles required when developing
generalised predicative mathematics in set theory. For example, the Subset Collection
axiom, which is one of the peculiar axioms of CZF, seems to be necessary in order to
show that the class of Dedekind cuts, as defined in CST, forms a set. A second reason
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to focus on systems related to CZF is the type-theoretic interpretation in Martin-Löf’s
pure type theories [2, 3, 4]. This interpretation allows us indeed to link notions and
concepts from set theory to type theory.

In type theory, we will be interested in the area of Dependent Type Theory (DTT).
The situation in this area is less straightforward than in set theory. On the one hand,
there are Martin-Löf pure type theories [65]. Although these systems are generalised
predicative systems, they treat logic using the propositions-as-types idea. On the other
hand, there are the Calculus of Constructions and its extensions [18, 55]. Although these
type theories do not assume the propositions-as-types treatment of logic, they are fully
impredicative. In order to obtain generalised predicative intuitionistic systems, we will
therefore be led to introduce type theories that extend Martin-Löf pure type theories
so as to allow treatments of logic that are not informed by the propositions-as-types
idea. We will call these formal systems logic-enriched type theories.

In category theory, it would be natural to explore Algebraic Set Theory (AST) [51].
This is because AST seems to be flexible enough to pursue the study of generalised
predicative formal systems in a categorical setting, where recent research is currently
aiming to isolate a notion of predicative topos [61, 62]. In this thesis the direct
connections with AST will be rare, since we focus on the settings of type theory and
set theory. Ideas and concepts of AST had however a remarkable influence on our work.

The first main goal of the thesis is the development of sheaf reinterpretations for
CST. We aim to develop two kinds of sheaf interpretations: the first one will be based on
complete Heyting algebras and the second one on sites. We also set out to obtain first
examples and applications of sheaf reinterpretations, still working informally within
constructive set theories. In order to do so, we develop some formal topology [68]
in CST and reobtain some results of pointfree topology [30, 46] at the generalised
predicative intuitionistic level.

Another main goal of the thesis is to indicate that a primitive treatment of logic
in DTT is fruitful. Firstly, we will show that the type-theoretic interpretation of CST
into pure type theories can be generalised to an interpretation into logic-enriched type
theories. The main reason for the interest in the generalised interpretation is that it
leads to a precise match when combined with a types-as-classes interpretation in the
reverse direction. Secondly, we aim to show that logic-enriched type theories allow us
to develop reinterpretations of logic that do not seem available for pure type theories.
In particular, we will make a first step towards the definition of sheaf reinterpretations
in DTT.
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1.5 Methods

The proposed research is adventurous in nature. Let us highlight some of the challenges
that we face, and discuss some of the ideas that we will exploit to address them.

1.5.1 Sheaf interpretations for CST

The main challenge to obtain sheaf interpretations for generalised predicative systems
in the setting of set theory is to transfer results from Intuitionistic Set Theory (IST) to
Constructive Set Theory (CST). Since Scott’s topological interpretation of intuitionistic
analysis [75, 77], the research on sheaf interpretations has mainly focused on the fully
impredicative level, and hence on IST. While in IST the set existence axioms of classical
set theories are retained and the other axioms are modified simply to accommodate
intuitionistic logic [74], in CST some of the existence axioms of classical set theories
are substantially modified or altogether dropped [7]. This is necessary in order to obtain
generalised predicative systems instead of fully impredicative ones. For example, the
Full Separation and the Power Set axiom, that are assumed in IST, are respectively
modified and rejected in CST.

Although most working mathematicians might believe the Power Set and the Full
Separation axioms are essential, this is not the case. Three ingredients allow to com-
pensate their absence in CST: the class notation, the assumption of collection axioms,
and the possibility of exploiting inductive definitions. Class notation will be used ex-
tensively when we work informally in CST. The assumption of the Power Set axiom, i.e.
that the class of subsets of a set forms a set, can be avoided very frequently, provided
that the formulation of some notions is reconsidered. For example, the carrier of a
complete Heyting algebra is generally assumed to be a class in CST. The absence of
Full Separation is instead partially compensated by the strengthening of the Collection
axiom of IST to the Strong Collection axiom of CST [35]. The other collection axiom
of CST that we will consider here is Subset Collection [7, Chapter 7], which allows us
to recover some of the consequences of the Power Set axiom. For example, the class of
Dedekind cuts can be proved to be a set under the assumption of Subset Collection [7,
Section 3.6]. Finally, inductive definitions provide a very efficient and widely applicable
method to replace the classical use of ordinals. For example, we will often isolate classes
whose elements will be used to interpret the sets of CST using inductive definitions.
Furthermore, assuming the Regular Extension axiom, it is also possible to show that a
wide family of inductive definitions determine sets [7, Chapter 5].

When it comes to the definition of sheaf interpretations, the differences between
IST and CST present us with two different issues. On the one hand, we need to see
whether these interpretations can be actually be defined working informally in CST. On



1. Introduction 18

the other hand, we have to investigate whether the axioms of CST are valid under the
interpretations. The first issue becomes clear once we recall that sheaf interpretations
are generally developed using notions, such as that of a complete Heyting algebra, that
need to be reconsidered in CST. The second issue is even more problematic, and is best
illustrated considering sheaf interpretations of collection axioms of IST and CST. At
the fully impredicative level, the validity of the Collection axiom of IST under sheaf
interpretation is generally proved using the Full Separation axiom that is not assumed
in CST. For example, this is the case in the double-negation translation of classical
Zermelo-Frankel set theory into its intuitionistic counterpart [34]. Therefore, it is not
clear a priori whether we can prove the validity of the Strong Collection axiom of CST
without the assumption of Full Separation.

A careful distinction between classes and sets, on the one hand, and between arbi-
trary and restricted formulas, on the other hand, represents a promising approach to
address the first and the second issue, respectively. We already mentioned the example
of the notion of a complete Heyting algebra, saying that in CST we may allow the
carrier of the algebra to be a class. One of the reasons to do this is to define a number
of examples while still working in CST. Once the basic notions are set up, the devel-
opment of pointfree and formal topology [46, 68] provide us indeed with guidance to
obtain examples. When it comes to the definition of sheaf interpretation of formulas,
arbitrary formulas will be associated to classes, and restricted formulas to sets. This
is motivated by the simple, but important, observation that sentences of the language
of CST correspond to subclasses of the class {∅}, while restricted sentences correspond
to subsets of it. It seems therefore sensible to respect this distinction when it comes to
defining sheaf interpretations. As we will see in Part II of the thesis, the development
of sheaf interpretations for CST exploits in an essential way not only these ideas, but
also the assumption of the collection axioms in CST.

1.5.2 Collection principles in DTT

The propositions-as-types idea seems to be one of the main obstructions to the devel-
opment of sheaf interpretations in DTT. On the one hand, considerable research in
categorical logic shows that strong choice principles are not generally valid under sheaf
interpretations [56, 62] and on the other hand a type-theoretic version of the axiom of
choice is derivable assuming the propositions-as-types paradigm [59, pages 50 – 52]. To
approach the study of sheaf interpretations in DTT, it seems therefore convenient to
abandon the propositions-as-types idea. We will therefore formulate logic-enriched type
theories, that are extensions of pure type theories in which logic is treated as primitive.
The development of sheaf interpretations in DTT may then be obtained following the
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ideas that inspired the sheaf interpretations in CST, provided that we relate construc-
tive set theories and logic-enriched type theories. We are therefore naturally led to
consider a generalisation of the original type-theoretic interpretation of CST [2, 3, 4].

The generalisation, that involves replacing pure type theories with logic-enriched
type theories, is not straightforward. The propositions-as-types idea plays indeed a cru-
cial role to prove the validity of Restricted Separation, Strong Collection and Subset
Collection axioms of CST under the original type-theoretic interpretation. In partic-
ular, the type-theoretic axiom of choice, that is no longer derivable in logic-enriched
type theories, was exploited in the proofs regarding the collection axioms. To overcome
its absence, we consider collection principles in DTT that are related to the collection
axioms of CST.

The formulation of these collection principles is constrained by the non-extensional
aspects of DTT [42, 64]. We will then have to resort to the expressive power allowed
by type dependency and to the variety of constructs available in logic-enriched type
theories. The non-extensional aspects of DTT reveal themselves to be a major obstacle
also in the development of sheaf interpretations. We will therefore limit ourselves to
considering only one of the two steps in which sheaf interpretations can be divided.
We leave investigations into the other step for future research. Remarkably, the step
that we consider can be accommodated also in the non-extensional setting of DTT. At
this point, the development of sheaf interpretations for CST and the generalised type
theoretic interpretation can be put into use. Once again, however, we have to overcome
the non-extensional aspects of DTT.

1.6 Overview

This thesis is organized in three parts. Part I is mainly devoted to introduce construc-
tive set theories and pure type theories, and to fix notation and terminology. Part II
presents sheaf interpretations for CST. Part III introduces logic-enriched type theories
and applies collection principles in DTT.

Part I includes chapters 2 and 3. Constructive set theories are introduced in Chapter
2, where we relate them with classical and intuitionistic set theories. The axioms for
all the set theories considered in this thesis are contained in Appendix A. We also
discuss some of the peculiar aspects of the development of mathematics in CST, and
prove some of the results that will be used to develop sheaf interpretations for CST.
Chapter 3 is just a review of the formulation of pure type theories, and is accompanied
by Appendix B, where we spell out the rules for the type theories considered here.

Part II includes chapters 4, 5 and 6. Chapter 4 develops some formal topology
in CST. First we isolate the notion of a set-generated frame and the notion of a set-
presented frame, that are most relevant for this development. We then study concrete
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examples of these notions. This will be convenient in order to obtain examples and
applications of sheaf interpretations. Chapter 5, based on joint work with Peter Aczel,
studies Heyting-valued interpretations for CST [37]. At the end of the chapter, we
present some first proof-theoretic applications and discuss further potential directions
of research. Chapter 6 concludes Part II by presenting sheaf interpretations for con-
structive set theories as determined by a site. While developing these interpretations,
we will often remind the reader of the analogy between the category of classes and the
category of presheaves, that we actually make precise using some of the ideas of AST.

The results obtained up to this point will highlight that the the collection axioms
of CST have a peculiar relationship with sheaf interpretations. On the one hand they
play a crucial role in setting up these interpretations, and on the other hand they
are preserved by these interpretations, i.e. they imply the validity of their instances
under the interpretations. The introduction of logic-enriched type theories allows us to
transfer some of these facts to DTT.

Part III includes chapters 7, 8 and 9 and it is based on joint work with Peter Aczel
[6]. Only results due to the author of the present thesis are included here, unless it is
necessary to do otherwise for reasons of clarity, and this will be indicated explicitly.
Chapter 7 is devoted to introduce logic-enriched type theories as extensions of pure
type theories and to formulate collection principles. Collection principles find their first
application in Chapter 8, where we present a generalised type-theoretic interpretation
of CST in logic-enriched type theories. Here, collection principles are used to prove
the validity of the collection axioms under the interpretation. Chapter 9 studies how
logic-enriched type theories accommodate reinterpretations of logic. We first focus
on a propositions-as-types interpretation, that reduces a logic-enriched type theory to
its pure counterpart. Collection principles are valid under the propositions-as-types
interpretation, since they are consequences of the type-theoretic axiom of choice that
is derivable in pure type theories. We then study reinterpretations of logic, as in one of
the steps of sheaf interpretations. Here collection principles play a double role: on the
one hand they are used to set up the reinterpretation and on the other hand they are
preserved by it, just as in CST. We end the thesis with conclusions and a discussion of
future research in Chapter 10.
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Chapter 2

Constructive set theories

2.1 Language and axioms

In this chapter we introduce Constructive Set Theory (CST) and present some first
results that will be used to develop sheaf interpretations. One of the particularly good
features of constructive set theories is that they can be introduced very directly, like
classical ones [53]. Furthermore, the development of mathematics in CST can take
advantage of the class notation that is widely used in mathematical practice. In this
section, we will set up a set-theoretic language and then present constructive set theories
by simply listing their axioms. Since the axioms for a constructive set theory are very
different from the ones for a classical or intuitionistic set theory, we will help the readers
to gain some insight into CST by reviewing some of the connections between classical,
intuitionistic and constructive set theories in Section 2.2.

We will then focus just on CST. Firstly, we fix some notation that will be used
when working informally in CST and recall the familiar class notation that will be
used extensively elsewhere in the thesis. Secondly, we will take a category-theoretic
perspective and describe some of the properties of the category of classes. This will be
useful when, in Chapter 6, we relate the category of classes to categories of presheaves.
Finally, at the end of the chapter, we prove some results that will be particularly useful
in the development of sheaf interpretations for CST. Overall, this chapter contains the
minimal background needed to read the remainder of the thesis; we will often point
the reader to specific sections and results of [7] that the reader might consult for more
details.

Let us conclude these introductory observations with a remark concerning the use
of the word ‘constructive’, that we decided to reserve for systems that adopt the
propositions-as-types treatment of logic. Although logic is treated as primitive in set
theory, the propositions-as-types idea is an essential component for the justification of
the axioms of CST, as given by the original type-theoretic interpretation [2, 3, 4]. It
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seems therefore reasonable, as well as coherent with the terminology existing in the
literature, to speak of constructive set theories.

Remark. Let us highlight that we use ‘CST’ as an abbreviation for ‘Constructive
Set Theory’, i.e. the general area of research, while we use CZF for the specific formal
systems of Constructive Zermelo-Fränkel set theory, that we isolate in what follows.
We generally use abbreviations in boldface font to stand for specific formal systems.

2.1.1 Language

We now introduce the language L that will be used to formulate the axioms of the set
theories we consider. We prefer to assume restricted quantifiers as primitive symbols
and to have the membership relation as defined symbol. This will be convenient when
we come to the definitions of interpretations of constructive set theories in Chapter 5
and Chapter 6.

The language L has symbols xi for each natural number i, a binary relation sym-
bol = denoting equality, a constant ⊥ denoting the canonical false proposition, binary
connectives ∧, ∨, → denoting conjunction, disjunction and implication respectively,
unrestricted quantifiers (∀xi) and (∃xi), for all natural numbers i, denoting universal
and existential quantification over all sets, and restricted quantifiers (∀xi ∈ xj) and
(∃xi ∈ xj), for all natural numbers i and j denoting universal and existential quantifi-
cation over sets that are elements of xj . An expression is any list of symbols. We say
that an expression is a formula if it is formed according to the following rules:

1. xi = xj is a formula for all i and j,

2. ⊥ is a formula,

3. if φ and ψ are formulas then (φ) ∧ (ψ), (φ) ∨ (ψ) and (φ)→ (ψ) are formulas,

4. if φ is a formula, then (∀xi ∈ xj)φ and (∃xi ∈ xj)φ are formulas for all i and j ,

5. if φ is a formula then (∀xi)φ and (∃xi)φ are formulas for all i.

We say that a formula is restricted if it constructed using only 1 – 4 above. For xi
and xj define the membership relation by letting

xi ∈ xj =def (∃xk ∈ xj)xi = xk .

Observe that the membership relation is defined by a restricted formula. We can then
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introduce some usual definitions: for φ, ψ formulas and xi, xj variables define

> =def ⊥ → ⊥ ,

φ↔ ψ =def (φ→ ψ) ∧ (ψ → φ) ,

¬φ =def φ→ ⊥ ,

xi /∈ xj =def ¬xi ∈ xj .

We define L(V ) as the extension of the language L that is obtained by adding
constants for sets. This language will be used in the following to state set-theoretic
axioms.

Free and bound variables. Free and bound variables of formulas are defined as
usual. We write FVφ for the set of free variables of a formula φ.

We say that a formula φ is a sentence if it has no free variables.

Substitution. Let φ be a formula with FVφ = {x1, . . . , xn}. We write

φ[e1, . . . , en/x1, . . . , xn]

for the result of simultaneously substituting expressions ei for the free occurrences of
xi in φ for i = 1, . . . , n.

When working informally in a set theory, it is convenient to depart from the strict
definition of the formal languages L and L(V ) and use a richer notation. In the following
we use lower-case Greek letters φ, ψ, ξ for arbitrary formulas, and θ, η for restricted
formulas. We use symbols x, y, z, u, v, w to stand for the variables of L. Finally, we
use lower-case letters that are not used for variables to stand for constants for sets.
As usual, we will make use of with accents, subscripts and superscripts when this is
convenient.

2.1.2 Axioms for set theories

The axioms for a set theory can be naturally divided into two groups: logical axioms
and set-theoretical axioms. Logical axioms specify the underlying logic of the set theory,
e.g. classical or intuitionistic, while set-theoretical axioms specify properties of sets. As
we will see in our discussion of set theories in Section 2.2 there is remarkable interaction
between the two groups of axioms.

Let us briefly discuss logical and set-theoretical axioms that will be considered in
the remainder of the chapter. We first review logical axioms. Constructive set theories
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have the usual axioms for first-order intuitionistic logic as well as axioms in (2.1) for
restricted quantifiers. We write the logical axioms for restricted quantifiers as schemes
in the extended language L(V ), and use the definitions and the notational conventions
that we have just introduced:

(∃x ∈ a)φ ↔ (∃x)(x ∈ a ∧ φ) ,
(∀x ∈ a)φ ↔ (∀x)(x ∈ a→ φ) .

(2.1)

The law of excluded middle (EM) is the scheme

φ ∨ ¬φ ,

where φ is an arbitrary formula. We may consider a variation over the law of excluded
middle that is suggested by the distinction between arbitrary and restricted formulas.
The law of restricted excluded middle (REM) is the scheme

θ ∨ ¬θ ,

where θ is a restricted formula. Let us now discuss set theoretical axioms. The set
theoretic axioms can be naturally divided into three groups: structural, set existence
and collection axioms. All the axioms for the set theories we consider are presented
in Appendix A. They are formulated in the language L(V ). Observe that some of
them are given as axiom schemes. When referring to an axiom we prefer to avoid to
explicitly recall whether it is an axiom scheme or not, as this is clear from the name
used to denote it. We will therefore simply say ‘Pairing’ or ‘Strong Collection’ instead
of ‘Pairing axiom’ or ‘Strong Collection axiom scheme’.

Constructive Zermelo-Frankel set theory (CZF) is the set theory with Extension-
ality and Set Induction as structural axioms; Pairing, Union, Infinity and Restricted
Separation as set existence axioms; Strong Collection and Subset Collection as col-
lection axioms. We also consider CZF− and CZF+, that are a subtheory and an
extension of CZF, respectively. Starting from CZF, the set theory CZF− is obtained
by omitting Subset Collection, while CZF+ is obtained by adding Regular Extension
[7].

2.2 On relating set theories

Readers who are not familiar with CST may find difficult to understand its axioms.
We will therefore briefly review some well-known facts relating classical, intuitionistic
and constructive set theories, as they may help gaining some insight into the ideas
motivating the formulation of the axioms of CZF. We assume the reader has some
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familiarity with set theory [53].
First of all, let us recall the axioms of classical and intuitionistic Zermelo-Frankel

set theory. Classical Zermelo-Frankel set theory (ZF) is the set theory based on clas-
sical logic with Extensionality and Foundation as structural axioms; Pairing, Union,
Infinity, Full Separation, and Power Set as set existence axioms; Replacement as the
only collection axiom. Intuitionistic Zermelo-Frankel set theory (IZF) is the set the-
ory based on intuitionistic logic with Extensionality and Set Induction as structural
axioms; same set existence axioms of its classical counterpart; and Collection as the
only collection axiom. Table 2.1 highlights the difference between the axioms of these
three set theories.

Table 2.1: Axioms and set theories.

Axioms ZF IZF CZF

Extensionality X X X

Foundation X

Set Induction X X

Pairing, Union, Infinity X X X

Power Set X X

Full Separation X X

Restricted Separation X

Replacement X

Collection X

Strong Collection X

Subset Collection X

Observe that CZF is a subtheory of IZF, which is in turn a subtheory of ZF.
CZF is included in IZF because Strong Collection follows from Collection and Full
Separation, and because Subset Collection follows from Power Set [2]. IZF is included
in ZF because, assuming classical logic, Set Induction follows from Foundation and
Collection follows from Replacement [74].

2.2.1 Structural and set existence axioms

When considering structural axioms we contrast ZF, that assumes Foundation, with
IZF and CZF, that assume Set Induction. There are two reasons for replacing Foun-
dation with Set Induction in set theories based on intuitionistic logic. Firstly, assuming
the law of excluded middle, Foundation is equivalent to Set Induction. Secondly, Set
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Induction does not imply the law of excluded middle, while Foundation does [7, Chap-
ter 9]. In the discussion of set existence axioms we contrast CZF on one side, with ZF

and IZF on the other side. The reason for this is that CZF is a generalised predicative
system, while both ZF and IZF are fully impredicative. In particular, the set existence
axioms of CZF are obtained from the ones of IZF by dropping Power Set and replacing
Full Separation with Restricted Separation.

Avoiding the use of Power Set is not as problematic as one might expect, since we
can still treat the collection of subsets of a set as a class, as we will discuss in Section
2.3. Furthermore, some of the applications of Power Set in Classical Set Theory can
be recovered by using Subset Collection that is part of CZF. The situation is similar
with respect to Full Separation. We can of course treat collections of elements of
a set determined by an unrestricted formula as classes, but it is a remarkable that
when developing mathematics informally in set theory, Full Separation is rarely used
in its ‘full’ form, and Restricted Separation often suffices, as we will see in Chapter 4.
Furthermore, the formulation of Strong Collection partially compensates the absence
of Full Separation from CZF, as we now discuss.

2.2.2 Collection axioms and REA

We now discuss the collection axioms of CZF. As we will see, these axioms play a
crucial role in the development of sheaf interpretations for CST. Furthermore, they
seem to provide much of the ‘expressive power’ that is used to develop constructive
mathematics in set theory.

Let us first discuss Strong Collection. Observe that, using just the axioms of intu-
itionistic logic, Strong Collection implies both Collection and Replacement. Further-
more, assuming Full Separation, Collection implies Replacement. An analysis of the
reverse implications provides some insight into the formulation of the Strong Collection
axiom. In Zermelo set theory, i.e. ZF without Replacement, classical logic allows us
to show that Replacement implies Collection, which in turn implies Strong Collection,
using Full Separation. In Intuitionistic Zermelo set theory, i.e. IZF without Collec-
tion, Full Separation still allows us to prove that Collection implies Strong Collection.
Without the assumption of classical logic, Replacement does not imply Collection, as
proved by Harvey Friedman: we invite the reader to refer to [74] and references therein
for more details. Within an intuitionistic set theory, one is therefore led to consider
Collection as an axiom. Once Full Separation is omitted, however, Collection does not
seem to imply Strong Collection anymore. To retain all the strength of the Replace-
ment axiom scheme of ZF, it seems therefore that Strong Collection is the appropriate
axiom to consider in CST. In what follows, when working informally in CZF, we will
sometimes indicate explicitly applications of Strong Collection for which Replacement
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is sufficient.
Let us now discuss Subset Collection. First of all, recall that Power Set implies

Subset Collection which in turn implies Myhill’s Exponentiation axiom [63], expressing
that the class of functions between two sets is a set. These implication are most
easily seen by introducing the Fullness axiom that is equivalent to Subset Collection
[7, Chapter 7]. Subset Collection has however mathematical consequences that do not
seem to follow from Exponentiation, such as the sentence asserting that the Dedekind
real numbers form a set [7, Section 3.6].

The Regular Extension axiom (REA) that is part of the set theory CZF+, will
play an important role when we use inductive definitions in CST. Assuming REA, it is
indeed possible to show that many inductive definitions determine sets [7, Chapter 5].
We will also make use of Set Compactness theorem that is a consequence of REA [7,
Section 5.5].

2.2.3 Adding excluded middle

One of the important features of CZF is that if we extend it with the law of excluded
middle (EM) we obtain a set theory that has the same theorems as ZF. This is
because, assuming EM, Strong Collection implies Full Separation and Subset Collection
implies Power Set. To prove this second claim, recall that Subset Collection implies
Exponentiation, and observe that EM implies that the power set of {0} is {0, 1}. Using
these facts, for any set a we can form the set of the functions from a to {0, 1}. These
functions behave like characteristic functions and thus give us the power set of a, as
wanted.

We may also consider extensions of a constructive set theory with restricted excluded
middle scheme (REM). A refinement of the argument just presented shows that if we
extend CZF with REM we can still derive the power set axiom. We may observe
that the classical set theory that is obtained from ZF by dropping replacement and
substituting Full Separation with Restricted Separation is fully impredicative, because
of the presence of Power Set. This set theory has a double-negation interpretation into
its intuitionistic counterpart [34], which is a subtheory of CZF + REM. Therefore the
extension of CZF with REM is a set theory that has at least the same proof theoretic
strength as second-order arithmetic, and hence is fully impredicative [7, Chapter 9].

2.3 Working in CST

2.3.1 Classes

When developing constructive mathematics in CST we can take advantage of the fa-
miliar informal set theoretic notation that is used also in the classical context. This
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informal notation will be widely exploited in the remainder of the thesis. In particular,
we will use classes and the convenient notation associated to them [7, Chapter 3]. We
will use upper-case letters A,B,C, . . . to stand for classes. Here we list the definitions
of some classes that will be used in the remainder of the thesis. Working informally
within CZF−, let us define the empty class and the class of all sets respectively as

∅ =def {x | x 6= x} ,

V =def {x | x = x} .

The following definitions will be also useful

0 =def ∅ ,

1 =def {0} ,

2 =def {0, 1} .

Furthermore we use N and Q to stand for the classes of natural and rational numbers,
respectively, that are defined in the usual way [7, Section 3.5]. We use Rd for the class
of Dedekind reals, as defined in [7, Section 3.6]. In many important cases it is possible
to show that a defined class is actually a set. The class of natural numbers, for example,
can be shown to be a set using Infinity. For real numbers the issue is more complex,
and therefore here we just recall that in CZF the class Rd of Dedekind cuts forms a
set, and invite the reader to refer to Theorem 3.24 of [7] for more details.

2.3.2 Power classes

The distinction between sets and classes is a crucial one in CST, and it needs to be
carefully treated when working informally within a constructive set theory. Let us point
out two aspects of this distinction that will play an important role in the rest in the
thesis: the distinction between subsets and subclasses and the use of power classes.

Let A and P be a classes. We say that a class P is a subclass of A if P ⊆ A, and
that it is a subset if it is also a set. The distinction between subclasses and subsets
is particularly relevant because the Full Separation and the Power Set are not part of
the set theories we will work in. For a set a and a formula φ with a free variable x we
may define

P =def {x ∈ a | φ} . (2.2)

Observe that P is a subclass of a. Without the assumption of Full Separation it is not
possible to assert that P is a set in general.

We may also consider the power class of a, i.e the class of subsets of a set a,
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defined as follows:

Pow a =def {x | x ⊆ a} .

Without the assumption of Power Set, this class cannot be asserted to be a set. Observe
that elements of Pow a, just like elements of any other class, are sets. Hence, we cannot
assert that the class defined in (2.2) is an element of Pow a unless we first show that it
is a set.

2.3.3 Truth values

The power class of 1 will play an important role in the applications of Heyting-valued
interpretations in Chapter 5 and therefore it is convenient to have a special notation
for it:

P =def Pow 1 .

The distinction between classical, intuitionistic set theories can also be appreciated by
contemplating the different status of the class P in the three contexts. For p in P, define

! p =def (∃ ∈ p)> ,

where stands for an anonymous bound variable. For for a sentence φ, define

JφK =def { ∈ 1 | φ} ,

and observe that we have

φ↔ !JφK .

There are three separate aspects to consider when discussing the class P: first, whether
P is a class or a set; second, what are the elements of P; and finally what algebraic
structure P possesses. In CZF the class P cannot be asserted to be a set, and we must
distinguish between subsets and subclasses of 1. Arbitrary and restricted sentences
correspond to subclasses and subsets of 1, respectively and therefore, elements of P

correspond only to restricted sentences. In IZF, Power Set allows us to prove that the
class P is a set and Full Separation implies that we do not need to distinguish between
subclasses and subsets of 1. Therefore elements of P correspond to arbitrary sentences.
In ZF the situation is even more extreme and, by the law of excluded middle, we can
show that P coincides with 2. The algebraic structure on P are also very different in the
three contexts. We have that P is a complete Boolean algebra in ZF and a complete
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Heyting algebra in IZF. As we will see in Chapter 4, P is instead an example of the
notion of ‘set-generated frame’ within CZF.

2.4 Categories of classes

To gain further insight a particular part of mathematics, it is often helpful to take a step
back from its concrete development, and stare at it from a more abstract perspective,
such as the one given by category theory. This is not only conceptually important, but
often mathematically efficient. It is however crucial to choose carefully which category
one should focus on. For example, it has been argued that replacing the category of
frames with the one of locales is a key step in pointfree topology [48]. Set theory
is no exception in this respect. While categories of sets have been the focus of much
attention, and provide one of the motivations for the introduction of Topos Theory [54],
categories of classes have been largely ignored, at least until the recent development of
AST, i.e. Algebraic Set Theory [51, 61, 62, 81].

One of the reasons to prefer considering categories of classes over categories of sets
is their generality. Sets are indeed special kind of classes, namely classes that are ‘small’
in some sense. Secondly, there are concepts and axioms that can hardly be expressed
considering only categories of sets. An important example of this phenomenon is the
Collection axiom of Intuitionistic Set Theory [51]. Once the perspective of AST is
assumed and categories of classes are taken as the basic object of study, however, we
face the problem of isolating sets from classes. In line with other parts of category
theory [50] or categorical logic [45], this can be done by axiomatising a distinguished
family of maps, that in this case are called small. In concrete categories of classes,
small maps are the functions between classes whose fibers are sets, as we will see in
Subsection 2.4.2.

2.4.1 Categories of classes, abstractly

Here, we will only review some basic concepts of AST that will be useful in Chapter 6
to relate formally the category of classes with the category of presheaves, as defined in
CST. We assume that the reader has some familiarity with categorical logic [66]. For
more information on AST we invite the reader to refer to [51, 81] and in particular to
[61, 62] for its aspects more closely related to generalised predicative theories. For the
readers that are not familiar with AST, more intuition will be hopefully available after
reading Subsection 2.4.2, where we describe a concrete example of the abstract notions
described here.

A reasonable basic setting to consider axioms for small maps is the one of a category
E that is regular, has stable disjoint coproducts, and has right adjoints to pullback
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functors between families of subobjects. Given a map F in E , we write ∃F and ∀F for
the left and right adjoint adjoints to the pullback functor F ∗ induced by F , where the
existence of the left adjoint is a consequence of the fact that E is regular. We like to
draw this situation as follows:

A

F
��

SubA

∀F
��

∃F
��

B SubB .

F ∗

OO

We can then assume to have a distinguished family S of small maps that satisfies, for
example, the axioms for small maps listed in Section C.1 on page 194. We say that an
object A is small if the map A // 1 is small, where 1 is a terminal object of the
category E .

The following notion will be of some interest both in categories of classes and in
categories of presheaves in CST. Its formulation is taken from [51, Chapter I, §3], but
it is also appears in [81], but under the name ‘small relation’.

Definition 2.1. Let A be a an object of E . For an object I of E , we say that a
subobject R // // I ×A is an I-indexed family of small subobjects of A if the

composite map R // // I ×A π1 // I is a small map. ♦

This notion allows to describe in an abstract way the behaviour of power classes, as
expressed by axiom (P1) of Section C.2. The next notion that we introduce is taken
from [81] and will also be of interest both in categories of classes and in categories of
presheaves.

Definition 2.2. We say that an object U in E is an universal if for every object A
in E there is a monomorphism from A to U . ♦

We have now completed the brief presentation of the notions of AST that will
be necessary in Chapter 6. There would be much more to say, as one of the most
interesting aspects of AST is the formulation of axioms for small maps related to the
choice principles for CST [62]. However, those axioms will not play a role in this thesis,
and therefore we prefer to avoid to discuss them.

2.4.2 Categories of classes, concretely

We now give an example of a category E with a family of small maps that satisfies the
properties we just discussed,working informally in CZF. The objects of the category
will be classes, and hence the whole category will be ‘extra-large’ in that its objects
are neither a set nor a class, but rather a collection of classes. This will be the case
also for categories of presheaves that we are to define in Chapter 6. In order to discuss



2. Constructive set theories 33

these categories at a completely formal level, one would need to introduce an extension
of the language of CST to accommodate variables for classes, and then show that such
an extension is conservative. However, we prefer to avoid these tiresome details, and
continue the discussion at a rather informal, but hopefully rigorous, level.

Let Classes be the category whose objects are classes and maps are function classes,
i.e. functional relations between classes. Note that functional relations are generally
classes, and not sets. From now on we prefer to write E instead of Classes. The notion
of set determines a family of small maps S in E . For a map F from A to B we say that
F is small if, for all b in B, the fiber of b along F , i.e. the class

{x ∈ A | Fx = b} ,

is a set. Observe that a class is a small object in E if and only if it is a set.
It is straightforward to observe that the category E is regular and that the other

properties required at the start of Subsection 2.4.1 hold. Let us however recall from [81]
that E does not seem to be exact, i.e. to have ‘well-behaved quotients’ of equivalence
relations [16]. Given an equivalence relation R on a class A, it seems necessary to
assume that R is a set in order to define the quotient of A under R [7, Section 3.4].
This is because quotients are given by the equivalence classes of R, which need not to
be sets unless R itself is assumed to be a set.

As for axioms for small maps, the category E clearly satisfies not only the axioms
(A1) – (A6) in Section C.1, but also the axiom (P1) in Section C.2. This is due to
the definability of power classes in CST. Remarkably, however, these power classes are
not small objects, because of the absence of Power Set. Finally, observe that the class
of all sets is clearly a universal object in E .

2.5 Some consequences of the collection axioms

In this section we present some consequences of the collection axioms of CZF. The
proofs of these results are given in some detail to illustrate the kind of reasoning that is
used when working informally in CST. For the moment we work informally in CZF−.
We will apply these propositions in the development of sheaf interpretations for CST
in Part II of the thesis.

Proposition 2.3. Let a be a set and let ψ be a formula of L(V ). Assume that

(∀x ∈ a)(∃y)ψ .
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Then there exists a function g with domain a such that

(∀x ∈ a)
(
(∃y)(y ∈ gx) ∧ (∀y ∈ gx)ψ

)
.

Proof. For x, z define

ξ =def (∃y)(z = (x, y) ∧ ψ) .

We have (∀x ∈ a)(∃z)ξ by the assumption. By Strong Collection, as given in Section
A.4 on page 186 there exists a set u such that

coll(x ∈ a, z ∈ u, ξ) , (2.3)

where we used an abbreviation defined in Section A.4. Define a function g with domain
a by letting, for x in a,

gx =def {y | (x, y) ∈ u} ,

and observe that g is a set by Replacement. We have the conclusion by (2.3) and the
definition of ξ. Discharging the assumption of u, the proof is complete.

Proposition 2.4. Let a be a set, let φ be a formula of L(V ) and let Q be a class.
Assume that

(∀x ∈ a)(∃y)
(
y ⊆ Qx ∧ φ

)
∧ (∀x ∈ a)(∀y)(∀z)

(
(y ⊆ z ⊆ Qx ∧ φ)→ φ[z/y]

)
where, for x in a, Qx =def {y | (x, y) ∈ Q}. There exists a function f with domain a

such that

(∀x ∈ a)(fx ⊆ Qx ∧ φ[fx/y]).

Proof. For x, y define

ψ =def y ⊆ Qx ∧ φ

We have (∀x ∈ a)(∃y)ψ by the assumption. There exists a function g with domain a

such that

(∀x ∈ a)
(
(∃y)(y ∈ gx) ∧ (∀y ∈ gx)ψ

)
(2.4)
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by Proposition 2.3. Define a function f with domain a by letting, for x in a,

fx =def

⋃
gx ,

i.e. (∀z)(z ∈ fx ↔ (∃y ∈ gx)z ∈ y), and observe that f is a set by Union and
Replacement. For x in a we now show

fx ⊆ Qx ∧ φ[fx/y]

To prove the first conjunct, let z in fx. There exists y in gx such that z ∈ y by the
definition of f . We have y ⊆ Qx by (2.4) and the definition of ψ. Hence z ∈ Qx.
Discharging the assumption of y we have fx ⊆ Qx, as wanted. To prove the second
conjunct, observe that there exists y in gx such that ψ by (2.4). We have

y ⊆ fx ⊆ Qx ∧ φ

by the definitions of f and ψ. Therefore φ[fx/y] by the assumption in the statement of
the proposition. Discharging the assumption of y, we obtain the desired conclusion. We
have therefore proved the two conjuncts. Universally quantifying over x and discharging
the assumption of g, the proof is complete.

Proposition 2.5. Let a be a set, let φ be a formula of L(V ) and let P be a class.
Assume that

(∀x ∈ a)
(

(∃y)(y ⊆ P ∧ φ) ∧ (∀y)(∀z)
(
(y ⊆ z ⊆ P ∧ φ)→ φ[z/y]

))
.

Then there exists a set b such that

b ⊆ P ∧ (∀x ∈ a)φ[b/y].

Proof. Define

Q =def {(x, y) | x ∈ a ∧ y ∈ P}

For all x in A we have Qx = P , where Qx is defined as in Proposition 2.4. We have

(∀x ∈ a)(∃y)
(
y ⊆ Qx ∧ φ

)
∧ (∀x ∈ a)(∀y)(∀z)

(
(y ⊆ z ⊆ Qx ∧ φ)→ φ[z/y]

)
by the assumption. Therefore there exists a function g with domain a such that

(∀x ∈ a)(fx ⊆ P ∧ φ[fx/y]) (2.5)
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by Proposition 2.4 and the definition of Q. Define

b =def

⋃
x∈a

fx ,

i.e. (∀y)(y ∈ b ↔ (∃x ∈ a)y ∈ fx) and observe that b is a set by Union and Re-
placement. We have b ⊆ P by the definition of f and (2.5). Let x in a, and observe
that

fx ⊆ b ⊆ A ∧ φ[fx/y]

by the definition of b and (2.5). Therefore φ[b/y] by the assumption in the statement
of the proposition. Universally quantifying over x and discharging the assumption of
f , the proof is complete.

