
From Bidirectionality to Alternation

Nir Piterman
�

and Moshe Y. Vardi
���

�
Weizmann Institute of Science, Department of Computer Science, Rehovot 76100, Israel

Email: nirp@wisdom.weizmann.ac.il, URL: http://www.wisdom.weizmann.ac.il/
�

nirp�
Rice University, Department of Computer Science, Houston, TX 77251-1892, U.S.A.

Email: vardi@cs.rice.edu, URL: http://www.cs.rice.edu/
�

vardi

Abstract. We describe an explicit simulation of 2-way nondeterministic automata
by 1-way alternating automata with quadratic blow-up. We first describe the con-
struction for automata on finite words, and extend it to automata on infinite words.

1 Introduction

The theory of finite automata is one of the fundamental building blocks of theoretical
computer science. As the basic theory of finite-state systems, this theory is covered in
numerous textbooks and in any basic undergraduate curriculum in computer science.
Since its introduction in the 1950’s, the theory had numerous applications in practically
all branches of computer science, from the construction of electrical circuits [Koh70], to
the design of lexical analyzers [JPAR68], and to the automated verification of hardware
and software designs [VW86].

From its very inception, one fundamental theme in automata theory is the quest
for understanding the relative power of the various constructs of the theory. Perhaps
the most fundamental result of automata theory is the robustness of the class of reg-
ular languages, the class of languages definable by means of finite automata. Rabin
and Scott showed in their classical paper that neither nondeterminism nor bidirection-
ality changes the expressive power of finite automata; that is, nondeterministic 2-way
automata and deterministic 1-way automata have the same expressive power [RS59].
This robustness was later extended to alternating automata, which can switch back and
forth between existential and universal modes (nondeterminism is an existential mode)
[BL80,CKS81,LLS84].

In view of this robustness, the concept of relative expressive power was extended to
cover also succinctness of description. For example, it is known that nondeterministic
automata and two-way automata are exponentially more succinct than deterministic au-
tomata. The language

�	��
����������������������� � �
and

�"!
#���
can be expressed using

a 1-way nondeterministic automaton or a 2-way deterministic automaton of size poly-
nomial in $, but a 1-way deterministic automaton accepting

�%�
must be of exponential

size (cf. [SS78]). Alternating automata, in turn, are doubly exponentially more succinct
than deterministic automata [BL80,CKS81].
&

Supported in part by NSF grants CCR-9700061 and CCR-9988322, and by a grant from the
Intel Corporation.

Consequently, a major line of research in automata theory is establishing tight simu-
lation results between different types of automata. For example, given a 2-way automa-
ton with $ states, Shepherdson showed how to construct an equivalent 1-way automaton
with � ���

�����	� � ��
�

states [She59]. Birget showed how to construct an equivalent 1-way

automaton with ��
�

states [Bir93] (see also [GH96]). Vardi constructed the complemen-
tary automaton, an automaton accepting the words rejected by the 2-way automaton,
with � �

�
states [Var89]. Birget also showed, via a chain of reductions, that a 2-way

nondeterministic automaton can be converted to a 1-way alternating automaton with
quadratic blow-up [Bir93]. As the converse efficient simulation is impossible [LLS84],
alternation is more powerfull than bidirectionality.

Our focus in this paper is on simulation of bidirectionality by alternation. The
interest in bidirectionality and alternation in not merely theoretical. Both constructs
have been shown to be useful in automated reasoning. For example, reasoning about
modal � -calculus with past temporal connectives requires alternation and bidirection-
ality [Str82,Var88,Var98]. Recently, model checking of specifications in � -calculus on
context-free and prefix-recognizable systems has been reduced to questions about 2-
way automata [KV00]. In a different field of research, 2-way automata were used in
query processing over semistructured data [CdGLV00].

We found Birget’s construction, simulating bidirectionality by alternation with quadratic
blow-up, unsatisfactory. As noted, his construction is indirect, using a chain of reduc-
tions. In particular, it uses the reverse language and, consequently, can not be extended
to automata on infinite words. The theory of finite automata on infinite objects was es-
tablished in the 1960s by Büchi, McNaughton and Rabin [Büc62,McN66,Rab69]. They
were motivated by decision problems in mathematical logic. More recently, automata on
infinite words have shown to be useful in computer-aided verification [Kur94,VW86].
We note that bidirectionality does not add expressive power also in the context of au-
tomata on infinite words. Vardi has already shown that given a 2-way nondeterministic
Büchi automaton with $ states one can construct an equivalent 1-way nondeterministic
Büchi with � ���

����

states [Var88].

Our main result in this paper is a direct quadratic simulation of bidirectionality by
alternation. Given a 2-way nondeterministic automaton with $ states, we construct an
equivalent 1-way alternating automaton with ��� $ ��� states. Unlike Birget’s construc-
tion, our construction is explicit. This has two advantages. First, one can see exactly
how alternation can efficiently simulate bidirectionality. (In order to convert the nonde-
terministic automaton into an alternating automaton we use the fact that the run of the
2-way nondeterministic automaton looks like a tree of “zigzags”. We analyze the form
such a tree can take and recognize, using an alternating automaton, when such a tree
exists.) Second, the explicitness of the construction enables us to extend it to Büchi au-
tomata. (In the full version we also give a construction for 2-way nondeterministic Ra-
bin and parity automata.) Since it is known how to simulate alternating Büchi automata
by nondeterministic Büchi automata with exponential blow-up [MH84], our construc-
tion provides another proof of the result that a 2-way nondeterministic Büchi automaton
with $ states can be simulated by a 1-way nondeterministic Büchi with � ���

����

states

[Var88].

2 Preliminaries

We consider finite or infinite sequences of symbols from some finite alphabet � . Given
a word � , an element in ��������� , we denote by �
	 the ���� letter of the word � . The
length of � is denoted by � ��� and is defined � for infinite words.

