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Abstract. Equivalence between designs is a fundamental notion in ver-
ification. The linear and branching approaches to verification induce
different notions of equivalence. When the designs are modeled by fair
state-transition systems, equivalence in the linear paradigm corresponds
to fair trace equivalence, and in the branching paradigm corresponds to
fair bisimulation.

In this work we study the expressive power of various types of fairness
conditions. For the linear paradigm, it is known that the Biichi condition
is sufficiently strong (that is, a fair system that uses Rabin or Streett
fairness can be translated to an equivalent Biichi system). We show
that in the branching paradigm the expressiveness hierarchy depends
on the types of fair bisimulation one chooses to use. We consider three
types of fair bisimulation studied in the literature: 3-bisimulation, game-
bisimulation, and V-bisimulation. We show that while game-bisimulation
and V-bisimulation have the same expressiveness hierarchy as tree au-
tomata, 3-bisimulation induces a different hierarchy. This hierarchy lies
between the hierarchies of word and tree automata, and it collapses at
Rabin conditions of index one, and Streett conditions of index two.

1 Introduction

In formal verification, we check that a system is correct with respect to a desired
behavior by checking that a mathematical model of the system satisfies a formal
specification of the behavior [30,31]. In a concurrent setting, the system under
consideration is a composition of many components, giving rise to state spaces
of exceedingly large size. One of the ways to cope with this state-explosion
problem is abstraction [5,9, 6]. By abstracting away parts of the system that are
irrelevant for the specification being checked, we hope to end up with manageable
state-spaces. Technically, abstraction may cause different states s and s’ of the
system to become equivalent. The abstract system then has as its state space the
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equivalence classes of the equivalence relation between the states. In particular,
s and s’ are merged into the same state.

We distinguish between two types of equivalence relations between states. In
the linear approach, we require s and s’ to agree on linear behaviors (i.e., prop-
erties satisfied by all the computations that start in s and s'). In the branching
approach, we require s and s’ to agree on branching behaviors (i.e., properties
satisfied by the computation trees whose roots are s and s'). When we model sys-
tems by state-transition systems, two states are equivalent in the linear approach
iff they are trace equivalent, and they are equivalent in the branching approach
iff they are bisimilar [34]. The branching approach is stronger, in the sense that
bisimulation implies trace equivalence but not vice versa [34,38]. There is a
slightly weaker notion of equivalence in the branching approach. Instead of con-
sidering bisimulation, consider two-way simulation. Again the two states have
the same set of behaviors. We can show a system with two states s and s’ such
that s and s’ are not bisimilar but they are 2-way similar [34].

Of independent interest are the one-way versions of trace equivalence and
bisimulation, namely trace containment and simulation. There, we want to make
sure that s does not have more behaviors than s’. This corresponds to the basic
notion of verification, where an implementation cannot have more behaviors
than its specification [1]. In the hierarchical refinement top-down methodology
for design development, we start with a highly abstract specification, and we
construct a sequence of “behavior descriptions”. Each description refers to its
predecessor as a specification, and the last description is sufficiently concrete to
constitute the implementation (cf. [29,28]).

The theory behind trace equivalence and bisimulation of finite state systems
is well known. We know that two states are trace equivalent iff they agree on
all LTL specifications, and the problem of deciding whether two states are trace
equivalent is PSPACE-complete [33,26]. In the branching approach, two states
are bisimilar iff they agree on all CTL* formulas, which turned out to be equiv-
alent to agreement on all CTL and p-calculus formulas [5,21]. The problem
of deciding whether two states are bisimilar is PTIME-complete [35,4], and a
witnessing relation for bisimulation can be computed using a symbolic fixpoint
procedure [32,17]. Similar results hold for trace containment and simulation.
The computational advantage of simulation makes it a useful precondition to
trace containment [10].

State-transition systems describe only the safe behaviors of systems. In order
to model live behaviors, we have to augment systems with fairness conditions,
which partition the infinite computations of a system into fair and unfair com-
putations [30,15]. It is not hard to extend the linear approach to account for

! Note that both the specification and the implementation describe the possible behav-
iors of the system, but the specification is more abstract than the implementation,
which may have less behaviors. Sometimes we may want the implementation to have
exactly all the behaviors of the specification. Then, we use trace equivalence or bisim-
ulation relations, and the implementation being less abstract from the specification
is reflected in things like a richer set of observable variables.



fairness: s and s' are equivalent if every sequence of observations that is gen-
erated along a fair computation that starts in s can also be generated along
a fair computation that starts in s’, and vice versa. Robustness with respect
to LTL, and PSPACE-completeness extend to the fair case. It is less obvious
how to generalize the branching approach to account for fairness. Several pro-
posals for fair bisimulation can be found in the literature. We consider here
three: 3-bisimulation [16], game-bisimulation [18,19], and V-bisimulation [29].
In a bisimulation relation between § and §' with no fairness, two related states
s and s’ agree on their observable variables, every successor of s is related to
some successor of s', and every successor of s’ is related to some successor of s.
In all the definitions of fair bisimulation, we require related states to agree on
their observable variables. In 3-bisimulation, we also require every fair compu-
tation starting at s to have a related fair computation starting at s', and vice
versa. In game-bisimulation, the related fair computations should be generated
by strategies that depend on the states visited so far, and in V-bisimulation, the
relation is a bisimulation in which related computations agree on their fairness
(we review the formal definitions in Section 2).

The different definitions induce different relations: V-bisimulation implies
game-bisimulation, which implies 3-bisimulation, but the other direction does
not hold [18]. The difference in the distinguishing power of the definitions is also
reflected in their logical characterization: while 3-bisimulation corresponds to
fair-CTL* (that is, two systems are J-bisimilar iff they agree on all fair-CTL*
formulas, where path quantifiers range over fair computations only [8]), game-
bisimulation is ‘stronger’; that is, game-bisimulation can distinguish between
systems that agree on all fair-CTL* formulas. Thus, unlike the non-fair case,
where almost all modal logics corresponds to bisimulation, here different rela-
tions correspond to different logics [2] 2. Finally, the different definitions induce
different computational costs. The exact complexity depends on the fairness con-
dition being used. For the case of the Biichi fairness condition, for example, the
problem of checking whether two systems are bisimilar is PSPACE-complete for
3-bisimulation [26], NP-complete for V-bisimulation [20], and PTIME-complete
for game-bisimulation [18,19].

There are various types of fairness conditions with which we can augment la-
beled state-transition systems [30]. Our work here relates fair transition systems
and automata on infinite objects, and we use the types and names of fairness
conditions that are common in the latter framework [42]. The simplest condition
is Biichi (also known as unconditional or impartial fairness), which specifies a
set of states that should be visited infinitely often along fair computations. In
its dual condition, co-Biichi, the specified set should be visited only finitely of-
ten. More involved are Streett (also known as strong fairness or compassion),
Rabin (Streett’s dual), and parity conditions, which can restrict both the set of
states visited infinitely often and the set of states visited finitely often. Rabin
and parity conditions were introduced for automata and are less frequent in the

% As shown in [2], the logic CTL induces yet another definition, strictly weaker than
3-bisimulation. Also, no logical characterization is known for V-bisimulation.



context of state-transition systems. Rabin conditions were introduced by Rabin
and were used to prove that the logic S2S is decidable [39]. Parity conditions
can be easily translated to both Rabin and Streett conditions. They have gained
their popularity as they are suitable for modeling behaviors that are given by
means of fixed-points [14]. As we formally define in Section 2, Rabin, Streett,
and parity conditions are characterized by their index, i.e. the number of pairs
(in the case of Rabin and Streett) or sets (in the case of parity) they contain.
When we talk about a type of a system, we refer to its fairness condition and, in
the case of Rabin, Streett, and parity, also to its index. For example, a Rabin[1]
system is a system whose fairness condition is a Rabin condition with a single
pair.

The relations between the various types of fairness conditions are well known
in the linear paradigm. There, we can regard fair transition systems as a no-
tational variant of automata on infinite words, and adopt known results about
translations among the various types and about the complexity of the trace-
equivalence and the trace-containment problems [42]. In particular, it is known
that the Biichi fairness condition is sufficiently strong, in the sense that every
system can be translated to an equivalent Biichi system, where equivalence here
means that the systems are trace equivalent.

In the branching paradigm, tight complexity bounds are known for the fair-
bisimulation problem with respect to the three definitions of fair bisimulation
and the various types of fairness conditions [20,18,26], but nothing is known
about their expressive power, and about the possibilities of translations among
them. For example, it is not known whether every system can be translated to
an equivalent Biichi system, where now equivalence means fair bisimulation. In
particular, it is not clear whether one can directly apply results from the theory
of automata on infinite trees in order to study fair-bisimulation, and whether
the different definitions of fair bisimulation induce different expressiveness hier-
archies.

In this paper, we study the expressive power of the various types of fairness
conditions in the context of fair bisimulation. For each of the three definitions
of fair bisimulation, we consider the following question: given types v and 7' of
fairness conditions, is it possible to translate every v-system to a fair-bisimilar
~'-system? If this is indeed the case, we say that +' is at least as strong as +.
Then, v is stronger than +' if v is at least as strong as 7', but 4’ is not at
least as strong as v. When + is stronger than +', we also say that ' is weaker
than ~y. We show that the expressiveness hierarchy for game-bisimulation and
V-bisimulation is strict, and it coincides with the expressiveness hierarchy of
tree automata. Thus, Biichi and co-Biichi systems are incomparable and are
the weakest, and for all ¢ > 1, Rabin[i + 1], Streett[¢ + 1], and parity[i + 1],
are stronger than Rabinl[i], Streett[i], and parity[i], respectively [40,13,36,37].
In contrast, the expressiveness hierarchy for 3-bisimulation is different, and it
is not strict. We show that Biichi and co-Biichi systems are incomparable, and
they are both weaker than Streett[1] systems. Streett[l] systems are in turn



weaker than Streett[2] and Rabin[1] systems, which are both at least as strong
as Rabin[i] and Streett[i], for all ¢ > 1.