The next result was obtained in [1] but we present a proof for completeness. We
now work informally in CZF and use Subset Collection.

Proposition 2.6. Let a and b be sets. Let φ be a formula. Then there exists a set c
such that

(∀u ∈ a) (∀z)
(
(∀x ∈ u)(∃y ∈ b)φ→ (∃v ∈ c) coll (x ∈ u, y ∈ v, φ)

)
Proof. For u and w define

ψ =def (∀z)
(
(∀x ∈ u)(∃y ∈ b)φ→ (∃v ∈ w)coll(x ∈ u, y ∈ v, φ)

)
We have (∀u ∈ a)(∃w)ψ by Subset Collection, as given in Section A.4. Therefore there
is d such that

coll(u ∈ a,w ∈ d, ψ) (2.6)

by Strong Collection. Define c =def
⋃
d, i.e.

(∀v)(v ∈ c↔ (∃w ∈ d)v ∈ w) .

We now show that c satisfies the conclusion. Let u in a. Let z be a set. Assume

(∀x ∈ u)(∃y ∈ b)φ

We have that there is w in d such that ψ by (2.6). Then there is v in w such that

coll(x ∈ u, y ∈ v, φ)
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by definition of ψ and the assumption. Hence the conclusion. Discharging the assump-
tion of d the proof is complete.

To simplify some of the applications of Proposition 2.6 that are used in the following,
we will depart from the strict application of the laws of logic, and rather adopt an abuse
that we now justify. For sets u, b, z and a formula φ we will often prove a statement
of the form

(∀x ∈ u)(∃y ∈ b) .

In this circumstances, we will claim that there exists a set c independent of u, b, and z
for which there is an element v of c such that

coll (x ∈ u, y ∈ v, φ)

holds. This is clearly justified by Proposition 2.6, provided that the sets u are elements
of a set a, as it will always be the case.



Chapter 3

Pure type theories

3.1 Judgements and raw syntax

In this chapter we present pure type theories and fix some notation and terminology
related to them. This will be convenient when, in Chapter 7, we introduce logic-enriched
type theories as extensions of pure type theories. Given the considerable introductory
literature on DTT, our presentation of pure type theories will be very brief, and we
invite the reader who is not familiar with DTT to refer to [59, 65] for more information.

3.1.1 Judgements

A standard pure type theory has the forms of judgement (Γ) B where Γ is a context
consisting of of a list of declarations x1 : A1, . . . , xn : An of distinct variables x1, . . . , xn,
and B is a judgement body of one of the following forms

A : type ,

A1 = A2 : type ,

a : A

a1 = a2 : A .

All the type theories we will consider are standard, and therefore from now on we prefer
to say ‘pure type theory’ rather than ‘standard pure type theory’ for brevity.

Let us now introduce some notions related to the syntactic formulation of pure
type theories. We say that a context Γ consisting of declarations x1 : A1, . . . , xn : An
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is well-formed if the judgements

( ) A1 : type ,

(x1 : A1) A2 : type ,

. . . . . . ,

(x1 : A1, . . . , xn−1 : An−1) An : type ,

are derivable. The well-formedness of each of the forms of judgement that are part of
a pure type theory has presuppositions other than the well-formedness of its context.
In a well-formed context Γ, the judgement A1 = A2 : type presupposes that A1 : type

and A2 : type; the judgement a : A presupposes that A : type; finally, the judgement
a1 = a2 : A presupposes that a1 : A and a2 : A.

A convention. In the rest of the thesis we prefer to leave out the empty context
whenever possible. So ( ) A : type will be written just A : type.

Any standard type theory will have rules for deriving well-formed judgements, each
instance of a rule having the form

J1 · · · Jk

J

where J1, . . . , Jk, J are all judgements.

Notation. In stating a rule of a standard type theory it is convenient to suppress
mention of a context that is common to both the premisses and the conclusion of the
rule. For example we will write the reflexivity rule for type equality as just

A : type

A = A : type ,

but in applying this rule we are allowed to infer (Γ) A = A : type from (Γ) A : type for
any well-formed context Γ.

3.1.2 Raw syntax

When it comes to define interpretations of type theories, it is convenient to have a
systematic account of their syntax. Here, we prefer to specify a raw syntax rather than
introducing a logical framework [65]. This will only be used in Section 8.6, where we dis-
cuss types-as-classes interpretations. The raw syntax we adopt categorises expressions
into two groups of:
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- individual expression (i.e. term),

- type expression.

It is important to observe that raw expressions need not be well-formed expressions
of a type theory. We will refer to terms and type expressions as 0-expressions and
1-expressions respectively. The raw expressions will be built up from an unlimited
supply of individual variables and a signature of constant symbols according to the
rules given below. We assume that each constant symbol of the signature has been
assigned an arity (nε11 · · ·n

εk
k )ε where k ≥ 0, n1, . . . , nk ≥ 0 and each of ε, ε1, . . . , εk is

either 0 or 1. We say that a symbol of such an arity is k-place. The rules for forming
raw expressions of the two kinds are as follows:

- every variable is a 0-expression,

- if κ is a constant symbol of arity (nε11 · · ·n
εk
k )ε and Mi is an εi-expression and ~xi

is a list of ni distinct variables, for i = 1, . . . , k, then

κ((~x1)M1, . . . , (~xk)Mk) (3.1)

is an ε-expression.

Some conventions. For a symbol κ as in (3.1) we just write κ rather than κ( ) if
k = 0. Also, if ni = 0 for some i then we write just Mi rather than ( )Mi.

Free and bound occurrences. These are defined in the standard way when the (~xi)
are treated as variable binding operations, so that free occurrences in Mi of variables
from the list ~xi become bound in (~xi)Mi and so they are bound also in the whole
expression κ((~x1)M1, . . . , (~xk)Mk).

Substitution. The result M [M1, . . . ,Mk/y1, . . . , yk] of simultaneously substituting
Mi for free occurrences of yi in M for i = 1, . . . , k, where y1, . . . , yk are distinct vari-
ables, is defined in the usual way, relabeling bound variables as usual so as to avoid
variable clashes. This is only uniquely specified up to α-convertibility, i.e. up to
suitable relabeling of bound variables. In general expressions will be identified up to
α-convertibility.

Recall that raw expressions need not be well-formed expressions; it is indeed the
two judgement forms

- (Γ) a : A ,
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- (Γ) A : type ,

that are used to express that

- a is a well-formed term of type A ,

- A is a well-formed type,

in the context Γ.

3.2 Rules for pure type theories

A type theory is specified by indicating a signature for constant symbols and rules
to derive judgements. In the following we prefer to leave implicit the signature of a
type theory, and just indicate its rules. The rules for all the type theories that we will
consider in the following are explicitly presented in Appendix B. The rule for a pure
type theory can be divided into two groups: general rules, listed in Section B.1 and
type rules, presented in Section B.2.

General rules can in turn be divided into assumption, equality, substitution and
congruence rules. Assumption rules specify how to extend a context with additional
variable declarations. Equality rules regard the judgement forms

A1 = A2 : type ,

a1 = a2 : A .
(3.2)

They serve two purposes: on the one hand, they express that both equality between
types and equality between terms are equivalence relations; on the other hand, they
specify how the two judgements forms in (3.2) interact with each other. Substitution
rules indicate the behaviour of substitution in contexts and in judgement bodies. Fi-
nally, congruence rules specify the interplay between the equality on types and the
substitution and type formation rules.

Type rules can be divided into groups according to the form of type they regard. For
each form of type there will be formation, introduction, elimination and computation
rules. The different roles played by these groups of rules is explained, for example, in
[59, pages 24 – 25]. We say that a term expression is canonical if has the same form
of a type expression appearing in the conclusion of an introduction rule.

3.3 A review of pure type theories

A variety of pure type theories can be determined by alternative selections of rules. In
this section we review the formulation of the pure type theories that will be considered
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in the rest of the thesis.

3.3.1 ML

We use ML to stand for a variant of Martin-Löf’s type theory without universes or
W -types. We prefer to avoid having any identity types. Also, rather than have finite
types Ni for all i = 0, 1, . . . we will just have them for i = 0, 1, 2 and indicate them with
0, 1 and 2, respectively. We also have a type of natural numbers, that is indicated by
N. These are the non-dependent types of ML, whose rules are presented in Subsection
B.2.1.

We do not take binary sums as primitive, but rather define them. In order to do
so, we allow dependent types to be defined by cases on the type 2, i.e. we have the
R2-formation rule

A1 : type A2 : type e : 2

R2(A1, A2, e) : type

and the R2-equality rules

R2(A1, A2, 12) = A1 ,

R2(A1, A2, 22) = A2 ,

where 12 and 22 are the canonical elements of the type 2. Finally, we have Σ-types and
Π-types. Define, for e : (Σx : A)B, the first and second projection of e as

e.1 =def split((x, y)x, e) ,

e.2 =def split((x, y)y, e) .

Observe that with these definitions, the rules

e : (Σx : A)B

e.1 : A

e : (Σx : A)B

e.2 : B[e.1/x]

are derivable. Therefore the primitive forms of type of ML are

0 , 1 , 2 , N , R2(A1, A2, e) , (Σx : A)B , (Πx : A)B .

The rules for the dependent types of ML are given in Subsection B.2.2. Having these
forms of type, we can define others. For A1, A2 : type define the product, function, and
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binary sum forms of type respectively as

A1 ×A2 =def (Σ : A1)A2 ,

A1 → A2 =def (Π : A1)A2 ,

A1 +A2 =def (Σz : 2)R2(A1, A2, z) ,

where the symbol indicates an anonymous bound variable. Special instances of Σ-
rules and Π-rules allow to derive the familiar rules concerning product and function
types. Furthermore, the combination of R2-rules and Σ-rules allows us to derive the
rules for binary sum types.

3.3.2 ML1

The type theory ML1 is obtained from ML by adding the U-rules for a type universe,
as presented in Subsection B.2.3. In particular, we have the elimination rule

a : U

T a : type ,

and hence our formulation follows the so-called ‘Tarski style’ [59, pages 88 – 89]. For
A : type we say that A is a small if, for some a : U, the judgement

A = T a : type

is derivable, and in that case we say that a is as a representative for A. In ML1 the
U-rules express that the type universe U reflects all the forms of type of ML.

3.3.3 MLW

We may consider adding W -rules for types of well-founded trees, as in Subsection B.2.2,
to ML. We write MLW for the resulting type theory. When combining W -rules and
U-rules we may choose whether to have rules to reflect W -types in the type universe.
If we do, then the type theory we obtain is written as MLW1. This type theory has
two natural subtheories: the first one, called ML1 + W, has arbitrary W -types, but
they are not reflected in the type universe; the second one, denoted as ML1W, has
only small W -types and they are reflected in the type universe.

Remark. Observe that the type theory that we write here as MLW1, has been
denoted in [40] with a different notation. The notation used there seems a bit misleading
as it suggests that the universe does not reflect the W -types.
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3.3.4 ML−1 + W−

We now introduce a pure type theory that will be of particular interest in connection
to constructive set theories. This type theory is a subsystem of ML1 + W and it is
obtained by restricting the rules for Π-types and W -types. To explain the restrictions,
let us work informally in ML1 + W. For a : U and (x : T a) B : type define

(Π−x : a)B =def (Πx : T a)B : type , (3.3)

and observe that the rule

a : U (x : T a) B : type

(Π−x : a)B : type

is derivable. Similarly, for A : type and (x : A) b : U define

(W−x : A)b =def (Wx : A) T b , (3.4)

and observe that the rule

A : type (x : A) b : U

(W−x : A)b : type

is derivable. We may easily formulate introduction, elimination and computation rules
associated for the forms of type defined in (3.3) and (3.4). These rules can obviously be
derived in ML1 + W, but we may also consider a type theory that has these restricted
rules instead of the more general ones, as we do now. The type theory ML−1 + W−

in obtained from ML1 + W by replacing Π-rules and W -rules with Π−-rules and W−-
rules, as given in Section B.3.

One of the reasons for the interest in this pure type theory is its close connection
to constructive set theories. In Part III we will indeed show that it has a logic-enriched
extension ML(CZF) which is mutually interpretable with the constructive set theory
CZF.

Remark. The reader is invited to observe that ML−1 + W− does not have any U-rule
reflecting W−-types because ML1 + W does not have any U-rule reflecting W -types.
It is also worth pointing out that (Π−x : a)B and (W−x : A)b are primitive expressions
in ML−1 + W−, while they are defined ones in ML1 + W.



Part II

Sheaf interpretations for CST



Chapter 4

Exercises in formal topology

4.1 Introduction

Even without considering its interaction with intuitionistic mathematics, the field of
pointfree topology stands out as remarkable. At first, the idea of developing topology
without assuming the notion of point as primitive may seem rather eccentric. The vast
literature on the subject proves however that such an approach is not only effectively
possible, but mathematically efficient [48]. If we then consider the relationship of
pointfree topology with intuitionistic mathematics, the subject reveals itself to be even
more fruitful since it leads to a deeper insight into the connections between intuitionistic
logic and topology [23, 30] and allows a number of applications [31]. The present chapter
explores some aspects of this connection.

Pointfree topology has a twofold interaction with intuitionistic mathematics at the
fully impredicative level. The first aspect of this interplay stems from the observation
that both the internal logic of toposes and intuitionistic set theories provide a suitable
setting for the development of much of pointfree topology [47]. The second aspect of
the interplay arises since the notion of frame, that is central to pointfree topology,
determines two important classes of toposes and of interpretations for intuitionistic set
theories: localic toposes [56, Chapter IX] and Heyting-valued interpretations [38]. Both
aspects are essential to the relationship between pointfree topology and intuitionistic
mathematics: the first one illustrates that toposes and intuitionistic set theories are
systems capable of supporting the development of substantial parts of mathematics,
while the second one provides a wide range of applications for pointfree topology.

The field of formal topology originated by considering the first aspect of the
interaction between pointfree topology and intuitionistic mathematics, but at the gen-
eralised predicative level [68]. One of the original aims of formal topology is indeed
to investigate whether pointfree topology could be developed within Martin-Löf pure
type theories. Considerable research indicates that this is possible, at least for parts of
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pointfree topology, and that this undertaking also leads to the formulation of notions
that might be of interest at the fully impredicative level [69]. Yet, the second aspect of
interplay between pointfree topology and intuitionistic mathematics does not seem to
have been explored at the generalised predicative level. One of the historical reasons
for this fact seems to be that formal topology has been traditionally developed in the
setting of pure type theories [71], where Heyting-valued interpretations have not been
explored.

We set out to explore formal topology in Constructive Set Theory (CST) and inves-
tigate whether it is possible that an interplay exists between formal topology and CST
of the kind existing between pointfree topology and Intuitionistic Set Theory (IST).
The present chapter investigates whether constructive set theories provide an appro-
priate setting for the development of formal topology, while the next chapter studies
the possibility of developing Heyting-valued interpretations for CST.

There are at least two main motivations for focusing on constructive set theories:
the first one is that the familiar set theoretic notation allows a rather straightforward
development of intuitionistic mathematics, and the second one is that the considerable
research on Heyting-valued interpretations for intuitionistic set theories suggests that
they may carry over to constructive set theories [31, 38, 72, 73]. A further motivation
for the work described in this chapter is that formal topology has traditionally been
developed assuming the propositions-as-types treatment of logic [71]. Although this
treatment of logic is believed not to be necessary [69], the possibility of avoiding it does
not seem to have been explicitly explored yet. It seems therefore natural to test whether
the axioms of CST are sufficient to support the development of formal topology.

In spite of the familiar set theoretic notation that is available in CST, this under-
taking faces a number of challenges because of the specific axioms that are assumed in
CST. For example, the very notion of frame needs to be reconsidered, since the absence
of Power Set and Full Separation prevents us from showing that many familiar exam-
ples of frames in IST are sets in CST. The paradigmatic example of this situation, i.e.
the power class of 1, was discussed in Section 2.3.

We will therefore introduce the notions of set-generated and set-presented

frame, that are based on the notions of set-generated and set-presented
∨

-semilattice
introduced in [7, Chapter 6]. We hasten to say that these notions are equivalent to
notions of formal topology existing in the literature [68, 69] and therefore their intro-
duction does not constitute a novelty. Set-generated and set-presented frames, however,
allow us to start developing formal topology in CST in a very direct way, following very
closely the development of pointfree topology in intuitionistic set theories, but assuming
only axioms of constructive set theories. The peculiar feature of set-generated frames
is that, while their carriers are allowed to be proper classes, we require the existence a
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set of ‘generators’ for the elements of the frame, in the sense that any element of the
frame is the supremum of a suitable set of generators.

We only take a few steps in the development of formal topology in CST, essentially
as many as it is necessary to set up and apply Heyting-valued interpretations in Chapter
5. First, we introduce set-generated and set-presented frames and show that well-known
representation theorems for frames carry over in our context. Secondly, we introduce
a notion of point for a set-generated frame and describe how to associate a space of
points to any set-generated frame. Thirdly, we show how inductive definitions allow
us to transfer to our context the definition of frames by ‘generators and relations’.
Finally, we present examples for the notions of set-generated and set-presented frames
corresponding not only to familiar spaces, such as the Baire and Cantor space, but also
to the space of Dedekind reals as defined in CST [7, Section 3.6]. These few indications
highlight however that the axioms of CST are sufficient to develop formal topology in
CST. For example, the Regular Extension axiom plays a crucial role when it comes to
discussing inductive definitions of frames.

4.2 Set-generated frames

In this section we introduce the notion of a set-generated frame, that will be used
throughout this chapter to develop formal topology in CST.

4.2.1 Set-generated
∨

-semilattices

Let us recall from [7, Chapter 6] the notion of set-generated
∨

-semilattice and provide
some motivation for it. The first step to introduce this notion is to consider a partially
ordered structure whose carrier may be a class, as we do next. Let A be a class and R
be a relation on A, i.e. a subclass of A × A. For a, b in A, we write R(a, b) instead of
(a, b) ∈ R. We say that R is a partial order on A if it holds that

- R is reflexive, i.e. (∀x ∈ A)R(x, x) ,

- R is transitive, i.e. (∀x, y, z ∈ A)R(x, y) ∧R(y, z)→ R(x, y) ,

- R is antisymmetric, i.e. (∀x, y ∈ A)R(x, y) ∧R(y, x)→ x = y .

If R is a partial order on A we write a ≤ b instead of R(a, b) for a, b in A .

Definition 4.1. We say that (A,R) is a partially ordered class, or poclass for short,
if A is a class and R is a partial order on it. We say that a poclass (A,R) is a partially
ordered set, or poset for short, if both A and R are sets. ♦
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Remark. In the following, we sometimes prefer to avoid reference to all the structure
that is formally part of a poclass and simply say ‘A is a poclass’, leaving implicit the
partial order that is part of the poclass structure. We will use an analogous convention
for the other structures that we introduce in the remainder of this chapter.

Using this convention, we now introduce the notion of morphism of poclasses. Let A
and B be poclasses, we say that a function φ from A to B is a morphism of poclasses
if it holds that

- φ is monotone, i.e. (∀x, y ∈ A)x ≤ y → φ(x) ≤ φ(y) .

We say two poclasses are isomorphic if there are two mutually inverse morphisms
between them. Poclasses will be the structure on which all the other notions introduce
in this section are based. When considering additional structure on a poclass, the
distinction between subsets and subclasses that is peculiar to CST plays an important
role, that we will often point out to the reader. The notion of supremum of a subclass,
that we introduce next, is a typical example of this phenomenon. Let A be a poclass
and let P be a subclass of A. We say that an element a of A is the supremum of P
if it holds that

(∀x ∈ A)
(
a ≤ x↔ (∀y ∈ P )y ≤ x

)
.

Our use of the definite article ‘the’ when introducing the notion of supremum is justified
because if a supremum exists then it is unique. Similar considerations apply when we
will introduce the notions of bottom, infimum, top, meet and Heyting implication. In
the following we will write

∨
P for the supremum of a subclass P , if it exists.

Definition 4.2. We say that (A,≤,
∨

) is a
∨

-semilattice if (A,≤) is a poclass and∨
is a supremum operation for it, i.e. an operation assigning to each subset of A its

supremum. ♦

Remark. Let us stress that in a
∨

-semilattice the supremum operation is assumed to
act only on subsets and not on subclasses. However, the language of set theory allows
us to say what it means for an element to be the supremum of a subclass.

Let A be a poclass. We say that a in A is the bottom element in A if it holds that
(∀x ∈ A)a ≤ x . We will write ⊥ for the bottom element of a poclass, when it exists.
It is a simple observation to note that every

∨
-semilattice has a bottom element, that

can be defined as the supremum of the empty set.
The notion of infimum, that we introduce next, will help us to motivate the notion
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of generating set. We say that an element a of A is the infimum of P if it holds that

(∀x ∈ A)
(
x ≤ a↔ (∀y ∈ P )x ≤ y

)
.

A complete lattice is a
∨

-semilattice with an infimum operation, i.e. an operation
assigning to each subset of the

∨
-semilattice its infimum. A remarkable fact distin-

guishes the development of lattice theory based on posets, as done in IST, from the one
based on poclasses, as done here. It is well-known that if A is a

∨
-semilattice that is a

set, then it is also a complete lattice [46, Section 4.3]. It is worth, however, highlighting
that the assumption that A is a set plays a role to prove this simple fact. Let p is a
subset of A and define

q =def {x ∈ A | (∀y ∈ p)x ≤ y} .

Since A and p are sets, so is q. We can then observe that the infimum is given by the
supremum of q, which exists since q is a set and A is a

∨
-semilattice. This reasoning

indicates that it is not possible to define an infimum operation on an arbitrary
∨

-
semilattice without further assumptions. This problem can be overcome introducing
the following notion. Let A be a

∨
-semilattice and g be a subset of A; for a in A define

ga =def {x ∈ g | x ≤ a} .

We say that g is a generating set for A if the following properties

- for all a in A the class ga is a set,

- for all a in A, a =
∨
ga ,

hold. As we will see, the assumption of the existence of a generating set for A is more
general than the assumption that A is a set, and it is sufficient to define an infimum
operation.

Definition 4.3. We say that (A,≤,
∨
, g) is a set-generated

∨
-semilattice if (A,≤

,
∨

) is a
∨

-semilattice and g is a generating set for it. ♦

Remark. We invite the reader to note that the generating set is formally part of the
structure of a set-generated

∨
-semilattice. Although the convention we fixed in the

remark after Definition 4.1 allows us to say ‘A is a set-generated
∨

-semilattice’, it is
sometimes necessary to specify the generating set for A. We will do so by saying ‘A is
a set-generated

∨
-semilattice with generating set g’.

Let A and B be set-generated
∨

-semilattices. We say that a function φ from A to
B is a morphism of set-generated of

∨
-semilattices if it holds that
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- φ is monotone,

- φ preserves suprema, i.e. for all subsets p of A, φ(
∨
p) =

∨
{φ(x) | x ∈ p} .

Note that the generating sets do not play a role in the properties of morphisms.

Proposition 4.4. Every set-generated
∨

-semilattice is a complete lattice.

Proof. Let A be a set-generated
∨

-semilattice with generating set g. For p in PowA,
define q =def {x ∈ g | (∀y ∈ p)x ≤ y} and observe that q is a set by the assumption
that g is a generating set and Replacement. Define

∧
p =def

∨
q and observe that

∧
p

is an infimum for p.

Let A be a poclass. We say that a in A is the top element of A if it holds that
(∀x ∈ A)x ≤ a . From now on we write > for the top element of a poclass. For a and b
in A, we say that an element c in A is the meet of a and b if it holds that

(∀x)
(
x ≤ c↔ (x ≤ a ∧ x ≤ b)

)
.

We write a ∧ b for the meet of a and b if it exists. It is immediate show that any
complete lattice, and hence any set-generated

∨
-semilattice, has a top element and a

meet operation: the top element is defined as the infimum of the empty set, and the
meet of two elements is the infimum of the set consisting only of them. We now give
some examples of set-generated

∨
-semilattices.

Lower sets. Let s be a poset. For a subclass P of s define

δP =def {x ∈ s |(∃y ∈ P )x ≤ y}

and observe that P ⊆ δP . We say that P is a lower class if it holds that δP = P , and
say that it is a lower set if it is also a set. Define Low(s) to be the poclass of lower sets
of s, with partial order given by inclusion. The supremum operation is union, since the
union of a set of lower sets is a lower set. In order to show that Low(s) has a generating
set it is convenient to define, for a in s, γa =def δ{a}. Using this abbreviation, define

g =def {γx | x ∈ s}

and observe that g is a generating set for Low(s). Hence Low(s) is a set-generated∨
-semilattice. The bottom element is the empty set. Direct calculations lead to show

that if u is a subset of Low(s) then ∧
u =

⋂
u .
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The top element of the set-generated
∨

-semilattice is s, which is a lower set.

Subsets. Any set s can be seen as a poset by considering the partial order given by
equality. In this case lower sets are just subsets, and therefore we obtain that Pow(s)
is a set-generated

∨
-semilattice. Its generating set has a particularly simple form: for

a in s define γa =def {a} and define

g =def {γx | x ∈ s} .

Now observe that g is a generating set for Pow(s).

When considering poclasses with structure it is convenient to have some general
methods to define them. The notion of closure operator, that we introduce next,
provides a way to define set-generated

∨
-semilattices.

Definition 4.5. Let A be a set-generated
∨

-semilattice and let c be a function from
A to A. We say that c is a closure operator if the following properties

- c is inflationary, i.e. (∀x ∈ A)x ≤ c(x) ,

- c is monotone,

- c is idempotent, i.e. (∀x ∈ A)c(cx) ≤ c(x) ,

hold. ♦

The next definition will be convenient to state Proposition 4.6. For a set-generated∨
-semilattice A and a closure operator c on it, define

Ac =def {x ∈ A | x = cx} .

The next result is the reformulation in our context of well-known facts in formal and
pointfree topology [9, 46], and it is a slight variation over Theorem 6.3 of [7]. Our
formulation makes use of lower sets rather than arbitrary subsets, and will therefore
link up in a natural way with the treatment of set-generated frames using nuclei in
Subsection 4.2.2. In turn, lower sets and nuclei will provide an intuitive connection
with the development of presheaf and sheaf interpretations, that are to be discussed in
Chapter 6, where we consider Lawvere-Tierney operators.

Proposition 4.6. Let A be a set-generated
∨

-semilattice with generating set g.

(i) If c is a closure operator on A, then Ac determines a set-generated
∨

-semilattice.

(ii) There exists a poset s and a closure operator c on Low(s) such that A and
(Low s)c are isomorphic.
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Proof. For part (i) let us define a supremum operation
∨
c on Ac by letting, for a subset

p of Ac, ∨
c p =def c

(∨
p
)
,

where the supremum operation on the right-hand side of the definition is the one of A.
For a in g define γc(a) =def c(a) and observe that

{γc(x) | x ∈ g}

is a generating set for Ac. Simple calculations lead to show that we have just defined
the structure of a set-generated

∨
-semilattice on Ac, as required. Let us now indicate

the proof of part (ii). Firstly, define s to be the generating set of A. Secondly, for p in
Low(s), define

cp =def {x ∈ s | x ≤
∨
p} (4.1)

and observe that c is a closure operator on Low(s), and hence (Low s)c is a set-generated
frame by part (i). The desired conclusion follows by the assumption that A is set-
generated.

Observe that the definition in (4.1) makes sense for arbitrary subsets of s and not
just for the lower ones. Hence c can be extended to a closure operator on Pow(s). We
therefore have two set-generated frames: (Pow s)c and (Low s)c. Thankfully, they turn
out to be identical: the key to prove this is to observe that for all p in Pow(s) we have

cp = c(δp) .

In view of this fact, when we use Proposition 4.6, we will be justified in assuming that
the closure operator c extends to a closure operator on Pow(s), and in avoiding the
distinction between (Pow s)c and (Low s)c if this is convenient.

4.2.2 Frames

We now move on to introduce the notion of set-generated frame and show how it
corresponds to complete Heyting algebras. In order to do so, we need to present the
property that characterises frames. Since this law makes sense for complete lattices, we
can state it without reference to generating sets. Let A be complete lattice, we say that
A satisfies the frame distributivity law if, for all elements a of A and all subsets p
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of A, the property

a ∧
∨
p =

∨
{a ∧ x | x ∈ p}

holds.

Definition 4.7. We say that a set-generated
∨

-semilattice is a set-generated frame

if it satisfies the frame distributivity law. ♦

To define frame morphisms we indicate with a subscript the frame to which a certain
operation or distinguished element belongs. Let A and B be set-generated frames. We
say that a function φ from A to B is a frame morphism if it holds that

- φ is monotone,

- φ preserves top element, i.e. >B = φ(>A) ,

- φ preserves meets, i.e. (∀x, y ∈ A)φ(x) ∧B φ(y) = φ(x ∧A y) ,

- φ preserves suprema.

We say that two set-generated frames are isomorphic if there are two mutually inverse
frame morphisms between them. Observe that two set-generated frames are isomorphic
if they are isomorphic as poclasses.

We now come to another result that, however simple, highlights the role of generat-
ing sets. We have already seen in Proposition 4.4 that the assumption of a generating
set allows us to prove that a

∨
-semilattice is also a complete semilattice. Here we show

that generating sets allow us to relate frames to complete Heyting algebras. First of
all let us introduce the notion of complete Heyting algebra in our context. Let A be a
complete lattice. For a and b in A, an element c of A is the Heyting implication of
a and b if it holds that

(∀x ∈ A)
(
x ≤ c↔ (x ∧ a ≤ b)

)
.

We will write a → b for the Heyting implication of a and b, if it exists. A complete

Heyting algebra is a complete lattice with an Heyting implication operation, i.e. an
operation assigning to each pair of elements their Heyting implication. The next result
makes use of generating sets to define an Heyting implication in any set-generated
frame.

Proposition 4.8. Every set-generated frame is a complete Heyting algebra.

Proof. Let A be a set-generated frame. Let g be a generating set for it. For a, b in A

define p =def {x ∈ g | x ∧ a ≤ b} and observe that p is a set by the assumption that g
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is a set. Define a→ b =def
∨
p. Using the frame distributivity law, we can prove that

a→ b is the Heyting implication of a and b.

An example. The examples of set-generated
∨

-semilattices given in Subsection 4.2.1
are actually examples of set-generated frames, since the frame distributivity law holds
in them. This can be easily seen by recalling that unions distribute over intersections.
Remembering that we defined P =def Pow 1 in Section 2.3, note that P is a set-generated
frame.

The next notion will help us define set-generated frames throughout this chapter
and plays the same role for set-generated frames that the notion of closure operator
does for set-generated

∨
-semilattices [80].

Definition 4.9. Let A be a set-generated frame. We say that a closure operator j
on A is a nucleus if the property

- j respects meets, i.e. (∀x, y ∈ A)jx ∧ jy ≤ j(x ∧ y) ,

holds. ♦

The next proposition extends Proposition 4.6 to set-generated frames, and it is
completely analogous to well-known results in the literature [9, 46]. Let us use a similar
notation to the one used in connection to Proposition 4.6 and, for a set-generated frame
A and a nucleus j on it, define

Aj =def {x ∈ A | x = jx} .

Proposition 4.10. Let A be a set-generated frame.

(i) If j is a nucleus on A, then Aj determines a set-generated frame.

(ii) There exists a poset s and a nucleus j on Low(s) such that A and (Low s)j are
isomorphic.

Proof. The proof of part (i) consists simply in the observation that the assumption that
j preserves meets implies that Aj satisfies the frame distributivity law. For part (ii)
observe that the closure operator defined in (4.1) is a nucleus if A satisfies the frame
distributivity law.

We can still assume that a nucleus j as in part (ii) of Proposition 4.10 extends to a
closure operator on Pow(s), but it is important to note that its extension need not be,
in general, a nucleus on Pow(s). This is because j does not preserve meets of arbitrary
subsets of s in general, but only of lower ones. The author should confess to have
overlooked this issue when stating Theorem 1.7 in [37].



4. Exercises in formal topology 56

An example. Consider the set-generated frame P and define, for p in P,

jp =def {x ∈ 1 | ¬¬x ∈ p}

Easy calculations lead a proof that j is a nucleus. This nucleus, which we refer to
as the double negation nucleus, will play an important role in the applications of
Heyting-valued interpretations in Chapter 5. More examples of nuclei will be presented
in Section 4.5.

We end this section by describing explicitly the set-generated frame (Low s)j , as in
part (ii) of Proposition 4.10. As already discussed, we can assume that j extends to an
operator on Pow(s) and that for all p in Pow(s)

jp = j(δp) .

We begin by recalling the supremum operation of (Low s)j . For a subset u of (Low s)j
observe that ∨

u = j
(⋃

u
)

Recall that g =def {γx | x ∈ s} is a generating set for Low(s), where, for x in s,
γx = δ{x}. Now observe that the set

gj =def {γj(x) | x ∈ s}

is a generating set for (Low s)j , where, for x in s, γj(x) =def j(γx). The other opera-
tions, defined in terms of the supremum and the generating set, can be described easily
using the fact that, for all p in (Low s)j we have∨

{γj(x) | x ∈ p} = jp .

We leave the details to the reader and simply recall that, for p and q in Low(s)

p ∧ q = p ∩ q

by an application of the fact that j respects meets. The infimum of a subset u of Low(s)
is given by ∧

u = j
(⋂

u
)
.

The presence of j is necessary since a nucleus does not necessarily preserve infima.
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4.3 Set-presented frames

As we will see in Section 4.5, inductive definitions provide us with a very general
method to define set-generated

∨
-semilattices. The question of which set-generated∨

-semilattices arise in this way was solved by Peter Aczel by introducing the notion of
set-presented

∨
-semilattice [7, Section 6.3]. Let us review this notion and its connection

to inductive definition of
∨

-semilattices, since this will be relevant in Section 4.5.

4.3.1 Set-presented
∨

-semilattices

Let A be a set-generated
∨

-semilattice with generating set g. Let r be a set relation
between elements and subsets of g, i.e. a subset of g × Pow(g), and for a in g define
ra =def {x ∈ Pow g | (a, x) ∈ r}. We say that r is a relation set for A if for all
elements a of g and subsets p of g the property

a ≤
∨
p↔ (∃u ∈ ra)u ⊆ p

holds.

Some intuition. Let A be a set-generated
∨

-semilattice with generating set g. For
a in g consider the class

{p ∈ Pow(g) | a ≤
∨
p} .

Elements of this class may be called the ‘covers’ of a. Now observe that in general this
class is not a set. If there exists a relation set for A, however, for many purposes we
can replace the class of covers of a with a set of ‘generating covers’, i.e. ra. Hence
one may think of set-generated frames with a relation set as frames for which not only
there exists a set of ‘generators’, but also each generator has a set of ‘generating covers’.

Definition 4.11. We say that 〈A,≤,
∨
, g, r〉 is a set-presented

∨
-semilattice if

〈A,≤,
∨
〉 is a

∨
-semilattice and (g, r) is a presentation for it, i.e. g is a generating set

and r is a relation set for A. ♦

Example. Let s be a set and recall that Pow s is a set-generated
∨

-semilattice, with
generating set

g = {γx | x ∈ s} ,
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where for x in s we defined γx =def {x}. Now define

r =def {(γx, {γx}) | x ∈ s}

and observe that r is a relation set for Pow(s). In a similar way it is possible to show
that also set-generated

∨
-semilattices of the form Low(s) for some poset s are set-

presented. We leave the details to the reader.

The next notion will allow us to extend Proposition 4.6 to set-presented frames and
to review their relationship with inductive definitions.

Definition 4.12. Let s be a set and c a closure operator on Pow(s). We say that c is
a set-presented closure operator if there exists a set r of subsets of s or such that
for all a in s and p in Pow(s) the property

a ∈ cp↔ (∃u ∈ r) a ∈ cu ∧ u ⊆ p

holds. ♦

It will be convenient to have a notion of set-presented closure operator also for
∨

-
semilattices of the form Low(s), for a poset s. The remarks following Proposition 4.6
motivate us to say that such a closure operator is set-presented if it can be extended to
a closure operator on Pow(s) that is set-presented in the sense of Definition 4.12. We
can now show how Proposition 4.6 transfers to set-presented

∨
-semilattices.

Proposition 4.13.

(i) Let s be a poset and let c be a set-presented closure operator on Low(s). Then
(Low s)c determines a set-presented

∨
-semilattice.

(ii) Let A be a set-presented
∨

-semilattice. There exists a poset s and a set-
presented closure operator c on Low(s) such that A is isomorphic to (Low s)c.

Proof. This is an immediate consequence of Theorem 6.3 of [7] and Proposition 4.6.

The reader may wonder why in Definition 4.12 the notion of set-presented closure
operator has been introduced for closure operators on set-generated

∨
-semilattices of

the form Pow(s), for some set s. The main reason for this is to make the connection
with inductive definitions as simple as possible. This relationship will be now explained
assuming that the reader has some familiarity with inductive definitions in CST [7,
Chapter 5].
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Let s be a set and let Φ be an inductive definition on s. Define a function with
domain Pow(s) by defining, for p in Pow(s),

cΦ(p) =def I(Φ, p) , (4.2)

where I(Φ, p) is the smallest Φ-closed subset of s that contains p. Since Φ is an in-
ductive definition, cΦ is a closure operator [7, Section 6.1]. The key result relating
set-presented

∨
-semilattices and inductive definitions consists in the observation that

all set-presented closure operators on Pow(s) are of the form defined in (4.2). The proof
of the next result is based on the Set Compactness Theorem for CST, that is proved
assuming REA [7, Section 5.5].

Theorem 4.14 (Aczel). Let s be a set. A function c from Pow(s) to Pow(s) is a set-
presented closure operator on Pow(s) if and only if there exists an inductive definition
Φ on s such that c = cΦ.

Proof. See [7, Section 6.1].