A 2-way nondeterministic automaton is �
�� � ��� ����� ���������
, where � is the finite

alphabet,
�

is the finite set of states,
���! ��

is the set of initial states,
� ���#" �%$

�'&)(+*-, �/.
� . ��0

is the transition function, and
�

is the acceptance set. We can run � ei-
ther on finite words (2-way nondeterministic finite automaton or 2NFA for short) or
on infinite words (2-way nondeterministic B̈uchi automaton or 2NBW for short). In
Appendix A we show that we can restrict our attention to automata whose transition
function is of the form

� �1�2" �3$ � &)(+*-, ��. ��0 .
A run on a finite word �
 � � �546474 � � � is a finite sequence of states and locations

��8 � � � � � � �98 � � � � � �546474 � �985: � �;: � � � �<" �����546464 ��=?>#� � � � . The pair ��8/@ � ��@ � represents the
automaton is in state 8/@ reading letter �9@ . Formally, 8 �
%A �

and � �
 �
, and for all�CBEDGFIH

, we have �J@ � � ���546474 ��= �
and �;: � � ���K47464 ��=1>"� �

. Finally, for all
�CBLDGFMH

,
we have ��8 @�N � � � @�N �PO � @ � �RQ �98 @ � �S	7T � . A run is accepting if � :
U=+> �

and 8 : �V�
.

A run on an infinite word �
 � � � � � �K47464 is defined similarly as an infinite se-
quence. The restriction on the locations is removed (for all

D
, the location � @ can be

every number in IIN). In 2NBW, a run is accepting if it visits
�W"

IIN infinitely often. A
word � is accepted by � if it has an accepting run over � . The language of � is the set
of words accepted by � , denoted by

� ��� � .
In the finite case we are only interested in runs in which the same state in the same

position do no repeat twice during the run. In the infinite case we minimize the amount
of repetition to the unavoidable minimum. A run X
 � A � � � � � � A � � � � � � � A � � � � � �546464 � � A : � �;: �
on a finite word is simple if for all

D
and Y such that

D�F Y , either
A @ !
UA[Z

or �9@ !
 � Z . A
run X
 � A � � � � � � A � � � � � � � A � � � � � �546474 on an infinite word is simple if one of the following
holds (1) For all

D\F Y , either
A @ !
]A[Z

or �9@ !
 � Z . (2) There exists
=���H �

IIN such that
for all

D�F Y F^=?>IH , either
A @ !
_A[Z

or �9@ !
 � Z , and for all
Da`^=��bA @
_A @�N�: and

� @
 � @�Nc: . In Appendix B we show that there exists an accepting run iff there exists a
simple accepting run. Hence, it is enough to consider simple accepting runs.

Given a set
�

we first define the set d N � � � as the set of all positive formulas over
the set

�
with ‘true’ and ‘false’ (i.e., for all

A �e�
,
A

is a formula and if f � and f � are
formulas, so are f �hg f � and f �hi f �). We say that a subset

��jk W�
satisfies a formulal � d N � � � (denoted

�hj �
 l) if by assigning ‘true’ to all members of
��j

and ‘false’ to
all members of

�Gmn�oj
the formula l evaluates to ‘true’. Clearly ‘true’ is satisfied by the

empty set and ‘false’ cannot be satisfied.
A tree is a set p IIN � such that if q�rts � p where q �

IIN � and s � IIN , then also
q � p . The elements of p are called nodes, and the empty word u is the root of p . For
every q � p , the nodes q\r[s where s �

IIN are the successors of q . A node is a leaf if
it has no successors. A path v of a tree p is a set v p such that u � v and for every
q � v , either q is a leaf or there exists a unique s �

IIN such that qRr[s � v . Given an
alphabet � , a � -labeled tree is a pair �wp ��x � where p is a tree and

x � p^$y� maps
each node of p to a letter in � .

An 1-way alternating automaton is d
z� � ��{ ��A[� ��| �����
where � �b{

and
�

are
like in nondeterministic automata.

A[�
is a unique starting state and

|�1��" ��$}d N � { �

is the transition function. Again we may run � on finite words (1-way alternating au-
tomata on finite words or 1AFA for short) or on infinite words (1-way alternating Büchi
automata or 1ABW for short).

A run of � on a finite word �
 � � 46464 � � is a labeled tree ��p � X � where X � p $ {
.

The maximal depth in the tree is
= > �

. A node q labeled by
A

describes a copy of the
automaton in state

A
reading letter � � ��� . The labels of a node and its successors have to

satisfy the transition function
|

. Formally, X �9u �
UA � and for all nodes q with X �wq �
 A
and

| � A � � � ��� �
��
there is a (possibly empty) set

� A � �K47464 ��A ��� �
��
such that for each

state
A 	 there is a successor of q labeled

A 	 . The run is accepting if all the leaves in depth=+>"�
are labeled by states from

�
.

A run of � on an infinite word �
 � � � � 47464 is defined similarly as a (possibly)
infinite labeled tree. A run of a 1ABW is accepting if every infinite path visits the
accepting set infinitely often. As before, a word � is accepted by � if it has an accepting
run over the word. We similarly define the language of � � � �9� � .

3 Automata on Finite Words

We start by transforming 2NFA to 1AFA. We analyze the possible form of an accepting
run of a 2NFA and using a 1AFA check when such a run exists over a word.

Theorem 1. For every 2NFA �
 � � ��� ��At� ��� �����
with $ states, there exists an 1AFA

d
^� � ��{ ��A5� ��| �����
with ��� $ ��� states such that

� �9d �
"� ��� � .
Given a 2NFA �
�� � ��� ��At� ��Q �����

, let d
^� � ��{ ��AK� ��| �����
denote its equivalent

1AFA. Note that d uses the acceptance set and the initial state of � .
Recall that a run of � is a sequence X
 � A � � � � � � A � � � � � � � A � � � � � �546474 � � A : � �;: � of

pairs of states and locations, where
A @ is the state and �9@ is the location of the automaton

in the word � . We refer to each state as a forward or backward state according to its
predecessor in the run. If it resulted from a backward movement it is a backward state
and if from a forward movement it is a forward state. Formally, � A @ � � @ � is a forward
state if � @
 � @ , �

>#�
and backward state if � @
 � @ , � O

�
. The first state � A � � � � is

defined to be a forward state.
Given the 2NFA � our goal is to construct the 1AFA d recognizing the same lan-

guage. In Figure 1a we see that a run of � takes the form of a tree of ‘zigzags’. Our
one-way automaton reads words moving forward and accepts if such a tree exists. In
Figure 1a we see that there are two transitions using � � . The first � A � ��� � �#Q � A � � � � �
and the second � A	� ��� � �eQ � A

