
BMC 2004 Preliminary Version

SAT-based Induction for Temporal Safety
Properties

Roy Armoni a,1 Limor Fix a,1 Ranan Fraer a,1

Scott Huddleston b,1 Nir Piterman a,1 Moshe Y. Vardi c,2,3

a Design Technology – Intel, Haifa, Israel
b Desktop Product Group – Intel, Hilsboro, Oregon

c Dept. of Computer Science, Rice University

Abstract

The work presented in this paper addresses the challenge of fully verifying com-
plex temporal properties on large RTL designs. Windowed induction has been pro-
posed by Sheeran, Singh, and Stalmarck as a technique augmenting Bounded Model
Checking for unbounded verification of safety properties. While induction proved to
be quite effective for combinational properties, the case of temporal properties was
not handled by previously known methods. We introduce explicit induction, a new
induction scheme targeted to temporal properties, and to interactive development of
inductive proofs. The innovative idea in explicit induction is to make the induction
scheme an explicit part of the specification, where it can be easily controlled, using
a highly expressive language like ForSpec. We show how explicit induction was
implemented with minor modifications in the ForSpec compiler and in Thunder, a
bounded model checker. Finally, we describe how explicit induction was used for
verifying large control circuits with extensive feedback in the Pentium�4 processor.
The circuits verified by explicit induction are orders of magnitude larger than those
verifiable by traditional model checking approaches.

Key words: SAT, induction, windowed induction, safety

1 Introduction

The general aim of formal verification is to provide compelling evidence of
the correctness of a system in the form of a mathematically precise argument

1 Email: firstname.lastname@intel.com
2 Email: vardi@cs.rice.edu
3 Supported in part by NSF grants CCR-9988322, CCR-0124077, CCR-0311326, IIS-
9908435, IIS-9978135, EIA-0086264, and ANI-0216467 by BSF grant 9800096, and by a
grant from the Intel Corporation.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



Armoni et al

showing that the system (implementation) satisfies a collection of required
properties (specification). In model checking, we verify the correctness of
finite-state systems with respect to a desired behavior by checking whether
a labeled state-transition graph that models the system satisfies a temporal
logic formula that specifies this behavior [6]. Model-checking has two major
advantages, namely, it is fully automatic, and in the case of failure produces
a counterexample (an erroneous execution of the system).

The introduction of symbolic model checking based on BDDs [4,10] has
increased the capacity of model checking and made it a standard in hardware
industry [1]. BDDs are a canonic representation of Boolean functions and are
used to represent sets of states and transitions of the model. BDD-based model
checkers compute the set of reachable states (or sometimes analyze cycles)
to ensure that there are no disallowed behaviors. In spite of the increased
capacity, it soon became apparent that state explosion is still a problem. A
major breakthrough has been the introduction of bounded model checkers [2].
Bounded model checking is based on the representation of computation paths
falsifying the specification in the form of a Boolean satisfiability problem.
The usage of bounded model checking increased the size of models handled
by model checkers; however, at a price. We no longer get a fully certified
answer to the verification problem but rather assurance that there are no
counterexamples of a given length. This observation makes bounded model
checking especially adequate for bug hunting. Still there is a limit on the
size of bounds handled by bounded model checkers, leaving us with lack of
complete assurance in the correctness of the design under verification.

In practice, most specifications are safety properties. A property is called
safety if we can deduce that it is false by examining a finite computation path.
Combinational properties of the form ALWAYS p, also called invariants, are a
particular case of safety properties that have two distinctive characteristics:

• Every safety property can be reduced to an invariant by a compilation
process described below [8].

• Some invariants can be fully proved with a powerful technique, called in-
duction [13].

Besides being a complete proof technique, induction has a better capacity
than bounded model checking, as it has to unroll the model only to a small
depth. The following paragraph explains how the induction works.

1.1 Induction for Invariants

Traditional mathematical induction can be used to prove that a property P (n)
holds for all nonnegative integers n. An induction proof consists of proving
the following two subgoals:

• Prove that P (0) is true.

• Prove that forall k, P (k) implies P (k + 1).

2



Armoni et al

In formal verification, induction has been used to prove an invariant P in a
transition system by showing that P holds in the initial states of the system
and that P is maintained by the transition relation of the system [9]. In many
cases P is not inductive by itself, and one has to find a strengthening of P
that is inductive.