4.3.2 Frames

It is straightforward to extend the notions and the results of the previous subsection to
set-generated

∨
-semilattices that satisfy the frame distributivity law, i.e. set-generated

frames.

Definition 4.15. We say that a set-presented
∨

-semilattice is a set-presented frame

if it satisfies the frame distributive law. ♦

Similarly to what we did in Subsection 4.2.2, we say that a closure operator on
Low(s), for a poset s, is a set-presented nucleus if it is a set-presented closure
operator on Low(s) and it is a nucleus.

Proposition 4.16.

(i) Let s be a poset and let j be a set-presented nucleus on Low(s). Then (Low s)j
determines a set-presented frame.

(ii) Let A be a set-presented frame. There exists a poset s and a set-presented
nucleus j on Low(s) such that A is isomorphic to (Low s)j.

Proof. This is a direct consequence of Proposition 4.10 and Proposition 4.13.

We will present examples of set-presented nuclei in Section 4.6.
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4.4 Spaces and points

The notion of point seems to transfer quite smoothly from the fully impredicative to the
generalised predicative level. At first, we may indeed consider points of a set-generated
frame as frame morphisms into the set-generated frame P defined in Subsection 4.2.2. A
problem arises, however, in that frame morphisms are generally classes themselves, and
hence cannot be considered as elements of a class. This can be solved by considering
as points of a set-generated frame to be the elements of a class that is in bijective
correspondence with frame morphisms into P. The elements of this class are essentially
the formal points of a formal topology [68].

The problem of accommodating these points as an instance of a suitable notion
of space arises next. It should not come as a surprise that the notion of space needs
to be carefully considered when working in a generalised predicative setting. Here we
will follow the approach of basic pairs [70] with only few modifications, some of which
have been suggested by Peter Aczel. These modifications are essential to capture the
examples given by considering the points of a frame. Although in many interesting
cases it is possible to show that the formal points of a formal topology are a set [22],
this is not the case in general. Hence we are led to consider basic pairs in which the
concrete points form a class. We first introduce these spaces, and then discuss the
points of a set-generated frame.

4.4.1 Concrete pospaces

As already pointed out, we follow [70] with few modifications. The main components
of a concrete partially ordered space, or concrete pospace for short, will be a class of
points, a class of neighbourhood indices, and a relation between them. The relation
between points and indices expresses when a point lies in the neighbourhood associated
to an index. It will also be convenient to assume that the class of indices is partially
ordered, so as to express inclusion between neighbourhoods. Following the notation of
basic pairs, we will write X for the class of points and S for the poclass of indices. For
x in X and a in S we will write

x  a

if (x, a) is in the subclass of X×S that is the relation between points and neighbourhood
indices. Let us introduce some abbreviations that will be useful when defining the
notion of concrete pospace: for x in X define

αx =def {a ∈ S | x  a} ,
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and for a in S define

Ba =def {x ∈ X | x  a} .

We are now ready to introduce concrete pospaces.

Definition 4.17. We say that (X,, S) is a concrete pospace if the following prop-
erties

- S is a poset and for all x in X the class αx is a set.

- X =
⋃
a∈S Ba ,

- for all a, b in S, if a ≤ b then Ba ⊆ Bb ,

- for all a, b in S, Ba ∩Bb ⊆
⋃
{Bc | c ∈ S , c ≤ a , c ≤ b} ,

hold. ♦

We say that a subclass P of X is open if it holds that

P =
⋃
{Ba | a ∈ S , Ba ⊆ P} .

For two concrete pospaces, (X,, S) and (X ′,, S′), we say that a function g from X

to X ′ is continuous if for all a′ in S′ the class

g−1
(
B′a′
)

=def {x ∈ X | g(x) ∈ B′a′}

is open. We say that two concrete pospaces are homeomorphic if there are two
continuous functions between them that are mutually inverse. We will present examples
of concrete pospaces in Section 4.5. Before this, we show how a set-generated frame
has a concrete pospace associated to it.

4.4.2 Points

Recall that in Section 2.3 we defined P =def Pow(1) and illustrated how elements of
the set-generated P play the role of truth values in CST. From Subsection 4.2.2 we
know also that P is a set-generated frame. It seems natural to consider as points of a
set-generated frame the frame morphisms from it to P, just as they are defined as frame
morphisms into 2 in pointfree topology. This choice is rather appealing, but not quite
the most appropriate: for a set-generated frame A with generating set g, functions from
A to P are generally classes and therefore we cannot consider them as elements of a
class, which can only be sets. However, a simple observation puts us on the right track.
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Recall that for p in P we defined

! p =def (∃ ∈ p)> ,

and observe that, for a frame morphism φ from A to P, if we define

Fφ =def {x ∈ A | !φ(x)} , (4.3)

then the intersection of Fφ with the generating set g is a set by Restricted Separation,
since for all x in A the formula !φ(x) is restricted. Furthermore, the class Fφ and its
intersection with g reflect the properties of the frame morphism F . We isolate these
properties in the next two definitions, in which we use the symbol & to stand for logical
conjunction, in order to avoid confusion with the symbol for a meet operation. We will
adopt this symbol, when necessary, also in the remainder of this chapter.

Definition 4.18. Let A be a set-generated frame with generating set g. We say that
a subclass F of A is a set-generated completely prime filter if

- F ∩ g is a set,

- F is inhabited, i.e. (∃ ∈ F )> ,

- F is an upper subclass of A, i.e. (∀x, y ∈ A)x ∈ F &x ≤ y → y ∈ F

- F is meet-closed, i.e. (∀x, y ∈ A)x ∈ F & y ∈ F → x ∧ y ∈ F ,

- F is completely prime, i.e. (∀u ∈ PowA)
∨
u ∈ F → (∃x ∈ u)x ∈ F ,

hold. ♦

The properties of the intersection of a set-generated completely prime filter with g

are characterised in the following notion, that is essentially the notion of formal point
of formal topology [68, 69].

Definition 4.19. Let A be a set-generated frame with generating set g. We say that
a subset α of g is a generating filter if

- α is inhabited,

- α is stable, i.e. (∀x, y ∈ g)x ∈ α& y ∈ α→ (∃z ∈ α)z ≤ x& z ≤ y ,

- α is prime, i.e. (∀x ∈ g)(∀u ∈ Pow g)x ∈ α&x ≤
∨
u→ (∃y ∈ u)y ∈ α

hold. ♦
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Remark. Observe that if α is a generating filter of a set-generated frame A with
generating set g, then α is an upper subset of g, because α is prime.

The next proposition confirms that we formulated the notions appropriately. In
the remarks preceding Definition 4.3 we introduced, for a set-generated frame A with
generating set g and a in A, the following notation:

ga =def {x ∈ g | x ≤ a} .

This abbreviation will be used frequently in the proof of the next proposition.

Proposition 4.20. Let A be a set-generated frame with generating set g. There is a
bijective correspondence between set-generated completely prime filters of A, generating
filters of A, and frame morphisms from A to P .

Proof. We first define a bijection between set-generated completely prime filters and
generating filters. Given a set-generated prime filter F , define

αF =def F ∩ g .

We first show that αF is inhabited. Since F is inhabited, let us assume a in F , and
observe that we have ∨

ga ∈ F ,

because A is set-generated, and therefore there exists x in g such that x ≤ a and x ∈ F ,
because F is completely prime. This implies that x is in αF , since it is both in g and
in F . We now prove that αF is stable, so let x, y in αF . We have x ∧ y ∈ F , because
F is meet-closed and hence ∨

gx∧y ∈ F

because A is set-generated. We derive that there is z in P such that z in g and z ≤ x∧y,
since F is completely prime, and therefore we have z ∈ αF such that z ≤ x and z ≤ y,
as required. To show that αF is prime it is sufficient to use that F is an upper subclass
of A and that it is completely prime.

Let α be a generating filter and define

Fα =def {a ∈ A | (∃x ∈ ga)x ∈ α} .

It is immediate to observe that Fα ∩ g is a set, by Restricted Separation. To show that
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Fα is inhabited we can assume that there is a in α, since α is inhabited. We have

a ≤
∨
ga ,

because A is set-generated, and hence there is x in ga such that x ∈ α, because α is
prime. We thus obtained an element of Fα, which is therefore inhabited.

To show that Fα is an upper subclass of A assume that a ≤ b and a ∈ Fα. By
definition of Fα there is x in ga such that x ∈ α. From x ≤ a and a ≤ b we obtain

x ≤
∨
gb .

This fact and the assumption that x ∈ α imply that there exists y ∈ gb such that y ∈ α,
because α is prime. But this is exactly showing that b ∈ Fα, as desired. To show that
Fα is meet-closed, use that A is set-generated and that α is stable. Finally, to show
that Fα is completely prime, let p be a subset of A and assume that∨

p ∈ Fα .

By definition of Fα there is x in g∨ p such that x ∈ α. Since α is prime, we get that
there is y in p such that y ∈ α. We now use the fact that α is stable and obtain z in
α such that z ≤ x and z ≤ y. Since z ∈ gy and z ∈ α, we have found y in p such that
y ∈ Fα, as required. A series of routine calculations shows that these two definable
operations are mutually inverse.

We now indicate how to obtain a bijection between frame morphisms from A to
P and set-generated completely prime filters of A. Given a frame morphism φ from
A to P, define Fφ as in (4.3) on page 62. The assumption that φ preserves top, is
monotone, preserves meets and preserves suprema leads to straightforward proofs that
Fφ is inhabited, is an upper subclass, is meet-closed and completely prime, respectively.
Vice versa, given F that is a set-generated completely prime filter of A, we can define
a function φF from A to P by letting, for a in A,

φF (a) =def { ∈ 1 | (∃x ∈ ga)x ∈ F ∩ g} .

The verification that φ is monotone and that it preserves top element and meets is
immediate, using the fact that A is set-generated. The assumption that A is set-
generated plays a role also in showing that φF preserves suprema, but this requires
some more argument: let p a subset of A, we need to show that

φF (
∨
p) ≤

∨
{φF (y) | y ∈ p} .
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First of all, define

gp =def {x ∈ g | (∃y ∈ p)x ≤ y} ,

and observe that
∨
p =

∨
gp because A is set-generated. Therefore it suffices to show

φF (
∨
gp) ≤

∨
{φFa | a ∈ p} .

Once we assume !φF (
∨
gp), we have that there is x ∈ F such that x ≤

∨
gp by the

definition of φF . Since x ∈ F , we have that there is y in gp such that y ∈ F , because
F is an upper subclass and it is completely prime. Simple calculations now lead us to
show that there is z in p such that !φF (z) and therefore prove the desired conclusion.
Again, we leave the verification that the two definable operations are mutually inverse
to the reader.

We can now associate a concrete pospace to each set-generated
∨

-semilattice. For a
set-generated frame A with generating set g, Proposition 4.20 shows that we can replace
the definable collection of classes of frame morphisms from A to P with the class of
generating filters of A. The class of points of the space is the class of generating filters
of A, that we write Pt(A) from now on, and the poset of neighbourhood indices is given
by g. We can then define a relation between Pt(A) and g by letting, for α in Pt(A) and
a in g,

α  a =def a ∈ α .

A series of routine calculations leads to the following result.

Proposition 4.21. If A is a set-generated frame with generating set g, then (Pt(A),
, g) is a concrete pospace.

The following notion will be relevant when we discuss the connection between exam-
ples of set-generated frames and well-known examples of concrete pospaces in Section
4.6. We say that a set-generated frame A with generating set g has enough points if
for all a in g and all subsets p of g it holds that

(∀α ∈ PtA)
(
α  a→ (∃x ∈ p)α  x

)
→ a ≤

∨
p .

4.5 Inductive definition of frames

The goal of this section is to show how inductive definitions can be exploited in CST
to define set-presented frames. Given a set s, we know from Theorem 4.14 that any
inductive definition Φ on it determines a closure operator c on Pow(s) and therefore
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a set-generated
∨

-semilattice, (Pow s)c. Furthermore, the closure operator c is set-
presented and therefore so is the

∨
-semilattice (Pow s)c. This, however, still does not

give us a frame. To define frames we consider posets rather than sets and inductive
definitions on them that determine a set-presentable nucleus j on Low(s) and hence
a frame. This method seems to have been folklore in pointfree topology, where it is
associated with the notions known as coverage [46, Section 2.11] or covering system [56,
pages 524 – 525], but not to have been combined explicitly with the theory of inductive
definitions. The connection between these notions and inductive definitions seems to
have been first worked out in the context of type theory in [20]. Working in CST, we
can both use the connection between inductive definitions and coverages, and remain
close to the original treatment of the method in pointfree topology.

4.5.1 Posites

Let P be a poset. Recall that we say that a subclass P of P is a lower class if it holds
that δP ⊆ P , where δP =def {x ∈ P | (∃y ∈ P )x ≤ y}. Define

v 5 u =def (∀y ∈ v)(∃x ∈ u)y ≤ x

for v and u subsets of P. The next definition, but not the terminology, is taken from
[56, pages 524 – 525].

Definition 4.22. Let P be a poset. We say that a function Cov from P to Pow(PowP)
is a coverage if the following properties

- (∀u ∈ Cov a)u ⊆ δ{a}

- Cov is stable, i.e. (∀x, y ∈ P)y ≤ x→ (∀u ∈ Cov x)(∃v ∈ Cov y)v 5 u ,

hold. In this case we say that (P,Cov) is a posite. ♦

From now on, we work with a fixed posite (P,Cov). A particular class of subsets of
P will be of particular interest.

Definition 4.23. We say that a subclass P of P is an ideal of the coverage if it is a
lower class and for all a in P it holds that

(∃u ∈ Cov a)(u ⊆ P )→ a ∈ P .

We say that an ideal is a set-ideal if it is a set. ♦

We write Idl(P) for the class of set-ideals of the coverage.
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4.5.2 Inductive definitions

We now see how posites are related to inductive definitions. Define

Φ =def {({y}, x) | x, y ∈ P, x ≤ y} ∪ {(u, x) | x ∈ P, u ∈ Cov x} ,

and observe that Φ is an inductive definition on P in the sense of [7, Chapter 5], i.e. a
subset of PowP× P. This is because P and Cov are sets. We say that a subclass X of
P is Φ-closed if

(∀x ∈ P)(∀u ∈ PowP)
(
(u, x) ∈ Φ ∧ u ⊆ X → x ∈ X

)
.

For p in PowP, I(Φ, p) is defined as the smallest Φ-closed class containing p. The key
aspect of this definition is that, assuming REA, I(Φ, p) is a set for all subsets p of P.
We now show that ideals are exactly the Φ-closed subsets of P. Let us first make more
explicit the notion of Φ-closed class. Let p in Low(P) and define

jp =def I(Φ, p) .

By the definition of Φ, we have that p ⊆ jp, that jp is a lower class and that

(∀x ∈ P)(∀u ∈ Cov a)(u ⊆ jp→ x ∈ p) .

Furthermore, if P is any lower class that contains p and such that

(∀x ∈ P)(∀u ∈ Cov a)(u ⊆ P → x ∈ P )

then jp ⊆ P . Observe that p is a set-ideal if and only if p = jp and therefore

Idl(P) = (LowP)j .

The next lemma will be very useful in what follows.

Lemma 4.24 (Induction principle). Let p a subset of P, and let P be a subclass of
P. If P is an ideal and p ⊆ P then jp ⊆ P .

Proof. This is an immediate consequence of the definition of j using Φ.

The induction principle leads to a proof of Proposition 2.11 of [46] that can be
carried over in CZF+.

Theorem 4.25 (Johnstone’s coverage theorem).

(i) j is a set-presented nucleus on Low(P),
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(ii) Idl(P) is a set-presented frame.

Proof. First of all observe that, once we prove part (i), we will obtain part (ii) as a
consequence of the fact that Idl(P) = (LowP)j and of Proposition 4.16. Regarding
part (i), we know that j is a set-presented closure operator on LowP by Theorem 4.14.
Hence we just need to show that it preserves meets, i.e. for all p and q lower sets of P
it holds that

jp ∩ jq ⊆ j(p ∩ q)

The proof can be obtained as a variation of the one in [46, page 58]. We only sketch
its main steps and leave the details to the reader. Define

r =def j(p ∩ q) ,

s =def {y ∈ P | (∀z ∈ P)(∀x ∈ p)
(
(z ≤ x ∧ z ≤ y)→ z ∈ r

)
} ,

t =def {x ∈ P | (∀z ∈ P)(∀y ∈ s)
(
(z ≤ x ∧ z ≤ y)→ x ∈ r

)
} .

Observe that q ⊆ s because both p and q are lower sections. We now show js ⊆ s using
the induction principle of Lemma 4.24. It therefore suffices to show that s is an ideal.
Firstly, observe that s is a lower set. Secondly, let y in P and let us prove that

(∃v ∈ Cov y)(v ⊆ s)→ y ∈ s ,

so let v in Cov(y) and assume v ⊆ s. To prove that y ∈ s, let z in P, x in p and assume
z ≤ x and z ≤ y. From z ≤ y and v ∈ Cov(y), we have that there is w ∈ Cov(z) such
that w 5 v, because Cov is stable. Now observe that w ⊆ r and w ∈ Cov(z). Since r
is an ideal we have that z is in r, as required.

Now now have p ⊆ t because q and p are lower sets. We also have jt ⊆ t following
the reasoning used to show js ⊆ s. Finally observe that t ∩ s ⊆ r by the definition of
t. We therefore have

jp ∩ jq ⊆ jt ∩ js ⊆ t ∩ s ⊆ r = j(p ∩ q) ,

as required.

Remark. We invite the reader to wonder whether the double-negation nucleus de-
fined in Subsection 4.2.2 can be obtained using a posite and a coverage on it. We will
answer this problem in Section 5.6.

We now wish to obtain a more explicit description of the set-generated frame Idl(P).
To isolate its generating set, let us introduce some definitions: define a function γ from



4. Exercises in formal topology 69

P to Idl(P) by letting, for a in P

γa =def j{a} (4.4)

and then define

g =def {γ(x) | x ∈ P} .

The next lemma will be used frequently in what follows, sometimes without explicit
mention.

Lemma 4.26. If p is in Idl(P) then p =
∨
{γx | x ∈ p}, and therefore g is a generating

set for Idl(P).

Proof. Direct calculations suffice to prove the claim.

We now consider the points of Idl(P), introducing the following notion.

Definition 4.27. We say that a subset χ of P is a coverage filter if

- χ is inhabited,

- χ is an upper subset of P,

- χ is stable, i.e. (∀x, y ∈ P)x ∈ χ& y ∈ χ→ (∃z ∈ χ)z ≤ x& z ≤ y ,

- χ is closed, i.e. (∀x ∈ P)(∀u ∈ Cov x)x ∈ χ↔ (∃y ∈ u)y ∈ χ ,

hold. ♦

We now show that this definition isolates the subsets of P that determine points
of Idl(P). In the proof of the next proposition we use the definition fixed in (4.4) and
Lemma 4.26.

Proposition 4.28. Let (P,Cov) be a posite. There is a bijective correspondence be-
tween coverage filters of P and generating filters of Idl(P).

Proof. We exploit Proposition 4.20 and exhibit a bijective correspondence between
coverage filters of P and set-generated completely prime filters of Idl(P). Let χ be a
coverage filter of P, and define

Fχ =def {u ∈ Idl(P) | (∃x ∈ χ)x ∈ u}

We claim that Fχ is a set-generated completely prime filter. First, we show that it is
inhabited, because χ is so. Let a ∈ χ, and observe that a ∈ γ(a) and γ(a) ∈ Idl(P),
hence γ(a) ∈ Fχ, as required. To show that Fχ is an upper subclass is simple, and we
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leave the proof to the reader. Let us now show that Fχ is meet-closed. If u ∈ Fχ and
v ∈ Fχ, then there are x, y in χ such that x ∈ u and y ∈ v, Since χ is stable, there is
z ∈ χ such that z ≤ x and z ≤ y. We get z ∈ u ∩ v from the fact that u and v are
set-ideals and hence lower sets. Hence u ∩ v ∈ Fχ, as required. To show that Fχ is
completely prime will require an application of the induction principle of Lemma 4.24.
Let p be a subset of Idl(P). We need to show that∨

p ∈ Fχ → (∃u ∈ p)u ∈ Fχ .

Let us assume the antecedent of the implication, so let a ∈ χ such that a ∈
∨
p. Define

P =def {x ∈ P | x ∈ χ→ (∃u ∈ p)u ∈ Fχ} .

The proof of the conclusion of the implication will be obtained in two steps: in the first
step we prove that

j
(⋃

p
)
⊆ P , (4.5)

and in the second step we observe that

a ∈ P . (4.6)

Once we performed these two steps, we get the desired conclusion from (4.6), the
definition of P and the assumption that a ∈ χ. For the first step, we prove (4.5) using
Lemma 4.24. We just need to show that

⋃
p ⊆ P , which is easy, and that P is an ideal,

which we now do. First we observe that P is a lower class, and then we need to prove
that, for y in P

(∃v ∈ Cov y)(v ⊆ P )→ y ∈ P .

Let v ∈ Cov y and assume v ⊆ P . To show that y ∈ P , we use the definition of P , so
let us assume y ∈ χ. Since v ∈ Cov y and y ∈ χ, there exists z in v such that z ∈ χ,
because χ is a coverage filter. The conclusion follows by the definition of P , observing
that z ∈ P and z ∈ χ. For the second step, we prove (4.6) recalling that we assumed
a ∈

∨
p. We simply observe that

a ∈
∨
p = j

(⋃
p
)
⊆ P ,

by the definition of the supremum operation in Idl(P) and (4.5).
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Vice versa, given a set-generated completely prime F define

χF =def {x ∈ P | γx ∈ F ∩ g} .

We claim that χF is a coverage filter. We omit the proofs that χF is inhabited and is
an upper set, as they are straightforward. We now show that χF is stable. Let x, y in
χF , so that γx ∈ F and γy ∈ F . Now observe that

γx ∧ γy ≤
∨
{γz | z ≤ x , z ≤ y} ,

using γx = j(δx), γy = j(δy) and the fact that the nucleus j preserves meets of lower
sets. Hence, we have that there exists z such that z ≤ x, z ≤ y and γz ∈ F , because
F is meet-closed, is an upper class and is completely prime. We have therefore found
z ≤ x, z ≤ y such that z ∈ χF , i.e. that χF is stable, as desired. To show that χF is
closed, let x in P and u ∈ Cov x. We need to show

x ∈ χF ↔ (∃y ∈ u)y ∈ χF .

We only prove the ‘left-to-right’ implication, as the ‘right-to-left’ is immediate, recalling
that F is an upper class. We apply again the induction principle of Lemma 4.24. Define

p =def

∨
{γy | y ∈ u}

and observe that p is a set-ideal and that {x} ⊆ p. Hence, by Lemma 4.24,

γx ⊆ p .

Since F is an upper class, we get that p ∈ F , and hence the desired conclusion because
F is completely prime. Direct calculations, some of which use Lemma 4.26, reveal that
the two definable operations are mutually inverse.

We are therefore justified in introducing a slight abuse of language and writing
Pt(P) for the class of coverage filters of P. We use this abuse in the statement of the
next corollary.

Corollary 4.29. The set-presented frame Idl(P) has enough points if and only if for
all a in P and all p subsets of P

(∀χ ∈ PtP)
(
a ∈ χ→ (∃x ∈ p)x ∈ χ

)
→ a ∈ jp

holds.

Proof. The claim is a direct consequence of the bijection defined in Proposition 4.28.
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4.5.3 Coverage maps

In the following it will also be convenient to have a simpler description of the morphisms
whose domain is a frame of the form Idl(P). The following notion will help us to do so.

Definition 4.30. Let A be a set generated frame. We say that a function f from P

to A is a coverage map if the following properties

- f respects top element, i.e. > ≤
∨
{f(x) |x ∈ P},

- f is monotone,

- f respects meets, i.e. (∀x, y ∈ P)fx ∧ fy ≤
∨
{fz | z ≤ x , z ≤ y} ,

- f sends covers to joins, i.e. (∀x ∈ P)(∀u ∈ Cov x)fx =
∨
{fy | y ∈ u},

hold. ♦

In the following result, γ is the function defined in (4.4) on page 69.

Proposition 4.31. There is a bijective correspondence between coverage maps from
P to A and frame morphisms from Idl(P) to A. For every coverage map f from P to
A there exists a unique frame morphism φ from Idl(P) to A such that the following
diagram

P

f //

γ

��

A

Idl(P)
φ

<<zzzzzzzz

commutes, and every φ arises in this way.

Proof. We only indicate the definable operations mapping coverage maps into frame
morphisms and vice versa, and leave the rest of the verification to the reader. Given a
coverage map f from P to A define a function φf from Idl(P) to A by letting, for p in
Idl(P)

φf (p) =def

∨
{fx | x ∈ p}

The proof that φf is a frame morphism follows the pattern of the first part of the
proof of Proposition 4.28. The claim that φf makes the appropriate diagram commute
follows using Lemma 4.26 and the fact that φf preserves suprema. Vice versa, given a
frame morphism φ it is immediate to define a coverage map fφ by letting, for a in P,

fφ(a) =def φ(γa)
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The proof that fφ is a coverage map now follows the pattern of the second part of the
proof of Proposition 4.28. Finally, observe that the two defined operations are mutually
inverse.

4.6 Three spaces

We now present examples of set-generated and set-presented frames. The examples we
give are well-known in the literature of pointfree and formal topology [20, 30, 68, 85] and
[56, pages 524 – 525] but have not been studied in CST previously. In particular, we aim
to transfer to our context some of the results obtained in [30]. When considering frames
in CST, we can relate them with important concrete pospaces that can be defined in
CST: the Baire space, the Cantor space and, most importantly, the space of Dedekind
cuts. One of the reasons for the interest in Dedekind cuts in CST is that their definition
differs slightly from the one of Dedekind cuts in intuitionistic set theories of elementary
toposes. For example, it is not trivial to show that the Dedekind cuts form a set in
CZF.

As we will see, for each of these concrete pospaces we will define a set-presented
frame such that the considered space is homeomorphic to the space of points of the
frame. The method described in Section 4.5 will play an essential role in this process.
Our examples will indeed be obtained by first defining posites and then considering the
set-presented frames of set-ideals associated with them, as in Theorem 4.25.

4.6.1 Preliminaries

Let s be a set. Define Seq(s) to be the sets of sequences, i.e. finite lists of elements of
s. These can be formally defined as functions with domain a set of the form {1, . . . ,m}
for a natural number m, and codomain s. We will write un for the nth element of a
sequence u, i.e. for the result of applying a sequence u to n.

We need to introduce some notation associated with sequences. For u in Seq(s)
and a in s, we write u · a for the sequence that is obtained by appending a to u. For a
sequence v, we write, len(v) for its length, which is defined in the standard way. If v is
a sequence and n is a natural number such that n ≤ len(v) we define

v[n] =def (v1, . . . , vn) .

This notation allows us to express some notions that will be very useful in the following:
for sequences u, v define

u v v =def (∃n ∈ N)u = v[n] . (4.7)
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We say that u is an initial segment of v if u v v. We now consider Seq(s) as partially
ordered by the opposite of the relation defined in (4.7), i.e. we define a partial order on
Seq(s) by letting, for u, v in Seq(s) v ≤ u =def u v v. In other words we have v ≤ u if
and only if u is an initial segment of v. We now define a coverage on the poset Seq(s).
For a sequence u define

Cov u =def {{u ·x | x ∈ s}}

and observe that this definition determines a coverage on the poset of sequences.

Corollary 4.32. Idl(Seq(s)) is a set-presented frame.

Proof. The claim is a consequence of Theorem 4.25.

We now isolate the generating set for the frame. For a sequence u define

γu =def {v ∈ Seq(s) | u v v}

and observe that γu is a set-ideal of Seq(s).

Proposition 4.33. The set {γu | u ∈ Seq(s)} is a generating set for Idl(Seq(s)).

Proof. Direct calculation.

Define Path(s) as the set of infinite lists of elements of s, i.e. functions from N

to s. In the following, we will refer to elements of Path(s) as paths. Again, we need
to introduce some notation that will be used to show how Path(s) has a structure of
concrete pospace. Let f be a path: for n in N define

f [n] =def (f1, . . . , fn)

and for a sequence u define

u < f =def (∃n ∈ N)u = f [n] (4.8)

We say that a sequence u is an initial segment of a path f if if u < f . Note that
it could be possible to think of the relation defined in (4.8) as an extension of the one
defined in (4.7), since we have that u < f when u is an initial segment of f . We obtain
a structure of concrete pospace on Path(s) by considering elements of Path(s) as points,
taking Seq(s) as the poset of neighbourhoods indices and defining

f  u =def u < f

for f in Path(s) and u in Seq(s).
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Some intuition. The reader may think of spaces like Path(s) for some set s as a
tree growing downwards. Nodes are labeled with natural numbers and elements of the
Baire space can be drawn as infinite paths in the tree. For a sequence u in Seq(s) we
have

Bu =def {f ∈ Path s | u < f} ,

and we refer to Bu as the lower cone determined by u. Neighbourhood indices for the
topology can be drawn as the lower cone they determine. Observing that

Bf [n+1] $ Bf [n]

for all n in N, the reader may then think of the sequence of lower cones determined by
the initial segments of f as a progressive approximation to f .

The concrete pospaces given by Path(N) and Path(2) are the well-known Baire and
Cantor space [84, Section 10.1].

4.6.2 The Baire and Cantor spaces

A pointfree description of the Baire space can be given by considering sequences in N.
Define B as the class of set-ideals in Seq N, i.e. define

B =def Idl(Seq N) ,

so that Theorem 4.25 implies that B is a set-presentable frame. We now wish to
show that the space of points of B is homeomorphic to the Baire space. In view of
Proposition 4.28, we begin by defining a bijection between Pt(Seq N), i.e. the coverage
filters of Seq(N), and Path(N). We begin by setting up the bijection. Let f in Path(N).
Define

χf =def {u ∈ Seq N | u < f} ,

and observe that the χf is a linearly ordered subset of Seq(N). Let χ be a coverage
filter of Seq(N). Define a relation on N× N by letting

fχ =def {(n,m) ∈ N× N | (∃u ∈ χ)un = m)} ,

and observe that fχ is a set by Restricted Separation. The next lemmas show that we
just defined a bijection between Pt(Seq N) and Path(N).

Lemma 4.34.
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(i) If f in Path(N) then χf is a coverage filter.

(ii) If χ is coverage filter then fχ is in Path(N).

Proof. For (i) observe first of all that χf is an upper set. To show that χ is stable, let
u, v in Seq(N) and assume v ∈ χf , w ∈ χf . Then either v ≤ w or w ≤ v because the set
χf is linearly ordered. Reasoning by disjunction elimination observe that there exists
u such that u ∈ χf and both u ≤ v and u ≤ w, as required. We now show that χf is
closed. Let u in Seq(N) and assume u ∈ χf , and so let n in N such that f [n] = u. We
have u · fn+1 = f [n+ 1]. Hence there exists m in N such that u ·m ∈ χf . Recalling the
definition of the coverage on Seq(N), this gives us the desired conclusion.

For (ii) first prove by induction that f is a total relation, i.e.

(∀n ∈ N)(∃m)(n,m) ∈ fχ .

For the base case it is sufficient to recall that χ is inhabited. For inductive step observe

u ∈ χ→ (∃m ∈ N)u ·m ∈ χ

for all u in Seq(N) because χ is closed. Hence χ is a total relation. We now show that
it is functional. Let n in N. Let m in N, u in Seq(N) on the one hand, and m′ in N, u′

in Seq(N) on the other hand, and assume both un = m, u ∈ χ and u′n = m′, u′ ∈ χ.
From u ∈ χ and u′ ∈ χ we have that there exists v ∈ χ such that v ≤ u and v ≤ u′

and because χ is stable. We have not only m = vn because v ≤ u, but also m′ = vn,
because v′ ≤ u. Hence m = m′, as required.

Lemma 4.35. If χ is a coverage map then the following properties of fχ

(i) (∀n ∈ N)fχ[n] ∈ χ ,

(ii) (∀u ∈ Seq N)u < fχ → u ∈ χ ,

(iii) (∀u ∈ Seq N)u ∈ χ→ u < fχ ,

hold.

Proof. We only sketch the proof, that consists of a series of routine calculations. Part
(i) can be proved by induction and part (ii) follows from part (i). For (iii) let u in
Seq(N) and assume u ∈ χ. Let n be the length of u. We have fχ[n] ∈ χ by part (i).
There exists v such that v ≤ u and v ≤ fχ[n] such that v ∈ χ because χ is stable. Now
observe that either fχ[n] ≤ u or u ≤ fχ[n] and hence u = fχ[n], because they have the
same length, as required.

Lemma 4.36.
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(i) If χ is a coverage map then (χ)fχ = χ,

(ii) If f is in Path(N) then (f)χf = f .

Proof. For (i) use parts (ii) and (iii) of Lemma 4.35. For (ii) a direct calculation gives
the desired conclusion.

Proposition 4.37. Pt(B) is homeomorphic to Path(N) .

Proof. Lemma 4.36 gives us a bijection between the two spaces. Routine calculations,
whose details are omitted here, show that these functions are continuous.

We now wish to investigate logical equivalents of the sentence asserting that B has
enough points following [30]. The principle of monotone bar induction holds if for
all subsets p of Seq(N) and for all elements u of Seq(N) if

- p is monotonic, i.e. (∀v ∈ Seq N)(∀n ∈ N)v ∈ p→ v ·n ∈ p ,

- p is inductive, i.e. (∀v ∈ Seq N)
(
(∀n ∈ N)(v ·n ∈ p)

)
→ v ∈ p ,

- p is a bar above u, i.e. (∀f ∈ Bu)(∃v ∈ p)f ∈ Bv .

then u is in p.

Theorem 4.38. The following are equivalent:

(i) the monotone bar induction principle holds,

(ii) B has enough points.

Proof. We use Proposition 4.29 and show that (i) is equivalent to the sentence asserting
that for all u in Seq(N) and p subset of Seq(N)

(∀χ ∈ Pt(Seq N))
(
u ∈ χ→ (∃v ∈ p)v ∈ χ

)
→ u ∈ jp (4.9)

holds. We first show that (i) implies (4.9), so let u be in Seq N and p be a subset
of Seq(N) and assume the premiss in (4.9). Note that jp is monotonic and inductive
because it is an ideal of the coverage and observe that it is a bar above u using the
premiss (4.9), which we assumed, and Lemma 4.36. By an application of the monotone
bar induction principle, we get u ∈ jp, as required.

To show that (4.9) implies the principle of monotone bar induction, let p subset of
Seq(N) and u in Seq(N) and assume that p is monotonic and inductive. Hence p is an
ideal and therefore p = jp. Now assume that p is a bar above u. We have

(∀χ ∈ Pt(Seq N))
(
u ∈ χ→ (∃v ∈ p)v ∈ χ

)
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by Lemma 4.36. Hence u ∈ jp, by an application of (4.9), and therefore u ∈ p as
required.

We can proceed in an analogous fashion to describe the Cantor space, but now we
consider sequences in the set 2. Define

C =def Idl(Seq 2) ,

so that, by Theorem 4.25, C is a set-presentable frame.

Proposition 4.39. Pt(C) is homeomorphic to Path(2) .

Proof. The proof is completely analogous to the one of Proposition 4.37. It is actually
simpler since induction on N is replaced by reasoning by cases on 2 .

The appropriate principle to consider for the existence of enough points for Pt(C)
can be introduced as follows. The fan principle holds if for all subsets p of Seq(2),
and for all elements u of Seq(2) if p is a bar above u then there exists m in N such that
m is a bound for p, i.e.

(∀f ∈ Bu)(∃v ∈ p)(len(v) ≤ m ∧ f ∈ Bv) .

Theorem 4.40. The following are equivalent:

(i) the fan principle holds,

(ii) C has enough points.

Proof. We use again Proposition 4.29 and show that (i) is equivalent to

(∀χ ∈ Pt(Seq 2)) (u ∈ χ→ (∃v ∈ p)v ∈ χ)→ u ∈ jp (4.10)

for all u in Seq(2) and p subsets of Seq(2). We first show that (i) implies (4.10). Let u
be in Seq(2) and p be a subset of Seq(2), and assume the antecedent of (4.10). Hence p
is a bar above u by the correspondence between coverage filters and elements of Path(2),
and therefore there exists a bound m for p by (i). Define f and g to be the paths with
initial segment u and then constantly equal to 0 and 1, respectively. Recall that p is
a bar above u and that both f and g are in Bu. We have u in jp recalling that jp
contains δp and arguing by cases on whether the length of u is greater or smaller than
m.

For the reverse implication, we can use the argument used in [24, Section 3.2] to
show that the bar induction principle implies the fan principle, as follows. Let u be in
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Seq(2), p be a subset of Seq(2) and assume that p is a bar above u. Hence

(∀χ ∈ Pt(Seq 2)) (u ∈ χ→ (∃v ∈ p)v ∈ χ)

by the correspondence between coverage points and elements of Path 2. Therefore
u ∈ jp by (i). Now define

R =def {(u,m) ∈ Seq 2× N | (∀f ∈ Bu)(∃v ∈ p)(len v ≤ m ∧ f ∈ Bv)}

and

P =def {u ∈ Seq 2 | (∃m)(u,m) ∈ R}

Simple calculations show that P is an ideal and that p ⊆ P . Hence jp ⊆ P by
Lemma 4.24. We have therefore u ∈ P , and hence the existence of a bound for p, as
required.

4.6.3 The Dedekind reals

Here we can follow [46, Section IV.1], but the concrete pospace of we consider is the
set Rd of Dedekind cuts as defined in CST. Rather than recalling in full the definition
of Dedekind cuts from [7, Section 3.6], we will just review some notation associated to
them and a characterisation that will be sufficient in what follows.

Let p be a subset of Q and define

p< =def {x ∈ Q | (∃y ∈ p)x < y}

p> =def {x ∈ Q | (∃y ∈ p)y < x}

The characterisation of Dedekind cuts we need in the following is contained in the next
proposition.