�
� � � . In the one-way sweep we would like to make sure

that
A
 indeed resulted from

A � and that the run continuing from
A
 to

A �
and further is

accepting. Hence when in state
A � reading letter � � we guess that there is a part of the

run coming from the future and spawn two processes. The first checks that
A � indeed

results in
A
 and the second ensures that the part

A

��A � �546474

of the run is accepting.
Hence the state set of the alternating automaton is

{
 � � � �e"!� � . A state
A �V{

represents a part of the run that is only looking forward (
A
�

in Figure 1a). A pair state
� A � ��A

� �L{
represents a part of the run that consists of a forward moving state and a

backward moving state (
A � and

A
 in Figure 1a). Such a pair ensures that there is a run

segment linking the forward state to the backward state. We introduce one modification,

since
A
 is a backward state (i.e. � A

� O � � �VQ � A � � � � �) it makes sense to associate it with
� � and not with � � . As the alternating automaton reads � � (when in state

A �), it guesses
that

A
 comes from the future and changes direction. The alternating automaton then

spawns two processes: the first,
A �

and the second, � A � ��A
� �

and both read � � as their
next letter. Then it is easier to check that � A

� O � � �RQ � A � � � � � .

��� ��� ��� ���

���
�	�

�
�

�
�
���

�

�

�	�

�
�

�
�

� �

� �

� �

� �

Fig. 1. (a) A zigzag run (b) The transition at the singleton state �

3.1 The Construction

The transition at a singleton state We define the transitions of d in two stages. First
we define transitions from a singleton state. When in a singleton state � � {

reading
letter � @ (See Figure 1b) the alternating automaton guesses that there are going to be
Y more visits to letter � @ in the rest of the run (as the run is simple Y is bounded by
the number of states of the 2NFA � , � � �
 $). We refer to the states reading letter � @
according to the order they appear in the run as

A � �546474 ��A[Z . We assume that all states that
read letters prior to �'@ have already been taken care of, hence

A � �546474 ��A[Z themselves are
backward states (i.e. � A 	 � O � � �IQ ��� 	 � �'@�N � � for some �). They read the letter � @ and
move forward (there exists some � 	 such that ��� 	 ��� � � Q � A 	 � �'@ �). Denote the successors
of
A � �546464 ��AtZ by � � �K47464 � � Z . The alternating automaton verifies that there is a run segment

connecting the successor of � (denoted � �) to
A � (by induction, all states reading letters

before � @ have been taken care of, this run segment should not go back to letters before
� @). Similarly verify that a run segment connects � � to

A � , etc. In general the automaton
checks that there is a part of the run connecting ��	 to

A 	 N � . Finally, from � Z the run has
to go on moving forward and reach location � ��� in an accepting state.

Given a state � and an alphabet letter � , consider the set � � � of all possible sequences
of states of length at most � $ O �

where no two states in an even place (forward states)
are equal and no two states in an odd place (backward states) are equal. We further

demand that the first state in the sequence be a successor of � (��� � ��� � � Q ��� � � �) and
similarly that ��	 be a successor of

A 	 (��� 	 ��� � �VQ � A 	 � � �). Formally

� � �

���� ��� � � � ��A � � � � �546474 ��A Z � � Z ����������

� B Y F $
��� � ��� � �RQ � � � � �� � FED �nA 	 !
 A @ and � 	 !
 �J@� � � � � 	 ��� � �VQ � A 	 � � �

� ���
��	

The transition of d chooses one of these sequences and ensures that all promises
are kept, i.e. there exists a run segment connecting � 	 , � to

A 	 .
| ��� � � �
�
�

��� .������ . ������������ ��� � ��A � � g ��� � ��A � � g 46464 g ��� Z , �
��A[Z � g � Z

The transition at a pair state When the alternating automaton is in a pair state ��� ��A �
reading letter �'@ it tries to find a run segment connecting � to

A
using only the suffix

� @ 46464 � � � � , � . We view � as a forward state reading � @ and
A

as a backward state reading
� @ , � (Again � A � O � � � Q ��� � �'@ �). As shown in Figure 2a, the run segment connecting �
to
A

might visit letter �'@ but should not visit � @ , � .
Figure 2b provides a detailed example. The automaton in state ��� ��A � guesses that the

run segment linking � to
A

visits � � twice and that the states reading letter � � are
A � andA � . The automaton further guesses that the predecessor of

A
is
A
 (� A � O � � � Q � A

�
� � �)

and that the successors of � �SA � and
A � are � � � � � and � � respectively. The alternating

automaton spawns three processes: � � � ��A � � � � � � ��A � � and � � � ��A
�

all reading letter � @�N � .
Each of these pair states has to find a run segment connecting the two states.

�� �� �
�! �

��"� �� �

The word

The run

� # �# " #$

�
�

�

�

Fig. 2. (a) Different connecting segments (b) The transition at the pair state % �!&('*)
We now define the transition from a state in

� "M�
. Given a state ��� ��A � and an

alphabet letter � , we define the set �
� � . +
� of all possible sequences of states of length

at most � $ where no two states in an even position (forward states) are equal and no
two states in an odd position (backward states) are equal. We further demand that the
first state in the sequence be a successor of � (��� � ��� � � Q � � � � �), that the last state in
the sequence be a predecessor of

A
(� A � O � � �]Q � A Z N � � � �) and similarly that � 	 be a

successor of
A 	 (� � 	 ��� � � Q � A 	 � � �).

�
� � . +
�

���� ��� � � � ��A � � � � �546474 ��A[Z � � Z ��A[Z N � ����������

� B Y F $
��� � ��� � �RQ � � � � �
� A � O � � �RQ � A[Z N � � � �� � � � � 	 ��� � �VQ � A 	 � � �

� ���
��	

The transition of d chooses one sequence and ensures that all pairs meet:

| ����� ��A � � � �

���� ��� �;X

���
If � A � O � � � Q � � � � �

��
��� .������ . + ����� ������� �
	 ��� � � � ��A � � g ��� � ��A � � g 46474 g � � Z ��A Z N � � Otherwise

Claim.
� ��� �
"� �9d �

Proof. Given an accepting simple run of � on a word � of the form � A � � � � , � A � � � � � ,45454�� � A : � � : � , we annotate each pair by the place it took in the run of � . Thus the run
takes the form � AK� � ��� � � , � A � � � � ��� � , 454K4�� � A : � � : ��H �

. We build a run tree �wp ��x � of d
by induction. In addition to the labeling

x � pU$ � � �a"G� , we attach a single tag to a
singleton state and a pair of tags to a pair state. The tags are triplets from the annotated
run of � . For example the root of the run tree of d is labeled by

A �
and tagged by

� AK� � ��� � � . The labeling and the tagging conforms to the following:

– Given a node q labeled by state
A

tagged by � A j � � �JD � from the run of � we build the
tree so that

A
<A[j � �
 � q � and furthermore all triplets in the run of � whose third
element is larger than

D
have their second element at least � .