More formally, let M = (S, S0, T ) be a transition system, where S is a set
of states, S0 ⊆ S is a set of initial states and T ⊆ S×S is a transition relation.
For simplicity of presentation, we relate to sets of states as predicates, e.g., by
using the characteristic function of the set. The classical induction methodol-
ogy for proving P is based on manually finding a property Q (the induction
hypothesis) such that Q ⇒ P and proving the following two subgoals:

• The initial states of M satisfy Q: forall states x0, we have S0(x0) ⇒ Q(x0)

• Q is maintained by the transition relation: forall states x0 and x1 we have
Q(x0) ∧ T (x0, x1) ⇒ Q(x1)

This classical method is known to be theoretically sound and complete, where
theoretical completeness is demonstrated by having the property Q describe
the set of reachable states of M . Note that induction hypotheses are typically
much simpler than a full reachable state description. When it succeeds, induc-
tion is able to handle larger models than bounded model checking, since the
induction step has to consider only paths of length 1, whereas bounded model
checking needs to check sufficiently long paths to get a reasonable confidence
[3].

1.2 Windowed Induction

In many cases, constructing an inductive invariant for simple induction is
not feasible. Windowed induction is a modified induction technique, which
can considerably simplify finding inductive invariants for proofs on hardware
models. Mathematically, windowed induction with window size N ≥ 0 consists
of the following two steps:

• Prove that for 0 ≤ k ≤ N , P (k) is true.

• Prove that forall k, (P (k) ∧ . . . ∧ P (k + N)) ⇒ P (k + N + 1).

Windowed induction proofs in a hardware system are realized as follows [13].
To prove that P is an invariant of system M , we do the following:

(i) Manually find a strengthening Q of P for which Q implies P . Typically
we choose Q to be P ∧ 〈something〉.

(ii) Find an N for which the following two proofs are achievable:
(a) Base: Q holds in all paths of length N starting from an initial state:

S0(x0) ∧ T (x0, x1) ∧ . . . T (xN−1, xN) ⇒ Q(x0) ∧Q(x1) ∧ . . . ∧Q(xn)

(b) Step: For an arbitrary path of length N + 1, if Q holds in the first

3



Armoni et al

N + 1 states, then it holds in state N + 2 too

T (x0, x1) ∧ . . . ∧ T (xN , xN+1) ∧Q(x0) ∧ . . . ∧Q(xN) ⇒ Q(xN+1)

This method is also known to be sound and complete. Even without strength-
ening P , if we restrict the induction step only to loopfree paths, completeness
can be proved by choosing N to be the recurrence diameter of the transition
system M , i.e., the maximum length of a loopfree path in M . The advantage
of windowed induction over classical induction is that it provides the user
with two ways of strengthening the induction hypothesis: strengthening the
invariant Q or lengthening the window N . (For simplicity, we do no mention
the loopfreeness condition in the rest of our discussion, but it is implemented
in our tool.)

Windowed induction is used in [13], and is considered more abstractly in
[5]. The formal verification environment in Intel offers this induction scheme
as an automatic mode in the SAT-model checker Thunder. The bound N is
iteratively increased until either the proof succeeds or a given limit is reached.
Windowed induction and standard induction have the same theoretical ca-
pabilities, but windowed induction often permits much simpler induction hy-
potheses. In many cases the size of windows is relatively small. As with simple
induction, we get the best of both worlds: we get a correctness proof and we
get the ability to handle very large models.

Intuitively, pipelines in sequential hardware circuits are why windowed
induction proofs can use simpler induction hypotheses than non-windowed
induction proofs of the same property. When a property P of interest de-
pends on a pipeline of depth d, a windowed induction with window size d can
sometimes prove P inductively without strengthening P . But a comparable
standard induction proof in this case generally has to strengthen P to express
many internal invariants on the pipeline in order for the proof to succeed.

The techniques in [13] have been used successfully at Intel, as they proved
to be quite effective for verifying combinational properties. One benefit of this
approach is that it automates much of the induction mechanism, including
automatically searching for a working induction window size.