Proposition 4.41 (Aczel). Let p be a subset of Q. Then p is a cut if and only if it
holds that

- p is inhabited,

- (Q \ p) is inhabited,

- p = p< ,

- (∀x ∈ Q)(∀y ∈ Q)(x < y → x ∈ p ∨ y /∈ p) .

Proof. See Proposition 3.14 of [7].
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We write Rd for the class of cuts and recall that Theorem 3.24 of [7] implies that
the class Rd is a set in CZF. Now consider the poset of rational numbers Q with usual
order. Define Q− and Q+ as the posets obtained by adding a bottom and a top element
to the poset Q, respectively. We write these elements as −∞ and +∞ respectively. We
define a partial order on Q− × Q+ by letting, for a, b, c, d in Q− ∪ Q+

(b, c) ≤ (a, d) =def a ≤ b ≤ c ≤ d .

We also want to have an order relation between rationals and cuts: for p in Rd and a,
d in Q, define

a ≤ p =def a ∈ p , (4.11)

p ≤ d =def d ∈ (Q \ p)> , (4.12)

and extend this definition to a, d in Q− ∪ Q+ in the obvious way. We can now con-
sider (Rd,,Q− × Q+) as a concrete pospace, where the relation between cuts and
neighbourhood intervals is given as follows:

p  (a, d) =def a ≤ p ≤ d .

We now define a set-presented frame whose points correspond to the Dedekind cuts,
using once again the method explained in Section 4.5. In order to define a coverage on
Q− × Q+, we need some notation: for a, b, c, d in Q− ∪ Q+ define

(b, c) ≺ (a, d) =def a < b < c < d

and, if a ≤ b < c ≤ d, define

(a, c).(b, d) =def (a, d) . (4.13)

We then introduce a coverage on Q− × Q+ as follows: for u in Q− × Q+ define

Cov(u) =def {{v ∈ Q− × Q+ | v ≺ u}} ∪ {{v, w} | v.w = u}} .

We invite the reader to draw pictures of the sets in Cov(u) to gain some intuition into
the definition just given. We can now define

D =def Idl(Q− × Q+)

so that, from Theorem 4.25, D is a set-presented frame. In view of Proposition 4.28 to
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set up a bijective correspondence between points of D and elements of Rd, it suffices to
define a bijection between coverage filters of Q− × Q+ and elements of Rd. Let χ be a
coverage point of Q− × Q+ and define

pχ =def {x ∈ Q | (x,+∞) ∈ χ} .

Now let p be a cut and define

χp =def {(x, y) ∈ Q− × Q+ | x ≤ p , p ≤ y}

where we made use of the definitions in (4.11) and (4.12).

Lemma 4.42.

(i) If χ is a coverage filter then pχ is a cut.

(ii) If p is a cut then χp is a coverage filter.

Proof. For (i) we use Proposition 4.41. Let χ be a coverage filter. First of all, to show
that pχ is inhabited, we use the fact that χ is, and hence assume that (a, d) ∈ χ. Since
χ is an upper set, we get (a,+∞) ∈ χ, and therefore a ∈ pχ, which shows that a is
inhabited. To show that Q \ pχ is inhabited, consider again (a, d) ∈ χ. Using the fact
that χ is closed, we obtain there is (b, c) such that a < b < c < d and (b, c) ∈ χ. It is
then possible to show that (d,+∞) /∈ pχ using that χ is stable. Let us now show that

pχ = (pχ)< .

We only show the ‘left-to-right’ inclusion since the ‘right-to-left’ one follows directly
by the fact that χ is an upper set. Let a ∈ pχ, so that (a,+∞) ∈ χ. Using the fact
that χ is closed we obtain (b, c) ∈ χ such that (b, c) ≺ (a,+∞). We thus have reached
that b ∈ pχ, because χ is an upper set, and that a < b, as required, and so a ∈ pχ)<,
as required. Finally, we assume a < d and show either a ∈ pχ or d /∈ pχ, i.e. either
(a,+∞) ∈ χ or (d,+∞) /∈ χ. We know (−∞,+∞) ∈ χ, because χ is inhabited and is
an upper set, and therefore we have by the definition in (4.13)

(−∞, d).(a,+∞) ∈ χ .

The conclusion now follows from the fact that χ is closed.
We now illustrate how to prove (ii). To show that χ is inhabited, use the fact that

both p and Q \ p are. The proof that χp is an upper set is immediate. To show that it
is stable, first use decidability of the partial order on the rationals, and then reason by
disjunction elimination. Finally to show that χp is closed, we distinguish between the
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two possible ways of ‘covering’ an element of Q− ×Q+. For the first possibility, we let
(a, d) of Q− × Q+ and prove that

(∃u ∈ χp)u ≺ (a, d)↔ (a, d) ∈ χp

We only prove the ‘right-to-left’ implication, as the ‘left-to-right’ one follows immedi-
ately by the fact that χp is upper closed. Assume that (a, d) ∈ χp, i.e. a ≤ p and p ≤ d,
then we have a ∈ p and d ∈ (Q \ p)> by the definitions fixed in (4.11) and (4.12). We
obtain a ∈ p< and d ∈ ((Q \ p)>)> by Proposition 3.13 of [7]. Hence there are b, c such
that a < b < c < d and b ∈ p and c ∈ (Q \ p)<, and therefore we have found (b, c) ∈ χp
such that (b, c) ≺ (a, d), as required. For the second possibility, assume a ≤ b < c ≤ d,
and show

(a, c) ∈ χp ∨ (b, d) ∈ χp ↔ (a, d) ∈ χp

Again, the ‘left-to-right’ one follows immediately by the fact that χp is upper closed.
For the ‘right-to-left’ implication, recall that b < c and hence b ∈ p ∨ c /∈ p, by the
fact that p is a cut and the fourth condition in Proposition 4.41. We now reason by
disjunction elimination: if b ∈ p then (b, d) ∈ χp and if c /∈ p then (a, c) ∈ χp, as
required.

Lemma 4.43.

(i) If χ is a coverage filter then (χ)pχ = χ.

(ii) If p is a cut then (p)χp = p.

Proof. For (i) let χ be a coverage filter Let (a, b) in Q− × Q+. Then we have

(χ)pχ = {(x, y) ∈ Q− × Q+ | x ≤ pχ , pχ ≤ y}

= {(x, y) ∈ Q− × Q+ |(x,+∞) ∈ χ, (−∞, y) ∈ χ , x < y}

= {(x, y) ∈ Q− × Q+| (x, y) ∈ χ} ,

= χ

as required. For (ii) let p be a cut. Then we obtain

pχp = {x ∈ Q |(x,+∞) ∈ χp} = {x ∈ Q | x ≤ p} = {x ∈ Q | x ∈ p} ,= p

as required.

Theorem 4.44. Pt(D) and Rd are homeomorphic.
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Proof. The bijection between Pt(D) and Rd obtained from Lemma 4.42 and Lemma
4.43 can be easily be shown to be continuous, but we omit the details.

We end this chapter by introducing the notion of locally compact set-generated
frame and showing that D is locally compact. Remarkably, the notion of local com-
pactness can be formulated in CST very much as familiar in pointfree topology. This
is because we know what it means for an element to be the supremum of a class, as
discussed in Section 4.2. A study of local compactness for formal topologies and of
the remarkable connections with the property for a formal topology to have a set of
formal points can be found in [21, 22]. To discuss local compactness for frames, let us
introduce some notation: for two sets p, q we write

p ⊆ω q

if p is a subset of q and p is the image of a function with domain a set of the form
{1, . . . ,m} for a natural number m. Let A a set generated frame, with generating set
g. For a and b in A define

a� b =def (∀q ∈ PowA)
(
b ≤

∨
q → (∃p ∈ PowA)(p ⊆ω q ∧ a ≤

∨
p)
)

Note that for a, b in A the formula a� b is not restricted.

Definition 4.45. We say that a set-generated frame A is locally compact if for all
a in A

a =
∨
{x ∈ A | x� a}

holds. ♦

Remark. The definition may be understood as requiring that, for all a in A, a is the
supremum of the class {x ∈ A | x � a}. Of course, subclasses of A need not have a
supremum in general.

The following result reduces the problem of establishing local compactness of a
set-generated frame to the inspection of its generating set.

Proposition 4.46 (Aczel). Let A be a set-generated frame with generating set g. For
a, b in A we have

a� b↔ (∀q ∈ Pow g)
(
b ≤

∨
q → (∃p ∈ Pow g)(p ⊆ω q ∧ a ≤

∨
p)
)
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and therefore A is locally compact if and only if for all a in g the property

a =
∨
{x ∈ g | x� a}

holds.

Proof. Direct calculations, repeatedly exploiting that A is set-generated, lead to the
desired conclusion.

Let (P,Cov) be a posite. We now wish to obtain more explicit conditions charac-
terising when the set-presented frame Idl(P) is locally compact.

Lemma 4.47. Let a, b in P we have

γ(a)� γ(b)↔ (∀q ∈ PowP)(b ∈ jq → (∃p ∈ PowP)(p ⊆ω q ∧ a ∈ jp)) .

Proof. Direct calculations: first use Proposition 4.46 and then Lemma 4.26.

Lemma 4.47 suggests the introduction of a slight abuse of language: for a, b in P
we will write a� b instead of γ(a)� γ(b). Note that this does not lead to confusion,
since P is not a frame. In the next lemma we use this notation.

Lemma 4.48. Idl(P) is locally compact if and only if for all a in P the property

a ∈ j{x ∈ P | x� a}

holds.

Proof. The conclusion can be obtained as a consequence of Proposition 4.46, Lemma
4.47 and Lemma 4.26.

We can finally prove that D is locally compact. The next two lemmas provide us
with the necessary preliminaries.

Lemma 4.49. For all v in Q− × Q+ we have v ∈ j{u ∈ Q− × Q+ | u ≺ v} .

Proof. Let v in Q− × Q+ and define p =def {u ∈ Q− × Q+ | u ≺ v}. Observe that p is
in Cov(v) and that jp is an ideal. Hence the desired conclusion.

Lemma 4.50. Let u, v in Q− × Q+. If u ≺ v then u� v.

Proof. Assume u ≺ v. Let q be a subset of Q− × Q+ and assume v is in jq. Define

P =def {w ∈ Q− × Q+ | u ≺ w → (∃p)(p ⊆ω q ∧ v ∈ jq)} .
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It is not hard to show that P is an ideal and that q ⊆ P . Hence jq ⊆ P by Lemma
4.24. Recalling that we assumed u ≺ v, the conclusion follows observing that u ∈ P ,
which is a consequence of the assumption u ∈ jq and of the inclusion jq ⊆ P .

Proposition 4.51. D is locally compact.

Proof. Recalling Lemma 4.48, the desired conclusion follows from Lemma 4.49 and
Lemma 4.50.



Chapter 5

Heyting-valued interpretations

for CST

5.1 Heyting-valued interpretations

Heyting-valued interpretations for Intuitionistic Set Theory (IST) were originally ob-
tained in [38]. These interpretations were subsequently developed and found a number
of proof theoretical applications in [72, 73]. The aim of this chapter is to define Heyting-
valued interpretations for Constructive Set Theory (CST) and indicate how they may
lead to proof theoretical applications in CST analogous to the ones existing in IST.
We indeed prove first relative consistency and independence results at the end of the
chapter.

Heyting-valued interpretations for a set theory can obtained in three steps. Firstly,
it is necessary to isolate a notion of Heyting algebra that guarantees a valid interpreta-
tion of the logical axioms and allows to define a wide range of examples, so as to allow
applications. Secondly, given one such Heyting algebra, one needs to isolate a class
of ‘Heyting-valued sets’ to interpret sets and to define the interpretation of formulas.
Finally, the validity of all the axioms of the set theory under consideration has to be
proved.

If we wish to obtain reinterpretations, the set theory under consideration needs to
support all the steps of the construction by allowing the definitions involved in them. By
means of illustration of this issue, let us consider the Heyting-valued reinterpretations of
the intuitionistic set theory IZF obtained in [38]. When considering this set theory, one
is naturally led to focus on complete Heyting algebras that are sets, since the assumption
of Power Set and Full Separation guarantees the possibility of defining many examples
of such a notion. The other two steps of Heyting-valued interpretations can then be
performed in analogy to the ones of Boolean-valued interpretations for Classical Set
Theory [11]. Some attention is required, however, in order to avoid the assumption of



5. Heyting-valued interpretations for CST 87

the law of excluded middle. For example, the definition of the class of ‘Heyting-valued
sets’ that is used to interpret the sets of IZF involves using a notion of ordinal that is
compatible with the axioms of intuitionistic logic. Finally, the validity of the axioms
is a consequence of a remarkable interplay: to prove the validity of the interpretation
of an axiom of IZF, the same axiom is generally exploited while working informally.
An important exception to this interplay is represented by the proof of the validity of
Collection, that makes use not only of Collection but also of Full Separation [38].

The study of Heyting-valued interpretations reveals in full the differences between
IST, on the one hand, and CST, on the other hand. None of the choices made in the
context of IST seems appropriate to obtain reinterpretations for CST. First of all, we
have already discussed in Chapter 4 why it is appropriate, when working in CST, to
consider set-generated and set-presented frames rather than complete Heyting algebras
that are sets. We will therefore consider set-generated frames as the basic notion to
develop Heyting-valued interpretations for CST. In view of Proposition 4.10, we will
actually limit ourselves to set-generated frames A explicitly defined as

A =def (Low s)j

where s is a poset and j is a nucleus on Low(s). For the second step, we prefer to avoid
the use of ordinals and rather exploit inductive definitions to define a class V (A) that is
used to interpret sets. This is because inductive definitions have been widely explored
in CST [7, Chapter 5], while the notion of ordinal has not. When it comes to defining
the interpretation, we will have to pay particular attention to the distinction between
arbitrary and restricted formulas that is peculiar to CST and was not considered in
IST.

As we will see, the constructive set theory CZF− is sufficient to perform these
first two steps and the Strong Collection axiom that is part of CZF− plays a crucial
role in supporting the definitions involved in them. For the third and final step, i.e.
the proofs of validity of the axioms, we will consider CZF− first and CZF at a later
stage. This is because CZF− is sufficient to prove the validity of its axioms under the
interpretation, and in particular of Strong Collection. It does not seem possible instead
to show that, assuming Subset Collection, the interpretation of all the axioms of CZF

is valid without further assumptions on the set-generated frame. Remarkably, we do
not have to look very far for a suitable assumption: if A is set-presented then we obtain
the desired result.

We will conclude the chapter with applications of Heyting-valued interpretations.
Firstly, we give proofs of a relative consistency and of an independence result con-
cerning the law of restricted excluded middle (REM) introduced in Subsection 2.2.3.
The independence proof answers a question posed in Section 4.5 and shows that the
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assertion that the double-negation nucleus is set-presented cannot be proved in CZF.
Secondly, we show how Heyting-valued interpretations for CST allow to transfer at
the generalised predicative context one the aspects of the interplay between pointfree
topology and Heyting-valued interpretations. We investigate the relationship between
internal objects i.e. elements of V (A) that satisfy the interpretation of a given formula,
and external objects, i.e. sets or classes in the set theory that is used to define the
interpretation. We show that internal coverage filters of a posite (P,Cov) correspond
to external frame morphisms from Idl(P) to A.

Remark. Some of the results in this chapter are based on a joint work with Peter
Aczel [37]. The content of this chapter differs slightly from the one therein also because
some minor problems related to the interpretation of arbitrary formulas have been
corrected.

5.2 Preparations

From now on we work informally in CZF−. Let s be a poset, let j be a nucleus on
Low(s) and define

A =def (Low s)j .

Following the remarks after Proposition 4.10, we can assume that j extends to a closure
operator on Pow s such that j(δp) = jp for all p in Pow s. Recall that for a subclass P
of s we defined

δP =def {x ∈ s | (∃y ∈ P )x ≤ y} ,

and we decided to refer to subclasses P of s such that δP ⊆ P as lower classes.

5.2.1 Lifting the nucleus

The distinction between arbitrary and restricted formulas requires some attention when
it comes to define their Heyting-valued interpretation. Restricted formulas will be
interpreted as as elements of (Low s)j , i.e. subsets p of s such that p = jp. Inspired
by the considerations in Section 2.3, we are led to consider subclasses of s to interpret
arbitrary formulas. To do so correctly, we need to extend the nucleus j to a definable
operator J on lower classes that coincides with j on lower sets and that it inherits its
properties. The next definition provides us with a candidate to be such a definable
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operator. Let P be a lower subclass of s and define

JP =def

⋃
{jv | v ⊆ P} . (5.1)

Some intuition. The reader may compare this definition with the one of open class
in a topological space given in Section 4.4.

First of all, we check that J and j coincide on the lower subclasses of s that are
sets, as in the next lemma.

Lemma 5.1. For all p in Low(s), Jp = jp holds.

Proof. Direct calculations.

We now wish to show that the operator J inherits all the properties of the nucleus j.
Remarkably, the Strong Collection axiom of CZF− plays an important role in proving
this. We begin with a lemma.

Lemma 5.2. Let P be a lower subclass of s. It holds that

(∀u ⊆ JP )(∃v)
(
v ⊆ P ∧ u ⊆ jv

)
.

Proof. Let u be a subset of JP . For an element x of u and a subset v of P define
φ =def x ∈ jv. We have

(∀x ∈ u)
(
(∃v)(v ⊆ P ∧ φ) ∧ (∀v)(∀w)

(
(v ⊆ w ⊆ P ∧ φ)→ φ[w/v]

))
by the definition of J and the fact that j is monotone. We can now apply Proposition
2.5 and obtain that there is a set v such that

v ⊆ P ∧ (∀x ∈ u)φ .

Unfolding the definition of φ we get the desired conclusion.

Observe that the proof of the previous lemma exploits Lemma 2.5, that is a con-
sequence of Strong Collection. The next proposition uses Lemma 5.2 to show that J
inherits all the properties of j.

Proposition 5.3. Let P and Q be lower subclasses of s. The following properties

(i) P ⊆ JP ,

(ii) if P ⊆ Q then JP ⊆ JQ ,

(iii) J(JP ) ⊆ JP ,
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(iv) JP ∩ JQ ⊆ J(P ∩Q) ,

hold.

Proof. Direct calculations suffice to prove (i), (ii) and (iv). Lemma 5.2 allows us to
obtain (iii).

The definition in (5.1) makes sense also for arbitrary subclasses of s and therefore
the operator J extends to a definable operator on them. It is straightforward to see that
this operator satisfies the properties in (i), (ii) and (iii) of Proposition 5.3 for arbitrary
subclasses of s. In particular, observe that in the proof of Lemma 5.2 we never used
the assumption that the considered subclass is a lower one. Furthermore, for a subclass
P of s we have

JP = J(δP ) ,

as direct calculations suffice to show. In general, however, J will not satisfy property
(iv) of Proposition 5.3 for arbitrary subclasses, but only for lower ones.

5.2.2 Lifting operations

Recall that (Low s)j is a set generated frame whose elements are subsets of s and that
a subset p of s is in (Low s)j if and only if p = jp. Observe that in this characterisation
we do not need to assume that p is a lower subset, since we assumed that j extends to a
closure operator on Pow s. Let us review the definitions of the meet, join and Heyting
implication operations of (Low s)j . For p and q subsets of s such that p = jp and q = jq

we have

p ∧ q = p ∩ q ,
p ∨ q = j(p ∪ q) ,
p→ q = {x ∈ s | x ∈ p→ x ∈ q} .

 (5.2)

We want to lift these operations to act on subclasses of s. For P and Q subclasses of
s such that P = JP and Q = JQ define

P ∧Q =def P ∩Q ,
P ∨Q =def J(P ∪Q) .
P → Q =def {x ∈ s | x ∈ P → x ∈ Q} .

 (5.3)

Observe that if P and Q subclasses of s such that P = JP and Q = JQ and that
are sets, then the groups of definitions in (5.2) and in (5.3) are compatible because of
Lemma 5.1.
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Lemma 5.4. Let P and Q be subclasses of s such that P = JP and Q = JQ. The
following hold:

(i) P ∧ Q is a subclass of s such that J(P ∧ Q) = P ∧ Q. If R is a subclass of s
such that JR = R then R ⊆ P ∧Q if and only if R ⊆ P and R ⊆ Q.

(ii) P ∨Q is a subclass of s such that J(P ∨Q) = P ∨Q. If R is a subclass of s
such that JR = R then P ∨Q ⊆ R if and only if P ⊆ R and Q ⊆ R.

(iii) P → Q is a subclass of s such that J(P → Q) = P → Q. If R is a subclass
of s such that JR = R then R ⊆ P → Q if and only if R ∧ P ⊆ Q.

Proof. Direct calculations.

Recall the definition of supremum and infimum operations in (Low s)j . For a set u
such that, for all p in u, p = jp we have

∨
u = j

(⋃
u
)
,∧

u =
⋂
u .

}
(5.4)

When extending these definitions, we need consider families of subclasses of s rather
than sets of subclasses of s. This is necessary in order to interpret correctly unrestricted
quantifiers. Classes of subsets of s can indeed be used to interpret only formulas of
the form (∀x)θ or (∃x)θ, where θ is a restricted formula. We wish instead to interpret
arbitrary formulas of the form (∀x)φ or (∃x)φ, where φ need not be restricted. This
issue was overlooked in [37].

Let (Px)x∈U be a family of subclasses of s, such that for all x in U we have Px =
J(Px), define

∨
x∈U Px =def J

(⋃
x∈U Px

)
,∧

x∈U Px =def
⋂
x∈U Px .

}
(5.5)

Observe that if U is a set and Ua is a set for all a in U then the class {Ux | x ∈ U} is a
set by Replacement, and that the groups of definitions in (5.4) and (5.5) are compatible
by Lemma 5.1.

Lemma 5.5. Let (Px)x∈U be a family of subclasses of s such that for all x in U we
have Px = J(Px). The following hold:

(i)
∨
x∈U Px is a subclass of s such that

∨
x∈U Px = J

(∨
x∈U Px

)
. If R is a subclass

of s such that R = JR then
∨
x∈U Px ⊆ R if and only if Pa ⊆ R for all a in U .

(ii)
∧
x∈U Px is a subclass of s such that

∧
x∈U Px = J

(∧
x∈U Px

)
. If R is a subclass

of s such that R = JR then R ⊆
∨
x∈U Px if and only if R ⊆ Pa for all a in U .
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Proof. Direct calculations.

5.3 Definition of the interpretation

In this section we define a class of ‘Heyting-valued sets’ and then spell out the interpre-
tation of formulas, thus completing the second step necessary to obtain Heyting-valued
interpretations. The third and final step, i.e the proofs of validity for the axioms of
CZF− and CZF, will occupy Section 5.4 and Section 5.5.

To define a class V (A) to interpret sets, we use an inductive definition working
informally within CZF−. If f is a function we write dom f and ran f for its domain
and range, respectively. We define the class V (A) as the smallest class X such that if
f is a function with dom f ⊆ X and ran f ⊆ A then f ∈ X. This inductive definition
determines a class within CZF− by Theorem 5.1 of [7]. It is worth highlighting the
content of this inductive definition as a lemma.

Lemma 5.6. Let a be a function. If it holds that

- dom a ⊆ V (A) ,

- (∀x ∈ dom a) ax ∈ A ,

then a is an element of V (A).

Proof. The statement is a direct consequence of the inductive definition of V (A).

When defining the Heyting-valued interpretation of a constructive set theory, it is
appropriate to distinguish carefully between the object theory, i.e. the theory that
is interpreted, and metatheory, i.e. the theory in which the interpretation is defined.
The distinction is particularly subtle here because both the object theory and the
metatheory are constructive set theories. Our metatheory is the constructive set the-
ory CZF−. Although we work informally, we keep the notational conventions used
elsewhere in this thesis and reserve the letters x, y, z, u, v, w (possibly with indexes or
subscripts) for variables.

The object theories we consider are CZF− and extensions of it. In order to define
the Heyting-valued interpretation, it is convenient to extend the language L defined in
Section 2.1 and assume that the theories we interpret are formulated in such an exten-
sion. Define the language L(A) to be the extension of the language L with constants
a, b, c, . . . for elements elements a, b, c, . . . in V (A). Observe that the symbol a plays
two roles

- it is a constant of the object language L(A),

- it denotes a set in V (A) in the metatheory.
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Hence we identify an element a in V (A) with the constant a of the language L(A). It is
convenient to assume L(A) as the object language for the set theories we interpret.

A convention. If φ is a formula of L(A) with FVφ = {x} then we understand x both
as a variable in the object language and as a variable in the metalanguage. This abuse
of language could be formally avoided introducing notation to distinguish between the
elements of V (A) in the metatheory and constants of the language L(A) using the so-
called ‘Quine corner convention’ [53, Chapter I, §14].

Let a in V (A). Observe that for all x ∈ dom a, ax is a subset of s such that
j(ax) = ax. Let (Px)x∈dom a be a family of subclasses of s such that for all x in a,
J(Px) = Px and define ∨

x:a

Px =def

∨
x∈dom a

ax ∧ Px∧
x:a

Px =def

∧
x∈dom a

ax→ Px

In order to be able to interpret the equality symbol we use a definition by double
set recursion, that is allowed in CST [40, Section 2.2]. Here we use double set recursion
to define a =A b, for a and b in V (A), so that the following equation

a =A b =
(∧
x:a

∨
y:b

x =A y
)
∧
(∧
y:b

∨
x:a

x =A y
)

(5.6)

holds. We can finally give the definition of the Heyting-valued interpretation of the
language L(A) in Table 5.1.

Proposition 5.7.

(i) If φ is a sentence of L(A) then JφK is a subclass of s such that JJφK = JφK.

(ii) If θ is a restricted sentence of L(A) then JθK is a subset of s such that jJθK = JθK,
and therefore JθK is in A.

Proof. For (i) observe that Proposition 5.4 and Proposition 5.5 give the desired result.
For (ii) observe that the operations of the set-generated frame (Low s)j suffice to define
the interpretation of a restricted formula.

Definition 5.8. We say that a sentence φ of L(A) is valid in V (A) if it holds that
JφK = >. We say that a scheme is valid if all of its instances with parameters that
are elements of V (A) are valid. We say that the Heyting-valued interpretation of a
constructive set theory is valid if the interpretation of all its axioms and all its axiom
schemes is valid. ♦
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Table 5.1: Heyting-valued interpretation of the language L(A).

Ja = bK =def a =A b ,

J⊥K =def ⊥ ,

Jφ ∧ ψK =def JφK ∧ JψK ,

Jφ ∨ ψK =def JφK ∨ JψK ,

Jφ→ ψK =def JφK→ JψK ,

J(∀x ∈ a)φK =def

∧
x:a

JφK ,

J(∃x ∈ a)φK =def

∨
x:a

JφK ,

J(∀x)φK =def

∧
x∈V (A)

JφK ,

J(∃x)φK =def

∨
x∈V (A)

JφK .

5.4 Towards validity

We continue to work informally in CZF−, and prove the validity of the structural and
set existence axioms. Validity of collection axioms will be considered in Section 5.5.
We begin with a simple lemma.

Lemma 5.9. Let a and b in V (A) and φ a formula with FVφ = {x}. Then it holds
that

Jφ[a/x]K ∧ Ja = bK ≤ Jφ[b/x]K .

Proof. By induction on the structure of φ.

Observe that the axioms for the intuitionistic logic and the restricted quantifiers of
CST are valid because of Proposition 5.4, Proposition 5.5 and Lemma 5.9.

Proposition 5.10. Extensionality and Set Induction are valid in V (A).

Proof. Validity of Extensionality follows by the equivalence in (5.6). Validity of Set
Induction is direct consequence of the inductive definition of V (A).
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We now define an embedding from the class of all sets into V (A). This will be used,
for example, to prove the validity of Infinity. For a set a, define by set recursion a
function â with domain {x̂ | x ∈ a} by letting, for x in a

â(x̂) =def > ,

and observe that â is in V (A) by Lemma 5.6. This embedding allows us to intro-
duce a notion that will be used in the proof-theoretic applications of Heyting-valued
interpretations in Section 5.6.

Definition 5.11. We say that a formula φ with FVφ = {x1, . . . , xn} is absolute if
for all a1, . . . , an the equivalence

Jφ[â1, . . . , ân/x1, . . . , xn]K = > ↔ φ[a1, . . . , an/x1, . . . , xn]

holds. ♦

Lemma 5.12. Let a and b be sets. Then it holds that

Jâ = b̂K = > ↔ a = b ,

Jâ ∈ b̂K = > ↔ a ∈ b .

Proof. Direct calculations using Set Induction.

Proposition 5.13. All restricted formulas are absolute.

Proof. The proof of Theorem 1.23 in [11] for Boolean-valued interpretations of Classical
Set Theory carries over here. In particular, the set generated frame P plays in our
context the same role that the complete Boolean algebra 2 plays in the classical context.

The embedding of the class of all sets in V (A) is useful in the next proposition.

Proposition 5.14. Pairing, Union, Infinity and Restricted Separation are valid in
V (A).

Proof. The Heyting-valued interpretation of Pairing and Union can be shown to be
valid following the proof used in the context of ZF or IZF [11, 38]. Validity of Infinity
follows by embedding an infinite set in V (A). By means of illustration we present the
proof of the validity of Restricted Separation in some detail. Let a in V (A) and let θ a
restricted formula with FVθ = {x}. Define a function b with the same domain as a by
letting, for x in dom a,

b(x) =def a(x) ∧ JθK .
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By part (ii) of Proposition 5.7 and Restricted Separation bx is a set and j(bx) = b(x)
for all x in dom a. Hence we have that b is in V (A). Let x in dom a. Observe that x is
in dom b and ax ∧ JθK ≤ b(x). Hence

a(x) ∧ JθK ≤ Jx ∈ bK

and this implies the validity of (∀x ∈ a)(θ → x ∈ b), as direct calculations show. Now
let x in dom b and observe that x ∈ dom a and that b(x) ≤ a(x) ∧ JθK by the definition
of b. Hence we obtain

b(x) ≤ Jx ∈ aK ∧ JθK ,

by the definition of the interpretation. Validity of (∀x ∈ b)(x ∈ a ∧ θ) follows now by
direct calculations and the definition of the Heyting-valued interpretation.

5.5 Collection axioms

We complete the proofs of validity by considering Strong Collection and Subset Collec-
tion. As discussed in Section 5.1, we consider CZF− first and CZF later.

5.5.1 Strong Collection

Until now, proofs of validity for the axioms of CZF− have been quite straightforward,
as we essentially transferred the proofs existing in the literature for ZF and IZF. The
only exception has been Restricted Separation, that required some care when defining
the interpretation of formulas. The presence of Restricted Separation instead of Full
Separation in CZF− has effects also when we consider the validity for Strong Collection.
This time however, the issue arises in the use of separation axioms to prove the validity
of other axioms. In [38] the validity of the Collection axiom of IZF was obtained using
Full Separation, and therefore that proof is not useful for our goals and does not seem
amenable of a simple modification replacing the application of Full Separation with
the use of Restricted Separation. Remarkably, we can prove the validity of Strong
Collection without assuming Full Separation, but rather exploiting Strong Collection
and its consequences proved in Section 2.5. The next two lemmas play a crucial role in
obtaining the desired result.

Lemma 5.15. Let a in V (A) and let φ be a formula of L(A) with FVφ = {x}.

(∀u ∈ A)
(
u ≤ J(∀x ∈ a)φK↔ (∀x ∈ dom a)u ∧ ax ≤ JφK

)
.

Proof. Direct calculations suffice.
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Lemma 5.16. Let a in V (A) and let φ a formula of L(A) with FVφ = {x, y}. Let p in
A and define

P =def {(x, y, z) | x ∈ dom a , y ∈ V (A) , z ∈ p ∧ ax ∧ JφK} .

Assume that p ⊆ J(∀x ∈ a)(∃y)φK. Then there exists a subset r of P such that

(∀x ∈ dom a)p ∧ a(x) ⊆ j{z | (∃y)(x, y, z) ∈ r} .

Proof. We begin by setting some definitions that will be convenient in the following.
Since we will apply Proposition 2.4, we introduce some notation to make that applica-
tion more evident. Define

Q =def {(x, z) | (∃y ∈ V (A))(x, y, z) ∈ P} ,

and then, for x in dom a, define Qx =def {z | (x, z) ∈ Q}. For x in dom a, v in Pow s

define ψ =def p ∧ ax ⊆ jv. Starting from the assumption and using the notation just
introduced, by Lemma 5.2 we derive that

(∀x ∈ dom a)
(
(∃v)(v ⊆ Qx ∧ ψ) ∧ (∀v)(∀w)(v ⊆ w ∧ ψ → ψ[w/v])

)
.

We can now apply Proposition 2.4 and obtain a function f with domain dom a such
that

(∀x ∈ dom a)
(
fx ⊆ Qx ∧ ψ[fx/v]

)
. (5.7)

We will want to apply Proposition 2.3 and therefore we introduce some more definitions.
Define

q =def {(x, z) | x ∈ dom a , z ∈ fx}

and, for x in dom a, y in V (A) and z in s define ξ =def (x, y, z) ∈ P . By the definitions
just introduced and (5.7) we obtain

(∀(x, z) ∈ q)(∃y)ξ .

Therefore we can apply Proposition 2.3 and get a function g with domain q such that

(∀(x, z) ∈ q)
(
(∃y)(y ∈ g(x, z)) ∧ (∀y ∈ g(x, z))ξ

)
.
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Once we define

r =def {(x, y, z) | (x, z) ∈ q , y ∈ g(x, z)} ,

the desired conclusion is reached with routine calculations, using the fact that j is
monotone.

Proposition 5.17. Strong Collection is valid.

Proof. We will use the same notation and definitions used in Lemma 5.16. Let a in
V (A) and let φ be a formula with FVφ = {x, y}. Let p in A and assume that

p ⊆ J(∀x ∈ a)(∃y)φK .

By Lemma 5.16 we get a subset r of P such that

(∀x ∈ dom a)p ∧ ax ⊆ j{z | (∃y)(x, y, z) ∈ r} . (5.8)

We now define an element b of V (A) that will give us

p ⊆ Jcoll(x ∈ a, y ∈ b, φ)K .

Recall from Lemma 5.6 that b needs to be a function in order to be an element of V (A).
First of all, define the domain of b to be the set t defined as

t =def {y | (∃x)(∃z)(x, y, z) ∈ r} .

Now define the function b with domain t by letting, for y in t

by =def j{z | (∃x)(x, y, z) ∈ r} .

To conclude the proof, observe that b is in V (A) and that, by (5.8), we have

p ⊆ Jcoll(x ∈ a, y ∈ b, φ)K ,

and this leads to the validity of Strong Collection.

5.5.2 Subset Collection

We keep working informally in CZF−, but we now assume that the nucleus j is set-
presented, and therefore A is set-presented. Let r be a set presentation for j, that is to
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say a subset of s such that for a in s and p subset of s

a ∈ jp↔ (∃u ∈ r)(x ∈ ju ∧ u ⊆ p) .

Lemma 5.18. Let a be in s and let P be a subclass of s. We have

a ∈ JP ↔ (∃u ∈ r)(a ∈ ju ∧ u ⊆ P ) .

Proof. Direct calculations suffice to prove the claim.

Define g =def {j{x} | x ∈ s} and recall that g is a generating set for A. The next
lemma is proved assuming Subset Collection and exploiting Proposition 2.6.

Lemma 5.19. Let a, b be in V (A) and let φ be a formula with FVφ = {x, y, z}. There
exists a subset d of V (A) such that for all z in V (A) and for all p in g if

p ⊆ J(∀x ∈ a)(∃y ∈ b)φK ,

then there exists e in d such that p ⊆ Jcoll(x ∈ a, y ∈ e, φ)K.

Proof. Let p in g and assume that

p ⊆ J(∀x ∈ a)(∃y ∈ b)φK (5.9)

In the following we will apply Proposition 2.6 twice. In view of those applications it is
convenient to define sets a′ and b′ as follows:

a′ =def {(x,w′) ∈ dom a× s | w′ ∈ p ∩ ax} ,

b′ =def dom b× s .

The set a′ will be used in the second application of Proposition 2.6, while the set b′ will
be used in the first. Another definition will be helpful before starting the proof. For x
in dom a, y in dom b and z in V (A) define the class

Px,y =def ax ∧ by ∧ JφK .

We begin the proof by letting x′ in a′. By the definition of a′ we get x in dom a and
w′ in p ∩ ax such that x′ = (x,w′). We now define the proposition that will be used in
our first application of Proposition 2.6. For q in r, w in q and y′ in b′ define

ψ =def (∃y ∈ dom b)
(
y′ = (y, w) ∧ w ∈ q ∩ Px,y

)
.
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From (5.9) and Lemma 5.18 we derive that there is q in r such that w′ ∈ jq and

(∀w ∈ q)(∃y′ ∈ b′)ψ .

If we apply Proposition 2.6, we obtain a set c′, independent of p, x′, q and z, such that
there is u in c′ for which

coll(w ∈ q, y′ ∈ u, ψ) (5.10)

holds. We can now define the proposition used in our second application of Proposition
2.6. For x′, x, w′, q and u define

ξ =def (∃q ∈ r)(∃x ∈ dom a)(∃w ∈ p ∩ a(x) ∩ jq)χ

where χ =def x
′ = (x,w′) ∧ coll(w ∈ q, y′ ∈ u, ψ). Discharging the assumption of x′ in

a′ that we made at the beginning of the proof, we obtain

(∀x′ ∈ a′)(∃u ∈ c′)ξ .

A second application of Proposition 5.18 gives us a set c, independent of p and z, such
that there is v in c for which

coll(x′ ∈ a′, u ∈ v, ξ) (5.11)

holds. The set c allows us to define the set whose existence is claimed in the desired
conclusion. For v in c define a function fv with domain dom b by letting, for y in dom b

fv(y) =def j{w | (y, w) ∈
⋃
v} .

