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Abstract

One of the advantages of temporal-logic model-checking tools is their ability to accompany a neg-
ative answer to a correctness query with a counterexample to the satisfaction of the specification in the
system. On the other hand, when the answer to the correctness query is positive, most model-checking
tools provide no witness for the satisfaction of the specification. In the last few years there has been
growing awareness of the importance of suspecting the system or the specification of containing an error
also in cases where model checking succeeds. In particular, several works have recently focused on the
detection of the vacuous satisfaction of temporal logic specifications. For example, when verifying a
system with respect to the specification �����
	�����
��������������� (“every request is eventually followed
by a grant”), we say that � is satisfied vacuously in systems in which requests are never sent. Cur-
rent works have focused on detecting vacuity with respect to subformula occurrences. In this work we
investigate vacuity detection with respect to subformulas with multiple occurrences.

The generality of our framework requires us to re-examine the basic intuition underlying the con-
cept of vacuity, which until now has been defined as sensitivity with respect to syntactic perturbation.
We study sensitivity with respect to semantic perturbation, which we model by universal propositional
quantification. We show that this yields a hierarchy of vacuity notions. We argue that the right notion
is that of vacuity defined with respect to traces. We then provide an algorithm for vacuity detection and
discuss pragmatic aspects.
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1 Introduction

Temporal logics, which are modal logics geared towards the description of the temporal ordering of
events, have been adopted as a powerful tool for specifying and verifying concurrent systems [Pnu77].
One of the most significant developments in this area is the discovery of algorithmic methods for ver-
ifying temporal-logic properties of finite-state systems [CE81, CES86, LP85, QS81, VW86]. This de-
rives its significance both from the fact that many synchronization and communication protocols can be
modeled as finite-state systems, as well as from the great ease of use of fully algorithmic methods. In
temporal-logic model checking, we verify the correctness of a finite-state system with respect to a desired
behavior by checking whether a labeled state-transition graph that models the system satisfies a temporal
logic formula that specifies this behavior (for an in-depth survey, see [CGP99]).

Beyond being fully-automatic, an additional attraction of model-checking tools is their ability to
accompany a negative answer to the correctness query with a counterexample to the satisfaction of the
specification in the system. Thus, together with a negative answer, the model checker returns some
erroneous execution of the system. These counterexamples are very important and can be essential
in detecting subtle errors in complex designs [CGMZ95]. On the other hand, when the answer to the
correctness query is positive, most model-checking tools provide no witness for the satisfaction of the
specification in the system. Since a positive answer means that the system is correct with respect to the
specification, this may, a priori, seem like a reasonable policy. In the last few years, however, industrial
practitioners have become increasingly aware of the importance of checking the validity of a positive
result of model checking. The main justification for suspecting the validity of a positive result is the
possibility of errors in the modeling of the system or of the desired behavior, i.e., the specification.

Early work on “suspecting a positive answer” concerns the fact that temporal logic formulas can
suffer from antecedent failure [BB94]. For example, in verifying a system with respect to the CTL
specification � � � �
	��  ��� � ������������� (“every request is eventually followed by a grant”), one should
distinguish between vacuous satisfaction of � , which is immediate in systems in which requests are never
sent, and non-vacuous satisfaction, in systems where requests are sometimes sent. Evidently, vacuous
satisfaction suggests some unexpected properties of the system, namely the absence of behaviors in
which the antecedent of � is satisfied.

Several years of practical experience in formal verification have convinced the verification group
at the IBM Haifa Research Laboratory that vacuity is a serious problem [BBER97]. To quote from
[BBER97]: “Our experience has shown that typically ����� of specifications pass vacuously during the
first formal-verification runs of a new hardware design, and that vacuous passes always point to a real
problem in either the design or its specification or environment.” The usefulness of vacuity analysis
is also demonstrated via several case studies in [PS02]. Often, it is possible to detect vacuity easily
by checking the system with respect to hand-written formulas that ensure the satisfaction of the pre-
conditions in the specification [BB94, PP95]. To the best of our knowledge, this rather unsystematic
approach is the prevailing one in the industry for dealing with vacuous satisfaction. For example, the
FormalCheck tool [Kur98] uses “sanity checks”, which include a search for triggering conditions that
are never enabled.

These observations led Beer et al. to develop a method for automatic testing of vacuity [BBER97].
Vacuity is defined as follows: a formula � is satisfied in a system � vacuously if it is satisfied in � ,
but some subformula � of � does not affect � in � , which means that � also satisfies �
	 �������� for
all formulas ��� ( �
	 ��������� denotes the result of substituting ��� for � in � ). Beer et al. proposed testing
vacuity by means of witness formulas. Formally, we say that a formula ��� is a witness formula for the
specification � if a system � satisfies � non-vacuously iff � satisfies both � and ��� . In the example
above, it is not hard to see that a system satisfies � non-vacuously iff it also satisfies ��� ���� . In general,
however, the generation of witness formulas is not trivial, especially when we are interested in other
types of vacuity passes, which are more complex than antecedent failure. While [BBER97] nicely set
the basis for a methodology for detecting vacuity in temporal-logic specifications, the particular method
described in [BBER97] is quite limited (see also [BBER01]).
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A general method for detection of vacuity for specifications in CTL � (and hence also LTL, which
was not handled by [BBER97]) was presented in [KV99, KV03]. The key idea there is a general method
for generating witness formulas. It is shown in [KV03] that instead of replacing a subformula � by all
subformulas ��� , it suffices to replace it by either

�������
or �
	��� � depending on whether � occurs in � with

negative polarity (i.e., under an odd number of negations) or positive polarity (i.e., under an even number
of negations). Thus, vacuity checking amounts to model checking witness formulas with respect to all
(or some) of the subformulas of the specification � . It is important to note that the method in [KV03] is
for vacuity with respect to subformula occurrences. The key feature of occurrences is that a subformula
occurrence has a pure polarity (exclusively negative or positive). In fact, it is shown in [KV03] that the
method is not applicable to subformulas with mixed polarity (both negative and positive occurrences).

Recent experience with industrial-strength property-specification languages such as ForSpec [AFF � 02]
suggests that the restriction to subformula occurrences of pure polarity is not negligible. ForSpec, which
is a linear-time language, is significantly richer syntactically (and semantically) than LTL. In particular,
it has a rich set of arithmetical and Boolean operators. As a result, even subformula occurrences may
not have pure polarity, e.g., in the formulas ����� ( � denotes exclusive or). While we can rewrite �����
as 	�������� ��� 	
����� � � , it forces the user to think of every subformula occurrence of mixed polarity as
two distinct occurrences, which is rather unnatural. Also, a subformula may occur in the specification
multiple times, so it need not have a pure polarity even if each occurrence has a pure polarity. For ex-
ample, if the LTL formula �
	�� �!� � holds in a system � then we’d expect it to hold vacuously with
respect to the subformula � (which has a mixed polarity), though not necessarily with respect to either
occurrence of � , because both formulas �
	 �"�#��� �$� � and �
	�� �%�&	'�� � � may fail in � . (Surely, the
fact that �
	 �"����� �$�&	'�� � � fails in � should not entail that �
	(� �)� � holds in � non-vacuously.) Our
goal in this paper is to remove the restriction in [KV03] to subformula occurrences of pure polarity. To
keep things simple, we stick to LTL and consider vacuity with respect to subformulas, rather than with
respect to subformula occurrences. We comment on the extension of our framework to ForSpec at the
end of the paper.

The generality of our framework requires us to re-examine the basic intuition underlying the concept
of vacuity, which is that a formula � is satisfied in a system � vacuously if it is satisfied in � but some
subformula � of � does not affect � in � . It is less clear, however, what does “does not affect” means.
Intuitively, it means that we can “perturb” � without affecting the truth of � in � . Both [BBER97]
and [KV03] consider only syntactic perturbation, but no justification is offered for this decision. We
argue that another notion to consider is that of semantic perturbation, where the truth value of � in � is
perturbed arbitrarily. The first part of the paper is an examination in depth of this approach. We model
arbitrary semantic perturbation by a universal quantifier, which in turn is open to two interpretations
(cf. [Kup95]). It turns out that we get two notions of “does not affect” (and therefore also of vacuity),
depending on whether universal quantification is interpreted with respect to the system � or with respect
to its computation tree. We refer to these two semantics as “structure semantics” and “trace semantics”.
Surprisingly, the original, syntactic, notion of perturbation falls between the two semantic notions.

We argue then that trace semantics is the preferred one for vacuity checking. Structure semantics
is simply too weak, yielding vacuity too easily. Formula semantics is more discriminating, but it is
not robust, depending too much on the syntax of the language. In addition, these two semantics yield
notions of vacuity that are computationally intractable. In contrast, trace semantics is not only intuitive
and robust, but it can be checked easily by a model checker.

In the final part of the paper we address several pragmatic aspects of vacuity checking. We first
discuss whether vacuity should be checked with respect to subformulas of subformula occurrences and
argue that both checks are necessary. We then discuss how the number of vacuity checks can be min-
imized. We also discuss how vacuity results should be reported to the user. Finally, we describe our
experience of implementing vacuity checking in the context of a ForSpec-based model checker.
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2 Preliminaries

2.1 Temporal Logic

The logic LTL is a linear temporal logic. Formulas of LTL are built from a set
���

of atomic propositions
using the usual Boolean operators and the temporal operators X (“next time”) and U (“until”). Given a
set AP , an LTL formula is defined as follows:

� �"����� , �&	'�  � , � for ��� ��� .� � � , � � � , � � , or ��� � , where � and � are LTL formulas.

We define satisfaction of LTL formulas with respect to computations of Kripke structures. A Kripke
structure is � �
	 �������������������

where
���

is the set of atomic propositions,
�

is a set of states,
���

is a set of initial states,
���������

is a total transition relation, and
��� ��� � � � assigns to each

atomic proposition the set of states in which it holds. A computation of a system is a sequence of states! ��" �#� "%$ �'&(&'& such that " � � �)�
and for every *�+ � we have that 	,".- � "(- � $ �/�

�
. The set 0 	 � � is the

set of computations of a Kripke structure � . We denote the suffix "21 � "31 � $
�'&(&'&

of ! by ! 1 .
We define the semantics of LTL with respect to a computation ! �4" �#� ".$ �'&(&'& and a location *5+ � .

We denote � � ! � *76 � � to indicate that the LTL formula � holds in the computation ! at location * . A
computation ! satisfies an LTL formula � , denoted ! 6 � � if ! � �86 � � . The Kripke structure � satisfies
� , denoted � 6 � � if for every computation ! �90 	 � � we have ! 6 � � . For a full definition of the
semantics of LTL we refer the reader to [Eme90].

An occurrence of formula � of � is of positive polarity in � if it is in the scope of an even number of
negations, and of negative polarity otherwise. The polarity of a subformula is defined by the polarity of
its occurrences as follows. Formula � is of positive polarity if all occurrences of � in � are of positive
polarity, of negative polarity if all occurrences of � in � are of negative polarity, of pure polarity if it is
either of positive or negative polarity, and of mixed polarity if some occurrences of � in � are of positive
polarity and some are of negative polarity.

Given a formula � and a subformula of pure polarity � we denote by �
	 ���;: � the formula obtained
from � by replacing � by

�"�����
if � is of negative polarity and by �
	��� � if � is of positive polarity. Dually,

�
	 � �;< � denotes the formula obtained from � by replacing � by �&	'�� � if � is of negative polarity and
by
�������

if � is of positive polarity.

2.2 UQLTL

The logic UQLTL augments LTL with universal quantification over propositional variables. Let � be
a set of propositional variables. The syntax of LTL is extended as follows. If � is an LTL formula over
the extended set of atomic propositions

���>= � , then ?@� � is a UQLTL formula. E.g., ?)A � 	BA � � �
is a legal UQLTL formula, while �C?)A 	BA � � � is not. UQLTL is a subset of Quantified Propositional
Temporal Logic [SVW85], where all the free variables are quantified universally. In the sequel, we use
A to denote a propositional variable. A closed formula is a formula with no free propositional variables.

We now give definitions of two semantics for UQLTL formulas. The first is structure semantics
where a propositional variable is bound to a subset of the states of the Kripke structure. The second is
trace semantics where a propositional variable is bound to a subset of the locations on the trace.

Let � be a Kripke structure with a set of states
�

, let ! �D0 	 � � , and let � be a set of propositional
variables. A structure assignment E � � � � � maps every propositional variable AF�G� to a set of
states in

�
. We use " - to denote the * th state along ! , and � to denote UQLTL formulas.

Definition 2.1 (UQLTL Structure Semantics) The relation 6 �IH is defined inductively as follows:
� � � ! � * � EJ6 � H A iff "2-��DE 	KA � .� � � ! � * � EJ6 �LHM?@A�� iff � � ! � * � E 	 A � � ���N6 �LH � for every

� � �G�
.� For other formulas, � � ! � * � EJ6 � H is defined as in LTL.
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A closed UQLTL formula � is structure satisfied at point * of trace ! ��0 	 � � , denoted � � ! � *�6 �IH
� , iff � � ! � * � E 6 �LH�� for some E (choice is not relevant since � is closed). A closed UQLTL formula �
is structure satisfied in structure � , denoted � 6 � H � , iff � � ! � �86 �LH � for every trace ! �D0 	 � � .

We now define the trace semantics for UQLTL. Let � be a set of propositional variables. A trace
assignment � � � � � � maps a propositional variable AJ� � to a set of natural numbers (points on a
path).

Definition 2.2 (UQLTL Trace Semantics) The relation 6 ��� is defined inductively as follows:
� � � ! � * � � 6 � � A iff *�� � 	BA � .� � � ! � * � � 6 ����?@A � iff � � ! � * � � 	 A � � � � 6 ��� � for every

� � ��� .� For other formulas, � � ! � * � EJ6 � H is defined as in LTL.

A closed UQLTL formula � is trace satisfied at point * of trace ! � 0 	 � � , denoted � � ! � *76 � � � ,
iff � � ! � * � � 6 � � for some � (choice is not relevant since � is closed). A closed UQLTL formula � is
trace satisfied in structure � , denoted � 6 ��� � , iff � � ! � � 6 �	� � for every trace ! � 0 	 � � .