– Given a node q labeled by state ��� ��A � tagged by � � j � � � �D � � and � Atj � � � �D � � in the run
of � we build the tree so that �
 � j �kA
UA j � � �
 � � > �
 � qn� , D � FLD � and that all
triplets in the run of � whose third element is between

D � and
D � have their second

element be at least � � .
We start with the root labeling it by

At�
and tagging it by � AK� � ��� � � . Obviously this

conforms to our demands.
Given a node q labeled by

A
tagged by � A � � �JD � adhering to our demands (see state

� in Figure 1b). If � A � � �D � has no successor in the run of � , it must be the case that
�
 � ��� and that

A �z�
. Otherwise we denote the triplets in the run of � whose

third element is larger than
D

and whose second element is � by � A � � � �JD � � �546474 � � A[Z � � �JD[Z � .
By assumption there is no point in the run of � beyond

D
visiting a letter before � .

Since the run is simple Y F $. Denote by ��� � � � > � �JD�> � �
the successor of � A � � �JD �

and by � � � � � >#� �JD � > � � �546474 � � � Z � � > � �JD Z > � �
the successors of

A � �K47464 ��A Z . We add
Y > �

successors to q , label them � � � ��A � � � ��� � ��A � � �546474 � � � Z , �
��A Z � � � Z and tag them in

the obvious way. We show now that the new nodes added to the tree conform to our

demands. By assumption there are no visits beyond the
D ��� step in the run of � to

letters before � 	 and
A � �546474 ��A Z are all the visits to � 	 after the

D ��� step of � .
Let �
 q r's be the successor of q labeled � Z (tagged � � Z � � >#� �JD Z > � �

). Since
� qn�
 � , we conclude � ���
 � > �

. All the triplets in the run of � appearing after
��� Z � � > � �JD[Z > � �

do not visit letters before � 	 N � (We collected all visits to �).
Let �
 q�r�� be a successor of q labeled by ��� � ��A � N � � (tagged ��� � � � > � �JD � > � �

and
� A � N � � � �JD � N � �). We know that �
 � qn� hence � > �
 � ��� � D � > � FeD � N � and between theD �+> �

element in the run of � and the
D � N � element letters before � 	 N � are not visited.

We turn to continuing the tree below a node labeled by a pair state. Given a node
q labeled by ��� ��A � tagged ��� � � �JD � and and � A � � O � � Y � . By assumption there are no
visits to � 	 , � in the run of � between the

D ��� triplet and Y ��� triplet. If Y
}D!> �
then we are done and we leave this node as a leaf. Otherwise we denote the triplets in
the run of � whose third element is between

D
and Y and whose second element is �

by
A � �K47464 ��A Z (see Figure 2b). Denote by � � �546464 � � Z their successors, by � � the successor

of � and by
A Z N � the predecessor of

A
. We add Y > �

successors to q and label them
��� � ��A � � � ��� � ��A � � �546474 � � � Z ��A Z N � � , tagging is obvious. As in the previous case when we
combine the assumption with the way we chose � � �546464 � Z and

A � �546474 ��A[Z N � , we conclude
that the new nodes conform to the demands.

Clearly, all pair-labeled paths terminate with ’true’ before reading the whole word
� and the path labeled by singleton states reaches the end of � with an accepting state.

In the other direction we stretch the tree run of d into a linear run of � . In Ap-
pendix C we give a recursive algorithm that starts from the root of the run tree and
constructs a run of � . When first reaching a node q labeled by pair-state � A � � � , we addA

to the run of � . Then we handle recursively the sons of q . When we return to q we
add � to the run of � . When reaching a node q labeled by a singleton state

A
we simply

add
A

to the run of � and handle the sons of q recursively. ��

4 Automata on infinite words

We may try to run the 1AFA from Section 3 on infinite words. We demand that pair-
labeled paths be finite and that the infinite singleton-labeled path visit

�
infinitely often.

Although an accepting run of � visited
�

infinitely often we cannot ensure infinitely
many visits to

�
on the infinite path. The visits may be reflected in the run of d in the

pair-labeled paths. Another problem is when the run ends in a loop.

Theorem 2. For every 2NBW �
^� � ��� ��At� ���������
with $ states, there exists an 1ABWs

d
^� � ��{ ��AKj� ��| ��� j �
with ��� $ � � states such that

� ��d �
 � ��� � .
We have to record hidden visits to

�
. This is done by doubling the set of states.

While in the finite case the state set is
� � �I" � , this time we also annotate the states

by � and � . Hence
{
 � � � �L"G� � " � � � � �

. A pair state labeled by � is a promise
to visit the acceptance set. The state � A � � � � �

means that in the run segment linking
A

to � there has to appear a state from
�

. A state � A � � �
is displaying a visit to

�
in the

zigzags connecting
A

to the previous singleton state. The initial state is
A j�
 � AK� � � �

.
With the same notation we solve the problem of a loop. We allow a transition from

a singleton state to a sequence of pair states. One of the pairs promises a visit to
�

. The
acceptance set is

� j�
 � �2" � � � �
and the transition function

|
is defined as follows.

The transition at a singleton state Just like in the finite case we consider all possible
sequences of states of length at most � $ O �

with same demands.

� � �

���� ��� � � � ��A � � � � �546474 ��A Z � � Z ����������

� B Y F $
��� � ��� � �RQ � � � � �� � FED �nA 	 !
 A @ and � 	 !
 � @� � � � � 	 ��� � �VQ � A 	 � � �

� ���
��	

Recall that a sequence ��� � ��A � � � ��� � ��A � � �546464 � ��� Z , �
��A Z � � � Z checks that there is a zigzag

run segment linking � � to � Z . We mentioned that � Z is annotated with � in case this run
segment has a visit to

�
. If � Z is annotated with � , at least one of the pairs has to be

annotated with � . Although more than one pair might visit
�

we annotate all other
pairs by � . Hence for a sequence

� � � ��A � � � � �K47464 ��A Z � � Z � we consider the sequences of �
and � of length Y >"�

in which if the last is � so is another one. Otherwise all are � .� � Z
 � � � � �546464 � � Z �%� � � � � � Z N � ����
If � Z
 � then ��� � s.t.