Define d =def {fv | v ∈ c} and observe that d is a subset of V (A). To conclude the proof
let v in c and assume that it satisfies (5.11). Define e =def fv so that we have e in d.
To conclude the proof we need to show that

p ⊆ Jcoll(x ∈ a, y ∈ e, φ)K

holds. We prove the desired claim in two steps. For the first step, let x in dom a and
w′ in p∩ ax. Using first (5.11) and then (5.10) we obtain that there is q in r such that

(
w′ ∈ jq

)
∧
(
q ⊆

⋃
y∈dom e

e(y) ∩ JφK
)
.

We then get p ⊆ J(∀x ∈ a)(∃y ∈ e)φK and this concludes the first step. For the second
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step, let y in dom e and define

t =def p ∩ {w ∈ s | (y, w) ∈
⋃
v} .

We have

(
p ∩ ey ⊆ jt

)
∧
(
t ⊆ J(∃x ∈ a)φK

)
,

using again (5.11) and (5.10). Therefore we get p ⊆ J(∀y ∈ e)(∃x ∈ a)φK and this
concludes the second step. Putting together the conclusions reached at the end of the
two steps we get the desired result.

The next proposition is proved assuming Subset Collection.

Proposition 5.20. Subset Collection is valid in V (A).

Proof. Let a and b in V (A) and let φ be a formula with FVφ = {x, y, z}. We can
therefore assume to have a set d as in the conclusion of Lemma 5.19. Then define a
function c with domain d by letting, for v in d, cv =def >. Direct calculations lead to
the validity of Subset Collection.

The next theorem is proved working informally within CZF−.

Theorem 5.21.

(i) The Heyting-valued interpretation of CZF− in V (A) is valid.

(ii) Assuming Subset Collection, if A is set-presented, then the Heyting-valued
interpretation of CZF in V (A) is valid.

Proof. For part (i) combine Proposition 5.10, Proposition 5.14 and Proposition 5.17.
For (ii) observe that it follows from part (i) and Proposition 5.20

5.6 Proof-theoretic applications

We now present first proof-theoretic applications for the Heyting-valued interpretations
developed in the previous sections. The results given here arise by considering the set-
generated frame P and the double-negation nucleus on it. Observe that the set 1 can be
seen also as a poset, with discrete partial order. We have that any subset 1 is a lower
set of the discrete partial order and therefore Pow 1 and Low 1 are identical. Recall
from Subsection 4.2.2 that, for p in P, we defined the double-negation nucleus as

jp =def {x ∈ 1 | ¬¬x ∈ p} .
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We write Pj for the set-generated frame determined by the nucleus j. Recall that p in
P is in Pj if and only if

p = {x ∈ 1 | ¬¬x ∈ p} .

We now extend the nucleus j to an operator J on subclasses of 1 following the
definition in (5.1). Let P be a class contained in 1 and define

JP =def

⋃
{jv | v ⊆ P} .

Remark. It is important to observe that

{x ∈ 1 | ¬¬x ∈ P} ⊆ JP ,

but it does not seem possible to prove the reverse inclusion without further assumptions
on P . In other words, J is the double-negation on subsets, but J it is not necessarily
the double-negation on subclasses.

5.6.1 A relative consistency result

Let us now consider V (Pj) and the restricted excluded middle scheme (REM) intro-
duced in Section 2.2. Observe that REM is equivalent to the sentence

(∀v ∈ P)(v = 1 ∨ ¬v = 1)

In [19] the set theory CZF− + REM was given an interpretation into a semi-classical
system W that can in turn be interpreted within a pure type theory with W -types.
Here we use Heyting-valued interpretations to obtain a more direct interpretation of
CZF− + REM into a theory with intuitionistic logic. The next lemma is the key to
obtain it.

Lemma 5.22. REM is valid in V (Pj).

Proof. Let θ be a restricted sentence. Observe that ¬¬(¬¬θ ∨ ¬θ) is derivable in
intuitionistic logic. For p in Pj define

¬p =def p→ ⊥ ,

and observe that

> = ¬¬(¬¬JθK ∪ J¬θK) ,
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by the validity of Heyting-valued interpretations and direct calculations. We have that
JθK is in Pj by Lemma 5.7, and thus JθK = ¬¬JθK. We therefore obtain

> = Jθ ∨ ¬θK ,

which shows the validity of REM.

Lemma 5.23. The Heyting-valued interpretation of CZF− + REM in V (Pj) is valid.

Proof. The claim is a consequence of Lemma 5.22 and part (i) of Theorem 5.21.

To introduce the next definition we recall that, by standard coding, for a set theory
T there is a sentence Con(T1) in the language of first-order arithmetic asserting the
consistency of T.

Definition 5.24. We say that a set theory T1 is reducible to another set theory T2

if the sentence

Con(T2)→ Con(T1)

is provable in first-order arithmetic. ♦

Theorem 1.19 of [11] shows that Boolean-valued interpretations give relative con-
sistency proofs for extensions of ZF. That theorem carries over also to Heyting-valued
interpretations and therefore we obtain the next result.

Theorem 5.25. CZF− + REM is reducible to CZF−.

Proof. The claim is a consequence of Lemma 5.23.

5.6.2 An independence result

The independence result we prove next was suggested to us by Thierry Coquand, and
seems to have been first expected in [39]. Let us now consider the theory CZF+REM.
Recall from Section 2.2 that this set theory has at least the proof-theoretic strength of
second-order arithmetic and therefore

CZF + REM ` Con(CZF) .

Theorem 5.26. The sentence asserting that the double-negation nucleus is set-presented
cannot be proved in CZF.

Proof. Let φ be the sentence asserting that the nucleus j is set-presented and assume

CZF ` φ . (5.12)
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Theorem 5.21 shows that the Heyting-valued interpretation of CZF in V (Pj) is valid.
Furthermore we have seen that REM is valid. Combining these two facts we obtain
that Con(CZF) is valid in V (Pj). Since Con(CZF) is an absolute formula, we have

CZF ` Con(CZF)

by Proposition 5.13. But this is a contradiction to Gödel’s second incompleteness
theorem. We have therefore proved that the assumption (5.12) leads to a contradiction,
hence the conclusion.

Hence, the double-negation nucleus cannot be described using posites and inductive
definitions. If this was the case, then the nucleus would indeed be set-presented by
Theorem 4.25. A similar conclusion in the context of type theory was obtained in [20],
but its proof is rather indirect since it makes use of set-theoretic models of pure type
theories.

5.7 Further applications

One of the remarkable aspects of the theory of sheaf toposes is the correspondence
between internal notions, i.e. notions defined in the internal logic of a topos, and
external notions, i.e. notions defined in the informal setting in which sheaf toposes are
considered. Let us discuss this informally in the context of intuitionistic set theory.
Here one may consider topological spaces as pairs (X,O(X)) where X is a set of
points and O(X) is a frame of open sets, satisfying the usual conditions. For example,
we may consider the topological space of Dedekind cuts, (R,O(R)). It is then well-
known that if we consider the topos of sheaves over a topological space (X,O(X)) , the
internal Dedekind reals correspond to external continuous functions from (X,O(X)) to
(R,O(R)) [56, Section VI.8].

For localic toposes the issue is more complex. For a frame A, one would wish to
obtain a correspondence between the internal Dedekind reals in the topos of sheaves
over A and the external frame morphisms from O(R) to A. Unfortunately, this relies on
the assumption that O(R) is locally compact [31]. An analogous situation happens also
for other spaces: the bar induction and the fan theorem principle are used to obtain
representations of internal elements of the Baire and Cantor spaces as frame morphisms
from O(NN) and O(2N) to A, respectively [31].

In this section we wish to explore how to improve on this situation in the con-
text of Heyting-valued interpretations. The key observation will be that replacing the
concrete spaces Rd, NN and 2N with their pointfree counterparts allows us to obtain
representation of internal points as external frame morphisms without assuming extra
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principles. In order to make this precise, we need to introduce some notions. From now
on, we will work with a fixed set-generated frame A and consider the Heyting-valued
interpretations in V (A).

Definition 5.27. Let φ be a formula of L(A) with free variables x1, . . . , xn. We say
that elements a1, . . . , an of V (A) satisfy φ in V (A) if

Jφ[a1, . . . , an/x1, . . . , xn]K = > .

We say that the elements of a definable collection of classes represent the elements
of V (A) that satisfy φ if there is a definable operation assigning to each class P in the
collection an element bP of V (A) such that for all a in V (A) that satisfy φ in V (A) there
is a unique class P in the collection such that Ja = bP K = > . ♦

We now embark on the characterisation of the internal points. Recall from Section
5.4 that there is an embedding assigning an element â of V (A) to any set a. Let θ be
the formula of L(A) with FVθ = {x} asserting that x is a posite. By the definition of
posite, θ is a restricted formula and therefore if x is a posite then x̂ satisfies θ in V (A)

by Proposition 5.13. Let x be a posite, and let φ be the formula with a free variable
y expressing that y is a coverage filter of x̂. We refer to the elements of V (A) that
satisfy φ as the internal points of the posite x in V (A). We aim to prove the following
theorem.

Theorem 5.28. Let (P,Cov) be a posite. Frame morphisms from Idl(P) to A represent
internal points of (P,Cov) in V (A).

Proof. In view of Proposition 4.31, it is sufficient to show that coverage maps from P

to A represent internal points of (P,Cov) in V (A). Given a coverage map f from P to
A, define an element χf of V (A) as follows: χf is a function with domain {x̂ | x ∈ P}
defined by letting, for x in P

χf (x̂) =def f(x)

and observe that χf is in V (A) because its domain is a subset of V (A) and its range
is a subset of A. The proof that χf is a coverage filter of P̂ is a consequence of the
assumption that f is a coverage map. Now, let χ be a filter subset of P̂ in V (A). We
need to find a coverage map f from P to A such that

Jχ = χf K = > . (5.13)

Define fχ as the function with domain P defined by letting, for x in P

fχ(x) =def Jx̂ ∈ χK ,
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and observe that fχ is a coverage map because χ is a filter subset of P̂. The calculations
to show this involve applications of Proposition 5.13, but are straightforward. To show
Jχ = χfχK = > we use the validity of Extensionality in V (A), as follows. Let x in P and
observe that

Jx̂ ∈ χK = fχ(x) = Jx̂ ∈ χfχK .

This follows by the definitions we fixed and by the definition of the Heyting-valued
interpretation. Finally, to show that fχ is unique among the maps f for which (5.13)
holds, observe that for all coverage maps f we have fχf = f by simple calculations,
that use again the absoluteness of restricted formulas.

We can now obtain a representation of the internal points of the spaces we discussed
in Section 4.6.

Corollary 5.29. Let A be a set-generated frame.

(i) Frame morphisms from B to A represent internal points of Seq(N) ,

(ii) Frame morphisms from C to A represent internal points of Seq(2) ,

(iii) Frame morphisms from D to A represent internal points of Q− × Q+ .

Proof. The claims are direct consequences of Theorem 5.28.

Corollary 5.29 represents the first step towards the application of Heyting-valued
interpretations to transfer to constructive set theories the relative consistency and in-
dependence results obtained for intuitionistic set theories [31, 72, 73]. These seem to
carry over from the fully impredicative to the generalised predicative setting. For exam-
ple, Heyting-valued interpretations developed in this chapter could be applied to prove
the independence from CZF of various choice principles, like dependent and countable
choice, and of principles of intuitionistic analysis, like the monotone bar induction and
fan theorem principles [31].

We expect however Heyting-valued interpretations to allow also further applications.
Investigations into notions of real numbers in intuitionistic mathematics provide exam-
ples of interesting open problems. In [25] it is shown that, alongside the well-known
notions of Cauchy and Dedekind reals, there is also another class of real numbers that
is of interest for intuitionistic mathematics: the Cauchy completion of the rationals [7,
Section 3.6]. It is known that, assuming the principle of countable choice, the three no-
tions are equivalent [25]. Heyting-valued interpretations for IST have been remarkably
applied to show that the Dedekind and the Cauchy reals are distinct using interpre-
tations in which the countable choice principle fails [31]. It is however a challenging
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open problem to establish whether the Cauchy reals and the Cauchy completion of the
rationals are distinct. Heyting-valued interpretations for CST seem a natural method
to investigate open problems of this kind.



Chapter 6

Sheaf interpretations for CST

6.1 Introduction

In [78] Dana Scott presented sheaf interpretations for IST in a rather direct style,
avoiding the use of advanced category-theoretic methods. Unfortunately, the content
of those slides was never published, and the closest material that can be found in the
literature seems to be Michael Fourman’s paper [29]. The main goal of this chapter is
to show how some of Scott’s ideas and results can be transferred from IST to CST.

One of the reasons for which we decided to consider Scott’s approach rather than
Fourman’s is to make the transition from IST to CST as simple as possible. While
Scott developed sheaf interpretations working informally in IST, Fourman obtained
them using the internal logic of sheaf toposes. We considered to pursue also this
second, more abstract, approach. This would have required, however, a substantial
development of category theory and categorical logic in CST before even attempting
to develop sheaf interpretations.

Another reason for following Scott is to emphasise how sheaf interpretations can
be obtained in two separate steps. The first step is determined by a small category C
and the second step is determined by a Lawvere-Tierney operator j in the category of
presheaves over C. These two steps can be seen as generalisations of interpretations
that are well-known in mathematical logic. The first one, to which we will refer as
presheaf interpretation, echoes Kripke’s interpretation of intuitionistic logic [24,
Section 5.3] and Cohen’s forcing technique [53], since posets are particular examples of
small categories. The second one, to which we shall refer as j-translation, is instead
reminiscent of the Gödel-Gentzen translation of classical logic into intuitionistic logic,
since double-negation determines a special example of a Lawvere-Tierney operator.

Before performing these two steps, it is however necessary to define a presheaf V (C)

to interpret sets and to define the interpretation of the membership relation. Informally
speaking, the presheaf V (C) plays the same role for the category of presheaves on C
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that the cumulative hierarchy class plays in the category of classes. This brings us to
a further reason to prefer Scott’s methods over Fourman’s. While Scott’s definition of
V (C) can be recasted in CST as an inductive definition, Fourman’s makes essential use
of ordinals, that in CST behave even worse than in Topos Theory.

The abstract content of sheaf interpretations will not be completely lost, however.
Concepts of Algebraic Set Theory (AST) will allow us to highlight some of the categor-
ical properties that are used in the definition of sheaf interpretations. For example, we
will exhibit some formal analogies between the category of classes and the category of
presheaves. Furthermore, the abstract formulation of the property of power classes of
AST provides us with insight into the nature of the inductive definition that we shall
adopt to isolate the presheaf V (C). We indeed expect that, once a completely satisfac-
tory categorical notion of model for CST is formulated, the interpretations described
here may find a completely abstract formulation.

Just like for Heyting-valued interpretations, the process of transferring ideas and
results from IST to CST is not straightforward. The experience with Heyting-valued
interpretations, however, will provide valuable guidance to develop sheaf interpretations
for CST. Two aspects will play, again, a particularly important role: the distinction
between restricted and arbitrary formulas, and the presence of collection axioms in
CST. Recall, for example, that in Chapter 5 we interpreted restricted sentences and
arbitrary sentences as lower sets and lower classes, respectively. In this chapter, we
will see how restricted and arbitrary sentences will instead determine set-sieves and
sieves, that generalise the notion of lower set and lower class to small categories that
are not posets. Similarly, we will see how collection axioms both help us setting up
the interpretations and are preserved by them. At the end of the chapter, we will
discuss the variety of potential applications and some of the reasons leading to consider
interpretations of such generality.

6.2 Presheaves

In this section we introduce the category of presheaves. Following the approach of
AST, we prefer to define presheaves as functors into the category of classes, rather
than into the category of sets. For the definition of the category of classes, see Section
2.4. For general background information on presheaves, we invite the reader to refer to
[56, Chapter I].

6.2.1 A small category

Throughout this chapter, we consider a arbitrary, but fixed small category C. We write
C0 for its set of objects and C1 for its set of maps. In the following we will use letters



6. Sheaf interpretations for CST 110

a, b, c, . . . for elements of C0 and letters f, g, h, . . . for elements of C1. For an element
f of C1, we write dom f and cod f for its domain and codomain, respectively. For a in
C0 we write ida for the identity map on a. If f and g are such that dom f = cod g, we
write f ◦ g for their composition. We draw such a situation in a diagram as follows:

a b
foo c ,

goo

where a =def cod f , b =def dom f , and c =def dom g. For a in C0 define

y a =def {f ∈ C1 | cod f = a}. (6.1)

Observe that for all a in C0, y a is a set by Restricted Separation. For a, b in C0 define

C(b, a) =def {f ∈ C1 | cod f = a , dom f = b} .

Remark. Most of the results obtained in this chapter can be reobtained by replacing
the condition that the category C is small with the condition that for all a in C0 the
class y a, as defined in (6.1) is a set. We prefer to assume that C is small because the
condition is a more familiar one, and there is a plethora of examples thereof.

Some intuition. For those readers who are not familiar with categories, one possible
way to develop some intuition is to think of elements of C0 as ‘stages of a process’,
and of elements of C1 as ‘transitions’ between stages. Observe that there may be more
than one possible transition between two stages. A map f

a b
foo

can then be thought of as a transition from the stage a to the stage b. For a in C0, we
may think of y a as the set of transitions from the stage a.

Examples. Every poset determines a category. If P is a poset we define a category
whose objects are the elements of P and whose maps are determined by the partial
order. There is a map a boo if and only if b ≤ a, and in that case any two such
maps are considered equal.

6.2.2 The category of presheaves

Let us now consider Cop, that is the opposite of the category C. We write Psh(C)
for the category whose objects are presheaves, i.e. functors from C

op to Classes and
whose arrows are presheaf maps, i.e natural transformations between presheaves. Let
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us now present the notation that we will use in relation to presheaves and describe more
directly presheaves and presheaf maps.

For a presheaf A, we write Aa for the application of A to a in C0. For a, b in C0

and f in C(b, a), we prefer to leave implicit the function from Aa to Ab, to which we
sometimes refer as restriction, that is determined by f , and simply write sf for the
result of the application of this function to an element s of Aa. Given these conventions,
we may spell out the definition of presheaf by saying that a presheaf A assigns

- a class Aa to each a ∈ C0 ,

- an element sf ∈ Ab to each f ∈ C(b, a) and s ∈ Aa, where a, b ∈ C0,

such that the following properties:

- sida = s, for all a ∈ C0 and s ∈ Aa,

- (sf )g = sf◦g for all a, b, c ∈ C0, f ∈ C(b, a) and g ∈ C(c, b),

hold. For a presheaf map F between two presheaves A and B, we write Fa for the
function between the classes Aa and Ba, where a is in C0. Using this convention, a
presheaf map assigns a function Fa to each a in C0 such that for all a, b ∈ C0 the
following diagram

Aa
Fa //

��

Ba

��
Ab Fb

// Bb

commutes, where the vertical arrows are the restrictions of the presheaves A and B.
We say that F is small if for all a in C0, Fa is a small map between classes in the sense
of Section 2.4.

6.2.3 Examples

Constant presheaves. If A is a class, then we may regard it as the presheaf that
assigns:

- Aa =def A to a ∈ C0 ,

- sf ∈ Ab to f ∈ C(b, a) and s ∈ Aa, that is defined as

sf =def s ,

where a, b ∈ C0.

The required properties follow immediately.
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Terminal object. The constant presheaf determined by 1 is a terminal object in
Psh(C), just as 1 is a terminal object in Classes.

Representable presheaves. Let a in C0. The presheaf Y(a) assigns:

- Y(a)b =def C(b, a) to b ∈ C0,

- fg ∈ Y(b) to g ∈ C(c, b) and f ∈ Y(a)b, that is defined as

fg =def f ◦ g ,

where b, c ∈ C0.

The desired properties follow immediately by the axioms for a category.

Sieves. Let a in C0. We say that a subclass P of y a is a sieve on a if for all b, c ∈ C0

and for all f ∈ C(b, a) it holds that

f ∈ P ↔ (∀g ∈ C(c, b))f ◦ g ∈ P .

For a sieve P on a and f ∈ C(b, a) and s ∈ Aa, where a, b ∈ C0, define

Pf =def {g ∈ y b | f ◦ g ∈ P}

and observe that Pf is a sieve on b. We say that a sieve on a is a set-sieve if it is a
set. The presheaf Ω assigns:

- Ωa =def {p | p set-sieve on a} to a ∈ C0 ,

- pf ∈ Ωb to f ∈ C(b, a) and p ∈ Ωa, that is defined as

pf =def {g ∈ y b | f ◦ g ∈ p}

where a, b ∈ C0.

The required properties are an immediate consequence of the notion of sieve.

A universal presheaf. The presheaf U assigns:

- Ua =def {s | s function with domain y a} to a ∈ C0,

- sf ∈ Ub to f ∈ C(b, a) and s ∈ Ua, that is defined as the function with domain
y b obtained by letting, for g ∈ y b

sf (g) =def s(f ◦ g) ,
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where a, b ∈ C0.

Again, the required properties follow by direct calculations that we leave to the reader.
Proposition 6.1 on page 113 will justify the terminology ‘universal presheaf’.

To conclude this section, it is worth highlighting some connections between sieves
and lower classes of a poset. Observe that if C is a poset, then a sieve on an element
a of the poset is nothing but a lower class whose elements are all less or equal to a.
In the following, we will show a correspondence between sentences of an extension of
the language of CST and sieves. Under that correspondence, restricted sentences will
correspond to set-sieves. This is indeed completely analogous to what we did in Section
5.3 in relation to Heyting-valued interpretations.

6.3 From classes to presheaves

The goal of this section is exhibit some formal analogies between the categories Classes

and Psh(C), so as to arrive to the definition of a ‘cumulative hierarchy presheaf’ that
will be used to define the interpretation of sets.

6.3.1 A universal object

The first property that Psh(C) inherits from Classes is the existence of a universal
object, in the sense of Definition 2.2.

Proposition 6.1. U is a universal object in Psh(C).

Proof. Let A be a presheaf. We first define a presheaf map F from A to U , and then
show that F is a monomorphism.

For a in C0 and s in Aa define Fa(s) as the function with domain y a that maps f
in y a into sf . It is not hard to show that this definition determines a presheaf map.
Let us now prove that F is a monomorphism, i.e. that for a in C0, Fa is injective.
Let s, t ∈ Aa and assume Fa(s) = Fa(t). We need to show that s = t. This is rather
simple: by the very definition of Fa(s) and the properties of presheaves we have that
the application of Fa(s) to ida is s, and similarly that the application of Fa(t) to ida
is t. Since we assumed that Fa(s) and Fa(t) are extensionally equal functions we have
s = t, as desired.

6.3.2 Power presheaves

We now want to transfer from the category of classes to the category of presheaves
the property expressed by axiom (P1) of Section C.2. In Classes this axiom was
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satisfied because we can define the power class operation. This operation assigns the
class Pow(A), whose elements are the subsets of A, to a class A. Observe that, for
every class A, Pow(A) is a subclass of the class of all sets, that is a universal object in
Classes.

In the following we will be interested in subpresheaves, that we now define, of the
universal presheaf. Let A be a presheaf. We say that A′ is a subpresheaf of A if A′

assigns a class A′a to a ∈ C0 such that the following properties

- A′a ⊆ Aa, for all a ∈ C0,

- sf ∈ A′b, for all f ∈ C(b, a) and s ∈ A′a, where a, b ∈ C0,

hold. The next definition isolates the notion of ‘subset’ in the category Psh(C).

Definition 6.2. Let A be a presheaf A. We say that p ∈ Ua is a presheaf subset

of A at stage a if, for b ∈ C0 and f ∈ C(b, a), the following properties

- p(f) ∈ Pow(Ab),

- p is closed under restrictions, i.e.

(∀y ∈ p(f)) (∀g ∈ y b) yg ∈ pf (g) ,

where a ∈ C0, hold. ♦

Finally, we define the power presheaf operation on presheaves. This is defined by
assigning

PowC(A)a =def {p ∈ Ua | p presheaf subset of A at stage a}

to a in C0. Observe that with this definition, PowC(A) is a subpresheaf of U .

Lemma 6.3. Let a in C0 and p in PowC(A)a. For all s in Aa it holds that

s ∈ p(ida)↔ (∀f ∈ y a)sf ∈ p(f) .

Proof. The ‘right-to-left’ implication is obvious, while the ‘left-to-right’ direction fol-
lows from the fact that p is closed under restrictions.

Recalling the notion of small map between presheaves from Subsection 6.2.2, and
that the product of two presheaves is defined as their ‘stage-wise’ product [56, Chapter
I], it follows that the notion of indexed families of small subobjects, as in Definition 2.1,
makes sense also in Psh(C). Let us however rephrase it explicitly for the convenience
of the reader.
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Definition 6.4. Let A be a presheaf. For a presheaf I, we say that a subobject

R // // I ×A is an I-indexed family of small subobjects of A if the composite

map R // // I ×A π1 // I is a small presheaf map. ♦

In order to show that (P1) holds in Psh(C) we introduce an abbreviation and, for
a presheaf A, write

PC(A) =def PowC(A) .

The axiom (P1) requires to exhibit an A-indexed family of small subobjects of A, 3A,
that plays the role of a ‘membership’ relation. We define 3A as the subpresheaf of
PC(A)×A that assigns

(3A)a =def {(p, s) ∈ PC(A)×A | s ∈ p(ida)}

to a ∈ C0. Observe that 3A is a subpresheaf of PC(A)×A by Lemma 6.3. Furthermore,
3A is indeed an A-indexed family of small subobjects of A, because for a ∈ C0 and
p ∈ PC(A)a the fiber of (3A ◦π1)a is a set.

Proposition 6.5. Let A be a presheaf. The presheaf PC(A) and the A-indexed family
of subobjects 3A are such that for any I-indexed family of small subobjects R // // I ×A

there exists a unique presheaf map I
F // PC(A) that makes

R
��

��

// 3A
��

��
I ×A

F×IdA
// PC(A)×A

a pullback diagram.

Proof. We only indicate the proof, which is really straightforward. For an I-indexed
family of subobjects R // // I ×A we define a presheaf map F that assigns, for a in
C0, a function Fa from Ia to PC(A)a.

The function Fa needs to map each element i of I into a presheaf subset of A at
stage a. Hence Fa(i) needs to be a function with domain y a that satisfies the properties
fixed in Definition 6.2. For f in C(b, a) define

Fa(i)(f) =def {y ∈ Ab | (if , y) ∈ R} ,

where b ∈ C0 and we assumed, as we always can, that R is a subpresheaf of I×A. Direct
calculations now lead to prove that such definition satisfies all the required properties.
We leave these verifications to the reader.
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6.3.3 Cumulative hierarchy presheaf

We can now finally define the presheaf V (C) that will be used to interpret sets. First
of all, observe that subpresheaves of the universal presheaf U are partially ordered by
‘stage-wise’ inclusion, i.e. for A and B subpresheaves of U we let

A ⊆ B ↔ (∀a ∈ C0)Aa ⊆ Ba .

We would like to ‘define’ V (C) as the largest subpresheaf X of U such that

PowC(X) ⊆ X

in complete analogy with the way the cumulative hierarchy is defined in Classes. The
above ‘definition’ can be rephrased as an inductive definition of a class V̂ (C) such that

V̂ (C) = Σa∈C0 V
(C)
a

To introduce the inductive definition of V̂ (C), let Û =def Σa∈C0Ua. We inductively
define V̂ (C) as the smallest subclass Y of Û such that

P̂ow(Y ) ⊆ Y

where

P̂ow(Y ) =def {(a, p) | (∀b ∈ C0)(∀f ∈ C(b, a) p(f) ∈ Pow(Yb) ∧

(∀y ∈ p(f))(∀g ∈ y b) yg ∈ pf (g)}

and we used the abbreviation Yb = {s | (b, s) ∈ Y } for b ∈ C0. Once V̂ (C) has effectively
been defined we may let, for a in C0,

V (C)
a =def (V̂ (C))a .

The next theorem makes explicit the definition of V (C), and will be constantly used in
the following to show that explicitly defined sets are in V (C).

Theorem 6.6 (Scott’s definition of V (C)). Let a in C0. Let s be a function with
domain y a. Then s ∈ V (C)

a if and only if for all f in y a

(i) s(f) ⊆ V (C)
b ,

(ii) if t ∈ s(f) then (∀g ∈ y b)tg ∈ sf (g).

where b =def dom f .
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Proof. Direct consequence of the inductive definition of V (C).

Corollary 6.7. V (C) is a subpresheaf of U .

Proof. Consequence of Theorem 6.6.

Let us conclude this section by recalling that V (C) was simply defined as in the
body of Theorem 6.6 in [78]. The definition of power presheaves and the results in this
section are intended to provide some insight into the definition of V (C), and to make
sure that this class could be defined inductively in CST. Note that, by Theorem 5.1 of
[7] we only need to assume the axioms of CZF− to obtain that V (C) is an inductively
defined class.

6.4 Presheaf interpretations

Now that we have a presheaf in which we can interpret sets, we wish to define presheaf
interpretations. This will be our first step towards sheaf interpretations. This can be
done following the clauses of the Kripke-Joyal interpretation of logic in an elementary
topos [56, Section VI.6]. A remarkable difference arises when interpreting constructive
set theories, in that we need to interpret equality and restricted quantifiers over sets.
As we will see, the definition of the presheaf V (C) allows us to do so.

Before the definition of the interpretation, let us make some considerations on the
syntax. We will essentially follow the approach used to define Heyting-valued interpre-
tations in Section 5.3. Let us consider a in C0. We define the language L(a) to be the
extension of the language L with constants for elements of V (C)

a . As usual, we do not
distinguish between elements of V (C)

a and the constants added to the language L and
use letters s, t, r, . . . for them. If φ is a formula of L(a) and f is in y a we define φf to
be the formula obtained from φ by leaving free variables unchanged and substituting
each constant s appearing in φ with the constant sf . We will refer to this process as
restriction. Observe that if φ is a sentence of L(a) then φf is a sentence of L(b), where
b =def dom f .

We can now define the presheaf interpretation of formulas. For a in C0 and φ a
sentence of L(a), we define its presheaf interpretation,

a  φ ,

by structural induction on φ according to Table 6.1.

A convention. Let a in C0. If φ is a formula of L(a) with FVφ = {x} then we
consider x also as a variable in the metalanguage. If we are considering a  φ, then we
assume that x is in V (C)

a . Recall that if f is in y a, x remains unchanged in φf . Hence,
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when considering b  φf , where b =def dom f , we assume that x is in V
(C)
b .

Table 6.1: Definition of the presheaf interpretation.

a  s = t =def s = t ,

a  ⊥ =def ⊥

a  φ ∧ ψ =def (a  φ) ∧ (a  ψ) ,

a  φ ∨ ψ =def (a  φ) ∨ (a  ψ) ,

a  φ→ ψ =def (∀f ∈ y a)(dom f  φf → dom f  ψf ) ,

a  (∃x ∈ s)φ =def

(
∃x ∈ sida

)
a  φ ,

a  (∀x ∈ s)φ =def (∀f ∈ y a) (∀x ∈ sf) dom f  φf ,

a  (∃x)φ =def

(
∃x ∈ V (C)

a

)
a  φ ,

a  (∀x)φ =def

(
∀f ∈ y a

)(
∀x ∈ V (C)

dom f

)
dom f  φf .

We now want to show that sentences of L(a) correspond to sieves. The next lemma
is the key to do so.

Lemma 6.8 (Monotonicity). Let a in C0. Let φ be a sentence of L(a). If a  φ then
for all f in y a it holds that b  φf , where b =def dom f .

Proof. By structural induction on φ.

The next definition will provide the desired link between sentences and sieves. For
a sentence φ of L(a) define

JφK =def {f ∈ y a | dom f  φf} .

Proposition 6.9. Let a in C0.

(i) If φ is a sentence of L(a), then JφK is a sieve on a.

(ii) If θ is a restricted sentence of L(a), then JθK is a set-sieve on a, and therefore
JθK is in Ωa.

Proof. For part (i) Lemma 6.8 gives the desired conclusion. For part (ii) use struc-
tural induction on θ, observing that all the clauses in Table 6.1 defining the presheaf
interpretation of a restricted formula are themselves restricted.

Validity of the interpretation can then be defined in a standard way.
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Definition 6.10. Let a in C0. We say that the presheaf interpretation of a sentence φ
of L(a) is valid if a  φ. We say that the presheaf interpretation of an axiom scheme of a
constructive set theory is valid if for all a in C0, the interpretation of all of the instances
of the axiom scheme with parameters in V

(C)
a are valid. The presheaf interpretation

of a constructive set theory in V (C) is said to be valid if the interpretation of all its
axioms and axiom schemes is valid. ♦

6.5 Towards validity

In this section we prove the validity of the presheaf interpretation of the structural
and set existence axioms of CZF. Proofs concerning collection axioms are instead
postponed until Section 6.6. The next proposition takes care of the structural axioms.

Proposition 6.11. The presheaf interpretation of Extensionality and Set Induction is
valid.

Proof. To illustrate the reasoning used in the proofs concerning presheaf interpreta-
tions, we prove the validity of Extensionality. Validity of Set Induction follows directly
by the inductive definition of V (C). For Extensionality, let a in L(a) and let s and t be
in V

(C)
a . Let f in y a, define b =def dom f . We assume that

b  (∀x ∈ sf )(∃y ∈ tf )x = y ∧ (∀y ∈ tf )(∃x ∈ sf )x = y , (6.2)

and we need to show that

b  sf = tf .

This amounts to showing that sf = tf , by definition of the presheaf interpretation.
Since both sf and tf are functions with domain y b it suffices to show that for g in
y b, it holds that sf (g) = tf (g). To do this, we use Extensionality and prove mutual
inclusions between the two sets. Let x in sf (g) and observe that x ∈ s(f ◦ g) by
definition of the restriction. Hence

c  (∃y ∈ tf◦g)x = y ,

where c =def dom g, by (6.2). Therefore there is y in tf◦g(id c) such that x = y by
definition of the presheaf interpretation. But tf◦g(id c) = t(f ◦ g) and therefore we have
s(f ◦ g) ⊆ t(f ◦ g). The reverse inclusion can be proved using the same pattern of
reasoning, and therefore we omit its details.

We now move on to the set existence axioms of CZF, which are considered in the
next proposition.
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Proposition 6.12. The presheaf interpretation of Pairing, Union, Infinity and Re-
stricted Separation is valid.

Proof. We show the validity of Pairing and Restricted Separation by means of illustra-
tion. Validity of Union can be proved along similar lines, and validity of Infinity follows
by the definition of an embedding of all sets into V (C) analogous to the one defined for
Heyting-valued interpretations in Chapter 5.

For Pairing, let a in C0 and let s and t in V (C)
a . We define a function r with domain

y a by letting, for f in y a,

r(f) =def {sf , tf} .

First of all, we show that r is an element of V (C)
a using Theorem 6.6. To apply Theorem

6.6, we need to verify two conditions. The first condition is

(∀f ∈ y a)r(f) ⊆ V (C)
dom f .

This follows by the assumption that s and t are in V
(C)
a and by Theorem 6.6. The

second condition is

(∀f ∈ y a)(∀x ∈ r(f))(∀g ∈ y(dom f)xg ∈ r(f ◦ g) .

Let f in y a and define b =def dom f . Then let x in r(f) and g in y b. We need to show
that xg is in r(f ◦ g). By the definition of r we have that either x = sf or x = tf , and
therefore xg is either sf◦g or tf◦g. In both cases, xg is in r(f ◦ g) by the definition of
r and of restrictions in V (C), as required. We now prove that r satisfies the required
property stated in the Pairing axiom. This can be done in two parts. The first part of
the proof aims at showing that

a  (∀x)((x = s ∨ x = t)→ x ∈ r) .

Let f in y a and define b =def dom f . Now let x in V (C)
b and assume that either x = sf

or x = tf . In both cases we can show that

b  (∃y ∈ rf )x = y ,

because both sf and tf are in rf (id c), since rf (id c) = r(f). The second part of the
proof consists in proving that

a  (∀x ∈ r)(x = sf ∨ x = tf ) .
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Again, let f in y a and define b =def dom f . For x in rf (id b), we have either x = sf

or x = tf by definition of r(f). Therefore we obtain the desired conclusion, by the
definition of the presheaf interpretation. We have thus completed the proof of the
validity of Pairing.

For Restricted Separation, let a in C0, let s in V (C)
a and let θ be a restricted formula

of L(a) with FVθ = x. Define a function t with domain y a by letting, for f in y a

t(f) =def {x ∈ s(f) | f ∈ JθK} ,

and observe that for all f in y a, t(f) is a set by Lemma 6.9 and Restricted Separation.
We now want to show that t is in V

(C)
a using Theorem 6.6. The first requirement, i.e.

(∀f ∈ y a)t(f) ⊆ V (C)
dom f ,

follows immediately by the definition of t. For the second requirement, i.e.

(∀f ∈ y a)(∀x ∈ t(f))(∀g ∈ y(dom f)xg ∈ t(f ◦ g) ,

let f in y a, let x in tf , define b =def dom f and let g in y b. We claim that xg is in
s(f ◦ g) and that f ◦ g ∈ JθK. These two claims clearly imply that xg ∈ t(f ◦ g). The
first claim follows by the assumption that s is in V

(C)
a and Theorem 6.6. The second

claim follows instead by the assumption that x is in t(f) and by Lemma 6.8. The proof
that t satisfies the property required in the Restricted Separation axiom can again be
divided into two parts. The first part aims at showing that

a  (∀x ∈ t)(x ∈ s ∧ θ) .

Let f in y a, define b =def dom f and let x in t(f). Then we have that x ∈ sf (id b)
and that b  θf by the assumption that x is in t(f) and the definition of t. But this
shows exactly the desired conclusion, by definition of the presheaf interpretation. For
the second part, we need to show that

a  (∀x ∈ s)(θ → x ∈ t) .