Our results imply that the different definitions of fair bisimulation induce
different expressiveness relations between the various types of fairness conditions.
These relations are different than those known for the linear paradigm, and,
unlike the case there, they do not necessarily coincide with the relations that
exist in the context of automata on infinite trees. A decision of which fairness
condition and which type of fair-bisimulation relation to use in a modeling and
verification process should take into an account all the characteristics of these
types, and it cannot be assumed that what is well known for one type is true for
another.

2 Definitions

2.1 Fair State-Transition Systems

A fair state-transition system (system, for short) S = (X, W, Wy, R, L, a) con-
sists of an alphabet X, a finite set W of states, a total transition relation
R CW xW (ie., for every w € W there exists w' € W such that R(w,w")),
a set Wy of initial states, a labeling function L : W — X, and a fairness con-
dition a. We will define several types of fairness conditions shortly. A computa-
tion of S is a sequence m = wop, w1, ws, ... of states such that for every ¢ > 0,
we have R(w;,w;+1)- Each computation 7 = wog, w1, w2, ... induces the trace
L(m) = L(wp) - L(wy) - L{ws) - - - € X¥. In order to determine whether a compu-
tation is fair, we refer to the set inf(m) of states that m visits infinitely often.
Formally, inf(m) = {w € W : for infinitely many ¢ > 0, we have w; = w}. The
way we refer to inf(7) depends on the fairness condition of S. Several types of
fairness conditions are studied in the literature:

— Biichi (unconditional or impartial), where « C W, and = is fair iff inf(7) N
a# ).

— co-Biichi, where o C W, and 7 is fair iff inf(7) Na = 0.

— generalized Biichi (justice), where o C 2V and 7 is fair iff inf(7) N F # 0
for every F' € a.

— Parity, where « is a partition of W, and = is fair in a = {Fy, F>,..., F} if
the minimal index ¢ for which inf(r) N F; # () exists and is even.

— Rabin, where o C 2% x 2V and 7 is fair in a = {(G1, B1), ..., (G, By)} if
there is a 1 <4 < k such that inf(7) NG; # 0 and inf(7) N B; = 0.

— Streett (compassion or strong fairness), where a C 2% x 2W and 7 is fair in
a={(G1,B1),...,{Gk, Bg)} if for all 1 < i < k, we have that inf(r)NG; #
0 implies inf(7) N B; # 0.

The number k of sets in a parity or generalized Biichi fairness condition or of
pairs in a Rabin or Streett fairness condition is the index of a. When we talk
about the type of a system, we refer to its fairness condition and, in the case of
Rabin, Streett, generalized Biichi, and parity, also to its index. For example, a



Rabin[1] system is a system whose fairness condition is a Rabin condition with
a single pair. For a state w, a w-computation is a computation wg,w;,wa, ...
with wy = w. We use T(SY) to denote the set of all traces o¢ - 01 --- € X¥ for
which there exists a fair w-computation wg, wy, ... in S with L(w;) = o; for all
i > 0. The trace set T(S) of S is then defined as (J,, ¢y, 7(S¥).

2.2 Equivalence between Systems

We now formalize what it means for two systems (or two states of the same
system) to be equivalent. We give the definitions with respect to two systems S =
(X, W,Wo,R,L,a) and S' = (X, W' W{,R',L',a'), with the same alphabet.?
We consider two equivalence criteria: trace equivalence and bisimulation. While
the first criterion is clear (7(S) = T(S")), several proposals are suggested in the
literature for bisimulation in the case of systems with fairness. Before we define
them, let us first recall the definition of bisimulation for the non-fair case.

Bisimulation [34] A relation H C W x W' is a bisimulation relation between
S and S’ iff the following conditions hold for all (w,w') € H.

1. L(w) = L'(w").
2. For all s € W with R(w, s), there is s’ € W' such that R'(w', s") and H (s, s').
3. For all ' € W with R'(w',s"), there is s € W such that R(w, s) and H (s, s').

A relation H C W x W' is a simulation relation from S to S’ if for every
pair (w,w') € H we require that only conditions 1 and 2 above hold.

We now describe three extensions of bisimulation relations to the fair case.
In all definitions, we extend a relation H C W x W', over the states of S and
S', to a relation over infinite computations of S and S’: for two computations
T = wp,W1,-..in S, and 7' = wy,w,... in S’, we have H(m, ') iff H(w;,w}),
for all 4 > 0.

3-Bisimulation [16] A relation H C W x W' is an 3-bisimulation relation
between S and S’ iff the following conditions hold for all {(w,w') € H.

1. L(w) = L'(w").

2. Each fair w-computation 7 in S has a fair w'-computation 7' in S’ with
H(m,7").

3. Each fair w'-computation ' in S’ has a fair w-computation 7 in S with
H(m,7").

3 In practice, S and S’ are given as systems over alphabets 247 and 247 ' when AP and
AP’ are the sets of atomic propositions used in S and S’, and possibly AP # AP'.

When we compare S with S’, we refer only to the common atomic propositions, thus
3 = 2APﬂAP' .



Game-Bisimulation [18,19] Game bisimulation is defined by means of a
game between a protagonist against an antagonist. The positions of the game
are pairs in W x W'. A strategy 7 for the protagonist is a partial function from
(WxW"*x (WUW') to (W'UW), such that for all p € (W xW")*, w € W, and
w' € W', we have that 7(p-w) € W' and 7(p-w') € W. Thus, if the game so far
has produced the sequence p of positions, and the antagonist moves to w in S,
then the strategy 7 instructs the protagonist to move to w' = 7( - w), resulting
in the new position {(w,w'). If the antagonist chooses to move to w' in S’, then 7
instructs the protagonist to move to w = 7(m - w'), resulting in the new position
(w,w"). A sequence W = (wp,wy) - (w1, w}) - € (W x W)¥ is an outcome of
the strategy 7 if for all 4 > 0, either wj,, = 7({wo,wq) - - - (Wi, w;j) - wit1), or
wit1 = T((wo, wp) - - - (Wi, w}) - Wiy, )-

A binary relation H C W x W' is a game bisimulation relation between S
and S’ if there exists a strategy 7 such that the following conditions hold for all
(w,w") in H.

1. L(w) = L(w").

2. Every outcome W = (wp,wy) « {w1,wy)--- of 7 with wg = w and w§ = w'
has the following two properties: (1) for all ¢ > 0, we have (w;,w}) € H, and
(2) the projection wg - wy - -- of W to W is a fair wy-computation of S iff the
projection wy - w} - -- of W to W' is a fair w{-computation of S".

Note that the antagonist can choose to move either in W or in W'. As we
shall see, in the proofs in this paper we use only plays in which the antagonist
chooses between W and W' in the first move and then continues with the same
set ad infinitum.

We specialize the notion of outcome to our purposes as following. Given
an infinite sequence m = wg - wy - ws - -- of states in W, the outcome of 7 on
7 is the infinite sequence 7[r] = s{ - 8] - s5--- of states in W', where w] =

T(wo, S, W1, 8%, .., Wi—1,8;_1,w;) for all ¢ > 0. Similarly, the outcome of 7 on
a sequence ' = wy{ - w} - wh--- of states in W' is the infinite sequence 7 =
wo - wy - we - - - of states in W, where w; = 7(s¢, wy, $1, w1, ..., Si—1,w;_,,w}) for
all > 0.

V-Bisimulation [29,12] A binary relation H C W x W' is a V-bisimulation
relation between S and S’ if the following conditions hold:

1. H is a bisimulation relation between S and S’.

2. If H(w,w'), then for every fair w-computation 7 of S and for every w'-
computation «’ of S’, if H(mw,n"), then «' is fair.

3. If H(w,w'), then for every fair w'-computation 7’ of S’ and for every w-
computation 7 of S, if H(w,n'), then 7 is fair.

It is not hard to see that if H is a V-bisimulation relation, then H is also a
game-bisimulation relation. Also, if H is a game-bisimulation relation, then H
is also an 3-bisimulation relation. As demonstrated in [18], the other direction



is not true. Furthermore, if we assume that every state has some fair computa-
tion starting from it then if H is an 3-bisimulation relation, then H is also a
bisimulation relation.

For all types B of bisimulation relations (that is 8 € {3, game,V}), a -
bisimulation relation H is a (B-bisimulation between the systems S = (¥, W,
Wo, R, L, o) and S' = (X, W', W{, R', L', o'} if for every w € W, there exists
w' € W} such that H(w,w'), and for every w' € W/ there exists w € Wp such
that H(w,w'). If there is a S-bisimulation between S and S’, we say that S and
S' are B-bisimilar. Intuitively, bisimulation implies that S and S’ have the same
behaviors. Formally, two bisimilar systems with no fairness agree on the satisfac-
tion of all branching properties that can be specified in a conventional temporal
logic (in particular, CTL* and p-calculus) [5,21]. When we add fairness, the logi-
cal characterization becomes less robust: 3-simulation corresponds to fair-CTL*,
and game-bisimulation can distinguish between systems even where fair-CTL*
cannot [3,16,18,19].

A relation H C W x W' is a 3-simulation relation from S to S’ if for every
(w,w') € H we require only that conditions 1 and 2 for H being a 3-bisimulation
hold. A relation H C W x W' is a V-simulation from S to S’ if H is a simulation
relation from S to S’ and for every (w,w') € H we require only that condition 2
for H being a V-bisimulation holds. A relation H C W x W' is a game-simulation
relation from S to S’ if we restrict the moves of the antagonist to choose only
states from S and for every pair (w,w') € H we require that conditions 1 and 2
for H being a game-bisimulation hold (under the weaker interpretation of game).
For 8 € {3, game,V}, a B-simulation relation H is a B-simulation from S to S’
iff for every w € Wy there exists w' € Wy such that H(w,w'). If there is a
B-simulation from S to S’, we say that S’ §-simulates S, and we write S <g S'.
Intuitively, while bisimulation implies that S and S’ have the same behaviors,
simulation implies that S’ has all the behaviors of S.