�CB � F Y and � 	
 �
If � Z
 � then

� �CB � F Y � � 	
 � �
However this is not enough. We have to consider also the case of a loop. The au-

tomaton has to guess that the run terminates with a loop when it reads the first letter
of � that is read inside the loop. The only states reading this letter inside the loop are
backward states. We consider all sequences of at most � $ states and a location � within
the sequence. In order to close the loop we demand either that the last backward state be
equal to some previous backward state or that some forward state be a successor of the
last backward state. The location � denotes the place where the loop closes (

A Z N �
<A��
or ��� ����� � �aQ � A Z N � � � �). Sequences of length � $ suffice, the longest possible sequence
without repetition is of length $, we may use the current state as the $ >"� ��� backward
state or transition into one of the forward states thus creating a sequence of length $ >��

.
Hence no two states in an even/odd position (forward/backward state) are equal except
the last backward state. We demand that the first state in the sequence be a successor of
� (��� � ��� � �VQ ��� � � �), that � 	 be a successor of

A 	 (��� 	 ��� � �VQ � A 	 � � �) and that the � ��� back-
ward state be equal to the last backward state or the � ��� forward state be a successor of
the last backward state (We identify � with

At�
,
A��
<A Z N � or � � ����� � �VQ � A Z N � � � �).

� � �

�������� ������� �
� � � ��A � � � � �546474 ��A[Z � � Z ��A[Z N � ��� � �

������������

�CB Y F $ � ��B � B Y
� � � ��� � �VQ ��� � � �� � FeD�!
 Y > � �nA 	 !
UA @ and � 	 !
 �J@� � � ��� 	 ��� � �RQ � A 	 � � �
if we define

A �
 � thenA[Z N �
 A �
or ��� � ��� � �VQ � A[Z N � � � �

� �������
������	

It is obvious that a visit to
�

has to occur within the loop. Hence given the sequence� � � ��A � � � � �546464 ��AtZ � � Z ��A[Z N � � and the location � we have to make sure that the run segment
connecting one of the pairs between the � ��� pair and the last pair visits

�
. Hence we

annotate one of the pairs ��� ����A�� N � � �K47464 � ��� Z ��A Z N � � with � . In case
A Z N �
 � then one of

the pairs has to be annotated by � . Our notation using �
 �
works in this case. One

visit to
�

is enough hence all other pairs are annotated by � .�
	 Z . �
 � � � � �546474 � � Z � � � � � � � Z N � ����
� �CB � F � � � 	
 � and��� � s.t. � 	
 � �

The transition of d chooses a sequence in � � �S� � � � and a sequence of � and � .

| ����� � � � �
�
�
 | � ��� � � � �

�
�

�
� � � . ���� ���

� ��A � � � � � g 47464 g ��� Z , �
��A Z � � Z , � � g ��� Z � � Z �

�	 � � . ���� 	 � ���
� ��A � � � � � g 47464 g ��� Z ��A[Z N � � � Z �

The transition at a pair state In this case the only difference is the addition of � and
� . The set �

� � . +
� is equal to the finite case.

�
� � . +
�

���� ��� � � � ��A � � � � �546474 ��A[Z � � Z ��A[Z N � ����������

� B Y F $
��� � ��� � �RQ � � � � �
� A � O � � �RQ � A Z N � � � �� � � � � 	 ��� � �VQ � A 	 � � �

� ���
��	

In the transition of ‘top’ states we have to make sure that a visit to
�

indeed occurs.
If the visit occured in this stage the promise (�) can be removed (�). Otherwise the
promise must be passed to one of the successors.� � +�. � . Z
 � � � � �546474 � � Z � � � � � � � Z N � ����

If
A���R�

and � ��V� then ��� � s.t. � 	
 �
Otherwise

� ��B � B Y � � 	
 � �
The transition of d chooses a sequence of states and a sequence of � and � .

| � � � ��A � � � �
�
�

�� � �;X � � If � A � O � � �VQ � � � � ��
� � � 	 ��� � � � ��A � � � � g 46474 g � � Z ��A[Z N � � � �

Otherwise

| � � � ��A � � � �
�
�

���� ��� �;X
� �

If � A � O � � �VQ ��� � � � and
� A �V� or � �V� ��

��� � 	 ��� . ���
� 	 �
	 �

��� � ��A � � � � � g 46474 g � � Z ��A[Z N � � � Z � Otherwise

Claim. L(A)=L(B)

The proof is just an elaboration on the proof of the finite case. In Appendix D we hilight
the points of difference.
Remark: In both the finite and the infinite cases, we get a 1-way alternating automaton
with ��� $ � � states and transitions of exponential size. Birget’s construction also results
in exponential-sized transitions [Bir93]. Globerman and Harel use 0-steps in order to
reduce the transition to polynomial size [GH96]. Their construction uses the reverse
language and can not be applied to infinite words. If we use 0-steps, it is quite simple to
change our construction so that it uses only polynomial-sized transitions. We note that
the transition size does not effect the conversion from 1ABW to 1NBW.

5 Acknowledgments

We would like to thank Orna Kupferman for her remarks on the manuscript.

References

[Bir93] J.C. Birget. State-complexity of finite-state devices, state compressibility and incom-
pressibility. Mathematical Systems Theory, 26(3):237–269, 1993.

[BL80] J.A. Brzozowski and E. Leiss. Finite automata and sequential networks. Theoretical
Computer Science, 10:19–35, 1980.

[B üc62] J.R. B üchi. On a decision method in restricted second order arithmetic. In Proc.
Internat. Congr. Logic, Method. and Philos. Sci. 1960, pages 1–12, Stanford, 1962.
Stanford University Press.

[CdGLV00] D. Calvanese, G. de Giacomo, M. Lenzerini, and M.Y. Vardi. View-based query
processing for regular path queries with inverse. In Proc. ACM 19th Symposium on
Principles of Database Systems, pages 58–66, 2000.