Once again, let f in y a, define b =def dom f , let x in s(f) and assume b  θf . Then
we have that f is in JθK by the very definition of JθK, and thus x is in t(f), as required.
This concludes the proof of the validity of Restricted Separation.
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6.6 Collection axioms

Proofs become slightly more complicated when deal with collection axioms, but in the
end we are going to prove that the presheaf interpretation of CZF is valid.

6.6.1 Strong collection

The next lemma can be seen as a counterpart of Lemma 5.16, that was used to prove
the validity of the Heyting-valued interpretation of Strong Collection in Section 5.5.

Lemma 6.13. Let a be in C0, let s be in V
(C)
a , let φ be a formula of L(a) with FVφ =

{x, y} and let f be in y a. Define b =def dom f and

Q =def {(g, x, y) | x ∈ s(f ◦ g) , y ∈ V (C)
dom g , dom g  φf◦g}

If b  (∀x ∈ sf )(∃y)φf then there exists a subset q of Q such that

(∀g ∈ y b)(∀x ∈ s(f ◦ g))(∃y)(g, x, y) ∈ q .

Proof. We will want to apply Proposition 2.3 and Proposition 2.4, so let us define some
abbreviations to make these applications more evident. We first define a formula that
will be used to apply Proposition 2.3. For g, x and y define

ξ =def (g, x, y) ∈ Q .

We now define a family of classes that will be used when we apply Proposition 2.4. For
g ∈ y b define

Qg =def {(x, y) | (g, x, y) ∈ Q} . (6.3)

We now begin the actual proof. Assume

b  (∀x ∈ sf )(∃y)φf ,

as in the hypothesis of the statement we want to prove, and let g in y b. The definition
of the presheaf interpretation leads us to obtain

(∀x ∈ s(f ◦ g))(∃y)ξ .

We can now apply Proposition 2.3 and get a function l with domain s(f ◦ g) such that

(∀x ∈ s(f ◦ g))(∃y)(y ∈ lx) ∧ (∀y ∈ lx)ξ .
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Once we define

p =def {(x, y) | x ∈ s(f ◦ g) , y ∈ lx} ,

we may observe that, by the definition of Qg in (6.3), we have

p ⊆ Qg ∧ (∀x ∈ s(f ◦ g))(∃y)(x, y) ∈ p .

We are approaching the application of Proposition 2.4. For a set u, let us define

ψ =def (∀x ∈ s(f ◦ g))(∃y)(x, y) ∈ u .

By discharging the assumption of l and universally quantifying over g in y b, we get

(∀g ∈ y b)
(
((∃u)u ⊆ Qg ∧ ψ) ∧ ((∀u)(∀v)(u ⊆ v ⊆ Qg ∧ ψ)→ ψ[v/u])

)
.

We are under the hypothesis of Proposition 2.4, as planned, and therefore we can apply
it to get a function m with domain y b such that

(∀g ∈ y b)(mg ⊆ Qg ∧ ψ[mg/u]) .

Once we define

q =def {(g, x, y) | g ∈ y b , x ∈ s(f ◦ g) , (x, y) ∈ mg} ,

the desired conclusion follows by direct calculations.

Proposition 6.14. The presheaf interpretation of Strong Collection is valid.

Proof. Let a be in C0, s be in V (C)
a and φ be a formula of L(a) with FVφ = {x, y} and

f be in y a. We use the same definitions of Lemma 6.13. Assume that

b  (∀x ∈ s(f ◦ g))(∃y)φf◦g

and let q be a set that satisfies the conclusion of Lemma 6.13. To obtain an element of
V (C), we need to ‘close’ q under restrictions, so let us define

q′ =def {(g ◦ h, xh, yh) | (g, x, y) ∈ q , h ∈ y(dom g)} .

We now define a function with domain y b by letting, for g′ in y b

t(g′) =def {y′ | (∃x′)(g′, x′, y′) ∈ q′}
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Theorem 6.6 and Lemma 6.13 imply then that t is in V
(C)
b , as wanted. We now show

b  coll(x ∈ sf , y ∈ t, φf ) . (6.4)

Let g in y b and x in s(f ◦ g). Then there is y such that (g, x, y) is in q, again because
we assumed that q satisfies the conclusion of Lemma 6.13. We therefore have that y is
in t(g) because (g, x, y) is also in q′. Since q is a subset of Q, we have

dom g  φf◦g ,

and this completes a first part of the proof of (6.4). Let g′ in y b and y′ in t(g′). We
have that there is x′ such that (g′, x′, y′) is in q′ by definition of t. So there are (g, x, y)
in q and h in y(dom g) such that

(g′, x′, y′) = (g ◦ h, xh, yh) (6.5)

by definition of q′. We have dom g  φf◦g by the conclusion of Lemma 6.13 and hence

domh  φf◦g◦h[xh, yh/x, y]

by Lemma 6.8. Finally observe that by (6.5)

dom g′  φf◦g′ [x′, y′/x, y]

which completes the second part of the proof of (6.4).

6.6.2 Subset Collection

The next lemma is analogous to Lemma 5.19, that implied the validity of the Heyting-
valued interpretation of Subset Collection. Note, however, that we do not need to
introduce any condition asserting that the category is ‘set-presented’, since we already
assumed that it is small.

Lemma 6.15. Let a in C0, let s and t be in V
(C)
a , let φ be a formula of L(a) with

FVφ = {x, y, z}. There is a set q of functions with domain y a such that for all u in q,
and for all f in y a, uf is in V

(C)
b , where b =def dom f . Furthermore, for all f in y a

and all z in V
(C)
b if

b  (∀x ∈ sf )(∃y ∈ tf )φf
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then there exists u in q such that

b  coll(x ∈ sf , y ∈ uf, φ)

where b =def dom f .

Proof. We will want to apply Proposition 2.6. We therefore set up the appropriate
definitions of sets and formulas to make the application simpler. For f in y a, define

mf =def {(g, x) | g ∈ y b , x ∈ s(f ◦ g)}

where b =def dom f . Then define

n =def {(f, g, y) | f ∈ y a , g ∈ y b , y ∈ t(s ◦ g)} .

At various points in the proof we will have to ‘close’ sets under restrictions in order to
obtain elements of V (C). The presence of a number of equalities in the formulas in (6.6)
and (6.7) below will be useful when we will deal with sets that have been obtained by
‘closing’ under restrictions. For f in y a, g′ in y(dom f), x′ in s(f ◦ g′) and y′′ define

ξ′ =def c  φf◦g′ [x′, y′′, zg′/x, y, z]

and for v in n, f ′′ in y a, g′′ in y(dom f ′′), y′′ define

ξ′′ =def v = (f ′′, g′′, y′′) ∧ (f = f ′′) ∧ (g′ = g′′) (6.6)

and finally ξ =def ξ
′ ∧ ξ′′. For u in mf , define

ψ′ =def (∃g′ ∈ y b)(∃x′ ∈ s(f ◦ g′)) u = (g′, x′) (6.7)

and, for v in n, define

ψ′′ =def (∃f ′′ ∈ y a)(∃g′′ ∈ y b)(∃y′′ ∈ t(f ′′ ◦ g′′)) ξ .

Finally, define ψ =def ψ
′ ∧ ψ′′. We can now start the proof. Let f in y a, define

b =def dom f , let z in V
(C)
b and assume

b  (∀x ∈ sf )(∃y ∈ tf )φf .

By the definition of the presheaf interpretation we have

(∀u ∈ mf )(∃v ∈ n)ψ .
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We can now apply Proposition 2.6 and get a set p of subsets of n, independent of f
and z, and that there exists w in p such that

coll(u ∈ mf , v ∈ w,ψ) . (6.8)

For w in p define

w′ =def {(f, g ◦ h, yh) | (f, g, y) ∈ w , h ∈ y(dom f)} .

For each w in p we now define a function lw with domain y a as follows. For f in y a,
the function lw(f) is defined by letting, for g′ in y b

lw(f)(g′) =def {y′ | (f, g′, y′) ∈ w′}

and observe that lw(f) is in V (C)
b by assumption that p is a set of subsets of n and the

definition of w′. Now define

q =def {lw | w ∈ p} .

We have just shown that q is a set of functions such that for all u in p and for all f in
y a, uf is in V

(C)
b , where b =def dom f . We now wish to conclude the proof by showing

that there exists u in q such that

b  coll(x ∈ sf , y ∈ uf, φ)

Define u =def lw, where w satisfies (6.8) and define l =def uf . Let g in y b and x in
s(f ◦ g). We have that there is y such that (f, g, y) is in w and

dom g  φf◦g[zg/z]

by (6.8) and the definition of ψ. Therefore y is in l(g) by definition of lw and the fact
that w is included in w′. Observe that y is in u(f)(g), by the definition of l, as wanted.
Now let g′ in y b and y′ in l(g′). Then there are g, h and y such that (f, g, y) is in w

and

(g ◦ h, yh) = (g′, y′) . (6.9)

Using (6.8) and the definition of ψ we obtain that there is x in s(f ◦ g) such that

dom g  φf◦g[zg/z] ,
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and therefore

domh  φf◦g◦h[xh, yh, zg◦h/x, y, z]

by Lemma 6.8. Once we define x′ =def xh, we get

dom g′  φf◦g′ [x′, y′, zg′/x, y, z]

and that x′ is in s(f ◦ g′) by (6.9), as wanted.

Proposition 6.16. Assuming Subset Collection axiom, the presheaf interpretation of
Subset Collection is valid.

Proof. Let a in C0, let s and t be in V
(C)
a , and let φ be a formula of L(a) with FVφ =

{x, y, z}. Let q be a set as in the conclusion of Lemma 6.15 and define a function r

with domain y a by letting, for f in y a

rf =def {uf | u ∈ q}

Let f in y a, define b =def dom f . Let z in V
(C)
b and assume

b  (∀x ∈ sf )(∃y ∈ bf )φf

Then there exists u in q such that

b  coll(x ∈ sf , y ∈ uf, φ[zf/z]) .

Define v =def uf and observe that v is in rf , and obviously that

b  coll(x ∈ sf , y ∈ v, φ) .

It is now sufficient to ‘close’ r under restrictions to conclude the proof, but we leave
these details to the reader.

The next theorem summarises the results obtained so far. Its proof can be obtained
working informally in CZF−.

Theorem 6.17. Let C be a small category.

(i) The presheaf interpretation of CZF− in V (C) is valid.

(ii) Assuming Subset Collection, the presheaf interpretation of CZF in V (C) is
valid.



6. Sheaf interpretations for CST 128

Proof. Part (i) is a consequence of Proposition 6.11, Proposition 6.12 and Proposition
6.14. For part (ii) use part (i) and Proposition 6.16.

6.7 Sheaf interpretations

We have completed the first step towards sheaf interpretations, which consisted in
isolating the presheaf V (C), defining the presheaf interpretation, and proving that all the
axioms of CZF are valid under the interpretation. In this section, we start to consider
the second step of sheaf interpretations. This will consist in defining a reinterpretation
of logic, using a syntactic translations and the presheaf interpretation.

The syntactic translation we consider is determined by a presheaf map on the
presheaf of sieves, that we defined in Subsection 6.2.3. This presheaf maps satisfy
properties analogous to the ones of a nucleus on a set-generated frame, as defined in
Subsection 4.2.2. Recall from Subsection 6.2.3 that Ω is defined so that we have

Ωa = {p | p set-sieve on a}

for all a in C0.

Definition 6.18. Let j be a presheaf map from Ω to Ω. Let us write j(p) instead of
ja(p), for all a in C0 and all p in Ωa. We say that j is a Lawvere-Tierney operator

if for all a in C0 the following properties

- j is monotone, i.e. (∀u, v ∈ Ωa)u ⊆ v → ju ⊆ jv ,

- j is inflationary, (∀u ∈ Ωa)u ⊆ ju ,

- j is idempotent, i.e. (∀u ∈ Ωa)j(ju) ⊆ ju ,

- j respects intersections, i.e. (∀u, v ∈ Ωa)ju ∩ jv ⊆ j(u ∩ v),

hold. ♦

6.7.1 Defining sheaf interpretations

From now on, we will consider an fixed, arbitrary presheaf map j and assume that it is
a Lawvere-Tierney operator. We will adopt the notation introduced in Definition 6.18,
and write j(p) instead of ja(p), for a in C0 and p in Ωa.

To discuss the reinterpretation of logic determined by j, it is convenient to write
L(C) for the language that extends L with constants for elements of V (C)

a , for all a
in C0. The reinterpretations of logic determined by j will be obtained in two steps.
The first step consists in introducing a language L(C,J) that includes L(C) and has also
a modal operator J , and in extending the presheaf interpretation to L(C,J) using the
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Lawvere-Tierney topology j. The second step involves defining a syntactic translation
from L(C) to L(C,J) using the modal operator J . We will refer to this translation as J-
translation. Once we performed these two steps, the sheaf interpretation of a sentence
will be simply defined as the presheaf interpretation of its J-translation.

Let us begin by adding two symbols to the language L(C) and defining the presheaf
interpretation for them. We define L(C,J) to be the extension of the language L(C)

that is obtained by adding a binary relation symbol =J and a unary modal operator
J . It is immediate to define substitutions and restrictions for formulas in the extended
language, following the conventions we fixed in Section 6.4. For a in C0, we write L(a,J)

for the sublanguage of L(C,J) with constants that are only in V
(C)
a . We now wish to

extend the presheaf interpretation to L(a,J), for all a in C0. The necessary ingredient
to interpret the binary relation symbol =J is provided by the next lemma.

Lemma 6.19. We can define a binary relation =j such that we have

a  s =j t ↔ a  (∀x ∈ s)J(∃y ∈ t)x =j y ∧ (∀y ∈ t)J(∃x ∈ s)x =j y

for all a in C0 and all s, t in V
(C)
a .

Proof. The desired relation can be defined by double set recursion, and recalling the
definition of the presheaf interpretation from Table 6.1.

We now define the presheaf interpretation of the symbol =J using the relation
defined in Lemma 6.19. For a in C0 and s, t in V

(C)
a define

a  s =J t =def a  s =j t . (6.10)

We may anticipate that Lemma 6.19 will guarantee us the validity of the sheaf inter-
pretation of Extensionality. The next two definitions and the subsequent lemma will be
helpful to define the presheaf interpretation of formulas containing the modal operator
J . For a in C0, p in Ωa, and φ sentence of L(a) define

a  p =def p = y a ,

a  p→ φ =def (∀f ∈ y a) dom f  pf → dom f  φf .

The next lemma simplifies these definitions.

Lemma 6.20. Let a in C0. For p in Ωa, and φ sentence of L(a) the following equiva-
lences

(i) a  p if and only if ida ∈ p ,

(ii) a  p→ φ if and only if (∀f ∈ p) dom f  φf ,
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hold.

Proof. Both (i) and (ii) follow recalling that elements of Ωa are sieves.

For φ a sentence of L(a,J) define

a  Jφ =def (∃u ∈ Ωa)(a  ju ∧ a  u→ φ) .

The reader might also gain some intuition into this definition by comparing it with
the definition of the extension of a nucleus given in Subsection 5.2.1. The next lemma
is intended to make this correspondence more evident.

Lemma 6.21. Let a be in C0 and let φ be a sentence of L(a,J). We have

ida ∈ JJφK↔ (∃u ∈ Ωa)
(
ida ∈ ju ∧ u ⊆ JφK

)
.

Proof. The conclusion follows by unfolding definitions and Lemma 6.20.

We now come to the definition of the J-translation of L(C) into L(C,J). For a formula
φ of L(C), we indicate its J-translation with 〈φ〉. The J-translation is defined in Table
6.2 by structural induction on formulas.

Table 6.2: Definition of the J-translation.

〈s = t〉 =def s =J t ,

〈⊥〉 =def J⊥ ,

〈φ ∧ ψ〉 =def J〈φ〉 ∧ J〈ψ〉 ,

〈φ ∨ ψ〉 =def J〈φ〉 ∨ J〈ψ〉 ,

〈φ→ ψ〉 =def J〈φ〉 → J〈ψ〉 ,

〈(∀x ∈ s)φ〉 =def (∀x ∈ s)J〈φ〉 ,

〈(∃x ∈ s)φ〉 =def (∃x ∈ s) J〈φ〉 ,

〈(∀x)φ〉 =def (∀x) J〈φ〉 ,

〈(∃x)φ〉 =def (∃x) J〈φ〉 .

We now have the two ingredients necessary to define sheaf interpretations: the
presheaf interpretation and the J-translation. We simply define the sheaf interpreta-
tion as the composition of the J-translation and of the presheaf interpretation. For a
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sentence φ of L(a), we say that

a  J〈φ〉

is the sheaf interpretation of φ. Now, recall from Proposition 6.9 that, for a in C0,
restricted sentences of L(a) correspond to set-sieves on a, i.e. elements of Ωa. The next
lemma compares the action of the modality J on a restricted sentence with the action
of the Lawvere-Tierney operator on the set-sieve determined by it.

Lemma 6.22. Let a be in C0. For a restricted sentence θ of L(a,J), we have a  Jθ if
and only if a  jJθK.

Proof. The conclusion follows by Lemma 6.20 and Lemma 6.21.

The next proposition spells out that the modal operator J acts on restricted for-
mulas just as the Lawvere-Tierney operator acts on set-sieves.

Proposition 6.23. Let a in C0. For θ, η restricted sentences of L(a,J), the following
properties

(i) If a  θ → η then a  Jθ → Jη ,

(ii) a  θ → Jθ ,

(iii) a  J(Jθ)→ Jθ ,

(iv) a  Jθ ∧ Jη → J(θ ∧ η) ,

hold.

Proof. The claims are direct consequences of the properties of a Lawvere-Tierney op-
erator and of Lemma 6.22.

We now set out to prove that the properties in Proposition 6.23 hold not only for
restricted formulas but for arbitrary ones as well. This is completely analogous to what
we did in Subsection 5.2.1, where we showed that, given a nucleus on lower sets, we
can extend it to an operator on lower classes that inherits its properties. The following
variation over Proposition 2.4 will be useful.

Lemma 6.24. Let a in C0. Let p be a subset of y a, ψ be a formula of the language L
with free variables f, u and let φ be a sentence of the language L(a,J). Assume that

(∀f ∈ p)(∃u ∈ Ωdom f )
(
ψ ∧ u ⊆ JφKf

)
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and

(∀f ∈ p)(∀u, v ∈ Ωdom f )
(
(u ⊆ v ⊆ JφKf ∧ ψ)→ ψ[v/u]

)
hold. Then there exists q in Ωa such that

q ⊆ JφK ∧ (∀f ∈ p)ψ[qf/u]

holds.

Proof. We will want to apply Proposition 2.3. Let us define a formula to make this
simpler. For f and u define

ξ =def u ∈ Ωdom f ∧ u ⊆ JφKf ∧ ψ .

We have

(∀f ∈ p)(∃u)ξ

by our first assumption. Hence we can apply Proposition 2.3 and obtain that there is
a function m with domain p such that

(∀f ∈ p)
(
(∃u)(u ∈ m(f)) ∧ (∀u ∈ m(f))ξ

)
. (6.11)

We claim that the set q defined as

q =def {f ◦ g | f ∈ p , (∃u ∈ m(f))g ∈ u}

satisfies the conclusion of the lemma. We first show that q is in Ωa. Let f ◦ g in q and
h in y c, where c =def dom g. Hence f is in p and there is u in m(f) such that g is in
m(f). We have that u is a sieve by (6.11) and hence g ◦ h in u. Therefore f ◦ g ◦ h is
in q, by the definition of q. We therefore have that q is a sieve, and hence it is in Ωa,
as wanted. We now want to show that

q ⊆ JφK ∧ (∀f ∈ p)ψ[qf/u] .

We begin by showing the first conjunct. Let f is in p, u in m(f) and g is in u, so that
f ◦ g in q, by the definition of q. By (6.11), u is a subset of JφKf and therefore g is in
JφKf . Since JφKf is a sieve, we have f ◦ g in JφK and this shows that q is a subset of JφK,
as wanted. We now move on and prove the second conjunct. Let f in p. Observe that
by (6.11) there exists u in m(f) and we can assume that ξ holds. Therefore we have
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that both u and qf are in Ωdom f and it holds that

u ⊆ qf ⊆ JφKf ∧ ψ ,

where the inclusion u ⊆ qf is an immediate consequence of the definition of q. The
desired conclusion follows by the second assumption in the statement of the lemma.

It is worth pointing out that in the proof we just presented, we made essential use of
Proposition 2.3 and hence of the Strong Collection axiom of CZF−. The next lemma
will be the key to prove the ‘idempotency’ of the modal operator J .

Lemma 6.25. Let a in C0. Let p in Ωa and let φ a sentence of L(a,J). Assume that

a  p→ Jφ .

Then there exists q in Ωa such that both a  p→ jq and a  q → φ hold.

Proof. For f in p, u in Ωdom f we define ψ =def y(dom f) ⊆ ju. By the assumption, we
can apply Lemma 6.24 and get q in Ωa such that

q ⊆ JφK ∧ (∀f ∈ p) y(dom f) ⊆ j(qf ) .

Therefore we obtain

(a  q → φ) ∧ (a  p→ jq)

by Lemma 6.20 and the definition the sheaf interpretation, as wanted.

Proposition 6.26. Let a be in C0. Let φ and ψ be sentences of L(a,J). Then the
following properties

(i) If a  φ→ ψ then a  Jφ→ Jψ ,

(ii) a  φ→ Jφ ,

(iii) a  J(Jφ)→ Jφ ,

(iv) a  Jφ ∧ Jψ → J(φ ∧ ψ) ,

hold.

Proof. For parts (i), (ii) and (iv) direct calculations suffice. For part (iii) let f in y a

and assume b  J(Jφf ) where b =def dom f . Then there is p in Ωb such that

(b  jp) ∧ (b  p→ Jφf ) (6.12)
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by definition of the sheaf interpretation. By the second conjunct in (6.12) and Lemma
6.25, there is q in Ωb such that

(b  p→ jq) ∧ (b  q → φf ) .

By the first conjunct in (6.12) and the fact that j is monotone and idempotent we
obtain b  jq. Therefore we proved

(b  jq) ∧ (b  q → φf ) ,

and hence that b  Jφf as required.

We can now define what it means for the sheaf interpretation of a constructive set
theory to be valid.

Definition 6.27. For a in C0 and φ a sentence of L(a), we say that the sheaf inter-
pretation of φ is valid if it holds that

a  J〈φ〉 .

We say that the sheaf interpretation of an axiom scheme of a constructive set theory
is valid if for all a in C0 the interpretation of all of the instances of the axiom scheme
with parameters in V (C)

a are valid. The sheaf interpretation of a constructive set theory
in V (C) is said to be valid if the interpretation of all its axioms and axiom schemes are
valid. ♦

It seems necessary to assume that, for a in C0, it holds

a  ¬J⊥ ,

in order to validate the axiom of intuitionistic logic concerning negation, and thus in
what follows we will work under this assumption.

6.8 Validity of the sheaf interpretation

We now investigate the validity of the sheaf interpretation of the axioms of CZF. We
consider the axioms of CZF− first and Subset Collection at a later stage. This is
because it does not seem possible to prove the validity of Subset Collection without
further assumptions on the Lawvere-Tierney topology j. A similar observation applied
to Heyting-valued interpretations in Section 5.5.
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6.8.1 Structural and set existence axioms

The validity of the sheaf interpretation of all the logical axioms follows by a series
of routine verifications. In the following we first consider structural and set existence
axioms, and then collection axioms. The next lemma takes care of the structural
axioms.

Lemma 6.28. The sheaf interpretation of Extensionality and Set Induction is valid.

Proof. The validity of Extensionality is a direct consequence of the definition of the
sheaf interpretation of equality and Lemma 6.19. This is indeed obtained by first
performing the J-translation, as we defined in Table 6.2, and then applying the presheaf
interpretation. Once this is done, the conclusion follows by Lemma 6.19. The validity
of the sheaf interpretation of Set Induction follows in a straightforward fashion by the
validity of its presheaf interpretation, that was obtained in Section 6.5.

We now move on to consider set existence axioms.

Proposition 6.29. The sheaf interpretation of the Pairing, Union, Infinity and Re-
stricted Separation is valid.

Proof. To prove the validity of these axioms, we invite the reader to observe that the
J-translation, as defined in Table 6.2, is analogous to the double-negation translation
of classical logic into intuitionistic logic, and that the double-negation satisfies all the
properties of the modal operator J as described in Proposition 6.26.

Let us now observe that, for a in C0 and φ a sentence in the language L(C)
a , in

order to prove that the sheaf interpretation of φ is valid it is sufficient to show that the
presheaf interpretation of φ is valid and to prove that

a  φ→ J〈φ〉 . (6.13)

We can exploit this fact when considering the sheaf interpretation of the set existence
axioms, since we know from Proposition 6.12 that their presheaf interpretation is valid.
We therefore need to show only that (6.13) holds where φ is an instance of a set exis-
tence axioms with parameters in V

(C)
a . This can be proved very easily, by generalising

the proofs concerning the double-negation translation of Pairing, Union, Infinity and
Restricted Separation [34, 36].

6.8.2 Collection axioms

The next lemma is the key to prove the validity of the sheaf interpretation of Strong
Collection. Its statement is inspired by Lemma 5.16, that was used to prove that the
Heyting-valued interpretation of Strong Collection is valid.
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Lemma 6.30. Let a in C0, s in V
(C)
a , f in y a, and let φ a formula of L(a,J) such with

FVφ = {x, y}. Assume that

b  (∀x ∈ sf )J(∃y)φf

where b =def dom f . Define

mf =def {(g, x) | g ∈ y(b) , x ∈ s(f ◦ g)}

and

P =def {(g, x, y) | (g, x) ∈ mf , y ∈ V (C)
dom g , dom g  φf◦g}

Then there exists a subset u of P such that

(∀(g, x) ∈ mf ) y(dom g) ⊆ j{h ∈ y dom g | (∃y)(g ◦ h, xh, y) ∈ u}

Proof. We will want to apply Proposition 2.4, so for (g, x) in mf define

A(g,x) =def J(∃y)φf◦gK

and for u define

ψ =def u ∈ Ωdom g ∧ y(dom g) ⊆ ju

From the assumption of the lemma, using the definition of the sheaf interpretation, we
get

(∀(g, x) ∈ p)(∃u)(u ⊆ A(g,x) ∧ ψ)

Furthermore, since j is monotone and inflationary, we have

(∀(g, x) ∈ p)(∀u, v)(u ⊆ v ⊆ A(g,x) ∧ ψ → ψ[v/u])

and therefore we can apply Proposition 2.4. We thus get a function l with domain mf

such that

(∀(g, x) ∈ mf )l(g, x) ⊆ A(g,x) ∧ ψ[l(g, x)/u] (6.14)

Now define

q =def {(g ◦ h, xh) | g ∈ y b , x ∈ s(f ◦ h) , h ∈ l(g, x)}
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and observe that

(∀(g ◦ h, xh) ∈ q)(∃y)ξ

where

ξ =def xh ∈ s(f ◦ g ◦ h) ∧ y ∈ V (C)
domh ∧ domh  φf◦g◦h[xh/x]

We can therefore apply Proposition 2.3 and obtain that there is a function n such that

(∀(g ◦ h, xh) ∈ q)
(
(∃y ∈ n(g ◦ h, xh))ξ ∧ (∀y ∈ n(g ◦ h, xh))ξ

)
(6.15)

To complete the proof, define

u =def {(g ◦ h, xh, y) | (g ◦ h, xh) ∈ q , y ∈ n(g ◦ h, xh)}

The desired conclusion now follows simply unfolding definitions and using (6.14) and
(6.15). By means of illustration, we prove that

(∀(g, x) ∈ mf ) y(dom g) ⊆ j{h ∈ y(dom g) | (∃y)(g ◦ h, xh, y) ∈ u}

and leave the verification that u is a subset of P to the reader. Let (g, x) in mf and
define c =def dom g. By (6.14) and the definition of ψ we get

y c ⊆ j(l(g, x))

By the definition of q and the fact that j is monotone we have

j(l(g, x)) ⊆ j{h | (g ◦ h, xh) ∈ q}

By (6.15) and the definition of u we also have

{h ∈ y c | (g ◦ h, xh) ∈ q} ⊆ {h ∈ y c | (∃y)(g ◦ h, xh, y) ∈ u}

Combining these inclusions and using that j is monotone and idempotent, we get the
desired result.

Proposition 6.31. The sheaf interpretation of Strong Collection is valid.

Proof. Let a, f and φ as in the hypothesis of Lemma 6.30 and assume

b  (∀x ∈ sf )J(∃y)φf
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where b =def dom f . We then get a set u that satisfies the conclusion of Lemma 6.30.
To show the validity of Strong Collection it suffices to find an element t of V (C)

b such
that

b  (∀x ∈ sf )J(∃y ∈ t)φf , (6.16)

and

b  (∀x ∈ sf )(∃y ∈ t)φf . (6.17)

We define t as a function with domain y b by letting, for g in y b

t(g) =def {y | (∃x)(g, x, y) ∈ u} .

Note that t need not be closed under restrictions, and hence need not be in V
(C)
b , but

we can always replace t with another function t′ that is so, as we did in the proof
of Proposition 6.14. In the following, however, we prefer to assume that t itself is
closed under restrictions and leave to the reader the task of adapting the proof where
appropriate. We begin by proving (6.16). Let g in y b, x in s(f ◦ g) and show

c  J(∃y ∈ tg)φf◦g (6.18)

where c =def dom g. In order to do so, define

q =def {h ∈ y c | (∃y)(g ◦ h, xh, y) ∈ u}

and observe that we have c  jq by the conclusion of Lemma 6.30. Now let h in q and
show

d  (∃y ∈ tg◦h)φf◦g◦h

where d =def domh. By definition of q, there is y such that (g ◦h, xh, y) is in u. By the
conclusion of Lemma 6.30, we know that u is a subset of P , as defined in the statement
of the lemma, and hence xh ∈ s(f ◦ g ◦ h) and

d  φf◦g◦h[xh/x] .

Furthermore, we have that y is in t(g ◦ h), i.e. tf (g), as wanted. We have therefore
found q such that c  jq and c  q → (∃y ∈ tg)φf◦g and therefore we proved (6.18),
as wanted. The definition of t and the assumption that u satisfies the conclusion of
Lemma 6.30 lead to prove (6.17) without difficulty.
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We now consider Subset Collection. Analogously to what happens when considering
Heyting-valued interpretations, the validity of Subset Collection seems to require an
extra assumption. When considering Heyting-valued interpretations in Section 5.5, we
used the assumption that the frame was set-presented. It seems therefore appropriate
to introduce the following notion.

Definition 6.32. We say that a Lawvere-Tierney operator j is set-presented there
exists a set r such that for all a in C0 and all p in Ωa the property

f ∈ jp↔ (∃u ∈ r)(f ∈ ju ∧ u ⊆ p)

holds. ♦

Let us now assume that j is a set-presented Lawvere-Tierney operator. The next
lemma is proved assuming Subset Collection, and it is analogous to Lemma 5.18.

Lemma 6.33. Let a in C0, s, t in V
(C)
a and let φ be a formula of L(a,J) with FVφ =

{x, y, z}. Then there exists a set q of functions with domain y a such that

(∀u ∈ p)(∀f ∈ y a)u(f) ∈ V (C)
dom f

and for all f in y a and z in V
(C)

dom b if

b  (∀x ∈ sf )J(∃y ∈ tf )φ

then there exists u in q such that

b  〈coll(x ∈ sf , y ∈ u(f), φ)〉

Proof. Since the proof follows the pattern of the proofs of Lemma 5.18 and Lemma
6.15, we leave it to the reader. We limit ourselves to point out that it can be obtained
with two applications of Proposition 2.6.

Proposition 6.34. The sheaf interpretation of Subset Collection is valid.

Proof. Let a in C0, s, t in V
(C)
a and let φ be a formula of L(C,J) with x, y, z as free

variables. Using a set q that satisfies the conclusion of Lemma 6.33, define a function
v with domain y a by letting, for f in y a

v(f) =def {u(f) | u ∈ q}

and observe that for all f in y a, we have v(f) ⊆ V (C)
dom f , by Lemma 6.33. If we let f in
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y a, define b =def dom f , let z in V
(C)
b and assume

b  (∀x ∈ sf )J(∃y ∈ tf )φ ,

then, by Lemma 6.33, we get u in q such that

b  〈coll(x ∈ sf , y ∈ u(f), φ)〉 .

Hence we have found u(f) ∈ sf (id b) that satisfies the desired conclusion. Now, observe
that v need not be closed under restrictions, but we can always replace it with a function
v′ that is closed under restriction and such that for all f in y a, v(f) ⊆ v′(f), so that
the desired claim holds.

We have therefore finally reached the following result.

Theorem 6.35. Let j be a Lawvere-Tierney operator.

(i) The sheaf interpretation of CZF− is valid.

(ii) Assuming the Subset Collection axiom scheme, if j is set-presented, the sheaf
interpretation of CZF is valid.

Proof. Part (i) follows by Lemma 6.28, Proposition 6.29 and Proposition 6.31. For part
(ii), use part (i) and Proposition 6.34.

6.9 Concluding remarks

The interpretations described in this chapter offer a plethora of potential applications,
that we regrettably had not the opportunity to develop yet. Two particular kinds of
presheaf interpretations arise by considering special examples of small categories: posets
and monoids. The first kind leads us to extend the well-known Kripke interpretation
for intuitionistic logic to CST. The second kind, instead, does not seem to have been
considered yet and represents an interesting direction for further research. Remarkable
applications arise in the case in which the category is neither a poset not a monoid.
For example, presheaf interpretations have been used to prove the independence of the
so-called ‘world’s weakest axiom of choice’ [13, 33].

So far, we have only discussed the first step of the sheaf interpretations. Consider-
ing Lawvere-Tierney operators adds further generality and leads to more applications.
Lawvere-Tierney operators can be defined starting from a site, i.e. a small category
equipped with a coverage [49, Section C.2.1]. The notion of a site generalises the one
of a posite that we introduced in Section 4.5. Inductive definitions can indeed be used
to generate set-presented Lawvere-Tierney topologies from a site, just as we defined
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a set-presented nucleus from a posite. Remarkably, the role of inductive definitions
becomes evident once some of the requirements that are usually part of the notion of a
‘Grothendieck topology’, such as the ‘transitivity axiom’ [56, Section III.2] are dropped,
as explained in [49, Section C.2.1] As an example of the applications that are allowed by
considering Lawvere-Tierney topologies, Dana Scott indicated how coverages on posets
can be used to extend Beth interpretations to set theories [78].

Finally, we expect that the second step of the sheaf interpretations described in
this chapter leads to a variation of the double-negation translation that is suitable
for CST. Such a translation should reduce CZF− + REM to CZF−. The definition
of the translation should be based on the definition of an operator J that ‘lifts’ the
double-negation operator, in a way similar to one adopted to extend the nucleus from
subsets to subclasses in Section 5.2 or to define the presheaf interpretation of the modal
operator J in Section 6.7. The translation should then coincide with the standard one
for restricted formulas, but not for arbitrary ones, in general. This idea seems essential
to derive the translation of Strong Collection within a constructive set theory. The usual
definition of the double-negation translation seems indeed to force on us an application
of Full Separation to obtain the double-negation translation of Collection [34]. It seems
remarkable that that this idea does not seem to have been considered before, but stems
very naturally from our development of sheaf interpretations for CST.
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Collection Principles in DTT



Chapter 7

Logic-enriched type theories

7.1 Collection principles

From now on, we focus our attention on Dependent Type Theory (DTT). In particular,
we investigate the possibility of transferring in DTT the development of sheaf inter-
pretations obtained for CST. Let us begin by observing that the collection axioms of
CST played a double role in Part II. As an inspection of the relevant proofs may reveal,
collection axioms were essential both to define sheaf interpretations and to prove the
validity of their instances under the interpretation. This simple observation represents
a stimulating starting point to investigate sheaf interpretations in DTT, as it suggests
to isolate in DTT principles that correspond to the collection axioms of CST as a
preliminary step to develop sheaf interpretations in CST.

The type-theoretic interpretation of CST does not help in this respect [2, 3, 4]. The
validity of the collection axioms follows indeed by the type-theoretic axiom of choice
that is justified by the propositions-as-types idea [59, pages 50 – 52]. Yet, it does
not seem appropriate to consider the type-theoretic axiom of choice as the counterpart
of the collection axioms of CST. As categorical logic suggests, choice principles are
not generally preserved by sheaf interpretations [62]. Avoiding the propositions-as-
types treatment of logic seems therefore a useful preliminary step to isolate collection
principles in DTT.

We are therefore led to introduce logic-enriched type theories, that are exten-
sions of pure type theories in which a primitive treatment of logic is possible. As we will
see, in logic-enriched type theories we can formulate type-theoretic principles inspired
by the collection principles of CST. There are at least two criteria to test whether these
principles correspond exactly to the collection axioms of CST. Firstly, these rules should
lead to the formulation of a logic-enriched type theory that is mutually interpretable
with the constructive set theory CZF, in which both the Strong Collection and the
Subset Collection axioms are assumed. Secondly, they should not only be justified by
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the constructive treatment of logic, as informed by the propositions-as-types idea, but
also by the other treatments of logic, as inspired by sheaf interpretations.

As we discussed in Section 1.5, the formulation of collection principles in logic-
enriched type theories is not a straightforward task, because of the intrinsic differences
between the settings of set theory and type theory. For example, in set theory the
language is untyped and there is a clear distinction between sets and classes, while in
type theory we have a rich type structure and no explicit notion of ‘class’. Furthermore,
Extensionality has always been one of the axioms for the set theories we consider, while
extensional principles are generally not assumed in the more recent formulations of
dependent type theories [65].

Logic-enriched type theories provide us with ways of overcoming all these difficulties.
For instance, we may think of propositions depending on a type as ‘classes’. Universe
types then suggest us a notion of ‘smallness’ that is reminiscent of the one used in
AST to distinguish sets from classes [61, 62]. Once these notions have been formally
set up, the introduction of an appropriate notation, partially inspired by the original
type-theoretic interpretation of CST, allows us to overcome the difficulties associated
to the non-extensionality of dependent type theories. Collection principles can then
be formulated as type-theoretic rules, and thus we are led to consider a logic-enriched
type theory, called ML(CZF), that includes them.