1.3 Implicit Induction for temporal properties

When a property P is not combinational, but rather a complex temporal
specification such as a typical formula that is written using the specification
language ForSpec, it may not be obvious how to prove P by induction. As
mentioned, these assertions are often safety properties. The ForSpec compiler
synthesizes P into an automaton AP and an invariant ZP [14,8] such that for
every transition system M :

M |= P iff MP |= ALWAYS ZP

4



Armoni et al

Where MP = M ‖ AP denotes the synchronous composition of M and AP . The
above observation about the behavior of the ForSpec compiler, immediately
suggests that for a safety property P , the classical induction methodology may
be used to prove M |= P by proving that MP |= ALWAYS ZP .

As an example, consider the ForSpec property ALWAYS ¬(f, f), which for-
bids two consecutive occurrences of f , where f is a combinational property.
When compiling its negation, the property EVENTUALLY (f, f), we can get, for
example, the three-state automaton in Figure 1. This automaton can cycle in
its initial state s0 or move nondeterministically to s1 upon receiving the input
f . A second occurrence of f is needed to move from s1 to the accepting state
s2, while an occurrence of ¬f brings us back to s0. The output Z marks the
accepting state of this automaton, such that Z = 0 if and only if the original
property ALWAYS ¬(f, f) fails. If we manage to prove ALWAYS Z by induction,
then we have also a complete proof for ALWAYS ¬(f, f).

Fig. 1. Accepting automaton for EVENTUALLY (f, f) - the negation of ALWAYS ¬(f, f)

This approach is implemented at Intel on top of Thunder, a bounded model
checker [7]. When invoking the induction algorithm, the tool searches for a
large enough window size N for which both requirements (ii-a) and (ii-b) hold.
Completeness guarantees that such an N exist, even without strengthening the
invariant. In practice, the induction succeeds with a reasonably small N for
many combinational invariants. For temporal properties expressed in ForSpec,
however, the tool typically fails to complete the proof. The problem is both
algorithmic and methodological, as we now explain.

On the algorithmic side, the approach suffers from a serious capacity is-
sue. Consider again the property P = ALWAYS ¬(f, f) and the automaton in
Figure 1. Assume that this property can be proven by classical induction, i.e.,
the initial states of M satisfy ¬(f, f) and ¬(f, f) is maintained by the tran-
sition relation. Thus, this property passes with a window N = 1. However,
ALWAYS Z cannot be proven by induction with a small window N . For every
small N , there is a path of length N + 1 failing the induction step (the path
looping N − 1 times in s0 before taking a transition to s1 and then to s2).
Although this path contains loops in the automaton AP alone, it can well be
a loopfree path in the product MP = M ‖ AP . In the worst case, the minimal
window N for which the induction succeeds is the recurrence diameter of the
system M (the minimal length of loopfree paths in M), which usually exceeds
the capacity of the tool. (It might seem that the problem is caused by the
specific automaton used in the example, but this is not the case.)

One way to reduce the window size is to strengthen the invariance ZP

5



Armoni et al

manually. This, however, requires expressing an invariant over the augmented
design MP . While the user can be expected to have an understanding of the
internal details of the system M , the user cannot be expected to have an un-
derstanding of the internal details of the automaton AP , which is the output
of the ForSpec compiler. The user can even less be expected to understand
the interaction of M with AP . Thus, requiring the user to generate invari-
ances of MP is not realistic. This suggests that implicit induction, even with
manual intervention, cannot be effectively used for verifying temporal ForSpec
properties.

1.4 Explicit Induction for Temporal Properties

This limitation is in fact what motivated our work. We want to perform the
inductive reasoning directly on the original temporal formula, rather than on
the results of its compilation. To this end, we encode the induction scheme
explicitly as part of the specification. A failure to prove the induction produces
a meaningful counterexample, which reflects the real reason of the failure and
is not due to compilation artifacts anymore. Understanding the induction
failure is a crucial hint for strengthening the inductive property.

In our opinion, this is the only effective way to allow the manual guidance
of the user in the iterative process of finding the right induction hypotheses.
In this respect, we take the approach of [13] one step further, and to our
knowledge this is the first attempt to perform induction directly on temporal
properties.

To be more precise, consider again a transition system M = (S, S0, T ) and
denote by uninit(M) the non-initialized model (S, S, T ) in which every state
in S is an initial state.