[CKS81] A.K. Chandra, D.C. Kozen, and L.J. Stockmeyer. Alternation. Journal of the Asso-
ciation for Computing Machinery, 28(1):114–133, January 1981.

[GH96] N. Globerman and D. Harel. Complexity results for two-way and multi-pebble au-
tomata and their logics. Theoretical Computer Science, 143:161–184, 1996.

[HK96] G. Holzmann and O. Kupferman. Not checking for closure under stuttering. In The
Spin Verification System, pages 17–22. American Mathematical Society, 1996. Proc.
2nd International SPIN Workshop.

[JPAR68] W.L. Johnson, J.H. Porter, S.I. Ackley, and D.T. Ross. Automatic generatin of effi-
cient lexical processors using finite state techniques. Communications of the ACM,
11(12):805–813, 1968.

[Koh70] Z. Kohavi. Switching and Finite Automata Theory. McGraw-Hill, New York, 1970.
[Kur94] R.P. Kurshan. Computer Aided Verification of Coordinating Processes. Princeton

Univ. Press, 1994.
[KV00] O. Kupferman and M.Y. Vardi. Synthesis with incomplete informatio. In Advances

in Temporal Logic, pages 109–127. Kluwer Academic Publishers, January 2000.
[LLS84] Richard E. Ladner, Richard J. Lipton, and Larry J. Stockmeyer. Alternating push-

down and stack automata. SIAM Journal on Computing, 13(1):135–155, February
1984.

[McN66] R. McNaughton. Testing and generating infinite sequences by a finite automaton.
Information and Control, 9:521–530, 1966.

[MH84] S. Miyano and T. Hayashi. Alternating finite automata on � -words. Theoretical
Computer Science, 32:321–330, 1984.

[Rab69] M.O. Rabin. Decidability of second order theories and automata on infinite trees.
Transaction of the AMS, 141:1–35, 1969.

[RS59] M.O. Rabin and D. Scott. Finite automata and their decision problems. IBM Journal
of Research and Development, 3:115–125, 1959.

[She59] J. C. Shepherdson. The reduction of two-way automata to one-way automata. IBM
Journal of Research and Development, 3:198–200, 1959.

[SS78] W. J. Sakoda and M. Sipser. Nondeterminism and the size of two way finite automata.
In Tenth Annual ACM Symposium on Theory of Computing, pages 275–286, San
Diego, California, May 1978. ACM.

[Str82] R.S. Streett. Propositional dynamic logic of looping and converse. Information and
Control, 54:121–141, 1982.

[Var88] M.Y. Vardi. A temporal fixpoint calculus. In Proc. 15th ACM Symp. on Principles of
Programming Languages, pages 250–259, San Diego, January 1988.

[Var89] Moshe Y. Vardi. A note on the reduction of two-way automata to one-way automata.
Information Processing Letters, 30(5):261–264, March 1989.

[Var90] Moshe Y. Vardi. Endmarkers can make a difference. Information Processing Letters,
35(3):145–148, July 1990.

[Var98] M.Y. Vardi. Reasoning about the past with two-way automata. In Proc. 25th Inter-
national Coll. on Automata, Languages, and Programming, volume 1443 of Lecture
Notes in Computer Science, pages 628–641. Springer-Verlag, Berlin, July 1998.

[VW86] M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification. In Proc. 1st Symp. on Logic in Computer Science, pages 332–344, Cam-
bridge, June 1986.

[Wil99] T. Wilke. CTL
�

is exponentially more succinct than CTL. In C. Pandu Ragan,
V. Raman, and R. Ramanujam, editors, Proc. 19th conference on Foundations of
Software Technology and Theoretical Computer Science, volume 1738 of Lecture
Notes in Computer Science, pages 110–121. Springer-Verlag, 1999.

A Always moving automata

In this section we show that every 2-way nondeterministic automaton can be converted
to an automaton whose transition is of the form

� � �2" ��$ �1&)(+*-, ��. ��0 .
Given a 2-way automaton �
3� � ��� ��At� ���������

, a 0-step in a run of � is when two
adjacent states in the run read the same letter. Formally, in the run � A � � � � � � � A � � � � � �K47464 � � A : � � : � �546464 ,
step

D�� �
is a 0-step if � @
 � @ , � .

A.1 Automata on finite words

Given a 2NFA �
 � � ��� ��AK� ��Q �����
with

Q � �^" � $ � &?(*-, �/.
� . ��0

we construct
� j
 � � ��� ��AK� ��Q j �����

with
Q j �+�hjc" � $ � &?(*-, �/. ��0 (i.e.

� ��� �
 � ��� j �). There are
no 0-steps in the run of the second.

For each state
A

and alphabet letter � , the set �
+
� of all states reachable from

A
with�

steps using letter � . We call �
+
� the 0-closure of

A
and � .

�
+
�
 � � � � � � A � �K47464647464 ��A Z s.t.

� B Y �nA �
<A � A Z
 � and � A 	 N � � � � �VQ � A 	 � � � �

Define
Q6j j � A � � �
�� � ��� �� Q � � � � � and take

Q j
 Q j j	� � � " � O � ��� � � (i.e. remove all pairs
of the form

�I" � � �
). This way the closure takes care of the 0-steps and � j takes steps

either forward or backward.

Claim.
� ��� �
"� �9� j �

Proof. Suppose � accepts � . Let X
 � A � � � � �546474 � � A : � �;: � be an accepting run of � on
� . We turn X into a run X j of � j on � by pruning 0-steps: if � @
 � @ , � simply remove
� A @ � � @ � from the run. It is easy to see that X j is an accepting run of � j on � .

Suppose � j accepts � . Let X j
 � AK� � � � �K47464 � � A : � � : � be an accepting run of � j on
� . We append the 0-steps from the closure of each state to complete a run of � on
� . ��

A.2 Automata on infinite words

In the infinite case there are two potential complications. Visits to
�

in a 0-step and a
loop of 0-steps that visits

�
. In order to solve these problems, we double the number of

states and add an accepting sink state. (in [Wil99,HK96] similar problems are solved in
a similar way).