The logic-enriched type theory ML(CZF) will be our focus in the remainder of
the thesis. We will indeed show that the collection rules formulated in this chapter
satisfy both of the criteria discussed earlier. Apart from the formal connection between
constructive set theories and logic-enriched type theories, much of the notation and of
the results we are going to introduce and prove in this chapter have been suggested by
analogous abbreviations and facts in the context of CST. We hope that readers who
are not familiar with DTT may use this informal correspondence to navigate this final
part of the thesis.

7.2 Adding logic

A logic-enriched type theory has forms of judgement (Γ) B where Γ is a context
and B is a judgement body that has either one of the forms allowed in a pure type
theory or one of the following:

φ : prop ,

φ1, . . . , φm ⇒ φ .

These judgements express that, in context Γ, φ is a well-formed proposition expression
and that φ is a logical consequence of the propositions φ1, . . . , φm, respectively. The
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well-formedness of a judgement φ1, . . . , φm ⇒ φ in context Γ presupposes not
only that Γ is well-formed but also that the judgements φi : prop are derivable, for
i = 1, . . . ,m .

A convention. We will write (Γ) φ rather than (Γ) ⇒ φ. Recalling from Subsection
3.1.1 that we omit the empty context, we will write φ instead of the judgement ⇒ φ

for brevity.

The instances of the rules of a logic-enriched type theory have the same form of the
one of a pure type theory, i.e.

J1 · · · Jn

J ,

but the judgements can have all the forms allowed in a logic-enriched type theory.

A convention. As always, in the statement of formation rules we suppress a context
that is common to the premisses and conclusion. In the inference rules we will also
suppress a list of assumptions appearing on the left hand side of the symbol ⇒ in the
logical premisses and conclusion.

7.2.1 Extending the raw syntax

The raw syntax of logic-enriched type theories extends the one of pure type theories
given in Subsection 3.1.2 with an extra category of

- proposition expressions, (i.e. formulas).

We will refer to formulas as 2-expressions. The raw expressions of a logic-enriched
type theory can be formed according to the same rules given in Subsection 3.1.2, but
allowing constant symbols of the signature to have arities (nε11 · · ·n

εk
k )ε where k ≥ 0,

n1, . . . , nk ≥ 0 and each of ε, ε1, . . . , εk can be not only 0 or 1, but also 2. We will
exploit the raw syntax for logic-enriched type theories in Section 8.6 where we define
types-as-classes interpretations.

Recall from Subsection 3.1.2 that raw expressions need not to be well-formed. For
formulas, it is the judgement (Γ) φ : prop that is used to express that, in context Γ, φ
is a well-formed formula.

7.3 Rules for logic-enriched type theories

One of the reasons for the interest in logic-enriched type theories is that they allow a
great deal of flexibility in the formulation of rules concerning the judgements expressing
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logic. We now overview the rules for logic-enriched type theories that are considered
in the rest of the thesis.

7.3.1 Predicate logic

Predicate logic rules express formation and inference rules for the intuitionistic logical
constants. The forms of proposition that we consider are the usual ones: we use >
and ⊥ for the canonical true and false propositions, respectively; we then adopt ∧,∨
and ⊃ for conjunction, disjunction and implication, respectively. Finally, for each
type A of the standard pure type theory that is being considered, we write (∀x : A)
and (∃x : A) for the universal and existential quantifiers over A. The formation,
introduction and elimination rules for these forms of proposition are straightforward.
By means of illustration, we present the inference rules for disjunction and existential
quantification in Table 7.1 and Table 7.2.

Table 7.1: Rules for disjunction.
∨-formation

φ1 : prop φ2 : prop

φ1 ∨ φ2 : prop

∨-introduction

φ1 : prop φ2 : prop φ1

φ1 ∨ φ2

φ1 : prop φ2 : prop φ2

φ1 ∨ φ2

∨-elimination

φ1 ∨ φ2 φ1 ⇒ ψ φ2 ⇒ ψ

ψ

If T is a pure type theory then we write T + IL for the logic-enriched type theory
that is obtained from T by adding predicate logic rules. We have usual definitions of
logical equivalence and negations: for φ, ψ define

φ ≡ ψ =def (φ ⊃ ψ) ∧ (ψ ⊃ φ) ,

¬φ =def φ ⊃ ⊥ .

7.3.2 Induction rules

It is natural to extend a logic-enriched type theory with additional non-logical rules
to express properties of the various forms of type. For instance, we may consider
adding a rule for mathematical induction to the rules concerning the type of natural
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Table 7.2: Rules for existential quantification.
∃-formation

A : type (x : A) φ : prop

(∃x : A) φ : prop

∃-introduction

a : A (x : A) φ : prop φ[a/x]

(∃x : A)φ

∃-elimination

(∃x : A)φ ψ : prop (x : A) φ⇒ ψ

ψ

numbers and there are similar rules for the other inductive forms of type. Remarkably,
induction rules can be described in a uniform way. For each inductive type C : type of
a logic-enriched type theory T + IL we have the following induction rule

(z : C) φ : prop e : C Premisses

φ[e/z]

where the premisses of the rule depend on the form of the inductive type C, in the way
described in Table 7.3, where we consider all the inductive types of the logic-enriched
type theory MLW + IL.

Table 7.3: Inductive types of MLW and premisses of their induction rule.

C Premisses

0

1 φ[01/z] ,

2 φ[12/z] , φ[22/z] ,

N φ[0/z] , (x : N) φ[x/z]⇒ φ[succ(x)/z] ,

(Σx : A)B (x : A, y : B) φ[pair(x, y)/z] ,

(Wx : A)B (x : A, u : B → C) (∀y : B)φ[app(u, y)/z]⇒ φ[sup(x, u)/z] .

If T + IL is a standard logic-enriched type theory, we write T + IL + IND for
the standard logic-enriched type theory that is obtained from T + IL by adding the
induction rules for all the inductive types of T + IL.
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7.4 A proposition universe

Recall from Subsection 3.3.2 that the pure type theory ML1 has rules for a type universe
U reflecting all the forms of type of the pure type theory ML. When adding logic to a
pure type theory T that includes ML1 it is natural to match the type universe U by
adding a proposition universe P. The formation, elimination and introduction rules for
the proposition universe P are given in Subsection B.2.4. The reader may observe that
they are analogous to the ones for the type universe U given in Subsection B.2.3. In
particular, we have the elimination rule

p : P

τ p : prop .

For φ : prop we say that φ is small if, for some p : P the judgement

φ ≡ τ p

is derivable, and in that case we say that p is a representative for φ. The rules for
P express that its elements are representatives for propositions whose quantifiers range
over small types.

Observe that the computation rules for the type universe U given in in Subsection
B.2.3 adopt the equality form of judgement to express that introduction rules of U reflect
type formation rules. For the proposition universe P it seems convenient to avoid the
use of an equality form of judgement for propositions in order to express that P reflects
logic and rather formulate the computation rules for P with logical equivalence. This is
useful, for example, to define the types-as-classes interpretation of logic-enriched type
theories, as we will do in Section 8.6.

7.5 Collection rules

To present the collection rules corresponding to the collection axioms of CZF, we
introduce some notation that makes this correspondence more intuitive. For A : type

define SubA, the type of small subclasses of A, as follows

SubA =def (Σx : U)
(
(x→ P)× (x→ A)

)
: type .

Some intuition. For e : U , d : e → P and f : e → A, we may think of a canonical
element

pair(e, pair(d, f)) : SubA
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as the ‘class’ of all app(f, x) for x : T e such that τ(app(d, x)).

To support this intuition for arbitrary elements of SubA and not just the canonical
ones, we define some expressions, using the projections for elements of Σ-types defined
in Subsection 3.3.1. For a : SubA define

ėl a =def a.1 : U ,

el a =def T(ėl a) : type .

For x : el(a) define

˙dom(a, x) =def app(a.2.1, x) : P ,

dom(a, x) =def τ( ˙dom(a, x)) : prop ,

and finally

val(a, x) =def app(a.2.2, x) : A .

Some intuition. An element a : SubA may be thought of as the ‘class’ of all val(a, x)
for x : el a such that dom(a, x).

The notation we just introduced allows us to define ‘restricted quantification’ over
an element of SubA, as we will see in the next definitions. These definitions will play
an essential role in the formulation of the collection rules, and throughout the remain-
der of the thesis. In order to maintain the distinction between small and arbitrary
propositions, the definition of ‘restricted quantification’ has two clauses, depending on
whether we have a small or an arbitrary proposition. For each clause, we obviously
have both universal and existential quantification.

We begin with small propositions. For a : SubA and (x : A) p : P define

(∀̇x ∈ a)p =def (∀̇x : ėl a) ˙dom(a, x) ⊃̇ p[val(a, x)/x] : P , (7.1)

(∃̇x ∈ a)p =def (∃̇x : ėl a) ˙dom(a, x) ∧̇ p[val(a, x)/x] : P .

We now extend this to arbitrary propositions. For (x : A) φ : prop define

(∀x ∈ a)φ =def (∀x : el a) dom(a, x) ⊃ φ[val(a, x)/x] : prop , (7.2)

(∃x ∈ a)φ =def (∃x : el a) dom(a, x) ∧ φ[val(a, x)/x] : prop .
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The definition that we introduce next will be very useful to present collection rules.
For A,B : type, a : SubA, b : SubB and (x : A, y : B) φ : prop define

coll(a, b, (x, y)φ) =def (∀x ∈ a)(∃y ∈ b)φ ∧ (∀y ∈ b)(∃x ∈ a)φ : prop .

Observe the correspondence between this abbreviation and the one used in Section A.4
to formulate the collection axioms in set theory. The collection rules are presented in
Table 7.4 on page 150. They will allow us to formulate a logic-enriched type theory
ML(CZF) that will be the focus of our investigations for much of Chapter 8 and
Chapter 9. The definition of the type theory ML(CZF) is given in the next section.

Table 7.4: Collection rules for logic-enriched type theories.

A,B : type a : SubA (x : A, y : B) φ : prop

(∀x ∈ a)(∃y : B)φ⇒ (∃v : SubB)coll(a, v, (x, y)φ)

A,B,C : type a : SubA b : SubB (x : A, y : B, z : C) ψ : prop

(∃u : Sub(SubB))(∀z : C)
(
(∀x ∈ a) (∃y ∈ b)ψ ⊃ (∃v ∈ u)coll(a, v, (x, y)ψ)

)

7.6 Some logic-enriched type theories

We now formulate logic-enriched type theories that will be considered in the rest of
the thesis, and in particular the logic-enriched ML(CZF) that will be shown to be
mutually interpretable with the constructive set theory CZF in Chapter 8.

7.6.1 ML1 + IL1

The logic-enriched type theory ML + IL is obtained from the pure type theory ML

presented in Subsection 3.3.1 by adding predicate logic rules. The logic-enriched type
theory ML1 + IL1 extends the logic-enriched type theory ML + IL with rules for a
type universe and a proposition universe.

7.6.2 ML(CZF)

Recall from Subsection 3.3.4 that ML−1 + W− is a pure type theory with only restricted
version of Π-types and W -types, so that the types of ML−1 + W− have the following
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forms

0 , 1 , 2 , N, (Σx : A)B , (Π−x : A)B , (W−x : A)b , U .

To formulate ML(CZF) we first of all extend this pure type theory with extra W−-
elimination rules that allow definitions by ‘double recursion’ over W−-types, as given
in Section B.3. These rules will be used to define a type-theoretic counterpart of the
extensional equality relation of CZF, and do not seem derivable without the assumption
of Π-rules.

The logic-enriched type theory ML(CZF) is then obtained by adding predicate
rules, P-rules, induction rules for all the inductive types of ML−1 + W−, and both the
Strong Collection and the Subset Collection rule. The induction rules for W−-types
have the same form of the ones for W -types, as given in Table 7.3. The logic-enriched
type theory ML(CZF−) is obtained from ML(CZF) by omitting the Subset Collection
rule.



Chapter 8

The generalised type-theoretic

interpretation of CST

8.1 Iterative small classes

The main aim of this chapter is to define an interpretation of CZF into ML(CZF).
There are at least two motivations for this: firstly we want to establish a formal con-
nection between collection axioms and the collection rules formulated in Section 7.5,
and secondly we wish to explore whether we can generalise results from pure to logic-
enriched type theories, avoiding the propositions-as-types treatment of logic. We are
also going to recall how this generalised generalised type-theoretic interpretation can
be combined with an interpretation in the reverse direction to show that CZF and
ML(CZF) are mutually interpretable [6].

The original type-theoretic interpretation of CZF was obtained introducing a pure
type theory ML1V with rules for a special W -type V , but no rules for arbitrary W -
types [2, 3, 4]. This interpretation rests on two main components: the rules for the
type V , that is used to interpret the sets of CZF, and the propositions-as-types idea,
that is adopted to interpret the language of CST. For example, the propositions-as-
types idea plays a crucial role to prove the validity of Strong Collection and Subset
Collection, as they are proved using the type-theoretic axiom of choice. It is important
to observe that these two components are closely intertwined, since the rules for the
type V provide a suitable interpretation for the sets of CZF only under the assumption
that propositions are interpreted as types. This is particularly evident, for example, if
one inspects the proof of the validity of Restricted Separation [3, Theorem 2.8].

To define a generalised type-theoretic interpretation of CZF we therefore need to
reconsider the definition of the type that is used to interpret sets. The definition we are
going to adopt becomes more significant recalling that, in set theory, the cumulative
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hierarchy is defined inductively as the smallest class X such that

(∀x ∈ PowX) x ∈ X . (8.1)

Following the intuition suggested in Section 7.5, we may view types of small subclasses
as the counterpart in type theory of power classes in set theory. For X : type, we may
indeed consider a : SubX as a ‘subset’ of X. This suggests to introduce a type V as
the ‘smallest’ type X for which we can define

(x : SubX) setx : X ,

that expresses (8.1) in type theory. Such a type V can indeed be defined explicitly in
ML(CZF) using the restricted forms of W -types that are available in it, as we will do
in Section 8.3. Using the abbreviations introduced in Section 7.5, we may already think
of set a : V, for a : Sub V, as the ‘set’ all val(a, x) : V, for x : el a such that dom(a, x) .
We will refer to V as the type of iterative small classes.

The generalised type-theoretic interpretation will then be defined in analogy with
the original one, but here formulas and restricted formulas of CZF correspond to propo-
sitions and small propositions rather than to types and small types, as in the original
interpretation. The validity of Restricted Separation will follow without assuming the
propositions-as-types treatment of logic, and the validity of collection axioms will be a
consequence of the collection rules and not of the type-theoretic axiom of choice.

We have discussed the issue of interpreting CZF into type theories. It is also natural
to consider translations in the opposite direction. For example we may interpret types
as sets and objects of a type as elements of the corresponding set. Then to each
type forming operation there is the natural set forming operation that corresponds to
it. In this way we get a conceptually very simple set theoretical interpretation of the
type theory ML, which has no universes or W -types, in CZF, and this extends to an
interpretation of MLW in CZF+ and of MLW1 in an extension CZF+u of CZF+

expressing the existence of a universe in the sense of [67]. The syntactic details of this
kind of translation can be found in [5].

A weakness of these types-as-sets interpretations, when linked with the original
type-theoretic interpretation, is that there seems to be a mismatch between the set
theories and the type theories. So although we get a translation of CZF into ML1V

we only seem to get a translation of ML into CZF and to translate ML1V into a
constructive set theory using types-as-sets we seem to need to go to the set theory
CZF+u, which is much stronger than CZF. This mismatch is overcome in [5] by
having axioms for an infinite hierarchy of universes on both the type theory side and
the set theory side. This allows for the two sides to catch up with each other.
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A particularly good aspect of the generalised type-theoretic interpretation is that
it leads to formulate a straightforward types-as-classes interpretation in the reverse
direction and thus show that CZF and ML(CZF) are mutually interpretable. The
main reason for considering restricted versions of Π-types and W -types is indeed to
make the types-as-classes interpretation possible. Remarkably, these restrictions still
allow us to define the generalised type-theoretic interpretation.

8.2 Small subclasses

From now on we work informally within ML(CZF). In this section, however, we never
make use of collection rules. The considerations in Section 8.1 suggest to start our
development of the generalised type theoretic interpretation of CZF by studying the
properties of the type of small subclasses of a type. For some readers, the intuitive
analogy between the type of small subclasses of a type and the class of subsets of a
class may provide some insight into the series of lemmas 8.1 – 8.6. In these lemmas,
we make frequent and sometimes implicit use of the convenient notation for ‘restricted
quantifiers’ introduced in (7.1) and (7.2) on page 149.

Proposition 8.1 (Emptyset). For A : type we can define

∅ : SubA

such that if (x : A) φ : prop and c = ∅ : SubA then the judgements

(∀x ∈ c)φ ≡ > ,

(∃x ∈ c)φ ≡ ⊥ ,

are derivable.

Proof. Define

e =def 0̇ : U ,

d =def (λ : e)⊥̇ : e→ P ,

f =def (λz : e) r0(z) : e→ A ,

and finally

∅ =def pair(e, pair(d, f)) : SubA .

The desired conclusion is an immediate consequence of the definition of d.
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Proposition 8.2 (Pairing). For A : type we can define

(x, y : A) {x, y} : SubA

such that if (x : A) φ : prop, a, b : A and c = {a, b} : SubA then the judgements

(∀x ∈ c)φ ≡ φ[a/x] ∧ φ[b/x] ,

(∃x ∈ c)φ ≡ φ[a/x] ∨ φ[b/x] ,

are derivable.

Proof. Define

e =def 2̇ : U ,

d =def (λ : e)>̇ : e→ P ,

(x, y : A) f =def (λz : e) r2(x, y, z) : e→ A ,

and finally

(x, y : A) {x, y} =def pair(e, pair(d, f)) : SubA .

Let (x : A) φ : prop, a, b : A and assume that c = {a, b} : SubA. By the definition of
{a, b} we have

el{a, b} = 2 : type ,

(x : 2) dom({a, b}, x) ≡ > ,

(x : 2) val({a, b}, x) = r2(a, b, x) : A .

We can obtain the desired conclusion

(∀x ∈ c)φ ≡ φ[a/x] ∧ φ[b/x]

in two steps. First unfold the definitions of restricted quantifiers and get

(∀x ∈ c)φ ≡ (∀x : 2)φ[r2(a, b, x)/x] .

Then, observe that the desired equivalence follows once we prove that

(∀x : 2)φ[r2(a, b, x)/x] ≡ φ[a/x] ∧ φ[b/x] . (8.2)
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The ‘left-to-right’ implication in (8.2) is obtained with the ∀-elimination, and the ‘right-
to-left’ implication follows by the 2-induction rule. Following an analogous reasoning
we can also prove

(∃x ∈ c)φ ≡ φ[a/x] ∨ φ[b/x] .

We leave the details to the reader, and limit ourselves to suggest to first unfold the
definitions of restricted quantifiers, and then to use the 2-induction rule and the ∨-
elimination rule.

Corollary 8.3 (Singleton). For A : type we can define

(x, y : A) {x} : SubA

such that if (x : A) φ : prop, a : A and c = {a} : SubA then the judgements

(∀z ∈ c)φ ≡ φ[a/x] ,

(∃x ∈ c)φ ≡ φ[a/x] ,

are derivable.

Proof. Once we define

(x : A) {x} =def {x, x} : SubA ,

the conclusion follows by Proposition 8.2.

Proposition 8.4 (Union). For A : type we can define

(x : Sub(SubA))
⋃
x : SubA

such that if (x : A) φ : prop, a : Sub(SubA) and c =
⋃
a : SubA then the judgements

(∀x ∈ c)φ ≡ (∀y ∈ a)(∀x ∈ y)φ ,

(∃x ∈ c)φ ≡ (∃y ∈ a)(∃x ∈ y)φ ,

are derivable.
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Proof. For x : Sub(SubA) define

e =def (Σ̇y : ėlx) ėl(val(x, y)) : U ,

d =def (λz : e) ˙dom(x, z.1) ∧̇ ˙dom(val(x, z.1), z.2) : e→ P ,

f =def (λz : e) val(val(x, z.1), z.2) : e→ A ,

and finally

⋃
x =def pair(e, pair(d, f)) : SubA .

Let (x : A) φ : prop, a : Sub(SubA) and assume that c =
⋃
a : SubA. We have

el c = (Σy : el a) el(val(a, y)) : type ,

(z : el c) dom(c, z) ≡ dom(a, z.1) ∧ dom(val(a, z.1), z.2) ,

(z : el c) val(c, z) = val(val(a, z.1), z.2) : A ,

by the definition of
⋃
a. By the computation rules for Σ-types we obtain

(y : el a, x : el(val(a, y))) val(c, pair(x, y)) = val(val(a, y), x) : A .

We now show that

(∀x ∈ c)φ ≡ (∀y ∈ a)(∀x ∈ y)φ .

Define

(y : el a, x : el(val(a, y)) θ =def dom(a, y) : prop ,

(y : el a, x : el(val(a, y)) η =def dom(val(a, y), x) : prop .

To prove the desired equivalence it is convenient to consider

(∀z : el c) dom(c, z) ⊃ φ[val(c, z)/x] (8.3)

and

(∀y : el a)(∀x : el(val(a, y)))θ ∧ η ⊃ φ[val(c, pair(x, y))/x] . (8.4)

We claim that if (8.3) ≡ (8.4) then

(∀x ∈ c)φ ≡ (8.3) ≡ (8.4) ≡ (∀y ∈ a)(∀x ∈ y)φ ,
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which gives the desired result. Assuming that (8.3) ≡ (8.4), we only need to prove the
first and the third equivalence: the first one follows by simply unfolding the definitions,
while the third one is a consequence of predicate logic rules.

Let us therefore complete the proof by showing that (8.3) ≡ (8.4). First observe
that (8.3) implies (8.4) by the ∀-elimination rule, and then note that (8.4) implies (8.3)
by the Σ-induction rule. The proof of the claim involving the existential quantifier
follow the same pattern of reasoning and therefore we omit the details.

Proposition 8.5 (Small separation). For A : type, a : SubA and (x : A) p : P, we
can define

{x ∈ a | p} : SubA

such that if (x : A) φ : prop and c = {x ∈ a | p} : SubA then the judgements

(∀x ∈ c)φ ≡ (∀x ∈ a)(τ p ⊃ φ) ,

(∃x ∈ c)φ ≡ (∃x ∈ a)(τ p ∧ φ) ,

are derivable.

Proof. For a : SubA and (x : A) p : P define

e =def ėl a : U ,

d =def (λx : e) ˙dom(a, x) ∧̇ p[val(a, x)/x] : e→ P ,

f =def (λx : e) val(a, x) : e→ A ,

and finally

{x ∈ a | p } =def pair(e, pair(d, f)) : SubA .

Let (x : A) φ : prop and assume that c = {x ∈ a | p} : SubA. We have

el c = el a : type ,

(x : el c) dom(c, x) ≡ dom(a, x) ∧ τ p[val(a, x)/x] ,

(x : el c) val(c, x) = val(a, x) : A ,
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by the definition of {x ∈ a | p}. The proof is now straightforward:

(∀x ∈ c)φ ≡ (∀x : el a)
((

dom(a, x) ∧ τ p[val(a, x)/x]
)
⊃ φ[val(a, x)/x]

)
≡ (∀x : el a) dom(a, x) ⊃ (τ p[val(a, x)/x] ⊃ φ[val(a, x)/x])

≡ (∀x ∈ a)(τ p ⊃ φ) .

This gives the desired conclusion. The proof of the statement involving existential
quantification is analogous and therefore we omit it.

We will exploit these series of lemmas to show the validity of the axioms of CZF

under the type-theoretic interpretation in Section 8.5. We conclude this section with
two lemmas that are similar in spirit to the previous ones, but will not be used until
Chapter 9. Remarkably, to prove the type-theoretic version of replacement described
in the next lemma, we do not need any of the collection rules.

Proposition 8.6 (Replacement). For A,B : type, a : SubA and (x : A) b : B, we
can define

{b | x ∈ a} : SubB

such that if (y : B) φ : prop and c = {b | x ∈ a} : SubB then the judgements

(∀x ∈ a)φ[b/y] ≡ (∀y ∈ c)φ ,

(∃x ∈ a)φ[b/y] ≡ (∃y ∈ c)φ ,

are derivable.

Proof. First of all, observe that we can assume that x is not a free variable in φ. Define

e =def ėl a : U ,

d =def (λx : el a) ˙dom(a, x) : e→ P

f =def (λx : el a)b[val(a, x)/x] : e→ B ,

and finally

{b | x ∈ a} =def pair(e, pair(d, f)) : SubB .
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Let (y : B) φ : prop and assume that c = {b | x ∈ a} : SubB. We have

el c = el a : type ,

(x : el c) dom(c, x) ≡ dom(a, x) ,

(x : el c) val(c, x) = b[val(a, x)/x] : B ,

by the definition of {b | x ∈ a}. The remainder of the proof consists in unfolding
definitions and substitutions:

(∀y ∈ c)φ ≡ (∀y : el a)(dom(a, y) ⊃ φ[b[val(a, y)/x]/y]

≡ (∀x ∈ a)φ[b/y] ,

where the last step follows because we assumed that x is not a free variable in φ. The
proof of the statement involving existential quantification is similar and we leave it to
the reader.

We conclude this series of propositions by transferring in logic-enriched type theories
a familiar fact of constructive set theories: the correspondence between the class of
subsets of a singleton set and restricted sentences, as discussed in Subsection 2.3.3. In
logic-enriched type theories the role of subsets of a singleton set is played by the type of
small subclasses of the type 1 and the role of restricted sentences is played by elements
of P.

Proposition 8.7 (Restricted truth values). For x : P we can define

extx : Sub 1

such that if φ : prop, p : P and a = ext p : Sub 1 then the judgements

τ p ≡ (∃ ∈ a)> ,

τ p ⊃ φ ≡ (∀ ∈ a)φ ,

are derivable.

Proof. For x : P define

e =def 1̇ : U ,

d =def (λ : e)x : e→ P ,

f =def (λy : e)y : e→ 1 ,
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and finally

extx =def pair(e, pair(d, f)) : Sub 1 .

The conclusion is a straightforward consequence of the definition of d. We trust the
reader capable of filling in the details.

Before moving on to prove the validity of the axioms of CZF we need to have a
type to interpret the sets. We define such a type in the next section, and the proceed
in Section 8.4 to define the generalised type-theoretic interpretation.

8.3 The type of iterative small classes

We now show that CZF can be interpreted in ML(CZF). Define the type V of iter-

ative small classes as

V =def

(
Wy : (Σx : U)(x→ P)

)
y.1 .

Some intuition. For e : U, d : T e→ P and f : T e→ V, we may think of a canonical
element

sup(pair(e, d), f) : V

as the ‘set’ of all app(f, x) : V, with x : T e such that τ(app(d, x)).

The next lemma illustrates the correspondence between elements of V and elements
of Sub V.

Lemma 8.8. We can define

(x : Sub V) setx : V ,

(y : V) sub y : Sub V ,

such that if e : U, d : e→ P and f : e→ V then the judgements

set(pair(e, pair(d, f))) = sup(pair(e, d), f) : V ,

sub(sup(pair(e, d), f)) = pair(e, pair(d, f)) : Sub V ,

are derivable.
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Proof. Define

(x : Sub V) setx =def sup(pair(x.1, x.2.1), x.2.2) : V

and

(x : V) subx =def rW((u, v) pair(u.1, pair(u.2, v), x) : Sub V .

The desired conclusions can be proved using the Σ-computation rule and the W−-
computation rule, respectively.

Corollary 8.9. The introduction rule for the type V is derivable from the rule

a : Sub V

set a : V

Proof. The claim is a consequence of Lemma 8.8.

Proposition 8.10. For (x : V) φ : prop and (y : Sub V) ψ : prop the judgements

(∀x : V) φ ≡ (∀y : Sub V) φ[set y/x] ,

(∃x : V) φ ≡ (∃y : Sub V) φ[set y/x] ,

are derivable.

Proof. To prove the judgement

(∀x : V)φ ≡ (∀y : Sub V)φ[set y/x] ,

we consider the proposition

(∀x : U)(∀y : T(x)→ P)(∀z : T(x)→ V)φ[sup(pair(x, y), z)/x] . (8.5)

We indeed show that

(∀x : V)φ ≡ (8.5) ≡ (∀y : Sub V)φ[set y/x] . (8.6)

The first equivalence in (8.6) can be proved as follows: the ‘left-to-right’ implica-
tion is proved with the ∀-elimination rule, while the ‘right-to-left’ is proved by W−-
induction. The second equivalence in (8.6) can instead be obtained as we describe
now. The ‘left-to-right’ implication is a consequence of the Σ-induction rule, while the
‘right-to-left’ implication follows by the ∀-elimination rule and Lemma 8.8.
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We will now define an extensional equality on the type V of ML(CZF) that will be
used to interpret the set-theoretic equality of CZF. An inspection of the original type-
theoretic interpretation reveals that Π-types are used to define an extensional equality
on the type of iterative sets [3, Theorem 2.3]. Since in ML(CZF) has only restricted
forms of Π-types, we rather use the double W−-elimination rule of ML(CZF) given in
Section B.3.

Before turning to the extensional equality, however, we combine the convenient
notation of ‘restricted quantifiers’ introduced on page 7.1 with the correspondence
between elements of V and Sub V of Lemma 8.8. The combination of these definitions
allows us to get a ‘restricted quantification’ on elements of V. For x : V, (y : V) p : P,
and (y : V) φ : prop define

(∇̇y ∈ x)p =def (∇̇y ∈ subx)p : P ,

(∇y ∈ x)φ =def (∇y ∈ subx)φ : prop ,

where ∇ is either ∀ or ∃. These definitions will be implicitly used throughout the
remainder of this chapter.

Proposition 8.11. We can define

(x, y : V) x ≈̇ y : P

such that if a, b : V then the judgement

a ≈ b ≡ (∀x ∈ a)(∃y ∈ b)x ≈ y ∧ (∀y ∈ b)(∃x ∈ a)x ≈ y ,

where a ≈ b =def τ(a ≈̇ b), is derivable.

Proof. For u1 : S, v1 : u1.1 → V, u2 : S, v2 : u2.1 → V, w : u1.1 → (u2.1 → P) define
d1, d2 : P such that if φ1 ≡ τd1 and φ2 ≡ τd2 then

φ1 ≡ (∀x : u1.1) app(u1.2, x)→ (∃y : u2.1)(app(u2.2, y) ∧ app(app(w, x), y) ,

φ2 ≡ (∀y : u2.1) app(u2.2, y)→ (∃x : u1.1)(app(u1.2, x) ∧ app(app(w, x), y) ,

are derivable, and define d =def d1 ∧ d2 : P. We can now apply the double W−-
elimination rule of ML(CZF) of Section B.3 and define

(x, y : V) x ≈̇ y =def r2W(x, y, (u1, v1, u2, v2, w)d) : P .

The W−-induction and the double W−-computation rule now lead us to conclude the
proof.
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Proposition 8.11 concludes our preparations for the definition of the generalised
type-theoretic interpretations of CZF, that is presented in the next section.

8.4 Sets-as-trees

We assume that CZF is formulated in the language L, that has no constants, and that
the symbols for variables of the language L coincide with ones of type V. Recall from
Section 2.1 that the language L has primitive restricted quantifiers, but no primitive
membership relation. We define two interpretations: a first one applies to arbitrary
formulas, and another interpretation applies only to restricted formulas. Table 8.1 on
page 165 and Table 8.2 on page 165 contain the definitions of the interpretations of
arbitrary and restricted formulas, respectively.

The next lemma shows that arbitrary and restricted formulas of L correspond to
arbitrary and small propositions of ML(CZF).

Lemma 8.12. If φ is a formula of L with FVφ = ~x and θ is a restricted formula of L
with FVθ = ~x then the judgements

(~x : V) Jφ K : prop ,

(~x : V) L θ M : P ,

(~x : V) τL θ M ≡ J θ K

are derivable.

Proof. Direct consequence of the definition of the interpretations.

Definition 8.13. We say that the interpretation of a formula φ of L with FV φ = ~x

is sound if the judgement

(~x : V) JφK

is derivable. We say that the generalized type theoretic interpretation of a constructive
set theory is sound if the interpretation of all its axioms and of all the instances of its
axiom schemes is valid. ♦

8.5 Soundness

In this section we prove the following theorem.

Theorem 8.14. The generalised type theoretic interpretation of CZF is sound.
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Table 8.1: Sets-as-trees interpretation for arbitrary formulas.

Jx = yK =def x ≈ y ,

Jφ1 ∧ φ2K =def Jφ1K ∧ Jφ2K ,

Jφ1 ∨ φ2K =def Jφ1K ∨ Jφ2K ,

Jφ1 → φ2K =def Jφ1K ⊃ Jφ2K ,

J(∀x ∈ y)φ0K =def (∀x ∈ y) Jφ0K ,

J(∃x ∈ y)φ0K =def (∃x ∈ y) Jφ0K ,

J(∀x)φ0K =def (∀x : V) Jφ0K ,

J(∃x)φ0K =def (∃x : V) Jφ0K .

Table 8.2: Sets-as-trees interpretation for restricted formulas.

Lx = yM =def x ≈̇ y ,

Lθ1 ∧ θ2M =def Lθ1M ∧̇ Lθ2M ,

Lθ ∨ θ2M =def Lθ1M ∨̇ Lθ2M ,

Lθ1 → θ2M =def Lθ1M ⊃̇ Lθ2M ,

L(∀x ∈ y) θ0M =def (∀̇x ∈ y) Lθ0M ,

L(∃x ∈ y) θ0M =def (∃̇x ∈ y) Lθ0M .

The proof of this theorem will follow by the series of lemmas 8.16, 8.17 and 8.18.
We start with a simple lemma.

Lemma 8.15. Let (x : V) φ : prop and a, b : V. Then the judgement

Jφ[a/x]K ∧ Ja = bK ⊃ Jφ[b/x]K

is derivable.

Proof. By structural induction on φ.

Given lemma 8.15 it is straightforward to observe that all the logical axioms for
CZF, and in particular the ones regarding restricted quantifiers, are sound. The next
lemma takes care of the structural axioms of CZF.
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Lemma 8.16. The interpretation of the Extensionality and Set Induction is sound.

Proof. Soundness of Extensionality is a consequence of proposition 8.11. Soundness of
Set Induction follows by the W−-induction rule.

We now pick the fruits of the results proved in Section 8.2. Proofs of the soundness
of the interpretation of the set existence axioms of CZF are simple consequences of
lemmas 8.1 – 8.6. Some work is required only for Infinity.

Lemma 8.17. The interpretation of Pairing, Union, Infinity and Restricted Separa-
tion is sound.

Proof. Lemma 8.2 helps us to prove validity of Pairing. Let a, b : V and define c =def

set{a, b} : V. Observe that

(∀x ∈ c)(x ≈ a ∨ x ≈ b) ≡ (∀x ∈ {a, b})(x ≈ a ∨ x ≈ b)

≡ (a ≈ a ∨ a ≈ b) ∧ (b ≈ a ∨ b ≈ b)

by the definition of ‘restricted quantification’ over c : V, the definition of {a, b} and
Lemma 8.2. Similarly we get

a ∈ c ∧ b ∈ c ≡ (∃x ∈ {a, b})(x ≈ a) ∧ (∃x ∈ {a, b})(x ≈ b)

≡ (a ≈ a ∨ a ≈ b) ∧ (b ≈ a ∨ b ≈ b)

as wanted. Soundness of Union follows in a similar way from Lemma 8.4. For Infinity,
recall Lemma 8.1 and Corollary 8.3. First of all define

(x : N, y : V) s =def set{y} : V

Now define

e =def Ṅ : U ,

d =def (λz : e)>̇ : e→ P ,

f =def (λz : e) rN(set(∅), (x, y)s, z) : e→ V ,

where we used the computation rule for the type N given in Subsection B.2.1, and
finally

c =def pair(pair(e, d), f) : Sub V .

It is now immediate to see that set c : V can be used to show the soundness of Infinity.
Validity of Restricted Separation follows from Lemma 8.5. We leave the details to the
reader.
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The next lemma should not be a surprise.

Lemma 8.18. The interpretation of Strong Collection and Subset Collection is sound.

Proof. Straightforward consequence of the collection rules of ML(CZF) given in Table
7.4.

We have therefore proved Theorem 8.14, stating that CZF is interpretable in
ML(CZF).

8.6 Types-as-classes

In this section we recall a result obtained in [6] that implies the mutual interpretability
of CZF and ML(CZF). From now on we work informally in CZF. We say that ξ is a
variable assignment if ξ(x) is a set for each variable x. Recall also from Subsection
2.1.1 that φ is a set theoretical sentence if it has no free variables.

The terminology used in relation to the raw syntax for logic-enriched type theories
in Subsection 3.1.2 and Subsection 7.2.1 may help the reader to understand why we
will say that a set is a 0-class, a class is a 1-class and a set theoretical sentence is
a 2-class. Also, for n ≥ 0 and ε = 0, 1, 2, we say that a definable operator F is an
nε-class if it assigns an ε-class F (a1, . . . , an) to each n-tuple a1, . . . , an of sets.