We show that trace semantics is stronger than structure semantics in the following sense. Whenever
a UQLTL formula holds according to trace semantics it holds according to structure semantics. The op-
posite is not true. Indeed, a trace assignment can assign a variable different values when the computation
visits the same state of � . We observe that for LTL formulas both semantics are identical. That is, if
� is an LTL formula, then � 6 � H � iff � 6 ��� � . We sometimes use 6 � to denote the satisfaction of an
LTL formula, rather than 6 � H or 6 ��� .
Theorem 2.3 Given a structure � and a UQLTL formula � :

� � 6 ��� � 
 � 6 � H �� � 6 �LH � �
 � 6 � � �
The proof resembles the proofs in [Kup95] for the dual logic EQCTL. Kupferman shows that a

structure might not satisfy a formula, although the formula is satisfied by its computation tree. The full
proof is given in Appendix A.

3 Alternative Definitions of Vacuity

Let � be a subformula of � . We give three alternative definitions of when � does not affect � , and
compare them. We refer to the definition of [BBER97] as formula vacuity. We give two new definitions,
trace vacuity and structure vacuity, according to trace and formula semantics. Notice that we are only
interested in the cases where � is satisfied in the structure.

Intuitively, � does not affect � in � if we can perturb � without affecting the truth of � in � . In
previous work, syntactic perturbation was allowed. Using UQLTL we formalize the concept of semantic
perturbation. Instead of changing � syntactically, we directly change the set of points in a structure or
on a trace in which it holds.

Definition 3.1 (Does Not Affect) Let � be a formula satisfied in � and let � be a subformula of � .
� � does not affect � � in � iff for every LTL formula  we have � 6 � �
	 ���� � [BBER97].� � does not affect H � in � iff � 6 � H ?)A��
	 ��� A � .� � does not affect � � in � iff � 6 � � ?@A � 	 ��� A � .
We say that � affects � � in � iff it is not the case that � does not affect � � in M. We say that � is

formula vacuous in � , if there exists a subformula � such that � does not affect � � . We define affects H ,
affects � , structure vacuity and trace vacuity similarly.
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3.1 Comparing the Alternative Definitions of Vacuity

In the following section we compare the three alternative definitions of vacuity. We show that they are
all different. We also argue why trace vacuity is the preferred definition. Notice that we do not restrict
a subformula to occur once and it can be of mixed polarity. We show that our three semantics form a
hierarchy, with structure semantics being the weakest and trace semantics the strongest.

We show that structure vacuity is weaker than formula vacuity. That is, � might affect � � in � , but
not affect H � in � .

Lemma 3.2 (Relating Structure and Formula Vacuity) Let � be an LTL formula. If � does not affect �
� in � , then it does not affect H � in � as well. The reverse implication does not hold.

In the following proof, we assume that every state has a unique representation using the atomic
propositions. That is, every state in the structure satisfies a different set of atomic propositions. This is a
reasonable assumption for hardware modeling.

Proof: First we prove that if a subformula � does not affect � � in � , then it does not affect H � in �
as well. If � affects H � , then there exists a structure assignment E and a computation ! of � such that
� � ! � � � E �6 �LH �
	 ��� A � . We construct a formula ��� that behaves like A along ! , that is, � � ! � *�6 � ���
iff � � ! � * � E�6 �LH A . Let " be a predicate over AP that is

�������
only in state " � �

. Let ��� be the
disjunction of " for all states in E 	KA � . The formula ��� is well-defined since

�
is finite. We show that

� � ! � * � E 6 �LH A iff � � ! � *D6 � ��� . If � � ! � * � E 6 �LH A then, by the definition of structure semantics,
" - � E 	BA � . Therefore " - is in the disjunction ��� . Since � � ! � * 6 � " - , we have � � ! � *�6 � ��� . On the
other hand, if � � ! � * � E �6 �LH A then " - ��CE 	BA � , and therefore " - is not in the disjunction � � . Since every
state is uniquely labeled � � ! � *I6 � "'1 iff "31 � "2- . Consequently � � ! � * �6 � ��� . Thus we have shown
that if � � E �6 � H �
	 ��� A � then � �6 � � 	 ������� � .

In the other direction, we construct an LTL formula ��� that assumes different values when visiting
the same state. Let M be the following Kripke structure:

p q

s0 s1

Let � � � � 	 � � � ��� 	 � � ��� � . We examine if � affects � � . Consider the path ! � �F" � � " $ � " � � " � � " � &(&'&
and let ��� � � ��� . Thus, �
	 � ����� � ��	 � ��� � � 	 � � � � � 	 � � � � � . Clearly, ! � �6 � � 	 � ������� and �
affects � � .

On the other hand, for every trace ! and every assignment E , we have � � ! � � � E 6 � H � 	 ��� A � .
That is, � � ! � � � E46 � H A ��	 � � � � ��	 � � � A � . If " � � E 	KA � then the the disjunct A is satisfied. If
" � ���E 	BA � then for all traces that from some point on remain in " � � � � A is satisfied, for all other paths,
� � � is satisfied.

We now show that formula vacuity is weaker than trace vacuity. That is, � might affect � � in � , but
not affect � � in � .

Lemma 3.3 (Relating Trace and Formula) Let � be an LTL formula. If � does not affect � � in � ,
then � does not affect � � in � as well. The reverse implication does not hold.

Proof: We show that if � affects � � , then it also affects � � . If � affects � � , then there exists a formula
��� such that � �6 � � 	 ��������� . Let ! be a trace in � such that ! �6 � �
	 ��������� . Consider the
assignment � 	KA � � � *36 ! � *�6 � ����� . Clearly, � � ! � � � � �6 � � � 	 ��� A � , and therefore � affects � � .

In the other direction, let � be a Kripke structure with a single state labeled by � , with a self-loop.
Let � � 	�� � � � � . It can be shown that � �6 �	� ?)A �
	 � � A � , thus � affects � � . We now show that
there cannot exist an LTL formula ��� such that � �6 � � 	 � ������� . Notice that � has a single trace ! ,
and that ����*���	 ! � � ! . This means that � � is either true along every suffix of ! , or ! is false along every
suffix of ! . However � �6 � �
	 � ������ only if ��� holds at time zero but fails at time one.
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Which is the most appropriate definition for practical applications? We show that structure vacuity
and formula vacuity are sensitive to changes in the design that do not relate to the formula. As an
example, consider the formula � � � � � � and models � $ and ��� in the figure below. In ��� we add
a proposition � whose behavior is independent of � ’s behavior. We would not like formulas that relate
to � to change their truth value or their vacuity. Both � $ and its extension � � satisfy � and � relates
only to the proposition � . While � does not affect � � in � $ , it does affect � � in � � (and similarly for
affects H ). Indeed, the formula �
	 � �$� � � � � � � does not hold in � � . Note that in both models �
affects � � .

p p,!qp,q

M1 M2

Figure 1: Changes in the design.

Another disadvantage of formula vacuity is that it is sensitive to the specification language. That is,
a formula passing vacuously might pass unvacuously once the specification language is extended. As an
example, consider the following Kripke structure � $ and the LTL formula � �>� � � �C� � .

qp

For the single trace ! ��0 	 � $ � , it holds that ��� *���	 ! $ � � ! $ . Thus, every (future) LTL formula is either
true along every suffix of ! $ , or is false along every such suffix. This implies that subformula � does
not affect � � . However, we get an opposite result if the specification language is LTL augmented with
the PAST operator [LPZ85]. The PAST operator enables reference to the history of the computation.
Formally, if � is an LTL formula then � � ! � *I6 � � �7��� 	 � � iff *�� � and � � ! � *��	� 6 � � . Clearly,
for every model � we have � � ! � � �6 � � ����� 	�� � . In the example, � $ �6 � �
	 � � � ����� 	(� � � since
�9$ � ! � * 6 � � ����� 	(� � iff * �
� , thus � affects ��� .

To summarize, trace vacuity is preferable since is not sensitive to changes in the design (as opposed to
structure and formula vacuity) and it is independent of the specification language (as opposed to formula
vacuity). Another reasoning for the superiority of trace vacuity is given in section 4.

3.2 Comparing the Alternative Definitions of Vacuity under Pure Polarity

In the following section we show that if subformulas are restricted to pure polarity, all the definitions of
vacuity coincide. For that, we show that the replacement of subformula � by : is adequate for vacuity
detection according to all three definitions. This result is an extension of the results in [KV03], where
only single occurrence has been considered.

Lemma 3.4 For every structure � , LTL formula � and subformula � of � of pure polarity, � 6 � � � 	 ���;: �
iff � 6 ��� ?@A � 	 ��� A � .

The lemma follows from the claim below. Let � denote a subformula of � that may or may not
contain the subformula � .

Claim 3.5 For every occurrence of � , every trace ! � 0 	 � � and location * ,
� if � is of positive polarity in � then � � ! � *�6 ��� 	 ��� : � implies � � ! � * 6 ����?)A� 	 ��� A �� if � is of negative polarity in � then � � ! � * �6 �	� 	 ���;: � implies � � ! � *�6 � � ?)A���� 	 ��� A �
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Proof: We prove the claim by induction on the structure of � . We prove the case that � is of positive
polarity (i.e. in � 	 ���;: � the subformula � is replaced by �&	'�  � ). The case of negative polarity is dual.
If � is not a subformula of � the claim follows. Assume that � is a subformula of � .

Let � � � for some proposition � . Clearly, also � � � and the claim follows. Let � � � $ � � � .
Suppose that the polarity of � in � is positive. If � � ! � * 6 � � 	 ���!�
	��� � � then clearly � � ! � * 6 �
�#$ 	 � �$�&	'�  � � and � � ! � *�6 ��� � 	 � �!�
	��� � � . From the induction assumption we know that � � ! � *�6 ���
?)A �#$ 	 ��� A � and � � ! � * 6 �	�/?@A � � 	 ��� A � . Clearly, the claim follows. Suppose that the polarity of
� in � is negative. If � � ! � * �6 � � 	 ���$�&	'�  � � then either � � ! � * �6 � ��$ 	 ���!�
	��� � � or � � ! � * �6 �
� � 	 � �$�&	'�  � � . Wlog suppose � � ! � * �6 �	�#$ 	 ���$�&	'�  � � . From the induction assumption we know that
� � ! � *�6 ����?@A ��� $ 	 ��� A � . It follows that � � ! � * 6 �	��?)A���� 	 ��� A � .

Let � ���#$ � � � . Suppose that the polarity of � in � is positive. If � � ! � *�6 � � 	 ���$�&	'�� � � then either
� � ! � *�6 �	� $ 	 ���$�&	'�� � � or � � ! � * 6 �	� � 	 ���$�&	'�� � � . Wlog suppose � � ! � * 6 �	� $ 	 ���$�&	'�  � � . From
the induction assumption we know that � � ! � *76 � � ?@A � $ 	 ��� A � . Clearly, the claim follows. Suppose
that the polarity of � in � is negative. If � � ! � * �6 � � 	 ���$�&	'�  � � then both � � ! � * �6 �
� $ 	 ���$�&	'�  � �
and � � ! � * �6 ��� � 	 ���$�&	'�  � � . From the induction assumption we know that � � ! � * 6 � � ?@A ��� $ 	 ��� A �
and � � ! � *�6 � � ?@A ��� � 	 ��� A � . It follows that � � ! � *�6 � � ?)A���� 	 � � A � .

Let � � ���#$ . Suppose that the polarity of � in � is positive. Then the polarity of � $ in � is negative.
If � � ! � * 6 � � 	 ���!�
	��� � � then � � ! � * �6 � �#$ 	 ���$�&	'�� � � . From the induction assumption we know
that � � ! � * 6 �	� ?@A����#$ 	 ��� A � . However, ���#$ 	 ��� A � � � 	 ��� A � and the claim follows. Suppose
that the polarity of � is negative. If � � ! � * �6 � � 	 ���$�&	'�  � � then � � ! � * 6 � ��$ 	 ���!�&	'�  � � and from
the induction assumption we know that � � ! � * 6 ����?)A����#$ 	 ��� A � . The claim follows.

Let � ��� �#$ . Suppose that the polarity of � is positive. If � � ! � *�6 � � 	 ���$�&	'�  � � then � � ! � *��
�86 � �#$ 	 ���$�&	'�� � � . From the induction assumption we know that � � ! � *�� �86 � � ?@A �#$ 	 ��� A � . The
claim follows. Suppose that the polarity of � is negative. If � � ! � * �6 ��� 	 � �$�&	'�  � � then � � ! � *�� � �6 �
� $ 	 � �$�&	'�  � � . From the induction assumption we know that � � ! � *�� ��6 � � ?@A ��� $ 	 ��� A � . The
claim follows.

Let ��� � $ � � � . Suppose that the polarity of � in � is positive. If � � ! � *96 � � 	 ���$�&	'�  � �
then there exists some �4+ * such that � � ! � � 6 � � � 	 � �$�&	'�� � � and forall *	��
��� we have
� � ! � 
 6 � � $ 	 ���$�&	'�� � � . From the induction assumption we know that � � ! � �F6 � � ?@A � ��	 ��� A �
and forall *���
���� we have � � ! � 
 6 �	� ?@A � $ 	 � � A � . Clearly, the claim follows. Suppose
that the polarity of � in � is negative. If � � ! � * �6 � � 	 ���$�&	'�� � � then either forall � + * we have
� � ! � � �6 � � � 	 � �$�&	'�� � � or there exists some �9+ * such that � � ! � � �6 � ��$ 	 ���$�&	'�  � � and forall
*���
���� we have � � ! � 
 �6 � � � 	 ���!�
	��� � � . In the first case, from the induction assumption it
follows that forall � + * we have � � ! � �J6 ��� ?@A���� � 	 ��� A � . In this case � � ! � *I6 �	��?@A���� 	 ��� A � .
In the second case, from the induction assumption it follows that � � ! � � 6 � � ?@A ���#$ 	 ��� A � and forall
*���
���� we have � � ! � 
 6 ����?@A ��� � 	 ��� A � . Again, the claim follows.

Theorem 3.6 If � is of pure polarity in � then the following are equivalent.