Let v and +' be two fairness types and let 8 be a type of bisimulation. We
say that «y is at least as B-strong as ' (or «y is at least as strong as ' in the
context of B-bisimulation) if for every 7'-system S’, there exists a y-system S
such that S and S’ are B-bisimilar. We say that «y is B-stronger than ~' if «y is at
least as SB-strong as 7' but 7' is not at least as B-strong as 7. We also say that
~" is B-weaker than ~ if v is B-stronger than +'.

As V-bisimulation implies game-bisimulation, and game-bisimulation implies
F-bisimulation the following theorem is easy to prove.

Theorem 1. Let v and 2 be two fairness types.

1. If v, is ot least as game-strong as 72, then 1 is at least as 3-strong as ys.
2. If v1 is at least as V-strong as 7y, then vy is at least as game-strong as v, .

Proof. Suppose 71 is at least as game-strong as 72, we have to show that ~; is
at least as 3-strong as v,. Given a ~y2-system Sa, we have to find a ~y;-system S;
that is 3-bisimilar to S2. As 71 is at least as game-strong as 2 there exists a
Y1-system S; and a game-bisimulation H between S; and Ss. It follows that H



is also an J-bisimulation between S; and S,. In particular, S; is 3-bisimilar to
Ss.

The proof that if v; is at least as V-strong as s, then it is also at least as
game-strong as 2 follows the same lines.

It is easy to see that bisimulation implies trace equivalence. As mentioned
every type [ of bisimulation, implies bisimulation. Hence, a -bisimulation rela-
tion between systems S and S’ implies fair trace equivalence of S and S’. The
other direction, however, is not true [34,18]. There exist systems that have the
same set of traces (fair traces) and are not bisimilar (3-bisimilar, for all types of
bisimulation ). Formally, we have the following.

Theorem 2. [16,18,34] For 8 € {3, game,V} if S and S’ are B-bisimilar then
T(S) =T(S"). The inverse implication does not hold.

Hence, our equivalence criteria induce different equivalence relations. When
attention is restricted to trace equivalence, it is known how to translate all fair
systems to an equivalent Biichi system. In this paper we consider the problem
of translations among systems that preserve bisimilarity.

3 Expressiveness with 3-Bisimulation

When the notion of equivalence is trace equivalence, it follows from the theory of
automata on infinite words (cf. [7]) that co-Biichi systems are weaker than Biichi
systems, which are as strong as parity, Rabin, and Streett systems. When tree
automata are considered, nondeterministic Biichi and co-Biichi tree automata
are both weaker than Rabin tree automata, and, for all ¢ > 1, parity[i], Rabin[i],
and Streett[i] are weaker than parity[i+ 1], Rabin[i+ 1], and Streett[i+1], respec-
tively [40,13,36,37]. In this section we show that the expressiveness hierarchy
in the context of I-bisimulation is located between the hierarchies of word and
tree automata.

3.1 Biichi and Co-Biichi Are Weak

We first show that Biichi and co-Biichi systems are weak. The arguments we
use are similar to these used by Rabin in the context of tree automata [40]. Our
proofs use the notion of maximal models [16,27]. A system M, is a mazimal
model for an YCTL* formula 4 if My = ¢ and for every system M we have that
M <5 My iff M |= 4. We show that there is no Biichi system that is 3-bisimilar
to the maximal model of the formula YO Op. Hence, the following theorem.

Theorem 3. Biichi is not at least as 3-strong as co-Biichi.

Proof. We show that there is a co-Biichi system that has no 3-bisimilar Biichi
system. Consider the co-Biichi system M = (X, W, Wy, R, L,a) appearing in
Figure 1. The set Wy = {qo,¢1} is the set of states marked by incoming arrows.
A pair (w,w') € R iff there is an arrow from w to w'. The alphabet X is 247



where AP = {p}. The labeling function L associates with every state ¢ the letter
o € X such that proposition p is in ¢ iff proposition p marks state g. Finally,
a state ¢ is in the set of accepting states if it is marked by a double circle, i.e.
the fairness condition of M is {go} (a computation is fair iff it visits go finitely
often). We show that the system M is a maximal model for the VCTL* formula
1 = ¥OOp (“in all computations, eventually always p”). It is easy to see that
M [ 1. Indeed, every fair computation of M eventually remains in state ¢;
where p holds. We show that for every system M' = (X, W' W/, R',L',d'), we
have that M’ <3 M iff M' |=V<ODOp [16,25]. Given a system M’ that satisfies 1),
it is easy to see that a relation H C W' x {qo, ¢1} that maps a reachable state
w' with p € L'(w') to ¢; and maps a reachable state w' with p ¢ L'(w') to qo is
a fair 3-simulation from M’ to M. Consider a system M’ such that M' <5 M
with the simulation relation H C W' x {qo, ¢1}. For every initial state wj € W}
it must be the case that H(w{, o) or H(wy, g1). Consider a fair wj-computation
wg,wy, . .. of M'. There exists a fair computation g;,, i, , - . . of M such that forall
j we have H(w},q;;). A fair computation of M eventually remains in state g;.
As H(w',q) implies L'(w') = L(q), we conclude that every fair wj-computation
satisfies 1.

Fig. 1. Maximal co-Biichi model of 1) = VOOp and a system satisfying v

We show that there is no Biichi system that is 3-bisimilar to M. Assume,
by way of contradiction, that such a system B exists. Note that then, B <3 M
and M <3 B. Let n be the number of states in B, and let « be its Biichi
fairness condition. Consider the system S with trivial fairness (all computations
are fair) appearing in Figure 1. It is easy to see that S satisfies ¢, thus S <3 M.
Since M <3 B, then, from transitivity of 3-simulation, S <3 B. Let H be an
3-simulation from S to B. Consider the computation s{ in S. Since sy is fair,
there must be a fair computation 7' = ¢},¢},... in B such that H(sy,t}) for
all i > 1. Let t} € « be the first visit of 7' to a (since 7' is fair, such a visit
must exist). Consider now the fair computation S1,82,8% in S. Since H (sl,t,ll),
there must be a fair computation n? = t; ,#3,t3,... in B such that H(s2,t;) and
H(ss, t?) for all i > 2. Let t2, € a be the first visit of 7* to c. In a similar way,

we can generate a sequence tzl , ti, ... ,tz"tll of states such that for all j > 1, the

state t]+1 is reachable in B from the state tj , H(s2j5- 1,tf ) and the successor

of t] on the computation to t’il is a,ssocw,ted by H to s2j, where p does not
hold Since B has n states, there must be a state repeating twice in this sequence
(that is, there must be j; and j2 for which tf}l = tfi ). It follows that B contains
a fair computation that visits infinitely many states in which p does not hold



(indeed, between every two states in the sequence there is a state related by H
to a state in which p does not hold). Hence. B does not satisfy ¢. Since M is
a maximal model for 1, if follows that B £3 M, contradicting the assumption
that B <3 M.

Note that Theorem 3 implies that the Biichi condition is too weak for defining
maximal models for VCTL* formulas. On the other hand, the Biichi condition is
sufficiently strong for defining maximal models for VCTL formulas [16, 24].

We now claim that co-Biichi is not at least as 3-strong as Biichi.

Theorem 4. Co-Biichi is not at least as 3-strong as Biichi.

Proof. We show that there is a Biichi system that has no 3-bisimilar co-Biichi
system. Consider the Biichi system M = (2{?} {q0,q1},{q0, 01}, R, L) appearing
in Figure 2. We show that the system M is a mazimal model for the VCTL*
formula ¢ = VOOp (“in all computations, p holds infinitely often”). It is easy to
see that M | ¢. Indeed, every fair computation of M visits go, where p holds,
infinitely often. We show that for every system M' = (X, W' W}, R', L', a'), we
have that M' <5 M iff M' |= ¢ [16]. Given a system M’ that satisfies ¢, it is
easy to see that a relation H C W' x {qo, g1} that maps a reachable state w’ with
p € L'(w') to go and maps reachable a state w’ with p ¢ L'(w') to ¢ is a fair
I-simulation from M’ to M. Consider a system M’ such that M’ <5 M with the
simulation relation H C W' x {qo, ¢1 }- For every initial state wy € W it must be
the case that H (wy(, qo) or H(wy,q1). Consider a fair w{-computation wg,w}, ...
of M'. There exists a fair computation ¢;,, g;, , - - - of M such that forall j we have
H(wj,gi;)- A fair computation of M visits state go infinitely often. As H(w', q)
implies L'(w") = L(q), we conclude that every fair w{-computation satisfies 1.
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Fig. 2. Maximal Biichi model of ¢ = VOOp and a system satisfying 1

We show that there is no co-Biichi system that is 3-bisimilar to M. Assume,
by way of contradiction, that such a system C' exists. Let n be the number of
states in C, and let a be its co-Biichi fairness condition. Consider the system S
with trivial fairness appearing in Figure 2. Since S satisfies ¢, then S <3 M,
implying that S <3 C. Let H be a I-simulation from S to C, and let ¢; be
such that H(s;,t1). Consider the computation 7 = (s1,82,...,8p42)* in S .
Since = is fair, there must be a fair computation ©' = #1,t2,... in C such that
H(m,n'). Let t; € a be the last visit of 7 to a. There is [ > j such that for all
1<i<mn+1, we have H(s;,t;4;). Since C has n states, there must be a state
repeating twice in t;41,...,t14nt1, &Y tigj; = titjs, With ji < ja. Then, the



computation t1,%2, ..., ¢, tigjy (bigji+1, - - - > tij ) s a fair computation in C in
which p holds only finitely often (indeed, all the states in ¢y, 41,..., 4, are
related by H to states in which p does not hold). Hence, C' does not satisfy .
Since M is a maximal model for 1, it follows that C' £3 M, contradicting the
assumption that C <3 M.