Definition 8.19. We say that an assignment JMKξ to each expression M and each
variable assignment ξ of the raw syntax is a types-as-classes interpretation if JaKξ
is a set for each term a, JAKξ is a class for each type expression A and JφKξ is a set
theoretical sentence for each proposition expression φ. ♦

Given a set theoretical interpretation Fκ of each symbol κ of the signature, it is
possible to define a types-as-classes interpretation by structural induction on the way
expressions are built up. Of course, the set theoretical interpretation of the symbols
of the signature has to be such that the second clause of the following definition by
structural induction makes sense:

JxKξ =def ξ(x) ,

Jκ((~x1)M1, . . . , (~xk)Mk)K =def Fκ(F1, . . . , Fk) ,

where κ is a constant symbol of the signature of arity (nε11 · · ·n
εk
k )ε and, for Fi is the

nεii -class such that for i = 1, . . . , k

Fi(~ai) = JMiKξ(~ai/~xi)
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for all ni-tuples ~ai of sets. When κ has arity (nε11 · · ·n
εk
k )ε we require that Fκ is a set

operator of that arity. This means that whenever Fi is an nεii -class, for i = 1, . . . , k
then Fκ(F1, . . . , Fk) should be an ε-class obtained ‘uniformly’ from F1, . . . , Fk. Given
a types-as-classes interpretation as above we can define the notions in Table 8.3

Table 8.3: Soundness of the types-as-classes interpretation.

ξ |= (x1 : A1, . . . , xn : An) =def ξ(x1) ∈ JA1Kξ ∧ · · · ∧ ξ(xn) ∈ JAnKξ ,

ξ |= A : type =def > ,

ξ |= A1 = A2 : type =def JA1Kξ = JA2Kξ ,

ξ |= a : A =def JaKξ ∈ JAKξ ,

ξ |= a1 = a2 : A =def Ja1Kξ = Ja2Kξ ,

ξ |= φ : prop =def > ,

ξ |= φ1 . . . , φm ⇒ φ =def Jφ1Kξ ∧ · · · ∧ JφmKξ → JφKξ .

Definition 8.20. We say that the types-as-classes interpretation of a raw judgement
(Γ) B is sound if ξ |= Γ implies ξ |= B for every variable assignment ξ. The types-as-
classes interpretation of a type theoretic rule is sound if whenever the premisses of an
instance of the rule are valid then so is the conclusion. ♦

Theorem 8.21 (Aczel). ML(CZF) has a sound the types-as-classes interpretation.

Proof. See [6] and also [5] for more details.

Corollary 8.22. The systems CZF and ML(CZF) are mutually interpretable.

Proof. The claim follows from Theorem 8.14 and Theorem 8.21.



Chapter 9

Reinterpreting logic

9.1 Introduction

The aim of this chapter is to show how the logic-enriched type theory ML(CZF) ac-
commodates reinterpretations of logic. We start by considering a propositions-as-types
translation into a pure type theory, and observe how collection rules are consequences
of the type-theoretic axiom of choice.

We then consider reinterpretations defined by considering an operator j on the
proposition universe that satisfies type-theoretic versions of the properties of a nucleus
on a set-generated frame, as introduced in Definition 4.9 on page 55, or of a Lawvere-
Tierney operator, as described in Definition 6.18 on page 128. We call the reinter-
pretations determined by such an operators j-interpretations. These can be defined
following the definition of the syntactic translation determined by a Lawvere-Tierney
operator, as in Section 6.7.

Collection rules play a prominent role in j-interpretations. First of all, the Strong
Collection rule allows to show that an extension of j from small to arbitrary propo-
sitions inherits the properties of j. It is actually using this fact that we can set up
j-interpretations of logic. Furthermore, the Strong Collection rule is preserved by the
j-interpretations, in intuitive analogy with the development of the second step of sheaf
interpretations for CST developed in Chapter 6. As one might expect, the Subset Col-
lection rule does not seem instead to be preserved by arbitrary j-interpretations. The
intuitive analogy with set theory leads us to formulate a suitable condition on j that
allows us to show that the Subset Collection rule is also preserved. We end the chapter
with a type-theoretic version of the double-negation interpretation.
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9.2 Propositions-as-types translation

In this section we show how the logic-enriched type theory ML(CZF) has a translation
into the pure type theory ML1 + W−, that is obtained by adding W−-rules to the type
theory ML1. Note that the pure type theory we consider has Π-types and not just Π−-
types. This is necessary to define the translation of universal quantification on types
that are not necessarily small. To formulate the propositions-as-types translation, it is
convenient to extend the pure type theory ML1 + W− with a new form of judgement

(Γ) B1, . . . , Bm V B . (9.1)

This judgement is well-formed if all the judgements (Γ) Bi : type for i = 1, . . . ,m and
(Γ) B : type are derivable. This extension is obviously conservative, since the only rule
involving this judgement is the following:

(y1 : B1, . . . , ym : Bm) b : B

B1, . . . , Bm V B .

Let us now define some expressions that will be useful in the following. We invite
the reader to compare them with the definitions of non-dependent products, binary
sums, and non-dependent functions types given in Subsection 3.3.1.

(x1, x2 : U) x1 ×̇x2 =def (Σ̇ : x1)x2 : U ,

(x1, x2 : U) x1 +̇x2 =def (Σ̇z : 2̇) r2(x1, x2, z) : U ,

(x1, x2 : U) x1 →̇x2 =def (Π̇ : x1)x2 : U .

While the propositions-as-types translation for a logic-enriched type theory without
a proposition universe is rather straightforward, some attention is needed to extend this
interpretation also to the expressions associated to a proposition universe, in order to
respect the distinction between small propositions and representatives for them. We
will therefore define the propositions-as-types translation as the composition of two
translations, that we now define separately.

The first translation, that we indicate with 〈·〉, maps raw expressions regarding the
type P into raw expressions regarding the type U, and it is defined in Table 9.1. The
second translation, that we indicate with J·K, is the straightforward propositions-as-
types translation for predicate logic, and it is defined in Table 9.2.

As the reader may have already noticed, the definition of the J·K-translation is not
complete, as we still need to define the translation of expressions of the form τ p for p : P.
This is not a problem, because it is exactly for these expressions that we introduced
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Table 9.1: Propositions-as-types translation for a proposition universe.

〈P〉 =def U ,

〈⊥̇〉 =def 0̇ ,

〈>̇〉 =def 1̇ ,

〈p1 ∧̇ p2〉 =def 〈p1〉 ×̇〈p2〉 ,

〈p1 ∨̇ p2〉 =def 〈p1〉 +̇〈p2〉 ,

〈p1 ⊃̇ p2〉 =def 〈p1〉 →̇〈p2〉 ,

〈(∀̇x : a)p0〉 =def (Π̇x : a)〈p0〉 ,

〈(∃̇x : a)p0〉 =def (Σ̇x : a)〈p0〉 .

Table 9.2: Propositions-as-types translations for predicate logic.

J⊥K =def 0 ,

J>K =def 1 ,

Jφ1 ∧ φ2K =def Jφ1K× Jφ2K ,

Jφ1 ∨ φ2K =def Jφ1K+ Jφ2K ,

Jφ1 ⊃ φ2K =def Jφ1K→ Jφ2K ,

J(∀x : A)φ0K =def (Πx : A)Jφ0K ,

J(∃x : A)φ0K =def (Σx : A)Jφ0K .

the first translation: we indeed define

Jτ pK =def T 〈p〉 .

Observe that if p : P, then 〈p〉 : U and hence Jτ pK : type.
The two translations can then be extended to deal with other expressions apart

from the ones regarding logic, and also on judgements. We extend 〈·〉 by letting it
be the identity on all the other expressions of ML(CZF). For a judgement J of
ML(CZF), define 〈J〉 as the judgement that is obtained by replacing all the expressions
in J according to the 〈·〉-translation. The J·K-translation leaves unchanged all the raw
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judgements of ML(CZF) that are judgements of a pure type theory. For the other
judgements define

J(Γ) φ : propK =def (Γ) JφK : type ,

J(Γ) φ1, . . . , φm ⇒ φK =def (Γ) Jφ1K, . . . , JφmKV JφK ,

where we made use of the judgement introduced in (9.1) at the beginning of this
section. The following result was obtained in [6]. The next result has been obtained in
collaboration with Peter Aczel.

Theorem 9.1. If ML(CZF) ` J , then ML1 + W− ` J〈J〉K.

Proof. We only discuss why the translation of the collection rules is derivable, but let
us also point out that the extra W−-elimination rule of Section B.3 is derivable once
full Π-rules are assumed, as in ML1 + W−. To discuss collection rules, let us define

(x : U) !x =def (∃ : Tx)> .

In (9.2), where C =def (Π−x : a)B, we express a version of the type-theoretic axiom of
choice, that can be formulated in ML(CZF).

a : U (x : T a) B : type (x : T a, y : B) φ : prop

(∀x : T a)(∃y : B)φ⇒ (∃z : C)(∀x : T a)φ[app(z, x)/y] .
(9.2)

We also need a rule that expresses a correspondence between small types and small
propositions.

p : P

τ p ≡ !〈p〉 .
(9.3)

The key fact to show that the translation of the collection rules is derivable is that
both of them follow from the combination of rules (9.2) and (9.3), as direct derivations
might show. Furthermore, the propositions-as-types translations of (9.2) and (9.3)
are derivable in ML1 + W− . In particular, the proof that the translation of (9.2) is
derivable follows Martin-Löf’s original derivation of the type-theoretic axiom of choice
[59, pages 50 – 52].

9.3 j-interpretations

Recall from Subsection 7.6.2 that the logic-enriched type theory ML(CZF−) is ob-
tained from ML(CZF) by omitting the Subset Collection rule. In discussing j-interpretations,
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it seems appropriate to consider the logic-enriched type theory ML(CZF−) initially,
and ML(CZF) at a later stage. There are two main reasons for doing so. A first
reason is that the Strong Collection rule is sufficient to prove the basic properties of
j-interpretations. A second reason is that the Strong Collection rule is preserved by the
j-interpretation determined by any topology j, while the Subset Collection rule does
not seem to be.

The next abbreviation will convenient to state Definition 9.2. For a, b : P define

a ≤ b =def τ(a) ⊃ τ(b) : prop .

Definition 9.2. Let j be an explicitly defined operator on P, i.e. assume that there
is an explicit definition of the form (x : P) jx =def e : P, where (x : P) e : P. We say
that j is a topology if the judgements

- j is inflationary, i.e. (∀x : P)x ≤ jx ,

- j is monotone, i.e. (∀x, y : P)x ≤ y ⊃ jx ≤ jy ,

- j is idempotent, i.e. (∀x : P) j(jx) ≤ jx ,

- j respects meets, i.e. (∀x, y : P) jx ∧̇ jy ≤ j(x ∧̇ y) ,

are derivable. ♦

From now on we work informally within ML(CZF−) and consider a fixed, arbitrary
topology j. The next definition will be very convenient in the following. For y : P and
φ : prop define

y ≤ φ =def τ y ⊃ φ .

In the remainder of this section we proceed in analogy with our development of Heyting-
valued and sheaf interpretations in Chapter 5 and Chapter 6.

First of all, we introduce the definition of a modality J that extends j to arbitrary
propositions. The reader is invited to compare this definitions with the ones given in
Section 5.2 and Section 6.7 in the context of Heyting-valued and sheaf interpretations
for constructive set theories. For φ : prop, define

Jφ =def (∃x : P)(τ(jx) ∧ x ≤ φ) .

The next proposition shows that J extends j.

Proposition 9.3. For a : P, J(τ a) ≡ τ(ja).

Proof. The proof consists in a direct calculation.
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We will use this definition in the statement and the proof of the next lemma, that
we invite the reader to compare with Proposition 2.5.

Lemma 9.4. Let A : type, a : SubA, φ : prop, (x : A, y : P) ψ : prop and assume that

(∀x ∈ a)
(
(∃y : P)((y ≤ φ) ∧ ψ) ∧ (∀y, z : P)((y ≤ z ≤ φ ∧ ψ) ⊃ ψ[z/y])

)
There is q : P such that q ≤ φ ∧ (∀x ∈ a)ψ[q/y].

Proof. Define

(x : A, y : P) ξ =def y ≤ φ ∧ ψ : prop .

By the assumption in the claim and the definition of ξ , we have

(∀x ∈ a)(∃y : P)ξ

By the Strong Collection rule there is u : Sub P such that

coll(x ∈ a, y ∈ u, ξ) . (9.4)

Once we define

q =def (∃̇y ∈ u)y : P ,

the definition of ξ, the assumption in the claim and (9.4) imply that

q ≤ φ ∧ (∀x ∈ a)ψ[q/y] .

Discharging the assumption of u we get the desired conclusion.

The next lemma is analogous, for example, to Lemma 5.2.

Lemma 9.5. Let φ : prop, let p : P and assume that p ≤ Jφ. Then there is q : P such
that q ≤ φ ∧ p ≤ jq.

Proof. Assume that p ≤ Jφ. Recalling Lemma 8.7, define

a =def ext p : Sub 1

and

( : 1, y : P) ψ =def τ(jy) : prop .
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Lemma 8.7 and the assumption of the claim imply that

(∀x ∈ a)
(
(∃y : P)(y ≤ φ ∧ ψ) ∧ (∀y, z : P)((y ≤ z ≤ φ ∧ ψ) ⊃ ψ[z/y])

)
,

because j is monotone. Lemma 9.4 can now be applied to obtain that there is q : P

such that

q ≤ φ ∧ (∀x ∈ a)ψ[q/y] ,

and therefore

q ≤ φ ∧ p ≤ jq

by the definitions of a of ψ, and Lemma 8.7.

The next proposition shows that the properties of j can be lifted to J . Its proof is
based on Lemma 9.5 and therefore seems to make essential use of the Strong Collection
rule. We invite the reader to compare it with Proposition 5.3.

Proposition 9.6. For φ1, φ2 : prop, the following judgements

(i) φ1 ⊃ Jφ1 ,

(ii) φ1 ⊃ φ2 ⇒ Jφ1 ⊃ Jφ2 ,

(iii) J(Jφ1) ⊃ Jφ1 ,

(iv) Jφ1 ∧ Jφ2 ⊃ J(φ1 ∧ φ2) .

are derivable.

Proof. For (i), (ii) and (iv) direct calculations suffice. For (iii) use Lemma 9.5 and the
fact that j is monotone.

We now define the j-interpretation of of ML(CZF−) into itself determined by the
topology j. This interpretation acts solely on the logic, leaving types unchanged. We
define the j-interpretation 〈·〉 by structural induction on the raw syntax of the type
theory, in complete analogy to the definition presented in Table 6.2 on page 130 in the
context of sheaf interpretations. Type expressions are left unchanged. The definition
of the j-interpretation of formulas is contained in Table 9.3.

All the jugdement bodies that are part of a pure type theory are left unchanged.
For the other judgement bodies define:

〈φ : prop〉 =def 〈φ〉 : prop ,

〈 φ1, . . . , φn ⇒ φ 〉 =def J〈φ1〉, · · · , J〈φn〉 ⇒ J〈φ〉
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〈>〉 =def >

〈⊥〉 =def ⊥ ,

〈φ1 ∧ φ2〉 =def J〈φ1〉 ∧ J〈φ2〉 ,

〈φ1 ∨ φ2〉 =def J〈φ1〉 ∨ J〈φ2〉 ,

〈φ1 ⊃ φ2〉 =def J〈φ1〉 ⊃ J〈φ2〉 ,

〈(∀x : A)φ0〉 =def (∀x : A)J〈φ0〉 ,

〈(∃x : A)φ0〉 =def (∃x : A)J〈φ0〉 ,

〈τ(a)〉 =def τ(ja) .

Table 9.3: j-reinterpretation of formulas.

Finally, define the j-interpretation of judgements as follows.

〈(Γ) B〉 =def (Γ) 〈B〉.

Definition 9.7. We say that the j-interpretation of a rule is sound if, assuming the
j-interpretation of premisses, the j-interpretation of the conclusion is derivable. ♦

9.4 Soundness of the j-interpretation

We now show that the j-interpretation of all the rules of ML(CZF−) is sound. We
begin with a simple observation.

Proposition 9.8. The j-interpretation of the predicate logic and induction rules of
ML(CZF) is sound.

Proof. The result follows by a series of routine calculations.

The next proposition will be used in the proof of Lemma 9.10.

Proposition 9.9. For φ : prop, the judgement

Jφ ≡ (∃p : Sub 1)
(
J(∃ ∈ p)> ∧ (∀ ∈ p)φ

)
is derivable.

Proof. The claim is a consequence of the definition of J and of Lemma 8.7.

The next lemma is crucial to prove that the j-interpretation of the Strong Collection
rule of ML(CZF−) is sound.
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Lemma 9.10. For A,B : type, (x : A, y : B) φ : prop, a : Sub(A), the judgement

(∀x ∈ a) J(∃y : B)φ⇒ (∃v : SubB)
(
(∀x ∈ a) J(∃y ∈ v)φ ∧ (∀y ∈ v)(∃x ∈ a)φ

)
is derivable.

Proof. Define

(p : Sub 1) σ =def J(∃ ∈ p)> : prop ,

and assume that

(∀x ∈ a) J(∃y : B)φ .

We get

(∀x ∈ a)(∃p : Sub 1)
(
σ ∧ (∀ : p)(∃y : B)φ

)
(9.5)

from Lemma 9.9. Once we define

(x : A,w : SubB) ρ =def (∃p : Sub 1)
(
σ ∧ coll(p, w, ( , y)φ)

)
: prop ,

we have

(∀x ∈ a)(∃w : SubB)ρ

by the Strong Collection rule and (9.5). We derive that there is u : Sub(SubB) such
that

coll(x ∈ a,w ∈ u, (x,w)ρ) , (9.6)

again by the Strong Collection rule. We get

(∀x ∈ a)(∃w : SubB)(∃p : Sub 1)
(
σ ∧ (∀ ∈ p)(∃y ∈ w)φ

)
by (9.6) and the definition of ρ. This gives us

(∀x ∈ a)(∃p : Sub 1)
(
σ ∧ (∃w ∈ u)(∃y ∈ w)φ

)
,

and thus we obtain

(∀x ∈ a)J
(
(∃w ∈ u)(∃y ∈ w)φ

)
. (9.7)
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By (9.6) and the definition of ρ, it follows that

(∀w ∈ u)(∃x ∈ a)(∀y ∈ w)φ .

and therefore we get

(∀w ∈ u)(∀y ∈ w)(∃x ∈ a)φ . (9.8)

Using Lemma 8.4 define

v =def

⋃
u : SubB ,

and observe that

(∀x ∈ a)J(∃y ∈ v)φ ∧ (∀y ∈ v)(∃x ∈ a)φ

by (9.7), (9.8) and Lemma 8.4. Discharging u : Sub(SubB) we get the desired conclu-
sion.

Theorem 9.11. The j-interpretation of the Strong Collection rule is sound.

Proof. The claim is a consequence of Lemma 9.10.

To prove that the j-interpretation of the Subset Collection rule is sound we will
introduce an additional hypothesis, that is intuitively related to the notion of set-
presented nucleus given in Section 4.3.

Definition 9.12. We say that a topology j on P is set-presented if there exists
r : Sub P such that the judgement

(∀p : P) τ(jp) ≡ (∃q ∈ r)q ≤ p

is derivable. ♦

From now on we assume the Subset Collection rule. The next proposition is a
type-theoretic version of Proposition 2.6.

Proposition 9.13. Let A,B,C : type, let (x : A, y : B, z : C) φ : prop and let a :
Sub(SubA) and b : SubB. Then there exists u : Sub(SubB) such that the judgement

(∀w ∈ a)(∀z : C)
(
(∀x ∈ w)(∃y ∈ b)ψ ⊃ (∃v ∈ u)coll(w, v, (x, y)ψ)

)
is derivable.
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Proof. To prove the desired claim, it suffices to apply the Subset Collection rule and
Lemma 8.4.

The next proposition will be used in the proof of Lemma 9.15.

Lemma 9.14. If j is a set-presented topology, then there exists s : Sub(Sub 1) such
that, for φ : prop the judgement

Jφ ≡ (∃p ∈ s)(∀ ∈ p)φ

is derivable.

Proof. The claim is a consequence of Lemma 8.6 and Lemma 8.7.

Let us assume that the topology j is set-presented and that s : Sub(Sub 1) satisfies
the property of Lemma 9.14.

Lemma 9.15. Let A,B,C : type, let (x : A, y : B, z : C) φ : prop, let a : Sub(A) and
b : Sub(B). Then the judgement

(∃u′′ : Sub(SubB))(∀z : C)
(
(∀x ∈ a)J(∃y ∈ b)φ ⊃

(∃v ∈ u′′)
(
(∀x ∈ a)J(∃y ∈ v)φ

)
∧
(
(∀y ∈ v)(∃x ∈ a)φ

))
is derivable.

Proof. Let a : Sub(A) and b : Sub(B). Then, from Proposition 9.13 applied to b :
Sub(B) and s : Sub(Sub 1) we get that there is u : Sub(SubB) such that

(∀p ∈ s)(∀x : A)(∀z : C)
(
(∀ ∈ p)(∃y ∈ b)φ ⊃ (∃v ∈ u)coll(p, v, ( , y)φ)

)
(9.9)

Define

(x : A, v : Sub(Sub, B), z : C) ψ =def (∃p ∈ s) coll(p, v, ( , y)φ)

We get that there exists u′ : Sub(Sub(SubB)) such that

(∀z : C)
(
(∀x ∈ a)(∃v ∈ u)ψ ⊃ (∃w ∈ u′) coll(a,w, (x, v)ψ)

)
(9.10)

by the Subset Collection rule. Let z : C and assume that

(∀x ∈ a) J(∃y ∈ b)φ

then we have

(∀x ∈ a)(∃p ∈ s)(∀ ∈ p)(∃y ∈ b)φ
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by Lemma 9.14 and therefore we obtain

(∀x ∈ a)(∃p ∈ s)(∃v ∈ u)coll(p, v, ( , y)φ)

by the implication in (9.9). By the definition of ψ we get

(∀x ∈ a)(∃v ∈ u)ψ .

It follows that

(∃w ∈ u′)(∀x ∈ a)(∃v ∈ w)ψ ∧ (∀v ∈ w)(∃x ∈ a)ψ

by the implication in (9.10). Let w : Sub(Sub(B)) and assume that

(∀x ∈ a)(∃v ∈ w)ψ ∧ (∀v ∈ w)(∃x ∈ a)ψ . (9.11)

We have

(∀x ∈ a)(∃v ∈ w)(∃p ∈ s)(∀ ∈ p)(∃y ∈ v)φ

by the first conjunct in (9.11), and the definition of ψ. We therefore obtain

(∀x ∈ a)(∃p ∈ s)
(
(∀ ∈ p)(∃y ∈ v)φ

)
(9.12)

Now observe that

(∀v ∈ w)(∀y ∈ v)(∃x ∈ a)φ (9.13)

by the second conjunct of (9.11), and the definition of ψ. Now define

v =def

⋃
w : SubB .

and observe that, discharging w : Sub(SubB), we get

(∃v ∈ {
⋃
w | w ∈ u′}) (∀x ∈ a) J(∃y ∈ v)φ) ∧ (∀y ∈ v)(∃x ∈ a)φ

by (9.12) and (9.13). We obtain the desired conclusion, with

u′′ =def {
⋃
w | w ∈ u′} ,

as a consequence of Lemma 8.4 and Lemma 8.6.

Theorem 9.16. The j-interpretation of the Subset Collection rule is sound.



9. Reinterpreting logic 181

Proof. Consequence of Lemma 9.15.

We summarize the results obtained in this section in the next corollary, that is
proved within ML(CZF−).

Corollary 9.17. Let j be a topology.

(i) The j-interpretation of each rule of ML(CZF−) is sound.

(ii) Assuming the Subset Collection rule of ML(CZF), if j is set-presented, then
the j-interpretation of the Subset Collection rule is sound.

Proof. Part (i) follows by Proposition 9.8 and Theorem 9.11. Part (ii) follows by
Theorem 9.16.

9.5 Double-negation interpretation

As an application of the results just described we present a type-theoretic version of
the double-negation interpretation. We define the double-negation topology as follows:

(x : P) jx =def ¬̇ ¬̇ x : P

where ¬̇x =def x ⊃̇ ⊥̇ : P, for x : P. It is easy to prove that j is a topology. We refer
to the j-interpretation determined by j as the double-negation interpretation.

Remark. Let us point out that the operator J determined by the double-negation
topology seems to be logically equivalent to double negation only for small propositions,
but not for arbitrary ones. In fact, for φ : prop it holds

Jφ ≡ (∃p : P)
(
¬¬τ(p) ∧ τ p ⊃ φ

)
where ¬φ =def φ ⊃ ⊥, for φ : prop. In general it will hold only that Jφ implies ¬¬φ
but not vice versa.

It is natural to consider the following type-theoretic principle of restricted excluded
middle, (REM), as in the following judgement:

(x : P) τ(x) ∨ ¬τ(x) .

Theorem 9.18. The double-negation interpretation of ML(CZF−)+REM in ML(CZF−)
is sound.

Proof. Consequence of part (i) of Corollary 9.17.
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We can now consider a type-theoretic principle asserting that the double-negation
topology is set presentable (DNSP):

(∃r : Sub P)(∀x : P)(¬¬τ(x) ≡ (∃y ∈ r) y ≤ x) .

Theorem 9.19. The double-negation interpretation of ML(CZF)+REM in ML(CZF)+
DNSP is sound.

Proof. Consequence of part (ii) of Corollary 9.17.

Observe that the type theory ML(CZF) + REM and the set theory CZF + REM

are mutually interpretable. Recall from Section 2.2 that the set theory CZF+REM has
at least the proof-theoretic strength of second-order arithmetic and therefore the exten-
sion of the type theory ML(CZF) with DNSP pushes the proof-theoretic strength of
the type theory above that of second-order arithmetic, and hence is fully impredicative.



Chapter 10

Conclusions

We have investigated generalised predicative intuitionistic formal systems both in set
theory and in type theory. In set theory, we developed sheaf interpretations for CST
and obtained first proof-theoretic applications thereof. In type theory, we introduced
logic-enriched type theories and showed how they allow us to obtain a generalised type-
theoretic interpretation of CST and to define reinterpretations of logic. We have also
developed a significant fragment of formal topology in CST, so as to provide examples
of sheaf interpretations.

The assumption of collection principles and the primitive treatment of logic deserve
to be highlighted as two aspects that played the most prominent roles in our study both
in set theory and in type theory. We leave to future research to investigate whether these
aspects are relevant in other contexts as well. We expect, however, that a primitive
treatment of logic in DTT may become very fruitful once logic-enriched type theories
have been appropriately developed. This development may lead to applications in
the computer-assisted formalisation of mathematics. We regard the treatment of non-
extensional and extensional equalities in logic-enriched type theories as one of the most
pressing issues to investigate.

Regarding CST, our development of sheaf interpretations opens the possibility of
obtaining proof-theoretic results that were not within reach when we undertook the re-
search described here. Regrettably, only a few examples of such results been presented.
Further results should however be obtainable by direct application of the interpreta-
tions we developed, as we already discussed in Section 5.7. Sheaf interpretations seem
also amenable of a more abstract development, using the ideas of AST. This would
require as a preliminary step the isolation of axioms for small maps that correspond
exactly to the axioms of CST. The only axiom, however, that is not covered by the
existing development of AST seems to be Subset Collection.

Overall, we regard the research presented in this thesis as part of a long-term
project, whose aims have been described in Section 1.4. An enormous amount of work
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remains to be done to complete the project, but we have taken some significant steps
in that direction.



Appendix A

Axioms for set theories

Here we present all the axioms considered in CST, apart from the Regular Extension
axiom (REA) for which we invite the reader to refer to [7, Section 5.2].

A.1 Structural axioms

Extensionality. For all sets a and b

(∀x)(x ∈ a↔ x ∈ b)→ a = b .

Set induction. For arbitrary formulas φ of L(V )

(∀x)((∀y ∈ x)φ[y/x]→ φ)→ (∀x)φ .

Foundation. For arbitrary formulas φ of L(V )

(∃x)φ→ (∃x)
(
φ ∧ (∀y ∈ x)¬φ[y/x]

)
.

A.2 Set existence axioms

Pairing. For all sets a and b

(∃u)(∀x)
(
x ∈ u↔ x = a ∨ x = b

)
.

Union. For all sets a

(∃u)(∀x)
(
x ∈ u↔ (∃y ∈ a)x ∈ y

)
.
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Infinity.

(∃u)
(
(∃x)x ∈ u ∧ (∀x ∈ u)(∃y ∈ u)x ∈ y)

)
.

Power set. For all sets a

(∃u)(∀x)
(
x ∈ u↔ (∀y ∈ x)y ∈ a

)
.

A.3 Separation axioms

Restricted separation. For all sets a and for restricted formulas θ of L(V )

(∃u)(∀x)
(
x ∈ u↔ x ∈ a ∧ θ

)
.

Full separation. For all sets a and for arbitrary formulas φ of L(V )

(∃u)(∀x)
(
x ∈ u↔ x ∈ a ∧ φ

)
.

A.4 Collection axioms

For sets a, u and for an arbitrary formula φ of L(V ), define

coll(x ∈ a, y ∈ u, φ) =def (∀x ∈ a)(∃y ∈ u)φ ∧ (∀y ∈ u)(∃x ∈ a)φ .

Replacement. For all sets a and for arbitrary formulas φ of L(V )

(∀x ∈ a)(∃!y)φ(x, y)→ (∃u)coll(x ∈ a, y ∈ u, φ) .

Strong collection. For all sets a and for arbitrary formulas φ of L(V )

(∀x ∈ a)(∃y)φ(x, y)→ (∃u)coll(x ∈ a, y ∈ u, φ) .

Subset collection. For all sets a and b, and for arbitrary formulas φ of L(V )

(∃v)(∀z)
(
(∀x ∈ a)(∃y ∈ b)φ→ (∃u ∈ v)coll(x ∈ a, y ∈ u, φ)

)
.
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Rules for dependent type theories

B.1 General rules

Assumption rule.

(Γ,∆) J A : type
x /∈ FV(Γ) ∪ FV(∆)

(Γ, x : A,∆) x : A

From now on we suppress mention of a context that is common to both the premisses
and the conclusion of a rule.

Equality rules.

A : type

A = A : type

A1 = A2 : type

A2 = A1 : type

A1 = A2 : type A2 = A3 : type

A1 = A3 : type

a : A

a = a : A

a1 = a2 : A

a2 = a1 : A

a1 = a2 : A a2 = a3 : A

a1 = a3 : A

a : A1 A1 = A2

a : A2

a1 = a2 : A1 A1 = A2

a1 = a2 : A2

Substitution rule.

(x : A,∆) B a : A

(∆[a/x]) B[a/x]
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Congruence rules.

(x : A,∆) C : type a1 = a2 : A

(∆[a1/x]) C[a1/x] = C[a2/x] : type

(x : A,∆) c : C a1 = a2 : A

(∆[a1/x]) c[a1/x] = c[a2/x] : C[a1/x]

Special congruence rules. For ∇ that is either Π, Σ or W :

(x : A) B1 = B2 : type

(∇x : A)B1 = (∇x : A)B2 : type

(x : A) b1 = b2 : B

(λx : A)b1 = (λx : A)b2 : (Πx : A)B

Analogous rules should also be formulated for other symbols such as rN, split and rW,
but we omit for brevity.

B.2 Type rules

B.2.1 Non-dependent types

0-rules.

0 : type (0-form.)

(z : 0) C : type e : 0

r0(e) : C[e/z]
(0-elim.)

1-rules.

1 : type (1-form.)

01 : 1 (1-intro.)

(z : 1) C : type c : C[01/z] e : 1

r1(c, e) : C[e/z]
(1-elim.)

(z : 1) C : type c : C[01/z]

r1(c, 01) = c : C[01/z]
(1-comp.)

2-rules.

2 : type (2-form.)

12 : 2 22 : 2 (2-Intr.)
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Define the judgements

- J =def (z : 2) C : type

- J1 =def c1 : C[12/z]

- J2 =def c2 : C[22/z]

J J1 J2 e : 2

r2(c1, c2, e) : C[e/z]
(2-elim.)

J J1 J2

r2(c1, c2, 12) = c1 : C[12/z]

J J1 J2

r2(c1, c2, 22) = c2 : C[22/z]
(2-comp.)

N-rules.

N : type (N-form.)

0 : N
a : N

succ(a) : N
(N-intro.)

Define the judgements:

- J =def (z : N) C : type ,

- J0 =def c : C[0/z] ,

- Jsucc =def (x : N, y : C[x/z]) d : C[succ(x)/z] .

and the expression:

- H(e) =def rN(c, (x, y)d, e) .

J J0 Jsucc e : N

H(e) : C[e/z]
(N-elim.)

J J0 Jsucc

H(0) = c : C[0/z]

J J0 Jsucc a : N

H(succ(a)) = d[a,H(a)/x, y] : C[succ(a)/z]
(N-comp.)

B.2.2 Dependent types

R2-rules.
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A1 : type A2 : type e : 2

R2(A1, A2, e) : type
(R2-form.)

R2(A1, A2, 12) = A1 R2(A1, A2, 22) = A2 (R2-Conv.)

Σ-rules.

A : type (x : A) B : type

(Σx : A)B : type
(Σ-form.)

a : A b : B[a/x]

pair(a, b) : (Σx : A)B
(Σ-intro.)

Define the judgements

- J =def (z : (Σx : A)B) C : type ,

- Jpair =def (x : A, y : B) c : C[pair(x, y)/z] ,

and the expression

- H(e) =def split((x, y)c, e) .

J Jpair e : (Σx : A)B

H(e) : C[e/z]
(Σ-elim.)

J Jpair a : A b : B[a/x]

H(pair(a, b)) = c[a, b/x, y] : C[pair(a, b)/z]
(Σ-comp.)

Π-rules.

A : type (x : A) B : type

(Πx : A)B : type
(Π-form.)

(x : A) b : B

(λx : A)b : (Πx : A)B
(Π-intro.)

f : E a : A

app(f, a) : B[a/x]
(Π-elim.)

(x : A) b : B a : A

app((λx : A)b, a) = b[a/x] : B[a/x]
(Π-comp.)
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W -rules.

A : type (x : A) B : type

(Wx : A)B : type
(W -form.)

a : A b : B[a/x]→ (Wx : A)B

sup(a, b) : (Wx : A)B
(W -intro.)

Define the expression

- E =def (Wx : A)B ,

the judgements

- J =def (z : E) C : type ,

- Jsup =def (x : A, u : B → E, v : (Πy : B)C[app(u, y)/z]) c : C[sup(x, u)/z]

and the expression

- H(e) =def rW((x, u, v)c, e) .

J Jsup e : E

H(e) : C[e/z]
(W -elim.)

J Jsup a : A b : B[a/x]→ E

H(e) = c[a, b, (λy : B[a/x])H(app(b, y))/x, u, v] : C[sup(a, b)/z]
(W -comp.)

B.2.3 Type universe

U : type (U-form.)

a : U

T a : type
(U-elim.)

In the next rules:

- q is one of the following: 0, 1, 2, N .

- ∇ is either Σ or Π .

q̇ : U
a : U (x : T a) b : U

(∇̇x : a)b : U
(U-intro.)

T q̇ = q : type
a : U (x : T a) b : U

T(∇̇x : a)b = (∇x : T a) T b : type
(U-comp.)
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B.2.4 Proposition universe

P : type (P-form.)

p : P

τ p : prop
(P-elim.)

In the rules that follow:

- q is either > or ⊥,

- ? is one of the following: ∧,∨,⊃ ,

- ∇ is either ∀ or ∃.

q̇ : P
p1 : P p2 : P

p1 ?̇ p2 : P

a : U (x : T a) p : P

(∇̇x : a)p : P
(P-intro.)

τ q̇ ≡ q
p1 : P p2 : P

τ(p1 ?̇ p2) ≡ τ p1 ? τ p2

a : U (x : T a) p : P

τ(∇̇x : a)p ≡ (∇x : T a) τ p
(P-comp.)

B.3 Rules for ML(CZF)

Π−-rules

a : U (x : T a) B : type

(Π−x : a)B : type
(Π−-formation)

The introduction, elimination and computation rule are identical to the ones for Π-
types, as given on page 190.

W−-rules

A : type (x : A) b : U

(W−x : A)b : type
(W−-formation)

The introduction rules are analogous to the ones for W -types on page 191. Let A : type

and (x : A) b : U. Define the expressions:

- B =def T b ,

- E =def (W−x : A)b .

Let (z1, z2 : E) C : type and define the contexts:
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- Γ1 =def x1 : A, u1 : B[x1/x]→ E ,

- Γ2 =def x2 : A, u2 : B[x2/x]→ E ,

- ∆ =def v : (Πy1 : B[x1/x])(Πy2 : B[x2/x])C[app(u1, y1), app(u2, y2)/z1, z2] .

Define the judgements:

- J =def (z1, z2 : E) C : type

- Jsup =def (Γ1,Γ2,∆) d : C[sup[(x1, u1), sup(x2, u2)/z1, z2]

and the expression

- H(e1, e2) =def r2W((x1, u1, x2, u2, v)d, e1, e2)

J Jsup e1 : E e2 : E

H(e1, e2) : C[e1, e2/z1, z2]
(Double W−-elim.)

The double W−-elimination rule is analogous to the one for W -types.
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Axioms for small maps

Let E be a regular category with finite coproducts that are disjoint and stable. The
following axioms refer to objects and maps of E .

C.1 Basic axioms

(A1) Any isomorphism is small, small maps are closed under composition.

(A2) In a pullback diagram

B

G
��

// A

F
��

Y // X

if F is small then G is small.

(A3) In a pullback

B

G
��

// A

F
��

Y
P
// // X

if P is epi and G is small then F is small.

(A4) The maps 0 // 1 and 1 + 1 // 1 are small.

(A5) If A // X and B // Y are small, then so is A+B // X + Y
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(A6) In a commuting diagram

B
P // //

G   AAAAAAA A

F~~~~~~~~~

X

If P is epi and G is small, then F is small.

C.2 Power classes

In the next axiom P and 3 are definable operations on objects of E such that if A is
an object of E , then P(A) is also an object of E and

3A // // P(A)×A

is a P(A)-indexed family of small subobjects of A in the sense of Definition 2.1.

(P1) Let A be an object of E . For all objects I in E and all I-indexed families of

small subobjects of A R // // I ×A there exists a unique map I
F // P(A)

such that the diagram

R
��

��

// 3A
��

��
I ×A

F×IdA
// P(A)×A

is a pullback.
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