1. � � ! � * 6 � � 	 ���;: �
2. � � ! � * 6 �LH�?@A � 	 ��� A �
3. for every formula  we have � � ! � *�6 � �
	 ���� �
4. � � ! � * 6 ����?@A �
	 ��� A �

Proof: As we have shown in Lemmas 3.2 and 3.3, trace semantics is stronger than formula semantics,
and the latter is stronger than structure semantics. Since � � ! � * 6 � H ?@A �
	 ��� A � for all structure
assignments, including E 	BA ��� �

and E 	BA � ��� , we also have 2 
 1. Thus 4 
 3 
 2 
 1. In the
other direction, Lemma 3.4 proves that 1 
 4.

Intuitively, the fact that a mapping can assign to a propositional variable opposite values in different
positions along a trace (or states in a structure) is insignificant. Assigning the value : is sufficient, and
since the subformula is of pure polarity, : is uniquely defined to be constant

�������
or constant �
	��� �

throughout the trace. An outcome of Theorem 3.6 is that given a subformula � of pure polarity in an
LTL formula � , the following are equivalent: (1) � does not affect � � in � (2) � does not affect H � in
� and (3) � does not affect � � in � .
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4 Algorithm and Complexity

In this section we give algorithms for checking vacuity according to the different definitions. As shown
in previous sections, in the case of subformulas of pure polarity, the algorithm of [KV03] works for the
three, equivalent, definitions. We show that this algorithm, which replaces a subformula by either

�������
or �&	'�� � (according to its polarity), cannot be applied to subformulas of mixed polarity. We then study
structure and trace vacuity. The question of how to decide formula vacuity remains open.

As shown in the previous section, in the case of subformulas of pure polarity the algorithm of [KV03]
applies. We show that this algorithm cannot be applied to subformulas of mixed polarity. Consider the
Kripke structure � � in Figure 1 and the formula � ��� � � � . Clearly, � � �6 � H ?)A��
	 � � A � (with the
structure assignment E 	BA � including only the initial state), � � �6 � � 	 � �$� � , and � � �6 ��� ?)A��
	 � � A �
(with the trace assignment � 	KA ��� � � � ). Hence, � affects � according to all three definitions. On the
other hand, � 6 � �
	 � �!�&	'�� � � and � 6 � �
	 � � ������� � . We conclude that the algorithm of [KV03]
cannot be applied to subformulas of mixed polarity.

We now solve trace vacuity. As mentioned, given an LTL formula � , a model � � 	 ������N� � � �������
that satisfies � , and a subformula � , we check whether � affects � � in � by a reduction to model
checking. We want to model check the UQLTL formula � � �>?@A �
	 ��� A � on � . If � 6 � � � � then �
does not affect � � . If � �6 � � � � then � affects � � . The algorithm presented below detects if � affects � �
in � .

� & Compute the polarity of � in � .
� & If � is of pure polarity, model check � 6 � ��	 � �;: � .� &

Otherwise, construct � ��� 	 ���G= � A � � � � ��� ��)� � ��� �� � ���� ,
where for every � $ � � � � ��� and "%$ � " � � �

we have
	,"%$ � � $ � " � � � � � � � � iff 	,"%$ � " � � � �

.� &
Model check � � 6 � ��	 � � A � .
If passed, report “ � does not affect � � ”, otherwise report “ � affects � � ”.

Figure 2: Algorithm for Checking if � Affects ���

The structure � � guesses at every step what is the right assignment for the propositional variable A .
Choosing a path in � � determines the truth values of A along the path. Formally, we have the following
claim.

Claim 4.1 (Correctness of the Algorithm) � � 6 � ��	 ��� A � iff � 6 � � ?@A ��	 ��� A � . 1

Proof: If � �6 �	� ?@A �
	 ��� A � , then there exists a trace ! � " ��� "%$ �(&'&'& and a mapping � such
that � � ! � � � � �6 ��� � 	 ��� A � . Let A@- be a predicate that is

�������
iff * � � 	BA � . The trace ��� �

	," ��� A � � � 	,".$ � A�$ � &'&'& � 0 	 � � � according to the construction of � � . For every � � ��� = � A � , the
truth values of � along ! and ! � are identical. Thus � ���6 � ��	 � � A � . The other direction is similar.
If � � �6 � ��	 � � A � , then there exists a path ! � �
" �#� "%$ �'&(&'& in � � such that � � � ! � � � �6 � � 	 ��� A � .
According to the construction of � � , a corresponding path ! also exists in � , apart from the label-
ing of A . Let � assign the truth values of A along ! � for the propositional variable A in � . Since
� � ! � � � � �6 ��� ��	 � � A � , we have � � 6 � ?@A���	 ��� A � .

We show that trace vacuity is linear in the structure and PSPACE-complete in the formula.

Theorem 4.2 [VW94] Given a structure � and an LTL formula � , we can model check � over � in
time linear in the size of � and exponential in � and in space polylogarithmic in the size of � and
quadratic in the length of � .

1Notice that � is a propositional variable in 	 , but an atomic proposition in 	�
 .
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Corollary 4.3 Given a structure � and an LTL formula � such that � 6 ��� , we can decide whether
subformula � affects � � in time linear in the size of � and exponential in � and in space polylogarithmic
in the size of � and quadratic in the length of � .

Recall that in symbolic model checking, the modified structure � � is not twice the size of � but
rather includes just one additional variable. The modified formula � 	 ��� A � is at most as long as � .
The corollary follows. In order to check whether � is trace vacuous we have to check whether there
exists a subformula � of � such that � does not affect � � . Given a set of subformulas

� ��$ �'&(&'&'� ��� � we
can check whether one of these subformulas does not affect � � by iterating the above algorithm � times.
The number of subformulas of � is proportional to the size of � .

Theorem 4.4 Given a structure � and an LTL formula � such that � 6 � � . We can check whether �
is trace vacuous in � in time

� 	 6 �/6����	� 	 � ��� where �
� 	 � � is the complexity of model checking � over
� .

We show now that unlike trace vacuity, there does not exist an efficient algorithm for structure vacu-
ity. We show that deciding does not affect H is co-NP-complete in the structure. Notice, that co-NP-
complete in the structure is much worse than PSPACE-complete in the formula. Indeed, the size of the
formula is negligible when compared to the size of the model. Co-NP-completeness of structure vacuity
renders it completely impractical.

Lemma 4.5 (Deciding does not affect H ) For � in LTL, a subformula � of � and a structure � , the
problem of deciding whether � does not affect H � in � is co-NP-complete with respect to the structure
� .

Proof: We show membership in co-NP. We consider the complementary problem of deciding affect H .
Consider a formula � and a structure � � 	 ����� �N�� � � � � � �

. In order to check whether � affects H �
we have to model check ?@A��
	 � � A � over � . Guess a subset

� � of
�

and set the structure assignment
E 	KA � � � � . Now model check the formula �
	 � � A � over the structure � ��� 	 ���G= � A � � �N�� � � � � � � �
where

� � 	KA � � � � and
� � 	�� � � � 	�� � for � ��GA .

In Appendix B we give a reduction from 3CNF satisfiability to deciding affects H . Given a 3CNF

formula � , we construct a structure ��� and a (fixed) formula � such that ��� 6 � � and the proposition �
affects H � in �� iff � is satisfiable.

The complexity of deciding affects � is unclear. As shown, in the case of subformulas of pure polarity
(or occurrences of subformulas) the algorithm of [KV03] is correct. We have not found either a lower
bound or an upper bound for deciding affects � in the case of mixed polarity.

5 Pragmatic Aspects

In this section we give some pragmatic aspects of vacuity detection. We discuss the different options for
reporting vacuity. While previous works considers only giving a yes / no answer, we advocate giving the
users the witness formula (see below) as well so that they can best understand why the formula passes
vacuously. We also check what the relation is between subformulas and occurrences of subformulas.
We conclude that in order to get the most thorough vacuity detection both should be accounted for.
Guided by these two observations, we show how we can achieve the most thorough vacuity detection
while reducing the number of model-checker runs. Finally, we report on our experience using vacuity
detection in an industrial setting. All the work in this section relates to trace vacuity. Therefore, we
remove the subscript describing the type of affect.

5.1 Display of Results

When applying vacuity detection in an industrial setting there are two options. We can either give the
user a simple yes/no answer, or we can accompany a positive answer (vacuity) with a witness formula.
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Where � does not affect � we supply �
	 ��� A � (or �
	 ��� : � where � is of pure polarity) as our
witness to the vacuity of � . When we replace a subformula by a constant, we propagate the constants
upwards. For example, if in subformula � � � $ � ��� we replace � $ by �&	'�� � , then � becomes �&	'�� � and
we continue propagating this value above � .

active ��� en
���

in � rdy active ��� �
rdy out

���
active �

bsy active ��� �
bsy out

���
active �

active inactive ��� rdy active
���

bsy active �
two consecutive ���	��
� reset

�
active inactive ����� �

active inactive ���

Figure 3: Vacuous pass

Previous works were interested only in providing a simple yes / no answer. That is, whether the
property is vacuous or not. In this case it suffices to check whether the propositions affect the formula
[BBER97, KV03]. Suppose that � does not affect � . It follows that if ��� is a subformula of � then
��� does not affect � as well. In view of the above, in order to get a yes / no answer only the minimal
subformulas of � (i.e. the atomic propositions that appear in � ) have to be checked. In contrast, when
the goal is to give the user feedback on the source of detected vacuity, it is often more useful to check
non-minimal subformulas.

Consider for example the formula two consecutive in Figure 3. This is an example of a formula that
passed vacuously in one of our designs. The reason for the vacuous pass is that one of the signals in
active inactive was set to �&	'�� � by a wrong environmental assumption. The following formula is the
witness to the fact that the second occurrence of active inactive does not affect two consecutive.

two consecutive 	 active inactive � �;: � � � � 	 reset � active inactive �
From this witness it is straightforward to understand what is wrong with the formula. The witness for-
mula associated with the occurrence of the proposition en under the second occurrence of rdy active (af-
ter constant propagation) is as follows. Note that this occurrence of en occurs positively in two consecutive.

two consecutive 	 en � �;: � � � 	 	 reset � active inactive � � � � 	
� rdy out � � bsy active � �
Clearly, this report is much less legible. This formula has very little connection to the original formula.
Thus, it is preferable to check vacuity of non-minimal subformulas and subformula occurrences.

If we consider the formula as represented by a tree (rather than DAG – directed acyclic graph) then
the number of leaves (propositions) is proportional to the number of nodes (subformulas). We apply
our algorithm from top to bottom. We check whether the maximal subformulas affect the formula. If a
subformula does not affect, there is no need to continue checking below it. If a subformula does affect,
we continue and check its subformulas. In the worst case, when all the subformulas affect the formula,
the number of model checker runs in order to give the most intuitive counter example is double the size
of the minimal set (number of propositions). The yes / no view vs. the intuitive witness view offer a clear
tradeoff between minimal number of model checker runs (in the worst case) and giving the user the most
helpful information. We believe that the user should be given the most comprehensive witness. In our
implementation we check whether all subformulas and occurrences of subformulas affect the formula.

5.2 Occurrences vs. Subformulas

In Section 4 we introduced an algorithm that can determine if a subformula with multiple occurrences
affects a formula. In most cases it makes sense to check if a subformula affects a formula. Sometimes
it is more intuitive to check if an occurrence of a subformula affects the formula. We give examples in
which checking a subformula is more intuitive, and other examples in which checking an occurrence is
more intuitive. We examine if a vacuity detection algorithm can choose one over the other.
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The following example demonstrates why it is reasonable to check if a subformula affects a formula.
Let � � �
	(� � � � , Intuitively, � does not affect � since every expression (or variable) implies itself.
Indeed, according to all the definitions � does not affect � , regardless of the model. However, every
occurrence of � may affect � . Indeed, both � � � �
	 � $��;: � and � ��� ��� 	 � � �;: � may fail (here,
�@- denotes the * th occurrence of � ).

The following example, on the other hand, demonstrates why it is reasonable to check if an occur-
rence affects a formula. Let � � ��� �
	�� � � � . Assume � is always �&	'�� � in model � . Clearly, the
second occurrence of � does not affect � in � . However, the subformula � does affect � in � . Every
assignment that gives A the value �&	'�  � at time � would falsify the formula � 	 � � A � . Recall the formula
two consecutive in Figure 3. The vacuous pass in this case is only with respect to occurrences and not to
subformulas.

We believe that a thorough vacuity-detection algorithm should detect both subformulas and occur-
rences that do not affect the examined formula. It is up to the user to decide which vacuity alerts to
ignore.

5.3 Minimizing the number of checks

As explained above we choose to check whether all subformulas and all occurrences of subformulas
affect the formula. Applying this policy in practice may result in many runs of the model checker and
may be impractical. In particular, when the formula is represented as a DAG, checking all occurrences
involves turning the DAG into a tree. We show that we can reduce the number of subformulas and
occurrences for which we check vacuity by analyzing the structure of the formula syntactically.

It is straightforward to see that if ��� is a subformula of � and � does not affect � then also ��� does
not affect � . Hence, once we know that � does not affect � , there is no point in checking subformulas
of � . If � affects � we have to check also the subformulas of � . We show that in some cases for � �
a subformula of � we have ��� affects � iff � affects � . In these cases there is no need to check direct
subformulas of � also when � affects � .

Suppose the formula � is satisfied in � . Consider an occurrence � $ of the subformula � � � $ ����� of
� . We show that if � $ is of positive polarity then � - affects � iff � $ affects � for * � � � � . As mentioned,
�#$ does not affect � implies �M- does not affect � for * � � � � . Suppose � $ affects � . Then � �6 �
�
	 � $ �$�&	'�� � � . However, �
	 ��- �$�&	'�  � � � � 	 �#$ �$�&	'�� � � . It follows that � �6 ��� 	 ��- �!�
	��� � � and
that ��- affects � . In the case that ��$ is of negative (or mixed) polarity the above argument is incorrect.
Consider the formula � � � 	 ��$ � � � � and a model where ��$ never holds. It is straightforward to see
that � $�� � � affects � while � � does not affect � .

Similarly consider the subformula � � � � $ and the occurrence ��$ of � of negative polarity. We
show that �#$ affects � iff � $ affects � . Suppose ��$ affects � . Then � �6 � � 	 �#$�� ������� � . As before
�
	 � $ � ������� ��� �
	 � $�� ������� � . Suppose that �#$ is of mixed polarity and that ��$ affects � . Then
� �6 � ?)A��
	 � $ � A � . However, we can not prove that � �6 � ?@A � 	 � $ � A � . This is true only if there
exists a computation ! of � , an assignment � such that for some *7+ � we have � 	BA � � � * �'&'&(& � and! � � � � �6 � �
	 � $ � A � .

From the above discussion it follows that we can analyze the form of the formula � syntactically
and identify occurrences � $ such that � $ affects � iff the subformulas of � $ affect � . In these cases it is
sufficient to model check the formula ?)A��
	 � $ � A � . Below the immediate subformulas of ��$ we have
to continue with the same analysis. For example, if � � 	 ��$ � � � ��� 	 ��� � ��� � is of positive polarity
and � affects � we can ignore 	 ��$ � � � � , 	 ��� � ��� � , ��� , and ��� . We do have to check ��$ and � � . In
Table 1 we list the operators under which we can apply such elimination. In the polarity column we list
the polarities under which the elimination scheme applies to the operator. In the operands column we
list the operands that we do not have to check. We stress that below the immediate operands we have to
continue applying the analysis.

The analysis that leads to the above table is quite simple. Using a richer set of operators one must
use similar reasoning to extend the table. Notice that we distinguish between pure polarity and mixed
polarity. As the above table is true for occurrences, mixed polarity is only introduced in cases that the
specification language includes operators with no polarity (e.g. � , � ).
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Operator Polarity Operands
�

+ all
�

- all
� pure / mixed all

�
pure / mixed all

�
pure second

�
pure all

�
pure all

Table 1: Operators for which checks can be avoided

As mentioned, the above elimination works only in the case of occurrences. Indeed, in the case of
a subformula with multiple occurrences one has to take into account the polarities of all occurrences
and the operator under which every occurrence appears. However, suppose that the subformula � �

� 	 � $ � � � � occurs more than once but ��$ and � � occur only under � . In this case, once we check whether
� affects � , the elimination scheme can be applied to � $ and � � .

5.4 Implementation and Methodology

We implemented the above algorithms in Intel’s formal verification environment. We use the language
ForSpec [AFF � 02] with the BDD-based model checker Forecast [FKZ � 00] and the SAT-based bounded
model checker Thunder [CFF � 01]. We enable the users to decide whether they want thorough vacuity
detection or just to specify which subformulas / occurrences should be checked. In the case of thor-
ough vacuity detection, for every subformula and every occurrence (according to the elimination scheme
above) we create one witness formula. The vacuity algorithm amounts to model checking each of the
witnesses. Both model checkers are equipped with a mechanism that allows model checking of many
properties simultaneously.

The current methodology of using vacuity is applying thorough vacuity on every specification. The
users prove that the property holds in the model; then, vacuity of the formula is checked. If applying
thorough vacuity is not possible (due to capacity problems), the users try to identify the important sub-
formulas and check these subformulas manually. In our experience, vacuity checks proved to be effective
mostly when the pruning and assumptions used in order to enable model checking removed some im-
portant part of the model, thus rendering the specification vacuously true. In many examples vacuity
checking pointed out to such problems. We also have cases where vacuity pointed out redundant parts in
the specification.

In Table 2 we include some experimental results. We used real-life examples from processor designs.
We include these results in order to give the flavor of the performance of vacuity checking. All the times
are given in seconds. Some of the properties in the table below consist of more than one assertion. That
is, the property is the conjunction of a few assertions but each assertion is checked separately (both in
model checking and vacuity detection). For each property we report on 4 different experiments. First,
model checking the property using Forecast. Second, model checking all the witness formulas for all the
assertions using Forecast. Third, model checking all the witness formulas with all the assertions using
Forecast. Finally, model checking all the witness formulas for all the properties using Thunder up to
bound 200. Recall that in vacuity detection we hope that all the witness formulas do not pass in the
model. As bounded model checking is especially adequate for falsification, we prove the correctness
of the property using Forecast and falsify the witness formulas using Thunder. Witness formulas that
Thunder was unable to falsify can be checked manually using Forecast.

In the table below, every line corresponds to 4 experiments as explained. For each property (assertion
or set of assertions) we write the number of witness formulas sent to the model checker. The number
in parentheses indicates the number of non-affecting subformulas / occurrences. For Forecast, the first
column (titled MC) reports on the results of model checking, the second column (titled Vacuity) reports
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Property � Checks Forecast Thunder
MC Vacuity Combined

Time Nodes Time Nodes Time Nodes
check internal sig 5(1) 1936 3910K 2051 2679K 3185 5858K 2.28(0)

lsd indication 17(5) 1699 2150K 2265 2566K 1986 3483K !(5)[40]
directive 4(0) 611 1120K 16132 4945K 7355 8943K 25(0)

forbidden start 2(0) 532 549K 1859 4064K 2422 4274K 22(0)
nested start 22 (13) 737 1294K 11017 6153K 10942 6153K !(18)[70]
pilot session 129(16?) 5429 3895K 67126! 25366K 66157! 20586K !(16)[60]

new code 31(1) 1265 2455K 1765 2853K 3097 3932 !(1)[50]

Table 2: Experimental results

on the results of vacuity detection, and the third column (titled Combined) reports on the results of the
combined model and vacuity checking. In each column we specify the time (in seconds) and space (BDD
nodes) required by the model checker. The symbol � indicates that Forecast timed out. For Thunder we
write the time (in seconds) required by the model checker. The number in parentheses indicates the
number of properties that were not refuted up to bound 200. The symbol � indicates that Thunder did
not terminate in 8 hours. In these cases we report (in brackets) the bound up to which the formulas
were checked (note that in the case of lsd indication and new code the partial answer is in fact the final
answer, as can be seen from the run of Forecast). We ran the examples on a Intel(R) PentiumTM 4 2.2GHz
processor running Linux with 2GByte memory. Notice that some of these examples pass vacuously.

6 Summary and Future Work

In this work we investigated vacuity detection with respect to subformulas with multiple occurrences.
The generality of our framework required us to re-examine the basic intuition underlying the concept
of vacuity, which until now has been defined as sensitivity with respect to syntactic perturbation. We
studied sensitivity with respect to semantic perturbation, which we modeled by universal propositional
quantification. We showed that this yields a hierarchy of vacuity notions. We argued that the right
notion is that of vacuity defined with respect to traces, described an algorithm for vacuity detection, and
discussed pragmatic aspects.

As mentioned in the introduction, we were motivated by the need to extend vacuity detection to
industrial-strength property-specification languages such as ForSpec [AFF � 02]. ForSpec is signifi-
cantly richer syntactically and semantically than LTL. Our vacuity-detection algorithm for subformulas
of mixed polarity can handle ForSpec’s rich set of arithmetical and Boolean operators. ForSpec’s se-
mantic richness is the result of its regular layer, which includes regular events and formulas constructed
from regular events. The extension of vacuity detection to ForSpec’s regular layer will be described in a
future paper.
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A Proof of Theorem 2.3

Theorem A.1 Given a structure � and a UQLTL formula � :
� � � � ��� � � � ��� �
� � � ��� � �� � � � ���

Proof: Assume in the way of contradiction that � � � � � but � �� ��� � . Then there exists a
structure assignment 	 and a trace 
 such that ���
�����	��� ��� � . Let 
�������������������������� . We
build the assignment �! #"%$&�('*)+�,��-/.0	1 #"%$�2 , which includes point ) in the assignment � of a
propositional variable " iff � - is in 	1 #"3$ . Both assignments map all propositional variables in �
to the same truth values along the trace 
 , thus ���
�������4�� � � � . This implies that � �� � � � , in
contradiction with the assumption.

For the other direction, consider the formula �5�768" �  #":9 � "3$ and a Kripke structure
with a single state � � that has a self loop.

s0

We show that �4�	;� ��� � for every 	 . There are two possible structure assignments, 	1 #"%$1�<
and 	1 #"3$/�=� . If � � .0	1 #"3$ , then " is always satisfied and ���	>� � � � . If � � �.;	1 #"3$ , then

� � " is always satisfied and �4�	;� �?� � . Thus � � ��� � .
We now show that � �� � � � . Notice that � has a single trace 
 . Consider the trace

assignment � that maps " to all points along 
 except the first one. That is, �@ #"3$A�CBED&'F�G2 .
For that assignment �4�
�������5�� � � � , which implies � �� � ��� .

!x x x

B Deciding does not affect " is co-NP-hard

Lemma B.1 For � in LTL, a subformula � of � and a structure � , the problem of deciding
whether � does not affect � � in � is co-NP-complete with respect to the structure � .

Proof: We show co-NP-hardness. We consider the complementary problem of deciding affect � .
We give a reduction from 3CNF satisfiability. For every 3CNF formula H we construct a structure
�;I . We give a (fixed) LTL formula � such that �JI�� � � and the proposition K affects � � in �;I
iff H is satisfiable. Consider the formula �*LM�N6?" �POQK�RS"UT . By definition, ��IV�� �N68" �WL iff there
exists an assignment 	 such that �4�	X�� � � L . We construct �0I so that the set 	1 #"3$ represents a
satisfying assignment to H .

For every proposition Y - in H we have a set of states that represent the assignment Y - �5Z\[M]#^*_
and a set of states that represent the assignment Y - �a`Fbdce_ . The formula � is constructed so
that ���	�� � �PO KJRS"MT whenever 	 chooses for " a set of states that cannot represent a valid
assignment to the propositions of H . For example, if 	 chooses for " only some of the states that
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represent Y - �5Z\[M]#^*_ (or Y - �5`Fb�c _ ) or if 	 chooses for " some states that represent Y - �5Z\[M]#^*_
and some states that represent Y - � `Fbdc _ for some proposition Y - .

For every clause � - of H we add one path to �0I . If the clause � - uses propositions Y�� , Y�� , and
Y�� we create a path linking a state representing proposition Y�� to a state representing proposition
Y�� to a state representing proposition Y � . If Y � appears in � - positively, we choose a state that
represents Y��/� `�b�c _ , otherwise we choose a state that represents Y��/� Z\[M]#^*_ . Similarly for Y��
and Y	� . This way, if 	1 #"3$ is a valid assignment that does not satisfy the clause � - then all the
states on the path of � - in �;I are not in 	1 #"3$ .

Let H � 
��-� ������  � � -�� � where � -�� � is a literal in ' Ye���������F� Y�� 2�� ' � YW�*�������*� � Y	� 2 . For every
proposition Y?- the structure �0I contains ��� states. The first � states represent the assignment
Y - � `Fbdc _ and the other � states represent the assignment Y - �=Z\[M]#^*_ . Then for every clause� -e�>�e-�� � � �W-�� � � �e-�� � , we create a path that connects the literals in � - .

Let �;I ���\' � � Y��d� ���� "!8�K 2 �$#��+'��F� 2 �&%V�&'�( . The set of states # is the union of the following
sets.
� '�����2 - the initial state.
� ' � -�� �*� � -�� ���*),+ )-+.��2 - two clausal states per clause. These states are used in the path

that represents clause ) to separate the different proposition states.
� ' Y�/0 � - � Y210 � - �3)4+657+98 and )-+N):+;��2 - ��� propositional states per proposition, � positive

and � negative.

The transition relation is the union of the following sets.
� % � � '  � � � Y /0 � � $��<)=+>5?+@882 - the initial state � � is connected to every first positive

propositional state Y</0 � � .
� %&� � '  Y /0 � - � Y /0 � - / � $ �F Y 1

0 � - � Y 10 � - / � $&�A)B+C5D+E8 and )F+a)G+��=HI)�2 - the positive states
related to proposition Y 0 and the negative states related to proposition Y 0 form chains.

� % � � '  Y�/0 � � � Y210 � � $ �F Y210 � � � Y210 � � $ �*)J+.5K+.882 - The last positive state of Y 0 is connected to
the first negative state. The last negative state of Y 0 is connected to itself.

� For every clause H - �IL%�:M Y	� � LM�KM Y�� � L � MY	� where L	N�. '�O��PH&2 for � . '3)d�Q�G�QR 2 we
add the transitions %DS � - �='  �F�d� Y	TVU� � - $ �F YATVU� � - � � -�� � $ �F � -�� �*� YATXW� � - $ �F YATXW� � - � � -�� �F$ �F � -�� �d� Y	TPY� � - $�2 - there
is a path connecting the literals of clause � - according to their polarities. Between every
two propositional states there is a clausal state. We refer to this path as a clausal path. The
only way to get from one proposition state to another proposition state in one step is by
taking transitions in % � �?% � . Notice that the paths that correspond to different clauses do
not share transitions.

The labeling is '/ � $ � ' � -�� � 2 , '/ Y	����$ � ' Y /-�� 0 2 , 'A ��� "! $ �a' Y 1-�� 0 2 , and 'A K $ � < . In Figure B
we have the ‘propositional’ part of �:I without the clausal states and transitions. The structure
�;I can be constructed in polynomial time.

The formula � is the disjunction of the following formulas.
� �1�@� �  Y	��� � � Y	��� �   K � � � K $ �  � K � � K $ $ $ - there are two positive states associated

with the same proposition (reachable in one step) assigned with different values of K .
� � � � �  ��� "! � � �� "! �   K � � � K�$ �  � K � � K $ $ $ - there are two negative states associated

with the same proposition (reachable in one step) assigned with different values of K .
� � � �

�  Y	��� � � �� Z! �   K � � K�$ �  � K � � � K�$ $ $ - the last positive state and the first
negative state agree on the assignment of K .
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Figure 4: The structure � I

� ��S � �  � K � �  � � �  � K � �  � � � � K $ $ $ $ - all three literals are not satisfied on a
clausal path.

As '/ K $ � < the formula � � holds in � and �;I � � � . We claim that �0I �� ��68" �PO K�R "MT
iff H is satisfiable. Indeed, every assignment to " that does not satisfy �PO KJRS"MT must include
either all the positive states associated with one proposition or all the negative states associated
with one proposition (and not both). Furthermore, as the assignment falsifies �POQK�RS"UT every
path associated with some clause must have at least one literal satisfied. Similarly, a satisfying
assignment to H translates to a subset of the states #!L assigning 	1 #"3$ �C#�L falsifies � O K�R "UT .

In [KV03] Kupferman and Vardi show that deciding affects � for CTL formulas is NP-
complete. They give a reduction from SAT to deciding affects � . In their proof both the structure
and the CTL formula depend on the SAT formula. Our proof above can be used to show that
for CTL formulas, deciding affects � is NP-hard in the structure even for a constant formula.
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