Given the 2NBW �
 � � ��� ��A � ��Q �����
where

Q � � " � $ � &)(+*-, �/.
� . ��0

we show
that the automaton � j�
^� � � � �I" � � � � � � � � � s-s � � � A � � � � ��Q j � � �M" � � � � � � � s-s � �
accepts the same language. Furthermore, � j is 0-step free.

Given a state
A

and an alphabet letter � , we define � �
+
� the set of all states reachable

from state
A

by a sequence of 0-steps reading letter � and one last forward/backward
step. All states avoid the acceptance set

�
.

� �
+
�

���� ��� � ��� � � � � � � � ��� �I" � � � � " � O � ��� � � ��������

� � A � �K47464 ��A[Z � � �[A � r�� � mP� �
Z

A 4 � 4 � B Y �nA �
UA �nA[Z
 � �� � BEDGF Y � � A @�N � � � � � Q � A @ � � �
� $ ��� A[Z � � � �RQ � AtZ , �

�
�
�

� ���
��	

In addition we define � � +� the set of all states reachable from state
A

by a sequence
of 0-steps reading letter � and one last forward/backward step. One of the states in the
sequence is an accepting state.

� � +�

���� ��� ����� � � � � � � � � � �I" � � � � " � O � ��� � � ��������

� � AK� �546474 ��A Z � � �[A � r �
Z A 4 � 4 � B Y �AK�
 A �oA Z
 � � � D�� � A 4 � 4 A @ � �%�� � BED�F Y � � A @�N � � � � �VQ � A @ � � �

� $ � � A Z � � � �VQ � A Z , �
�
�
�

� ���
��	

We also have to take care of situations where there is a loop of 0-steps that visits
�

. The
boolean variable � � ����� p +� is set to 1 if such a sequence exists and to 0 otherwise.
Formally, the variable � � ����� p +� is set to 1 iff there exists a sequence � A[� �K47464 ��A Z � �
�[A � r �

Z
, where

� B Y and all the following conditions hold.

–
A �
 A

.
– There exist

D
and

=
such that

� BeD�BM=nF Y ,
A Z
UA @ and

A ��� �
.

– For all
D

where
�CBEDGB Y , we have � A @�N � � � � � Q � A @ � � �

We use the two 0-closures and the variable defined above in the definition of the
transition function of the 1AFA d .

Q j ��� A � � � �
�
�
 Q j ��� A � � � �

�
�
 � � ��� s5s ��� � � � � ����� p +�
 �

� �
+
� �R� � +� � � ����� p +�
"�

Q j �9� s-s � � �
 � ��� s-s ��� � �
Apparently, � j is 0-step free.

Claim. L(A’)=L(A)

Proof. Suppose � accepts � . There exists an accepting run X of � on � . If a finite se-
quence of 0-steps appears in X we simply prune it. If that sequence contained a visit to

�

add � to the forward/backward move at the end of the sequence. If X ends in an infinite
sequence of 0-steps, this sequence has a finite prefix � A 	 ��= � � � A 	 N � ��= � �K47464 � � A 	 N ����= � such
that

A 	
UA 	 N � and, as X is accepting, there is a visit to
�

in this prefix. We take the prefix
of the run � A � � � � �K47464 � � A 	 ��= � and add to it the infinite suffix ��� s-s ��='> � � � �9� s-s ��='> � � �546474 .
Finally, we add labels � to all unlabeled states. It is easy to see that the resulting run
is a valid run of � j . It is also an accepting run. If the run ends in a suffix � s-s � then it
is clearly accepting. Otherwise, removing sequences of 0-steps replaces a finite number
of visits to

�
by a state labeled by � . As the original run visited

�
infinitely often, so

does the run of � j .
Suppose � j accepts � . We append 0-steps as promised from the definition of � �

and � � . If the run ends with an infinite sequence of � s5s we can add a loop visiting
�

.
Infinitely many occurrences of � ensure infinitely many visits to

�
. ��

B Simple runs are enough

Given a 2NFA/2NBW �
 � � ��� ��A � ��� �����
we claim the following.

Claim. The automaton � accepts a word � iff it accepts it with a simple run.

Proof (The finite case). A simple run is a run. Given an accepting run X
 � A � � � � ,
� A � � � � � , � A � � � � � , 4K454 , � A : � � : � of � on � , we construct a simple run of � on � . If X is
not simple, there are some

D
and Y such that

D F Y ,
A @
 A Z

and � @
 � Z , consider the
sequence � AK� � � � ,

45454
, � A @ � � @ � , � A Z �

� � Z N � � ,
45454

, � A : � � : � . Since � A Z N � � � Z N � O � Z � �Q � A[Z � � 	 � � and
Q � A[Z � � 	 � �
]Q � A @ � � 	 T � this sequence is still a run. The last state

A : is a
member of

�
and � :
 � ��� hence the run is accepting. Since the run is finite, finitely

many repetitions of the above operation result in a simple run of � on � . ��

Proof (The infinite case). A simple run is a run. Given a run X
 � A[� � � � , � A � � � � � ,
� A � � � � � ,

454K4
, we cannot simply remove sequences of states like we did in the finite case,

the visits to
�

might be hidden in these parts of the run. If for some
D�F Y , we have thatA @
]A[Z � ��@
 � Z and

A � �� �
for all

D!B � B Y , we can simply remove this part. As in
the finite case, the run stays a valid accepting run.Now if there exists some

D\F Y such
that

A @
 A[Z
and �9@
 � Z we conclude that there is a visit to

�
between the two. We

take the minimal
D

and Y and create the run � A[� � � � ,
45454

, � A @ , �
� � @ , �

�
, ��� A @ � � @ � ,

454K4
,

� A Z , �
� � Z , �

��� � . Again this is a valid run and it visits
�

infinitely often (between
A @ andA Z

, �). If no such
D

and Y exist the run is simple. ��

C Proof of correctness of construction in the finite case

Proof. Given an accepting run tree of d on a word � , we turn it into a linear run of
� . We assume ordering on the successors of each node according to the appearance of
their labels in the sets � � . We give a recursive algorithm to build the run of � .

Starting from the root u labeled � At� � � � , we add to the run of � the element � At� � � � .
We now handle the successors of the root according to their order. Going up to the first
successor s labeled � � ��A � we add � � ��� � to the run of � . Obviously from the definition
of �

+ �� � we know that ��� ��� � � Q � At� � � � � . We handle the successors of s in the recursion.