Consider a ForSpec formula P . We say that P is bounded if there exists
k such that for every path π, the truth value of P on π can be determined
by considering the prefix of π of length k. For example, the truth value
of a ∧ [5] b (that is, a holds now and b holds after 5 time units) can al-
ways be determined by considering a prefix of length 6. Similarly, the truth
value of (a[3], b[2]) TRIGGERS NEXT c (that is, 3 occurrences of a followed by
2 occurrences of b must be followed by an occurrence of c) can be deter-
mined by considering a prefix of length 6. On the other hand, there does
not exist a bound k such that the truth value of the formulas a UNTIL b or
(a[2]b∗c) TRIGGERS NEXT d (that is, 2 occurrences of a followed by some num-
ber of occurrences of b and then a c must be followed by d) can be determined
by considering prefixes of length k. Suppose that P is a bounded ForSpec
specification. Proving ALWAYS P by explicit induction requires the following:

(i) Manually find a strengthening Q of P for which ALWAYS Q implies ALWAYS P .
Again, usually Q is chosen to be P ∧ 〈something〉.

(ii) Find an N for which the following two proofs are achievable:
(a) Base: Prove that M |= ALWAYS[0, N ] Q

6



Armoni et al

(b) Step: Prove that uninit(M) |= (ALWAYS[0, N ] Q) ⇒ [N + 1] Q

For bounded formulas Q, both (ii-a) and (ii-b) can be proved using bounded
model checking, as we discuss later. For readers not familiar with the ForSpec
language, the formula ALWAYS[0, N ] Q means that Q holds in the first N + 1
states of a path. Similarly, [N + 1] Q means that Q holds in the N + 2-nd
state of a path.

Now, one can easily see that the requirements (ii-a) and (ii-b) in explicit
induction are the analogs of their counterparts in windowed induction. As
a consequence the explicit induction is sound and complete too (recall the
loopfreeness default constraint). The major difference between explicit in-
duction and implicit induction is that the induction is no longer an internal
algorithm inside the model checker. Rather, the induction scheme becomes an
integral part of the specification, where it can be easily controlled by the user,
using the expressiveness of the ForSpec specification language. This combines
the qualities of windowed induction with the ability to prove properties that
are more complex than simple invariants.

2 Tool Issues

This section examines the tool support necessary to implement the induction
checks (ii-a) and (ii-b) described in Subsection 1.4. Note first that (ii-a) comes
down to checking the assertion ALWAYS Q until bound N (see discussion below
for the impact of formula depth on the bound). This is a plain bounded model
checking problem.

Similarly (ii-b) can be reduced to performing bounded model checking for
the assertion ALWAYS Q with bound exactly N+1 (again, see discussion below),
with the assumption ALWAYS[0, N ] Q, on an uninitialized version of M . This
means that the tool performs bounded model checking at bound exactly N +1
on a model that is formed by composing three smaller models:

• the uninitialized model uninit(M) = (S, S, T ), derived from the original
model M = (S, S0, T ),

• the initialized automaton of the assertion ALWAYS Q,

• the initialized automaton of the assumption ALWAYS[0, N ] Q.

While the model M has to be uninitialized for the induction to be sound, the
two automata compiled by ForSpec have to be initialized as in a regular run.
For instance, the counter used in the [0, N ] time window of the assumption
needs to start from 0, otherwise our check does not implement correctly the
inductive step.

To sum up, we have reduced (ii-b) to another instance of bounded model
checking where the property ALWAYS Q is checked exactly at bound N + 1,
and the initial constraints are built selectively only from the two ForSpec
automata, but not from the model M itself, or from other ForSpec properties.

7



Armoni et al

To solve this last issue, we offer to the user a new ForSpec keyword,
INDUCTION HYPOTHESIS, that he can use to mark the assumption ALWAYS[0, N ] Q.
This way, one can distinguish between assumptions that strengthen the induc-
tion proof and regular assumptions that specify the interface with neighbor
RTL blocks. Based on the new keyword, the ForSpec compiler marks every
one of the automata it generates as an assertion, assumption, or induction
hypothesis. This information is passed to the model checker that makes sure
to use only the initial constraints from the assertion and the induction hy-
pothesis.

Finally, note that the bounds N and N+1 used in the two checks above are
appropriate for the case where Q is a combinational property. We mentioned
earlier that P (and hence Q) can be a bounded safety property. In this case,
the bounds used depend on the length of the time windows employed in P .
Usually, we end up choosing an offset k, such that the induction base (ii-a) is
checked at bound N + k, while the induction step (ii-b) is checked at bound
N + k + 1.

3 Usage Methodology

In this section we cover our methodology for working with explicit induc-
tion. From a usage point of view, there are three primary differences between
explicit induction and implicit induction:

• The user must write the induction hypothesis explicitly, where the implicit
induction builds it automatically from the assertions.

• The user must supply a window size in the explicit induction, while the
implicit induction searches for a working induction window size by trying
increasingly larger sizes.

• In implicit induction, the invariant is the result of automatic translation
of the property. Hence, the user may find it difficult to strengthen the
invariant (as explained above) and his most probable strategy would be to
increase the window size. In explicit induction, the strengthening can be
achieved by changing both the invariant and the window size.

The ForSpec directives needed to express explicit induction proofs are ASSERT,
ASSUME, and INDUCTION HYPOTHESIS. The keyword ASSUME is used to give
auxiliary assumptions (e.g., assumptions about inputs etc.). The explicit in-
duction technique does not depend on the usage of ForSpec, the ForSpec
constructs described below help expressing and maintaining the induction hy-
potheses.

We exploit the ”block template” construct in ForSpec to generate related
formulas for a given temporal property Q. For instance, we define a block
template mk induction specs(Q,N) that generates for a given property Q,
and a window N the induction hypothesis and the assertion necessary for the
proof:

8



Armoni et al

mk induction specs(Q, N) := {

upto cycle NN := ALWAYS[0, N ] Q;

at all times := ALWAYS Q;

}
The explicit induction directives for Q would then look as follows in For-

Spec:

myspec := mk induction specs(Q,N); // instantiate the block

INDUCTION HYPOTHESIS myspec/upto cycle N ;

ASSERT myspec/at all times;

We then check these two directives in a model checking run of N +1 cycles.
Not only does the block template give us a compact notation, it also keeps the
low level formulas denoting assertions and inductive hypotheses synchronized.
They refer to the same property Q and the same bound N , which prevents
false positives.

In some cases it is convenient to use a different window size for different in-
duction hypotheses. This provides useful insight into the pipeline/logic depth
that each property depends on, and also helps select minimal sufficient model
checker bounds to control complexity. It is a strength of this methodology that
it is flexible enough to use either independent or identical induction window
sizes for different specs.

For any property that can be proved inductively, there will be some in-
duction window size for which it and all larger window sizes yield a successful
proof, and all smaller window sizes fail with a counterexample in the formal
model. Initially it is not known what window size is needed, so starting with
larger window sizes can be beneficial. On the other hand, shorter window sizes
find counterexamples more quickly, and shorter counterexamples are easier to
debug.

As a general rule, we estimate an induction window size N that might
work and try to prove the property Q. If we get a failure, we examine the
counterexample. If the counterexample looks like it could be due to out-of-
sync initialized pipelines, the induction window size needs to be increased. If
the counterexample looks like it is caused by some state in the formal model
that should not be reached in the actual circuit, the inductive hypothesis prob-
ably needs strengthening. The strengthened hypothesis typically adds a new
constraint that forbids some problematic state combination that contributes
to the counterexample.

Assertions that depend on simple pipelines demonstrate the advantage of
windowed induction over “depipelining”, i.e., of turning a windowed induction
hypothesis into a larger invariant for simple induction. Where a windowed
induction hypothesis can simply reference values of interest at the ends of

9



Armoni et al

the pipelines, a simple induction invariant must explicitly express a constraint
at every pipeline stage. When the logic driving the assertion to prove is
more complex than simple pipelines, the effort and cost to construct a simple
induction invariant is much higher.

This methodology also allows an intermediate approach between pure sim-
ple induction and long induction windows. For simple pipelines amenable
to depipelining, one can partition the pipeline into two (or more) pieces of
roughly equal length, and express invariants at just the partition points and
end. For very long pipelines this can roughly halve the required induction
window size with only a small depipelining cost in invariant construction. It
is a strength of any windowed induction technique, including ours, that this
trade off is available.

4 Application to the Lock Protocol in the Pentium�4
Processor

The lock protocol is used in the Pentium�4 to allow different threads to ex-
ecute atomic operations on several shared resources. The lock protocol is
important to verify because it interacts subtly with several other microarchi-
tectural features, making its functional correctness crucial. The lock protocol
interacts with the cache coherence protocol, as well as with several other per-
formance optimizations.

One basic requirement for such a protocol is mutual exclusion: no resource
can be locked by two threads at once. This property is expressed by a ForSpec
formula of the form ALWAYS a TRIGGERS b[k], where a and b are certain signals
of the design and k is an integer. Note that this property is bounded. Using
bounded model checking this property was proved on all traces of up to 50
cycles. Given the importance of this property, it was necessary to get a full
unbounded proof and we used explicit induction for that purpose.

When trying to prove the mutual exclusion property, we quickly get in-
duction failures. The model checker provides a witness trace for which the
inductive step does not hold. Usually this is due to starting in states that are
unreachable in the real model. For instance, the control part of the protocol
is modeled as a finite state machine. Some induction failures are traces that
include concurrent occurrence of certain events that cannot actually happen
together in the real model. Adding a simple induction hypothesis eliminates
such trivial failures.

Developing the inductive proof is therefore an iterative process, where we
keep strengthening the induction hypothesis based on the failures of previous
attempts to establish induction. Overall, we had to add about twenty con-
straints before the hypothesis was sufficiently strong to establish induction.
The window size of the inductive proofs differed from property to property.
Only three properties were provable with a window size of one cycle. All the
other properties were proved with a window size of six to twelve cycles.

10



Armoni et al

The model we verified is quite large, containing about 12,000 state ele-
ments. This is considerably beyond the capacity (a few hundred state ele-
ments) of BDD-based model checkers. The verification effort for the proved
properties described here took three to six person-months. Most induction-
step runs completed within 20 minutes, checking 36 steps, using under 600M
of memory. All induction-step runs completed within 3 hours, checking 48
steps, using under 1G memory.

5 Similar Approaches to Induction

Two potential alternatives invite a comparison with our approach. The most
direct comparison is with the implicit induction based on [13]. This approach,
as currently implemented in Thunder is incapable of inductively proving most
temporal properties written in ForSpec, so no direct comparison is possible.
We explained earlier the reasons for the failure of implicit induction for tem-
poral properties. While the capacity problem cannot be eliminated by us-
ing a different compilation scheme, we believe that it can be alleviated. For
example, were we to compile the properties into deterministic automata, the
counterexample traces for the induction step (ii-b) would be more constrained,
reducing the required window size N . This is a topic of further research. Even
if that technology becomes available, it is possible that for very large models
our approach would still be preferable to implicit induction, because of the
insight into induction window lengths our approach can give on a property by
property basis.

Another comparison with our approach is induction using STE instead
of SAT as the bounded model checker. Induction with STE [12] has been
used successfully at Intel for several years, particularly for datapath logic and
floating-point property proofs. Sajid and Kaviola pioneered the extension of
STE induction to a moderately complex control logic property [11]. Direct
comparisons between the STE and SAT induction approaches are not easy
because of tool differences. Our 12000 state element model, even reduced to
the critical latches, is likely more than twice the size of the 3000 state element
model in [11]. Perhaps the largest distinction between SAT induction and
STE induction is the apparent difficulty or impracticality of doing windowed
induction (vs. simple induction) with STE. Windowed induction using STE is
theoretically possible, but it has problems with rapid variable blowup and/or
antecedent conflicts. The work of [11] includes simple induction for exactly
this reason.

6 Results

The concepts presented here have been implemented in the formal verification
tool suite at Intel. Only minor modifications were required to the ForSpec
compiler and to Thunder, our SAT based model checker. The explicit in-

11



Armoni et al

duction approach has been successfully used in the DPG Formal Verification
Group. In particular, the most impressive application was the full verifica-
tion of the lock protocol described above. The size of the model,12000 state
elements, and the complexity of the protocol speak for themselves. But be-
yond the quantitative data, there is the impact of a new methodology that
can address verification problems that cannot be handled with the existing
technologies.

The use of windowed induction seems to be a critical factor in enabling
successful proofs of these properties. If it was necessary to depipeline our
windowed induction hypotheses into hypotheses sufficient for simple induction,
a reasonable estimate is that spec volume would increase by at least a factor
of 10, effort at least triple, and comprehensibility and maintainability would
be considerably reduced.

7 Summary

The methodology and tool support presented in this paper address the chal-
lenge of fully verifying complex temporal properties on large RTL designs. The
methodology advocated here is interactive development of inductive proofs.
There is much ongoing research for automating induction proofs, but no sat-
isfactory technique has been found, even for combinational properties. We
believe that for proofs of the complexity encountered in our work, user guid-
ance is needed for finding the correct induction invariants.

At the core of our approach is the explicit induction, a new induction
scheme targeted to temporal properties, and to interactive development of in-
ductive proofs. The case of temporal properties was not adequately addressed
by previously known methods. The innovative idea in the explicit induction
is to make the induction scheme an explicit part of the specification, where it
can be easily controlled, using a highly expressive language like ForSpec.

The current experience shows that the explicit induction is capable of
handling verification problems that were previously intractable with all the
existing technologies. To further push this approach, our future work will
focus on automating some of the manual tasks, for instance by having the
tool suggest candidates for induction invariants.

References

[1] Beer, I., S. Ben-David, C. Eisner and A. Landver, RuleBase: An industry-
oriented formal verification tool, in: Proc. 33rd Conference on Design
Automation (1996), pp. 655–660.

[2] Biere, A., A. Cimatti, E. Clarke, M. Fujita and Y. Zhu, Symbolic model checking
using SAT procedures instead of BDDs, in: Proc. 36th Design Automation
Conference (1999), pp. 317–320.

12



Armoni et al

[3] Biere, A., E. Clarke, R. Raimi and Y. Zhu, Verifying safety properties of a
PowerPC[tm] microprocessor using symbolic model checking without BDDs,
in: Computer Aided Verification, Proc. 11th International Conference, Lecture
Notes in Computer Science 1633 (1999), pp. 172–183.

[4] Bryant, R., Graph-based algorithms for boolean-function manipulation, IEEE
Trans. on Computers C-35 (1986).

[5] Claessen, K., Induction and state machines (1999), unpublished.

[6] Clarke, E., O. Grumberg and D. Peled, “Model Checking,” MIT Press, 1999.

[7] Copty, F., L. Fix, R. Fraer, E. Giunchiglia, G. Kamhi, A. Tacchella and
M. Vardi, Benefits of bounded model checking at an industrial setting, in:
Computer Aided Verification, Proc. 13th International Conference, Lecture
Notes in Computer Science 2102 (2001), pp. 436–453.

[8] Kupferman, O. and M. Vardi, Model checking of safety properties, Formal
methods in System Design 19 (2001), pp. 291–314.

[9] Manna, Z. and A. Pnueli, “The Temporal Logic of Reactive and Concurrent
Systems: Safety,” Springer-Verlag, New York, 1995.

[10] McMillan, K., “Symbolic Model Checking,” Kluwer Academic Publishers, 1993.

[11] Sajid, K. and R. Kaviola, Verification of pentium�4 BUS recycle logic using
symbolic simulation and induction, in: Intel Design Test and Technology
Conference, 2003.

[12] Seger, C. and R. Bryant, Formal verification by symbolic evaluation of partially-
ordered trajectories, Formal Methods in System Design 6 (1995), pp. 147–189.

[13] Sheeran, M., S. Singh and G. Stalmarck, Check safety properties using induction
and a SAT-solver, in: Proc. 3rd Conference on Formal Methods in Computer-
Aided Design, Lecture Notes in Computer Science 1954 (2000), pp. 108–125.

[14] Vardi, M. and P. Wolper, Reasoning about infinite computations, Information
and Computation 115 (1994), pp. 1–37.

13


	Introduction
	Induction for Invariants
	Windowed Induction
	Implicit Induction for temporal properties
	Explicit Induction for Temporal Properties

	Tool Issues
	Usage Methodology
	Application to the Lock Protocol in the Pentium™4 Processor
	Similar Approaches to Induction
	Results
	Summary
	References