It follows that Biichi is not as 3-strong as co-Biichi, and co-Biichi is not as 3-
strong as Biichi. Since parity, Rabin, and Streett are at least as 3-strong as Biichi
and co-Biichi, it follows from Theorems 3 and 4 that parity, Rabin, and Streett
are all 3-stronger than Biichi and co-Biichi.

3.2 Rabin[1] Is Strong

So far things seem to be very similar to tree automata, where Biichi and co-Biichi
conditions are incomparable [40]. In particular, the ability of the Biichi condition
to define maximal models for VCTL and its inability to define maximal models
for VCTL* seems related to the ability to translate CTL formulas to Biichi
tree automata [44] and the inability to translate CTL* formulas to Biichi tree
automata (as follows from Rabin’s result [40]). In tree automata, the hierarchy
of expressive power stays strict also when we proceed to parity (or Rabin or
Streett) fairness condition with increasing indices [13, 36, 37]. We now show that,
surprisingly, in the context of 3-bisimulation, Rabin conditions of index one are at
least as strong as parity, Rabin, and Streett conditions with an unbounded index.
In particular, it follows that maximal models for VCTL* can be defined with
Rabin[1] fairness. The idea behind the construction is similar to the conversion
of Rabin and Streett automata on infinite words to Biichi automata on infinite
words.

Lemma 1. Every Rabin system with n states and index k has an 3-bisimilar
Rabin system with O(nk) states and index 1.

Proof. Let S = (X, W, Wy, R, L, a) be a Rabin system with a = {(G1, By), ...,
(G, Bi)}. We define S' = (X, W', W{,R', L', ') as follows.

— Forevery 1 < i <k, let W; = (W \ B;) x {i}. Then, W' = (W x {0}) U
Ui<i<k Wi, and Wy = Wo x {0}.

B R, :U0<i§k{<(wa0)7 (wlai»a <(1U,i), (’U)',O)), <(’U),'i), (wlai» : <wawl> € R} n
(W' x W'). Note that R’ is total.

— Forall we W and 0 < i <k, we have L'((w, 1)) = L(w).

=o' = {{Uicicp Gi x {i}, W x {0})}.

Thus, S’ consists of k£ + 1 copies of S. One copy (“the idle copy”) contains
all the states in W, marked with 0. Then, k copies are partial: every such copy
is associated with a pair (G;, B;), its states are marked with ¢, and it contains
all the states in W \ B;. A computation of S’ can return to the idle copy from
all copies, where it can choose between staying in the idle copy or moving to
one of the other k copies. The acceptance condition forces a fair computation to



visit the idle copy only finitely often, forcing the computation to eventually get
trapped in a copy associated with some pair (G;, B;). There, the computation
cannot visit states from B; (indeed, W; does not contain such states), and it has
to visit infinitely many states from G;. In order to see that S ~3 S’, consider
the relation H = {(w, (w,4)) : w € W and 0 <4 < k}. We prove that H is an
I-bisimulation between S and S'.

Consider a pair {(w, (w,i)) € H. By the definition of L', we have that L(w) =
L'((w,4)). Given a fair w-computation m = wg,w1,... in S, let j be the pair
in a for which inf(r) N G; # 0 and inf(w) N B; = (. Let k be such that the
set B; is not visited in beyond wy, (that is, for all k' > k, we have wy, ¢ B;).
Consider the path ' = (wo,1), (w1,0) ..., (wg,0), (Wgt1,5); (Wgi2,7),- - Since
B; is not visited beyond wy, this is a valid path of S'. Clearly, H(w,7'), and
the idle copy is visited in 7’ only finitely often. Also, since 7 is fair, 7’ visits
infinitely many states in G; x {j}, and hence, 7’ is fair. Consider now a fair
path 7' = (wo, %), (w1,%1),... in S’. By similar considerations, it is not hard to
see that the path @ = wo,wy, ..., obtained from #' by replacing a state (w;, ;)
by the state w; is a valid and fair path in S, with H(m, 7). Hence, H is an
I-bisimulation relation. Finally, since H is such that for all wg € Wy, we have
H(wp, (wg,0)), the relation H is an 3-bisimulation between S and S’, and we
are done.

Runs of a Rabin[k] automaton on different words are independent of each
other: each run can chose a pair in a with respect to which the run is going
to be fair. The choice of the pair is made when the run starts, and there is
no need for the run to “change its mind” and switch to a different pair. This
is why the transformation of Rabin[k] word automata to Rabin[1] (or Biichi)
automata is rather simple and it involves a split to k copies of the automaton,
each corresponding to a pair in a, with no need for an “idle copy” [7]. On the
other hand, in the case of tree automata, runs on different computations of the
tree depend on each other, and the run of the automaton along a computation
may need to postpone its choice of a suitable pair in a ad infinitum, which
cannot be captured with a Rabin[1] condition. The crucial observation about 3-
bisimulation is that here, if 71 and 72 are different fair w-computations, then the
fair computations 7] and 74 for which H(m,7]) and H (w3, 7)) are independent.
Thus, each computation eventually reaches a state where it can stick to its
suitable pair in a. Accordingly, a computation needs to change its mind only
finitely often. A visit to the idle copy corresponds to the computation changing
its mind, and the fairness condition guarantees that there are only finitely many
visits to the idle copy.

We now describe a similar transformation for Streett systems. While in Rabin
systems each copy of the original system corresponds to a guess of a pair {(G;, B;)
for which G; is visited infinitely often and B; is visited only finitely often, here
each copy would correspond to a subset I C {1,...,k} of pairs, where the copy
associated with I corresponds to a guess that B; and G; are visited infinitely
often for all ¢ € I, and G; is visited only finitely often for all 7 ¢ I.



Lemma 2. Every Streett system with n states and index k has an 3-bisimilar
Rabin system with O(n - 2°(%)) states and index 1.

Proof. Let S = (X, W, Wy, R, L,a) be a Streett system with a = {(G1, B1), ...,
(G, Br)}. We define S' = (X, W', W{,R',L',a') as follows.

— For every I C {1,...,k}, let Wr = (W \ U;¢;Gi) x {I} x I. Then, W' =
WUUrcq, iy Wr-

- Wé = W().

— In order to define R, we first define the partial function f : W x 2{1:-k} x
{1,...,k} = {1,...,k} below. For every w € W, I C{1,...,k}, and j € I,
let:

min(I) Jj =maz(I) and w € B;
fw,I,j) =< min({p | p€eIandp>j})j#maz(l)and w € B;
j w ¢ B;

Thus, f(w,I,j) returns a value in I. If w ¢ Bj, then f returns j. If w € By,
then f returns the minimal value in I that is greater than j. If j is maximal
in I, f returns the minimal value in 1.

For every I C {1,...,k} and j € I, we define

R, = { {w, (', I,min(I))), {(w, I, j), w'),

Then, R' = RU UIg{l,...,k} UjEI Ry ;.
— Forallwe W, IC{1,...,k},and j € I, we have L'((w, I, j)) = L(w).
— o' ={((Urcq,...xy Bminry X {1} x {min(I)}) N W', W)}.

The system S’ consists of an “idle copy” of S that branches into 2% “groups”.
The idle copy contains all the states in W. Each of the groups is associated with
aset I C{1,...,k} of indices, and it contains |I| copies of S. These copies do
not contain states in G, for ¢ ¢ I, they are marked by I, and by an index j
in I, which we refer to as the “stage” of the state. We log the visits to each of
the B;, for ¢ € I, according to the order on I. The stage is used to indicate the
index of the pair (G;, B;) that has to be visited next. Once B; is visited the
stage is advanced. In case j = maz(I), after visiting B; the stage is updated
to min(I) and the process is iterated ad infinitum. So far, the idea is similar
to the translation of Streett systems to Biichi systems in the linear paradigm
[41]. In order to fit the branching paradigm, we allow a computation of S’ to
return to the idle copy, where it can choose between staying in the idle copy or
progressing to one of the other 2¥ groups. The acceptance condition forces a fair
computation to visit the idle copy only finitely often, forcing the computation
to eventually get trapped in a group associated with some subset I of indices.
There, the computation cannot visit states in the sets G, for ¢ ¢ I (Wr does not
contain these states), and it is forced by the acceptance condition to visit every
set Bj, for j € I, infinitely often.



In order to see that S ~3.S’, consider the relation
H={{w,(w,1,j)) :weW, I C{l,...,k}, and j € [} U {{w,w) : w € W}.

We prove that H is an 3-bisimulation between the systems S and S’. Consider
a pair (w,(w,I,j)) € H (the arguments for a pair {w,w) € H are similar).
By the definition of L', we have that L(w) = L'((w,1,j)). Given a fair w-
computation m = wp, w1, ... in S, let M be the set of indices 4 in {1,...,k} such
that B; is visited infinitely often in «. Since 7 is fair, the states from G;, for
i € M, are visited only finitely often. Let [ be such that states from G;, for
i ¢ M, do not appear after ! (that is, for all I’ > [ and ¢ ¢ M, we have wy ¢
G;). Consider the computation 7' = (wo, I,7), w1, - .., wy, (Wi+1, M, min(M)),
(wig2, M, f(wi41, M, min(M))), .... Since G;, for i ¢ M, is not visited beyond
wy, the computation 7' is a valid computation of S’, satisfying H(w,n'). To
see that 7' is fair, note that states in W are visited in 7' only finitely often.
Furthermore, since 7 visits every set B;, for i € M, infinitely often, 7' gets to
stage min(M) and visits there states from B, (ar) infinitely often. Consider now
a computation 7' = (wo, lo, jo), (w1, I1,71),... in S’ (the case where 7' contains
states in W is similar). As in the Rabin case, the computation 7 = wq, w1, ...,
obtained from 7' by replacing a state (wy, I, j;) by the state wy, is a valid and
fair computation in S, with H (m, 7). We conclude that H is an 3-bisimulation
relation. Since for all wg € Wy, we have H(wp,wp), the relation H is an 3-
bisimulation between S and S’.

Note that while the blow up in the construction in Lemma 1 is linear in
the index of the Rabin system, the blow up in the construction in Lemma 2 is
exponential in the index of the Streett system. The above blow ups are tight
for the linear paradigm [41]*. Since 3-bisimulation implies trace equivalence, it
follows that these blow ups are tight also for the 3-bisimulation case.

3.3 Streett[1] Is Weak

A Rabin[1] condition {(G, B)} is equivalent to the Streett[2] condition {(W,G),
(B,0)}. So, Streett[2] is as J-strong as Rabin[1]. The question arises then, is
whether Streett[2] is stronger than Streett[1]. It turns out that we can combine
the arguments in Theorems 3 and 4 to a proof that Streett[2] is indeed stronger
than Streett[1]. Formally, we have the following theorem.

Theorem 5. Streett[1] is not at least as 3-strong as Streett[2].

Proof. We combine the ideas of Theorems 3 and 4. We show that there is a Ra-
bin[1] system that has no 3-equivalent Streett[1] system. Consider the Rabin[1]
system M appearing in Figure 3. The fairness condition of M is {(G, B)}, where

* [41] shows that the transition from Streett word automata to Biichi word automata is
exponential in the index of the Streett automaton. Since the transition from Rabin[1]
to Biichi is linear, a lower bound for the transition from Streett to Rabin[1] follows.



G = {q} and B = {q1,q3} (i-e., a computation of M is fair iff o is visited in-
finitely often and ¢; and g3 are visited finitely often). We show that the system
M is a maximal model for the VCTL* formula ¢ = VOOr A VOOp. It is easy
to see that M |= 4. Indeed, every fair computation of M eventually remains in
states qgo and go, thus it satisfies VOOr, it also visits state g infinitely often, thus
satisfying VOOp. We show that for every system M’ = (X, W', W[, R',L',a/) we
have that M' <3 M iff M’ |= 1. Given a system M’ that satisfies ¢, it is easy
to see that a relation H C W' x {qo,q1, 92,93} that maps a reachable state w'
as follows is a 3-simulation from M’ to M.

— If p,r € L'(w') then w' is mapped to go.
—Ifpe L'(w') and r ¢ L'(w'") then w' is mapped to ¢;.
If r € L'(w') and p ¢ L' (w') then w' is mapped to g¢z.
If p,r ¢ L'(w') then w' is mapped to gs.

Consider a system M’ such that M’ <3 M with the simulation relation H C
W' x {qo,q1, 42, g3} For every initial state w(, € W} there exists some state g;
such that H(wy,q;). Consider a fair wj-computation wj,w!,... of M'. There
exists a fair computation g;,,gi, , . .. of M such that forall j we have H(wj, g;;)-
A fair computation of M eventually remains in states g and g» and visits gq
infinitely often. As H(w',q) implies L'(w") = L(q), we conclude that every fair

wg-computation satisfies 1.
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Fig. 3. Maximal Rabin[1] model of ¢ = VOOr A VOOp and a system satisfying

We show that there is no Streett[1] system that is 3-equivalent to M. Assume,
by way of contradiction, that such a system R exists. Let n be the number of
states in R, and let a = {(G', B')} be its Streett fairness condition. Consider
the system S’ with trivial fairness appearing in Figure 3. It is easy to see that S’
satisfies 1, hence S’ <5 R. Let H be an 3-simulation from S’ to R. Each block T"
is equivalent to the system S from Figure 2. We follow the proof of Theorem 4
and show that when R simulates the computation inside T, it must visit B’
infinitely often. The structure of S’ resembles that of the system S from Figure 1.
We follow the proof of Theorem 3 and show that R contains a computation that
visits B’ infinitely often and violates ¢Or. Let t; be such that H(s},#1). Consider
the computation m = (s1,83,...,85,2)* in S'. Since 7 is fair, there must be a



fair computation 71 = t},¢1,... in R such that H(mw,7«!). As in the proof of
Theorem 4, the computation 7! cannot visit G' finitely often. So, 7! visits B’
infinitely often. Let t;, € B’ be the first visit to B'. Let s}, be such that H (s, t;, ).

P’ ru

Consider now the fair computation 7' = s, .. ,sn+2, 52 (sf, o583 1 9)¥. Since
H (sp,til) there must be a fair computation n? = t} ,¢3,t3,... in R such that
H(n',7%). Again m® must visit B infinitely often. Let ¢}, € 'B' be the first visit

t2 it of
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states such that for all j > 1, the state tJJr1 is reachable from tJ , and on the
computation between t’ and tﬁl1 there is a state associated by H with s
where both p and r do ‘not hold. Since R has n states, there must be a state
repeating twice in this sequence. It follows that R contains a fair computation
that visits infinitely many states in which r does not hold. Hence, R does not
satisfy v, contradicting M’s maximality.

to B'. In a similar manner, we can generate the sequence t“,

3.4 Parity and Generalized Biichi

Before we summarize our results, let us refer also to the parity and the gen-
eralized Biichi fairness conditions. Since the parity condition is a special case
of Rabin, Lemma 1 also implies a translation of parity systems to 3-bisimilar
Rabin[1] systems. Also, a Rabin[1] condition {(G, B)} can be viewed as a parity
condition {B,G \ B,W \ (G U B)}. Hence, parity[3] is as 3-strong as Rabin[1].
Also recall that a parity fairness condition is a partition of the state set. Hence,
a parity[2] condition can be translated to an equivalent co-Biichi condition and
vice versa, implying that parity[2] is not at least as 3-strong as parity[3].

On the other hand, generalized Biichi is as 3-strong as Biichi. To prove this,
we prove in Section 4 that every generalized Biichi system S has an V-bisimilar
Biichi system S’. Since V-bisimulation is stronger than 3-bisimulation, it follows
that S and S’ are also 3-bisimilar, thus Biichi is at least as 3-strong as generalized
Biichi.

To sum up, we have the following.

Theorem 6. For every fairness type vy, the types Rabin[1], Streett]2], and par-
ity[3] are all at least as 3-strong as v, and are all I-stronger than Biichi, co-
Biichi, Streett[1], and parity[2].

4 Expressiveness with Game-Bisimulation and
V-Bisimulation

In this section we study the expressiveness hierarchy for game-bisimulation
and V-bisimulation. We show that unlike 3-simulation, here the hierarchy co-
incides with the hierarchy of tree automata. Thus, Rabin[i+1] is stronger than
Rabin[i], and similarly for Streett and parity. In order to do so, we define
game-bisimulation between tree automata, and define transformations preserv-
ing game-bisimulation between tree automata and fair systems. We show that
game-bisimilar tree automata agree on their languages (of trees), which enables
us to relate the expressiveness hierarchies in the two frameworks.



4.1 Tree Automata

Let D be a finite set of directions. A D-treeis aset T'C D* such thatifx-d € T,
for x € D* and d € D, then also x € T. The elements of T are called nodes, and
the empty word € is the root of T'. For every x € T, the nodes x - d, for d € D,
are the successors of z. We assume that each node has at least one successor. A
path © of the tree T is a minimal set 7 C T such that € € 7 and for every z € 7,
exactly one successor of z is in 7. Given an alphabet X, a X-labeled D-tree is
a pair (T, V), where T is a D-tree and V : T' — X maps each node of T to a
letter in . When X and D are not important or clear from the context, we call
(T, V) alabeled tree. We sometimes extend V' to paths and use V(7) to denote
the infinite word V' (7[0]) - V(=[1]) - V(7[2]) - - -.

Tree automata run on Y-labeled trees. We define here a special type of tree
automata, called loose tree automata. Unlike conventional tree automata, the
transition function of loose tree automata does not distinguish between the suc-
cessors of a node, it does not force states to be visited, and it only restricts
the set of states that each of the successors may visit. Formally, a loose tree
automaton is A = (X, Q, Qo, d, ), where X is an alphabet, @ is a set of states,
Qo C Q is a set of initial states, § : Q x ¥ — 29 is a transition function, and «
is an acceptance condition. When A runs on (7', V) and it visits a node z with
V(z) = o at state ¢, then d(g,0) = S means that A should send to all the suc-
cessors of z copies in states in S. Formally, a run of A on (T, V) is a Q-labeled
tree (T, r), where r(€) € Qo, and for all z € T and d € D with z-d € T, we have
r(z-d) € 6(r(z),V(x)).

Given a run (T,r) and a path 7 C T, we define inf(r(w)) as the set of
states visited infinitely often along 7. Formally, we define inf(r(r)) = {q :

for infinitely many = € w, we have r(z) = ¢}. We say that 7 is fair in r if ()

satisfies the acceptance condition «, which is determined according to in f(r(r)).
A run (T,r) is accepting if all the paths m C T, are fair in r. For example, a
run (T,r) of a Biichi automaton is accepting if r visits infinitely many states in
« along each path. An automaton A accepts (T, V) iff there exists an accepting
run of A on (T, V). Given a loose tree automaton A, the set £(A) is the set of
all labeled trees accepted by A. For a word p = 0¢ - o1 --- in X% and a state
g € Q, a sequence T = qg,q1,--- in Q¥ is a (g, p)-computation of A, if gg = ¢
and for all 4 > 0, we have ¢;+1 € §(g;,04)-

4.2 Game-Bisimulation between Loose Tree Automata

We now show that the strength hierarchy of fairness conditions induced by game-
bisimulation coincides with the one of loose tree automata. For that, we first
define game-bisimulation between loose tree automata. Consider two loose tree
automata 4 = (X, Q,Qo,d,a) and A" = (X,Q',Q),0',a'). As with fair state-
transition systems, we define a game between a protagonist against an antag-
onist, whose positions are pairs in Q x Q'. A strategy T for the protagonist is
a partial function from (Q x Q")* x X x (Q U Q') to (Q' U @), such that for

all p= (q07Q6)7(q17q1)77(QM7q;n) € (Q X QI)*7 qe Q7 q, € Qla and o € E:



if ¢ € 8(gm,0), then 7(p - (0,q)) € ' (¢,,,0). Similarly, if ¢’ € ¢'(¢.,,0), then
7(p- (0,¢")) € 6(qm,0). Thus, if the game so far has produced the sequence p
of positions, ending in {(gm,q.,), and the antagonist chooses the letter o and a
state ¢ in d(gm, o), then the strategy 7 instructs the protagonist to move to a
state in d(g),,o). If the antagonist chooses to move to ¢' in §'(q},,0), then 7
instructs the protagonist to move to a state in §(¢,,c). Given an infinite se-
quence T = qo,q1,42,--. of states in () and an infinite word p = gp - 01+ in
X% the outcome of 7 on m and p is the infinite sequence [, p] = qb, ¢}, ¢4, - - -
of states in @', where ¢} = 7(go0,44, 41,415 - - - »i—1,4}_1,0i,¢;) for all 4 > 0. Sim-
ilarly, the outcome of 7 on a sequence ©' = ¢{,q,¢5,- .. of states in Q' and p
as above is the infinite sequence 7[r', p] = qo,q1,¢2,- .. of states in @, where
¢ = 7(90,40, 41,41, - - - »9i—1,95_1,04,q;) for all 4 > 0. Note that the outcome is
not always defined.

A binary relation H C Q X Q' is a game bisimulation relation between A and
A’ if there exists a strategy 7 such that the following two conditions hold for all

{¢,¢') in H.

1. For every word p € X% and fair (g, p)-computation = of A, the outcome
T[m, p] is a fair (¢, p)-computation of A', and H (m, 7[r, p]).

2. For every word p € X and fair (¢, p)-computation =’ of A’, the outcome
T[r', p] is a fair (g, p)-computation of A, and H(r[r’, p],n").

The relation H is a game bisimulation between A and A’ iff for every initial
state go € Qo there is an initial state ¢ € Q such that H(qg, q(), and for every
initial state g € @y there is an initial state go € Qo such that H(qo, q{)-

We define a transformation from systems to loose tree automata as follows.
Given S = (X, W, Wy, R, L,a), let Aut(S) = (X, W, Wy, d, ), where for all w €
W and ¢ € X, we have §(w,L(w)) = {s : R(w,s)}, and d(w,s) = 0, for
o # L(w). As claimed below, the transformation preserves game-bisimulation.

Lemma 3. If S ~gome S', then Aut(S) ~game Aut(S").

Proof. Let S = (X, W,Wy,R,L,a) and S' = (X, W', W{,R',L',a'). Given a
game-bisimulation H between S and S’, let T be the strategy that witnesses the
bisimulation. We show that H is also a game-bisimulation between Aut(S) and
Aut(S"). We define a witnessing strategy 7' as follows. For all p = (qo,4), (g1, 41),
o (gma ) € (@ X Q)" g€ Q, ¢ €Q,and 0 € X, we have 7'(p,0,q) =
7(p,q), if L(gm) = o, and is undefined otherwise. Similarly, 7'(p,o,q") = 7(p, ¢'),
if L'(q},) = 0, and is undefined otherwise.

Given a pair (¢,q') € H, a word p = 09,01,... € X%, and a fair (g, p)-
computation T = qo,q1,... of Aut(S), we show that the outcome 7'[r,p] =
45,41, - - - is defined and is equal to the outcome 7[x]. Since (g, ¢') € H and L(q) =
00, then 7'(q,¢',00,q1) = 7(¢,q', q1) is defined. Consider a finite prefix g;, . .., qh,
of '[m, p] such that (g;,q;) € H forall 0 < j < m. Since 7 is a (¢, p)-computation,
thus L(g;) = o; for all ¢+ > 0, we know that 7/(go, 4§, - - > @m> Qs Om,dm+1) =
7(40, 4> - - -  dmy Qo> Gm+1) 18 defined. So, the outcome 7'[m, p] is equal to the
outcome 7[x]. Since w is fair in Aut(S), it is fair also in S. Since H is a game-
bisimulation relation between S and S’, it must be that 7[n] is fair. Finally, for



every state go € Wy, there exists a state gy € W such that {(go, ¢}) € H and vice
versa.

Recall that game-bisimulation between systems implies trace equivalence.
As we claim below, game bisimulation between tree automata implies not only
agreement on traces that may label paths of accepted trees, but agreement on
the accepted trees! We show that given two game-bisimilar loose tree automata,
A and A’, we can use the strategy of the bisimulation to transform an accepting
run of A into an accepting run of 4’ and vice versa. Formally we have the
following Lemma:

Lemma 4. If A ~gome A, then L(A) = L(A').

Proof. Let H be the game-bisimulation between A = (¥, Q,Qo,d,a) and A’ =
(X,Q',Q4,0',¢'), and let 7 be a strategy that witnesses the bisimulation. We
prove that £(A) C L(A"). The other direction is symmetrical. Consider a tree
(T, V) accepted by A, and let (T, r) be an accepting run of A on (T,V). We
build an accepting run tree (T,r') of A" on (T, V). Since (T,r) is a run of A
on (T, V), there is an initial state go € Qo such that r(e) = go. Since H is a
game-bisimulation between 4 and A’ there is an initial state gj € @} such that
H(qo,q()- We define r'(€) = ¢. Consider now a node £ =d; -dy---d,, € T for
which (r(z),r'(z)) € H. The run (T,r') continues to the level below z according
to 7. For each d € D, we define r'(z - d) = 7( r(€), 7' (€), r(dr), r'(d1), -..,
r(zx), r'(z), V(x), r(z - d) ). As 7 is a winning strategy we are ensured that
r'(z-d) € §(r'(x),V(z)), hence (T,r') is a legal run. To see that it is accepting,
consider a path m C T. Since (T,r) is an accepting run, r(w) is fair. Hence,
r'(m) = 7[r(w), V()] must be fair too.

4.3 From Tree Automata to Game-Bisimulation and V-Bisimulation

The tight relation between game-bisimulation and language equivalence implies
a tight relation also between the expressive power of fairness conditions used
in game-bisimulation and tree automata. We note that Lemma 4 does not hold
for 3-bisimulation, and indeed, the expressiveness hierarchy there is different.
Theorems 7 and 8 below formalize this relation.

Theorem 7. Let~y and ' be two types of fairness conditions. If v is at least as
strong as ' in the context of game-bisimulation, then v is at least as strong as '
also in the context of loose tree automata (with respect to language equivalence).

Proof. Given a loose tree automaton A of type v/, we construct a loose tree au-
tomaton of type v with the same language. For that, we first define a transforma-
tion from loose tree automata to systems as follows. Given A = (X, @, Qo, , a),
let Sys(A) =(X,Q x X,Q¢ x X, R, L,a'), where for all ¢,¢' € Q and 0,0’ € X,
we have R((q,0),(q',0")) iff ¢’ € §(q,0). Also, L((¢g,0)) = o, and ' is obtained
from a by replacing each set F' participating in « by the set F' x Y.



Consider the v'-system Sys(A) induced by A. Since « is at least as strong as
~' in the context of game-bisimulation, there is a v-system S’ that is game-
bisimilar to Sys(A). Consider the loose tree automaton Aut(S') induced by
S'. Clearly, Aut(S’) is of type . Since Sys(A) ~game S', then, by Lemma 3,
we have that Aut(Sys(A)) ~gaeme Aut(S’). Then, by Lemma 4, we have that
L(Aut(Sys(A))) = L(Aut(S")). All is left to prove is that L(Aut(Sys(A))) =
L(A).

By the definition, Aut(Sys(A)) = (¥,Q x X,Qo x X,d',a’) is such that
8'((q,0),9) = 6(q,) if ¢ = o, and ¢'((¢,0),p) = @ otherwise. Also, the ac-
ceptance condition o' is obtained from « by replacing a set F' in « by the set
F x X. Given an accepting run tree (T, r) of A on the labeled tree (T, V), we
prove that the tree (T, '), where r'(z) = (r(z),V(z)) is an accepting run tree of
Aut(Sys(A)) on (T, V). Indeed, (T, r'}) is a valid run tree since ¢'(r'(z),V (z)) =
o(r(z),V(x)) x X. Also, (T,r') is accepting since for every path 7 € T, we
have that inf(r'|7) C inf(r|r) x X. Similarly, given an accepting run tree of
Aut(Sys(A)), its projection on ) is an accepting run of A.

Theorem 8. Let v and 7' be two types of fairness conditions. If v is at least as
strong as ' in the context of V-bisimulation, then ~y is at least as strong as '
also in the context of loose tree automata (with respect to language equivalence).

Proof. We show that if «y is at least as strong as ' in the context of V-bisimulation
then «y is at least as strong as 7' in the context of game-bisimulation. Then we
use Theorem 7 to complete the proof.

Given a system S of type v/, we construct a game-bisimilar system of type
~ as follows. Since + is at least as strong as 4’ in the context of V-bisimulation,
there is a y-system S’ that is V-bisimilar to S; i.e., S ~vy S’. Since V-bisimulation
implies game-bisimulation, then S ~g4me S’. Hence, v is at least as strong as '
in the context of game-bisimulation. By Theorem 7, it follows that v is at least
as strong as ' also in the context of loose tree automata.

Theorems 7 and 8 refer to the expressive power of loose tree automata, which
are weaker than conventional tree automata [42]. Nevertheless, as we argue be-
low, the strictness of the expressiveness hierarchy for tree automata holds already
for loose tree automata.

Theorem 9. For all k > 1, we have that Rabin[k+1] (Streett|k+1], parity[k+1])
is more expressive than Rabin[k] (Streett[k], parity [k]) in the context of loose
tree automata (with respect to language equivalence).

Proof. As shown in [23,37], the expressiveness hierarchy for tree automata co-
incides with that of deterministic word automata [45,22], and it can be ob-
tained from the hierarchy of word automata by means of derivable languages.
More formally, given an w-language L, the derivable language of L is the set
der(L) = {(T, V) : for all paths m € T, V(w) € L} of trees all of whose paths are
labeled by words in L. For every k there exists a language of infinite words L1,



such that Ly is recognizable by a deterministic Rabin[k+1] (Streett[k+1], par-
ity[k+1]) word automaton, and Lyy; is not recognizable by a deterministic Ra-
bin[k] (Streett[k], parity[k]) word automaton, and the tree language der(Lyj1)
is recognizable by a Rabin[k+1] (Street[k+1], parity[k+1]) tree automaton, and
is not recognizable by a Rabin[k] (Streett[k], parity[k]) tree automaton [23,37].

We show that Rabin[k+1] loose tree automaton are more expressive than
Rabin[k] loose tree automata. Let Li41 be the language that is recognized by a
deterministic Rabin[k+1] word automaton and der(Ly.1) is not recognizable by
a Rabin[k] tree automaton, as above. Let A be a deterministic Rabin[k+1] word
automaton recognizing Ly1. As shown in [23,37], when A is regarded as a loose
tree automaton, it recognizes der(Lyy1). There does not exist a Rabin[k] tree
automaton recognizing der(Ly41), in particular there does not exists a Rabin[k]
loose tree automaton (which is weaker) recognizing der(Lyy1). The proof for
Streett and parity is similar.

Accordingly, we can sum up with the following.

Theorem 10. The expressiveness hierarchy in the context of game-bisimulation
and V-bisimulation coincides with that of tree automata. In particular, we have
the following:

— For all k > 1, we have that Rabin[k + 1] (Streett[k + 1], parityk + 1]) is
game-stronger and V-stronger than Rabin[k] (Streett[k], parity[k]).

— Rabin[l] is game-stronger and V-stronger than Biichi and co-Bichi.

— Biichi is as game-strong and as V-strong as generalized Biichi.

The proof of the last item is given in Appendix A.

5 Discussion

We considered two equivalence criteria — bisimulation and trace equivalence
— between fair state-transition systems. We studied the expressive power of
various fairness conditions in the context of fair bisimulation. We showed that
while the hierarchy in the context of trace equivalence coincides with the one
of nondeterministic word automata, the hierarchy in the context of bisimulation
depends on the exact definition of fair bisimulation, and it does not necessarily
coincide with the hierarchy of tree automata. In particular, we showed that
Rabin[1] systems are sufficiently strong to model all systems up to 3-bisimilarity.
The explanation to this collapse of the hierarchy is that 3-bisimulation is very
close in its nature to trace equivalence, where Biichi systems are as strong as
other systems. In 3-bisimulation, trace equivalence should hold for many pairs
of states. Consequently, satisfaction of the Biichi condition that takes care of
each of the trace equivalences should be combined with a requirement that trace
equivalence is eventually checked, leading to Rabin[1] or Streett[2] systems.
There is an intermediate equivalence criterion: two-way simulation (that is
S1 < S and Sy < 57) is implied by bisimulation, it implies trace equivalence,



and it is equal to neither of the two [34]. Two-way simulation is a useful criterion:
S1 and S5 are two-way similar iff for every system S we have § < S; iff S < S,
and 57 < S iff S < S. Hence, in hierarchical refinement, or when defining
maximal models for universal formulas, we can replace ; with S;. A careful
reading through our proofs shows that all the results described in the paper for
bisimulation hold also for two-way simulation. Clearly, when two systems are
bisimilar they are also two-way similar. Hence, whenever we say “equivalent”,
which means bisimilar it implies also two-way similar. Whenever we say “not
equivalent” , we prove the claims using two-way similarity. Thus, the systems are
not two-way similar implying not bisimilar.

Recall that I-bisimulation corresponds to fair-CTL* (that is, two systems are
J-bisimilar iff they agree on the satisfaction of all fair-CTL* formulas). Interest-
ingly, the collapse of the expressiveness hierarchy in the context of 3-bisimulation
is to Rabin[1], which is exactly the fairness condition required from alternating
tree automata in order to recognize CTL* formulas. This is a nice observation,
but we still do not fully understand the exact relation between the expressive
power required for a B-bisimulation and the power required from tree automata
that recognize formulas of the logic that characterizes 8. In particular, it is
surprising that there are systems that are 3-bisimilar, not game-bisimilar, and
the p-calculus formula that distinguishes between them is an alternation-free
p-calculus formula [18], which can be recognized by Biichi and co-Biichi tree
automata. A better understanding of the relation can help us understanding
the expressive power of tree automata, by studying the simpler framework of
I-bisimulation (for example, we conjecture that Theorem 5 can be used to imply
that Streett[1] tree automata are too weak for recognizing CTL* formulas).

Finally, the study of 3-bisimulation in Section 3 has led to a simple defini-
tion of parallel compositions for Rabin and parity systems, required for modu-
lar verification of concurrent systems. In the linear paradigm, the composition
S = 51||S2 of S1 and S, is defined so that 7(S) = T(S1) N T(S2) (cf. [28]).
In the branching paradigm [16], Grumberg and Long defined the parallel com-
positions of two Streett systems. As studied in [16,24], in order to be used in
modular verification, a definition of composition has to satisfy the following two
conditions, for all systems S, S1, and Sy. First, if S; <3 S5, then S||S1 <3 5| So.
Second, S <3 S1||S2 iff S <3 S; and S <3 Ss. In particular, it follows that
S||S1 <3 81, thus every universal formula that is satisfied by a component of a
parallel composition, is satisfied also by the composition. When S; and S> are
Streett systems, the definition of Sy || Sz is straightforward, and is similar to the
product of two Streett word automata. When, however, S; and S, are Rabin
systems, the definition of product of word automata cannot be applied, and a
definition that follows the ideas behind a product of tree automata is very com-
plicated and complex. In Appendix B we show that the fact that 3-bisimulation
is located between word and tree automata enables a simple definition of parallel
composition for Rabin systems that obeys the two conditions above.
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A Biichi Is as V-Strong as Generalized Biichi

A richer version of the Biichi condition is the generalized Biichi condition. It is
well known that in the context of tree automata, Biichi conditions are as strong
as generalized Biichi conditions [43]. We show that the classical conversion from
generalized Biichi to Biichi works also in the context of V-bisimulation.

Theorem 11. FEvery generalized Biichi system with n states and index k has an
V-bisimilar Biichi system with O(nk) states.

Proof. Given a generalized Biichi system S = (X, W, Wy, R, L,a) where a =
{F1,...,Fi}, we define a Biichi system S’ = (X, W', W{,R', L', &) as follows:

-W'=Wx{1,...,k}

- Wé = WO X {1}
— In order to define R', we first define the function f : W x {1,...,k} —
{1,...,k}.

For every w € W and i € {1,...,k}, let:

i w ¢ F;
fw,i)=<i+1we F;and i <k
1 w € F, and i =k

Thus, f(w,i) advances i whenever w € F;. After reaching copy k, f(w,k)
returns to 1.

R' = {{(w,i), (W', f(w,q))) : (w,w') € R and i € {1,...,k}

— Forallw e W and i € {1,...,k}, we have L'((w, 1)) = L(w).
- a =F x{1}



The system S’ consists of k copies of the system S. Each copy is marked
by an index ¢ € {1,...,k}. In copy i we are waiting for a visit to the set F;.
Once F; is visited we proceed from copy i copy i + 1. In case we are in copy k
we proceed to copy 1, and the process is iterated ad infinitum. The acceptance
condition forces a fair computation to visit the set Fj in the first copy infinitely
often, thus forcing the system to visit every set Fj.

In order to see that S ~y S’, consider the relation

H = {(w,(w,q)) :i € {1,...,k}}

We prove that H is an V-bisimulation between S and S’. Consider a pair
{(w, (w,1)) € H. By the definition of L', we have that L(w) = L'((w,)). Every
successor w' of w in S has a related successor (w', f(w,4)) in S’. Every successor
(w',7) of (w,4) in S’ has a related successor w' of w in S.

A fair w-computation in S has a single computation of S’ related to it by H
(f is a function and not a relation). This computation is clearly fair. Similarly,
a fair (w, 7)-computation in S’ has a single computation of S related to it by H,
again this computation is fair.

As V-bisimulation implies game-bisimulation and 3-bisimulation the following
corollary follows.

Corollary 1. Ewvery generalized Biichi system with n states and index k has an
game-bisimilar (3-bisimilar Biichi system with O(nk) states.

B Parallel Composition

The advent of concurrent programming has made formal verification significantly
more necessary and difficult. Modular verification is one possible way to address
the state-explosion problem [11]. In modular verification, one uses proof rules of
the following form:

S E
Sa = 99 S1||S2 E v
C(y1, 92, 9)
Here, the symbol “||” denotes parallel composition, and C(1)1,%2,1) is some

logical condition relating 11, Y2, and . Using modular proof rules it is possible
to apply model checking only to the underlying components, which have much
smaller state spaces.

In the linear paradigm, the composition S = 51| S5 is defined so that 7(S) =
T(S1)NT(Ss) (cf. [28]). Thus, S contains exactly all the behaviors that are com-
mon to S7 and Ss, or equivalently, S satisfies exactly all the linear properties
that are satisfied by both S; and Ss. In the branching paradigms, things are less
clear: if we require the parallel composition of S; and S» to satisfy exactly all
the properties that are satisfied by both S; and Ss, then, as branching temporal
logic can characterize systems up to bisimulation, parallel composition cannot
be defined, unless S; and S, are bisimilar. So, the branching paradigm requires



a different definition of parallel composition. In [16], Grumberg and Long study
modular verification of branching properties, and defined the parallel composi-
tions of two Streett systems. The composition defined there is such that for all
Streett systems S, Si, and Ss, the following hold.

1. If S; <3 S5 then S”Sl <3 SHSQ
2. §<35S2iff S <58; and S <3 S>.

In particular, it follows that S||S; <3 Si, thus every universal formula that
is satisfied by a component of a parallel composition, is satisfied also by the
composition. As studied in [16,24], conditions 1 and 2 above are essential and
sufficient for modular verification in the branching paradigm.

When S; and S, are Streett systems, the definition of S||S is straight-
forward, and is similar to the product of two Streett word automata. When,
however, S; and S» are Rabin systems, the definition of product of word au-
tomata cannot be applied, and a definition that follows the ideas behind a prod-
uct of tree automata is very complicated and complex. We show that the fact
that 3-bisimulation is located between word and tree automata enables a simple
definition of parallel composition that obeys conditions 1 and 2.

Given two Rabin systems S; = (X, Wy, W¢, Ry, L1, a1) and Sy = (X, Wa,
WO2: RZJ L27 a2> with oy = {(G%aB%)a T (G%JB%L)} and ap = { <G%5-B%>a R
(G?,,G2) }, we define S1]|S2 = (X, W, Wy, R, L, ) as follows.

— Let W' = {(w1,w2) : w1 € Wy, wy € Wy and Lq(w1) = La(w2)}. For every
1<i<mnand1<j<m,let Wi; = (W'\ (Bj x WaUW; x B})) x {i} x
{j} x{L, T}. Then W =W'U Ulgifn UlSJ'Sm Wi ;

- Wo= Wy xWHnw'

— In order to define R, we first define the function f: W — {1, T}.

flwr,we) = L

» 1w ¢G!
f((w17w2,l,],J_)) = {T Zi iGll

2
fwnunig ) ={ [ 2 £
J

Thus, the label L changes to T whenever a state from G} is encountered,
and the label T changes to L whenever a state from Gf- is encountered.
For every 1 <i<mnand 1< j <m, we define

(w1, w]) € Ry
and

. o
wlawZalaﬂa(p)a(wlan)) <UJ2,UJ12) € Ry

(
Rij — nglaw%i;ja (p)a <w’15w123i5j7f(w17w237:7j5 (P»)
(<w17w2>a<wiawl2))

Then,
R = U U Ri,jﬂ(WXW).

1<i<n 1<j<m



— a={{Uicicn Gi x W2 x {i} x {1,...,m} x {L} N W, W")}.

The system W consists of copies of the product of the state sets of W; and
W,. There is an “idle copy” of the product, that branches into n - m pairs.
Every pair consists of two copies of the product, and is associated with the pairs
(G}, B;) and (G3, B}). As such, it does not contain states from the two bad sets.
Whenever one of the good sets is visited, the tag (L or T) is flipped. If the tag
is flipped infinitely often then both sets are visited infinitely often. As before we
allow the system to change is guess, by returning to the idle copy and then going
into a new copy. The acceptance condition forces a fair computation to visit the
idle copy only finitely often. Thus, the computation eventually gets trapped in
Wi j, for some 1 <4 < n, and 1 < j < m. There, the computation cannot visit
states from the bad sets, and it is forced by the acceptance condition to visit the
good sets.

Lemma 5. For every three Rabin systems S, S1 and S2, If S1 <3 S> then
S||S1 <3 S||S2

PTOOf. Let Sl = <E,W1,W01,R1,L1,Oél), SQ = <E,W2,WO2,R2,L2,062), S =
(Z,W,Wo, R, L,a) with a1 = {(G1,B1),..., (G}, Bo)}, a2 = { (G}, BY), ...,
(G2,,G?) }, and a = {{G1, B1),...,(Gk, Bg)}. Let H be the I-simulation of S;
by Sa. Also, let S||S1 = (X, W', W{,R',L',a) and S||S2 = (¥, W", W§', R",
LII’ all>‘

In order to see that S||S1 <3 5||S2, consider the following relation:

. gy [(ww2) € H, weW,
w, w1, 14, J,9), (w, w2, i, 5',¢')) i, €{1,...,k},

(
B = o)) [JElbonk’ g
((wawl)a (’11),102)) (P,(PI c {J_, _l_}

We prove that H' is an J-simulation of S||Si by S||S2. Consider a pair
{(w,w1,1%,5,9), (w,ws,i',5',¢")) € H'. By the definition of L' and L" and the
fact that (wq,w2) € H, we have that L'((w,w1,1,j,9)) = Li(w1) = La(wsz) =
L"((w,ws,1',j',¢")). Consider a fair (w,ws,1,J,p)-computation 7 in S||S;. Let
7w {1 (7 {2) denote the sequence of first (second) elements in the tuples in .
Clearly, 7 {}1 is a fair w-computation in S. Hence there is some " such that 7 ;=
Wo, W1, . .. is fair according to (G, By) and for some [ forall I' > | we have
wp ¢ By Also, m {2 is a fair w;-computation. Since (w1, w2) € H there exists a
fair wo-computation m = w3, w?, ... in Sy such that H(m {2, m2). There is some
j" such that m is fair according to (G%., B3,) and for some r, forall 7' > r we
have w? ¢ Bjr. Let p = maz(r,l), it follows that the combination of 7 {; with
2, namely, (’U)(), ’11)(2), il:jla QO), (11)1,11)%), [REE) (wPJ ’11)12)), (wp-l-la w12)+1aillaj”7 J—)a ... 8
a fair (w,wa,7', 5", ¢')-computation in S||Ss2. Finally, since for every (w,w;) €
W{ there exists some wy € W¢ such that H(wi,w2) we have that (w,ws) €
Wy, H' ((w,wy), (w,ws2)) and H' is an J-simulation of S||S; by S||S2



Lemma 6. For every three Rabin systems S,S1, and Sa, we have that S <3
S1|S2 iff S <3 S1 and S <3 S,

PT‘OOf. Let Sl = (E, Wl,WOI,Rl,Ll,al), SQ = <E,W2,W02,R2,L2,a2), S =
(Z,W,Wy,R,L,a) and S;||S2 = (X,W',W{,R',L',a'). Let n be the index of
S1 and m the index of Ss.

Assume first that S <35 51||S2. Let H be the 3-simulation of S by S| S2. We
show that S <3 S; (the proof of S <3 S5 is similar). Consider the relation:

such that (w, (w1, ws,4,j,9)) € H or {w, (wi,ws2)) € H

i ={ww)

Jws € Wa, i €{1,...,n}, j€{1,...,m}, andcpE{J_,T}}

We prove that H' is an 3-simulation of S by S;. Consider a pair {(w,w,) € H'.
There is some state (wy,ws,%,k,p) € W' such that (w, (wy,ws,i,5,¢)) € H
(the case that (w,(w;,wy)) € H is similar). By the definition of L and the
fact that (w,(wy,ws,i,5,0)) € H, we have that Li(w;) = L(w). Given a
fair w-computation 7 in S. Since (w, (w1, w2,%,7,¢)) € H there exists a fair
(w1, ws,1, J, p)-computation 7’ in S1||S2 such that H(m,7'). Let © {1 be the
projection of 7' on its first elements. It is easy to see that w {}; is a fair w;
computation with H (', 7 {}1). Finally for wo € Wy there exists some w} € W}
such that H'(wq,wy).

Assume that S <3 S; and S <3 S5. Let H; be the I-simulation of S by S
and let Hs be the 3-simulation of S by S>. We show that S <5 S1]|S2. Consider
the following relation:

H = { EZ’ EZ?Z;S;’L‘P))’ <w,UJ1) € H; and <w7'w2> € H2} NW x W'.

We show now that H is an 3-simulation of S by Si||S2. Consider a pair
{w, (w1, wa,1,J,p)) € H. From the definition of the labeling function in S;|S2
and the fact that (w,w;) € Hy; and (w,w2) € Hs, we have that the states w
and (wy,wa,i,7,¢) agree on their label. Given a fair w-computation 7 in S,
there exists a fair w;-computation 7; in S; and a fair ws-computation 75 in
Sa. We combine m; and 7o into a computation 7' in S1||S2 that goes back to
the idle copy and eventually stays indefinitely in the copy that matches the
pair according to which 7; is winning and the pair according to which 7y is
winning. It is simple to see that «' is a fair (wy,ws,1,j, p)-computation such
that H'(m,7'). The argument for a pair of the form (w, (w1, ws)) € H is similar.
Finally, since H; and H> are 3-bisimulations, for every wo € Wy there exists at
least one initial state (w1, w2) of S1]|S2 such that H(wo, (w1, w2)).

Note that in order to define a composition of two Rabin[l] systems, only
two copies of the product of the two systems is needed. Note also that given a
Rabin[n] and a Rabin[m] system, transforming them first into bisimilar Rabin[1]
systems and then composing the two Rabin[1] systems results in a system that
is very similar to the composition as defined above.



Finally, note that while the blow-up in the transition to Rabin[1] systems is
linear in the index for Rabin systems and is exponential in the index for Streett
systems, parallel composition is easier for Streett systems. The reason is the
conjunctive nature of the Streett condition (a computation is fair if it satisfies
the conditions imposed by all pairs), which corresponds to the conjunctive nature
of parallel composition. Rabin conditions, on the other hand, have a disjunctive
nature, and the blow-up in a parallel composition is required to handle the
disjunctive constraints. As the obvious way to combine two Biichi systems is
by using the generalized Biichi condition, and as we discuss in Section 3, a
generalized Biichi system can be easily translated to an 3-bisimilar Biichi system,
the parallel composition of two Biichi systems is also easy to define.