When we return to s we add � A � � � to the run of � (to be justified later). We return now
to u and handle the next successor � . The node � is either labeled by � � � 8 � or by � . In
both cases the definition of �

+ �� � ensures that ��� ��� � �VQ � A � � � � . When we return to u after
scanning the whole tree the run of � is complete.

Getting to a node q labeled ��� ��A � we add ��� � � qn� � to the run of q . Adding ��� � � qn� � itself
and passing to the successors of q and between them was justified when handling the
root. When the recursion finished handling the last successor of q we add � A � � qn� O � �

to
the run of � . Suppose the last successor of q was labeled � � � 8 � then from the definition

of �
� � . +
��� ��� we know that � A � O � � �VQ ��8 � � � ��� � hence this transition is justified.

Getting to a node q labeled
A

is not different from handling the root. Instead of using
the locations

�
and

�
in the run, we use locations � qn� and � qn� > �

.
We have to show that the run is valid and accepting. Satisfying the transition was

shown. In the tree run of d there is a single path labeled solely by single states. The
last element in the run of � is the same state and reading the same letter as the last in
this path. Since the path is accepting the last state there has to be from

�
and reading

letter � � � (which does not exists, �

�
�'46474

� � � � , �). All other triplets in the run of �
read letters in the range

�����546464 � � ��� O � �
. Otherwise there is some node q in the run of

d such that � qn� ` � ��� (other than the previously designated node). This is impossible
since the run of d is accepting. ��

D Proof of correctness of the construction for the infinite case

Given the 2-way nondeterministic Büchi automaton �
 � � ��� ��A[� ��Q �����
we con-

structed in Section 4 the 1-way alternating automaton d
 � � ��{ ��A j� ��| ��� j6�
where{
 � � � � "\� � "�� � � � �

,
� j
 � �2"�� � � �

and the transition function
|

as defined
there.

Claim. L(A)=L(B)

Proof. Given an accepting simple run of � on a word � of the form � A � � � � � � A � � � � � �546474
we annotate each pair by the place it took in the run of � . Thus the run takes the form
� AK� � ��� � � � � A � � � � ��� � �546464 . If the run does not end in a loop the construction in the finite
case works. We have to add the symbols � and � .

When dealing with a node q in the run tree of d labeled by � A � � � tagged by � A � � �JD � .
In the proof of the finite case we identified the triplets � A � � � �D � � , 4K454 , � A Z � � �D Z � and
��� � � � > � �JD > � �

,
45454

, � � Z � � > � �JD Z > � �
and labeled the successors of q with � � � ��A � � ,45454

, � � Z , �
��A Z � � � Z . If there is no visit to

�
between

D > �
and

D Z > �
we add to these

states � . Otherwise the visit was between
D � >��

and
D � N � for some

=
(consider

D
MDt�
),

in this case we add � both to � Z and to the pair � � � ��A � N � � , to all other pairs we add � .
When dealing with a node q in the run tree of d labeled by � � ��A � � � tagged ��� � � �D �

and � A � � O � � Y � . We identified the set of pairs � � � ��A � � , 4K454 , � � Z ��A[Z N � � . In case �
 �
we continue just like in the finite case. In case �
 � we put it there because there was
a visit to

�
between

D
and Y . This visit to

�
has to occur between � � and

A � N � for some=
and we pass the obligation to this pair. At some point we reach a visit to

�
and then

the promise is removed.

We have now an infinite run tree of d . All pair-labeled paths are still finite and there
is one infinite path labeled by singleton states. Since every occurrence of � on this path
covers a finite number of visits to

�
we are ensured that � appears infinitely often along

this path.
If the run ends in a loop we have to identify the first letter of � read in this loop.

Suppose this letter is � . We build the run tree of d as usual until reaching the node q
in level � labeled by a singleton state � A � � � . As letter � is visited in the loop there are
infinitely many visits to it. Denote these visits by � A � � � �JD � � , � A � � � �D � � , 45454 , all backward
states. Denote

A
WAt�
, and the successors of

At� �546474 ��A �
by � � �546464 � � � . Since the sequenceA5� �546474 ��A �

is $ > �
long, it has to include the same state occuring twice. Denote its second

occurrence by
A : . We consider two cases:

– In case � : , � appears twice in the sequence � � �546474 � � � before location
H O �

, i.e.
� : , �

 � � where � F}H O �
. In this case denote Y > ��
 H O �

and take
� � ��A � � � � ��A � �K47464 � � : , �

��A : , � as the sequence from
� � ��� � � (� � � ��� �
 ��� Z ��� � �VQ � A Z � � � ��� �).

– Otherwise we denote Y > �
 H
and take � � ��A � � � � ��A � �K47464 � � : , � Y

��A Z N � as the se-
quence from

� � ��� � � . Since
A[Z N � was the second occurrence there is a first occurrenceA �
UA[Z N � .

Since the run is simple its suffix is of the form:

� A � � � � � � ��� � � � > � � �546474 � � A � N � � � � � ��� � N � � � > � � �546474647464647464 � � A[Z � � � � � � Z � � > � � �546474 � � AtZ N � � � � � �
One of the segments ��� � � � > � � �546474 � � A � N � � � � visits

�
. Annotate the pair � � � ��A � N � � by �

and all the others by � .
In the other direction we apply the same recursive algorithm. If the accepting run

tree of d is infinite then we never return to u but the run created is an accepting run of
� .

If the accepting run tree of d is finite we have to identify the point in the tree
q labeled by a singleton state � A � � � under which there are no successors labeled by
singleton states. In this point we identify the loop. The last successor of q is labeled
��� j ��Atj � � �

. We know that either
A[j
 A

or there is another successor of q labeled by
��� j j ��Atj j � � �

such that either
Atj j
zAtj

(in this case ��� j j ��Atj j � � �
is not part of the loop) or

��� j j ��� � � Q � Atj � � � ��� � (in this case ��� j j ��AKj j � � �
is part of the loop). If

A[j
_A
then we put

aside the run of � built so far, denote it by X . Otherwise we start handling the successors
of q until taking care of all successors that do not take part in the loop. Again we put
this run aside and call it X . Now we build a new run starting from the point we stopped,
since the run of d is finite the recursion ends and we are left with the run X j . Our final
step is to present X ��X j � � as the new run of � . Note that the run X �wX j � � is not necessarily
simple. ��

