
Liveness with Incomprehensible Ranking?

Yi Fang1, Nir Piterman2, Amir Pnueli21, and Lenore Zuck1

1 New York University, New York, {yifang,zuck}@cs.nyu.edu
2 Weizmann Institute of Science, Rehovot, Israel
{nirp,amir}@wisdom.weizmann.ac.il

Abstract. The methods of Invisible Invariants and Invisible Ranking were devel-
oped originally in order to verify temporal properties of parameterized systems
in a fully automatic manner. These methods are based on an instantiate-project-
and-generalize heuristic for the automatic generation of auxiliary constructs and
a small model property implying that it is sufficient to check validity of a deduc-
tive rule premises using these constructs on small instantiations of the system.
The previous version of the method of Invisible Ranking was restricted to cases
where the helpful assertions and ranking functions for a process depended only on
the local state of this process and not on any neighboring process, which seriously
restricted the applicability of the method, and often required the introduction of
auxiliary variables.
In this paper we extend the method of Invisible Ranking to cases where the help-
ful assertions and ranking functions of a process may also refer to other processes.
We first develop an enhanced version of the small model property, making it ap-
plicable to assertions that refer both to processes and their immediate neighbors.
This enables us to apply the Invisible Ranking method to parameterized systems
with ring topologies. For cases where the auxiliary assertions refer to all pro-
cesses, we develop a novel proof rule which simplifies the selection of the next
helpful transition, and enables the validation of the premises possible under the
(old) small model theorem.

1 Introduction

Uniform verification of parameterized systems is one of the most challenging problems
in verification today. Given a parameterized system S(N) : P [1]‖ · · · ‖P [N] and a
property p, uniform verification attempts to verify S(N) |= p for every N > 1. One
of the most powerful approaches to verification which is not restricted to finite-state
systems is deductive verification. This approach is based on a set of proof rules in
which the user has to establish the validity of a list of premises in order to validate a
given property of the system. The two tasks that the user has to perform are:

1. Identify some auxiliary constructs which appear in the premises of the rule.
2. Establish the logical validity of the premises, using the auxiliary constructs identi-

fied in step 1.

? This research was supported in part by the Minerva Center for Verification of Reactive Sys-
tems, the European Community IST project “Advance”, the Israel Science Foundation (grant
no. 106/02-1), and NSF grant CCR-0205571.

When performing manual deductive verification, the first task is usually the more dif-
ficult, requiring ingenuity, expertise, and a good understanding of the behavior of the
program and the techniques for formalizing these insights. The second task is often
performed using theorem provers such as PVS [23] or STeP [4], which require user
guidance and interaction, and place additional burden on the user. The difficulties in the
execution of these two tasks is the main reason why deductive verification is not used
more widely.

A representative case is the verification of invariance properties using the invariance
rule of [18]. In order to prove that assertion r is an invariant of program P , the rule re-
quires coming up with an auxiliary assertion ϕ which is inductive (i.e. is implied by the
initial condition and is preserved under every computation step) and which strengthens
(implies) r.

In [20, 2] we introduced the method of invisible invariants, which proposes a method
for automatic generation of the auxiliary assertion ϕ for parameterized systems, as well
as an efficient algorithm for checking the validity of the premises of the invariance rule.
In [10] we extended the method of invisible invariants to invisible ranking, by apply-
ing the method for automatic generation of auxiliary assertions to general assertions
(not necessarily invariant), and proposing a rule for proving liveness properties of the
form

�
(p → � q) (i.e, progress properties) that embeds the generated assertions in

its premises, and efficiently checks for their validity.

The generation of invisible auxiliary constructs is based on the following idea: It
is often the case that an auxiliary assertion ϕ for a parameterized system has the form
q(i), ∀i.q(i) or, more generally, ∀i 6= j.q(i, j). We construct an instance of the pa-
rameterized system taking a fixed value N0 for the parameter N . For the finite-state
instantiation S(N0), we compute, using BDD-techniques, some assertion ψ, which we
wish to generalize to an assertion required form. Let r1 be the projection of ψ on pro-
cess index 1, obtained by discarding references to all variables which are local to all
processes other than P [1]. We take q(i) to be the generalization of r1 obtained by re-
placing each reference to a local variable P [1].x by a reference to P [i].x. The obtained
q(i) is our candidate for the body of the inductive assertion ϕ : ∀i.q(i). We refer to this
part of the process as project&generalize. For example, when computing invisible in-
variants,ψ is the set of reachable states of S(N0). The process can be easily generalized
to generate assertions of the type ∀i1, . . . , ik.p(~i).

Having obtained a candidate for the assertion ϕ, we still have to check the validity
of the premises of the proof rule we wish to employ. Under the assumption that our
assertional language is restricted to the predicates of equality and inequality between
bounded range integer variables (which is adequate for many of the parameterized sys-
tems we considered), we proved a small model theorem, according to which, for a cer-
tain type of assertions, there exists a (small) bound N0 such that such an assertion is
valid for every N iff it is valid for all N ≤ N0. This enables using BDD techniques to
check the validity of such an assertion. The assertions covered by the theorem are those
that can be written in the form ∀~i∃~j.ψ(~i,~j), where ψ(~i,~j) is a quantifier-free assertion
which may refer only to the global variables and the local variables of P [i] and P [j].

Being able to validate the premises on S[N0] has the additional important advantage
that the user never sees the automatically generated auxiliary assertion ϕ. This assertion

2

is produced as part of the procedure and is immediately consumed in order to validate
the premises of the rule. Being generated by symbolic BDD techniques, the representa-
tion of the auxiliary assertions is often extremely unreadable and non-intuitive, and will
usually not contribute to a better understanding of the program or its proof. Because the
user never gets to see it, we refer to this method as the “method of invisible invariants.”

As shown in [20, 2], embedding a ∀~i.q(~i) candidate inductive invariant in the main
proof rule used for safety properties results in premises that fall under the small model
theorem. In [10], the proof rule used for proving progress properties requires that some
auxiliary constructs have no quantifiers in order to result in ∀∃-premises. In particular, it
requires the “helpful assertions”, describing when a transition is helpful (thus, leads to
a lower ranked state), to be quantifier-free. This is the case for many simple protocols.
In fact, many parameterized protocols that have been studied in the literature can be
transformed into protocols that have unquantified helpful transitions by adding some
auxiliary variables that allow, in each state, to determine the helpful assertions.

In this paper, we extend the method of invisible ranking and make it applicable to a
much wider set of protocols in two directions:

• The first extension allows expression such as i± 1 to appear both in the transition
relation as well as the auxiliary constructs. This extension is especially important
for ring algorithms, where many of the assertion have a p(i, i + 1) or p(i, i − 1)
component.

• The second extension, allows helpful assertions (and ranking functions) for, say
process i, to be of the form h(i) = ∀j.H(i, j), where H(i, j) is a quantifier-free
assertion. Such helpful assertions are common in “unstructured” systems where
whether a transition of one process is helpful depends the states of all its neighbors.
Substituted in the standard proof rules for progress properties, such helpful asser-
tions lead to premises which do not conform to the required ∀∃ form, and therefore
cannot be validated using the small model theorem.

To handle the first extension, we establish a new small model theorem, to which we refer
as the modest model theorem (introduced in Subsection 3.1). This theorem shows that,
similarly to the small model theorem of [20] and [10], ∀∃-premises, containing i ± 1
sub-expressions, can be validated on relatively small models. The size of the models,
however, is larger compared to the small model theorem of [20] and [10].

To handle the second extension, we introduce a novel proof rule. The main diffi-
culty with helpful assertions of the form h(i) = ∀j.H(i, j) is in premise D4 (of rule
DISTRANK introduced in Subsection 2.5). This premise claims that every “pending”
state has some helpful transitions enabled on it, and the major challenge is to select
the particular transition which is helpful for each pending state. In the new rule PRE-
RANK (introduced in Section 4) we implement a new mechanism for selecting the ap-
plicable helpful transition for each pending state. The selection mechanism is based on
the installment of a pre-order relation among the helpful transitions in each state. The
“helpful” transition is identified as any transition which is minimal according to this
pre-order.

The paper is organized as follows: In Section 2, we present the general computa-
tional model of FDS, and the restrictions which enable the application of the invisible
auxiliary constructs methods. We also review the small model property which enables

3

automatic validation of the premises of the various proof rules. In addition, we outline
a procedure that replaces compassion by justice requirements, describe the DISTRANK

proof rule, and explain how we automatically generate ranking and helpful assertions
for the parameterized case. In Section 3 we describe the modest model theorem which
allows handling of i±1 expressions within assertions, and demonstrate these techniques
on the Dining Philosopher problem. In Section 4 we present the new DISTRANK proof
rule that uses pre-order among transitions, discuss how to automatically obtain the pre-
order, and demonstrate the techniques on the Bakery algorithm. All our examples have
been run on TLV [22]. The interested reader may find the code, proof files, and output
of all our examples in cs.nyu.edu/acsys/Tlv/assertions.

Related Work. The problem of uniform verification of parameterized systems is, in
general, undecidable [1]. One approach to remedy this situation, pursued, e.g., in [8], is
to look for restricted families of parameterized systems for which the problem becomes
decidable. Unfortunately, the proposed restrictions are very severe and exclude many
useful systems such as asynchronous systems where processes communicate by shared
variables.

Another approach is to look for sound but incomplete methods. Representative
works of this approach include methods based on: explicit induction ([9]), network
invariants that can be viewed as implicit induction ([17]), abstraction and approxima-
tion of network invariants ([6]), and other methods based on abstraction ([11]). Other
methods include those relying on “regular model-checking” (e.g., [13]) that overcome
some of the complexity issues by employing acceleration procedures, methods based
on symmetry reduction (e.g., [12]), or compositional methods (e.g., ([19]) that com-
bine automatic abstraction with finite-instantiation due to symmetry. Some of these
approaches (such as the “regular model checking” approach) are restricted to partic-
ular architectures and may, occasionally, fail to terminate. Others, require the user to
provide auxiliary constructs and thus do not provide for fully automatic verification of
parameterized systems.

Less related to our work is the work in [7] which presents methods for obtaining
ranking functions for sequential programs.

In [10] we presented the invisible ranking methods and showed its application for
cases where assertions contain only equality operators and helpful assertions are not
quantified. The work in [21] studies the method of “counter-abstraction” to automati-
cally prove liveness properties of parameterized systems. Counter-abstraction is an in-
stance of data-abstraction [15] and has proven successful in instances of systems with
a trivial (star or clique) topologies and a small state-space for each process. The work
there is similar to counter abstraction is the work of the PAX group (see, e.g., [3]) which
is based on the method of predicate abstraction [5]. While there are several differences
between the two approaches, both are not “fully automatic” in the sense that the user
has to provide the system with abstraction methodology.

In [24, 16] we used the method of network invariants [15] to prove liveness prop-
erties of parameterized systems. While extremely powerful, the main weakness of the
method is that the user has to provide the candidate for the “network invariant” process.

4

2 Preliminaries

In this section we present our computation model, the small model theorem, and the
proof rule we use for the verification of progress properties.

2.1 Fair Discrete Systems

As our computational model, we take a fair discrete system (FDS) S = 〈V,Θ, ρ,J , C〉,
where

• V — A set of system variables. A state of the system S provides a type-consistent
interpretation of the system variables V . For a state s and a system variable v ∈ V ,
we denote by s[v] the value assigned to v by the state s. Let Σ denote the set of all
states over V .

• Θ — The initial condition: An assertion (state formula) characterizing the initial
states.

• ρ(V, V ′) — The transition relation: An assertion, relating the values V of the vari-
ables in state s ∈ Σ to the values V ′ in an S-successor state s′ ∈ Σ.

• J — A set of justice (weak fairness) requirements: Each justice requirement is an
assertion; A computation must include infinitely many states satisfying the require-
ment.

• C — A set of compassion (strong fairness) requirements: Each compassion require-
ment is a pair 〈p, q〉 of state assertions; A computation should include either only
finitely many p-states, or infinitely many q-states.

A computation of an FDS S is an infinite sequence of states σ : s0, s1, s2, ..., satisfying
the requirements:

• Initiality — s0 is initial, i.e., s0 |= Θ.
• Consecution — For each ` = 0, 1, ..., the state s`+1 is a S-successor of s`. That

is, 〈s`, s`+1〉 |= ρ(V, V ′) where, for each v ∈ V , we interpret v as s`[v] and v′ as
s`+1[v].

• Justice — for every J ∈ J , σ contains infinitely many occurrences of J-states.
• Compassion – for every 〈p, q〉 ∈ C, either σ contains only finitely many occurrences

of p-states, or σ contains infinitely many occurrences of q-states.

2.2 Bounded Fair Discrete Systems

To allow the application of the invisible constructs methods, we place further restric-
tions on the systems we study, leading to the model of fair bounded discrete systems
(FBDS), that is essentially the model of bounded discrete systems of [2] augmented with
fairness. For brevity, we describe here a simplified two-type model; the extension for
the general multi-type case is straightforward.

Let N ∈ N
+ be the system’s parameter. We allow the following data types:

1. type0: the set of boolean and finite-range scalars (also denoted bool);
2. type1: a scalar data type that includes integers in the range [1..N];

5

3. type2: a scalar data type that includes integers in the range [0..N]; and
4. arrays of the type type1 7→ typei for i = 0, 2.

Atomic formulas may compare two variables of the same type. E.g., if y and y ′ are
type1 variables, and z is a type1 7→ type2, then y = y′ and z[y] < z[y′] are both atomic
formulas. For z : type1 7→ type2 and y : type1, we also allow the special atomic formula
z[y] > 0. We refer to quantifier-free formulas obtained by boolean combinations of
such atomic formulas as restricted assertions.

As the initial condition Θ, we allow assertions of the form ∀i.u(i), where u(i) is a
restricted assertion.

As the transition relation ρ, as well as the justice requirements J , we allow as-
sertions of the form ∃~i∀~j.ψ(~i,~j) for a restricted assertion ψ(~i,~j). For simplicity, we
assume that all quantified and free variables are of type type1.

Example 1 (The Bakery Algorithm).
Consider program BAKERY in Fig. 1, which is a variant of Lamport’s original Bakery
Algorithm that offers a solution of the mutual exclusion problem for any N processes.

in N : natural where N > 1
local y : array [1..N] of [0..N] where y = 0

N

i=1

P [i] ::

2

6

6

6

6

6

6

4

loop forever do
2

6

6

6

6

4

0 : NonCritical
1 : y := maximal value to y[i] while preserving order of elements
2 : await ∀j 6= i : (y[j] = 0 ∨ y[j] > y[i])
3 : Critical
4 : y[i] := 0

3

7

7

7

7

5

3

7

7

7

7

7

7

5

Fig. 1. Program BAKERY

In this version of the algorithm, location `0 constitutes the non-critical section which
may non-deterministically exit to the trying section at location `1. Location `1 is the
ticket assignment location. Location `2 is the waiting phase, where a process waits until
it holds the minimal ticket. Location `3 is the critical section, and location `4 is the
exit section. Note that y, the ticket array, is of type type1 7→ type2, and the program
location array (which we denote by π) is of type type1 7→ type0. Note also that the
ticket assignment statement at `1 is non-deterministic and may modify the values of all
tickets. Fig. 2 describes the FBDS corresponding to program BAKERY.

Let α be an assertion over V , and R be an assertion over V ∪ V ′, which can be viewed
as a transition relation. We denote by α ◦R the assertion characterizing all state which
are R-successors of α-states. We denote by α ◦R∗ the states reachable by an R-path of
length zero or more from an α-state.

6

V :

y : array[1..N] of [0..N]
π : array[1..N] of [0..4]

Θ : ∀i : π[i] = 0 ∧ y[i] = 0
ρ : ∃i : ∀j, k 6= i : (π′[j] = π[j]) ∧

2

6

6

6

6

6

6

4

π[i] = 0 ∧ π′[i] ∈ {0, 1} ∧ y′[i] = y[i] ∧ y′[j] = y[j]
∨ π[i] = 1 ∧ π′[i] = 2 ∧ y′[j] < y′[i] ∧

(y[j] = 0 ↔ y′[j] = 0) ∧ (y[j] < y[k] ↔ y′[j] < y′[k])
∨ π[i] = 2 ∧ (y[j] = 0 ∨ y[j] > y[i]) ∧ π′[i] = 3 ∧ y′[i] = y[i] ∧ y′[j] = y[j]
∨ π[i] = 3 ∧ π′[i] = 4 ∧ y′[i] = y[i] ∧ y′[j] = y[j]
∨ π[i] = 4 ∧ π′[i] = 0 ∧ y′[i] = 0 ∧ y′[j] = y[j]

3

7

7

7

7

7

7

5

J :

8

>

>

>

>

>

>

>

>

>

:

{J1[i] : π[i] 6= 1 | i ∈ [1..N]} ∪
{J2[i] : ¬(π[i] = 2 ∧ ∀j 6= i (y[j] = 0 ∨ y[j] > y[i]) | i ∈ [1..N]} ∪
{J3[i] : π[i] 6= 3 | i ∈ [1..N]} ∪
{J4[i] : π[i] 6= 4 | i ∈ [1..N]}

9

>

>

>

>

>

>

>

>

>

;

C : ∅

Fig. 2. FBDS for Program BAKERY

2.3 The Small Model Theorem

Let ϕ : ∀~i∃~j.R(~i,~j) be an AE-formula, where R(~i,~j) is a restricted assertion which
refers to the state variables of a parameterized FBDS S(N) in addition to the quantified
(type1) variables~i and ~j. Let N0 be the number of universally quantified and free type1
variables appearing in R. The following claim (stated first in [20] and extended in [2])
provides the basis for the automatic validation of the premises in the proof rules:

Theorem 1 (Small model property).
Formula ϕ is valid iff it is valid over all instances S(N) for N ≤ N0 + 2.

The small model theorem allows us to check validity of AE-assertions on small
model. In [20, 2] we obtain, using project&generalize, candidate inductive assertions
for the set of reachable states that are A-formulae, checking their inductiveness re-
quired checking validity of AE-formulae, which can be accomplished, using BDD tech-
niques. In [10] we obtain, using project&generalize, candidate assertions for various
assertions (pending, helpful, ranking), all A- or E-formulae and, using these assertions,
the premises of the progress proof rule are again AE-formulae, which can be checked
using the theorem.

2.4 Removing Compassion

The proof rule we are employing to prove progress properties assumes a compassion-
less system. As was outlines in [14], every FDS S can be converted into a compassion-
less FDS S = 〈V, Θ, ρ,J, ∅〉, where

V : V ∪ {nvrp : boolean | 〈p, q〉 ∈ C} Θ : Θ ∧
∧

〈p,q〉∈C ¬nvrp

ρ : ρ ∧
(

∧

〈p,q〉∈C nvrp → nvr′p
)

J : J ∪ {nvrp ∨ q | 〈p, q〉 ∈ C}

7

This transformation adds to the system variables a new boolean variable nvrp for each
compassion requirement 〈p, q〉 ∈ C. The intended role of these variables is to identify,
nondeterministically, a point in the computation, beyond which p will never be true
again. The initial value of all these variables is 0 (false). The transition relation allows
nondeterministically to change the value of any nvrp variable from 0 to 1 but not vice
versa. Finally, to the justice requirements we add a new justice requirement nvrp ∨ q

requiring that there are infinitely many states in which either nvrp or q is true. Let Err
denote the assertion

∨

〈p,q〉∈C p ∧ nvrp, describing states where both p and nvrp hold,
which indicates that the prediction that p will never occur has been premature. For σ,
a computations of S, we denote by σ⇓V the sequence obtained from σ by projecting
each state on the variables of S. The relation between S and its compassion-free version
S can be stated as follows:

Sequence σ is a computation of S iff there exists σ an err -free computation
of S such that σ⇓V = σ.

It follows that

S |= q =� � r iff S |= (q ∧ ¬Err) =� � (r ∨ Err)

Which allows us to assume that FBDSs we consider here have an empty compassion set.

2.5 The DISTRANK Proof Rule

In [10] we presented a proof rule for progress properties that exploits the structure of
parameterized systems, by associating helpful assertions and ranking functions with
each transition. The proof rule is presented in Fig. 3.

For a parameterized system with a transition domain T = T (N)
set of states Σ(N),
justice requirements {Jτ | τ ∈ T },
invariant assertion ϕ,
assertions q, r, pend and {hτ | τ ∈ T },
and ranking functions {δτ : Σ → {0, 1} | τ ∈ T }

D1. q ∧ ϕ → r ∨ pend

D2. pend ∧ ρ → r′ ∨ pend ′

D3. pend ∧ ρ → r′ ∨
V

τ∈T δτ ≥ δ′τ
D4. pend →

W

τ∈T hτ

For every τ ∈ T
D5. hτ ∧ ρ → r′ ∨ h′

τ ∨ δτ > δ′τ
D6. hτ → ¬Jτ

q =� � r

Fig. 3. The liveness rule DISTRANK

The rule is configured to deal directly with parameterized systems. Typically, the pa-
rameter domain provides a unique identification for each transition, and will have the
form T (N) = [0..k]×N for some fixed k. For example, in program BAKERY, T (N) =

8

[0..4]×N , where each justice transition can be identified as Jm[i] form ∈ [0..4] (corre-
sponding to the various locations in each process), and i ∈ [1..N]. In the rule, assertion
ϕ is an invariant assertion characterizing all the reachable states. Assertion pend char-
acterizes the states which can be reached from a reachable q-state by a r-free path. For
each transition τ , assertion hτ characterizes the states at which this transition is help-
ful. That is, these are the states whose every Jτ -satisfying successor leads to a progress
towards the goal, which is expressed by immediately reaching the goal or a decrease in
the ranking function dτ , as stated in premise D5. The ranking functions δτ are used in
order to measure progress towards the goal. See [10] for justification of the rule.

Thus, in order to prove a progress property we need to identify the assertions ϕ,
pend , and δτ , hτ for every τ ∈ T . For a parameterized system, the progress properties
we are considering are of the form ∀z.q(z)=� � r(z). We instantiate the system to a
small number of processes, fix some process z, use project&generalize to obtain can-
didates for pend and δτ , hτ , and use the small model theorem to check the premises
D1–D6, as well as the inductiveness of ϕ. However, in order for this to succeed, the
generated assertions should adhere to some strict syntactic form. Most notably, hτ can
either be a restricted or an E-assertion in order to prove the validity of D4, since when
hτ has an A-fragment, D4 is no longer an AE-assertion.

Unfortunately, the success of this approach depends on the helpful assertions refer-
ring only the the process they “belong” to, without mention of any other process. In
many cases, this cannot be the case – helpful transitions need to refer to neighboring
processes. We study two such main cases: One in which processes are arranged in a
ring. and a process can access some variables of its immediate neighbors, and the other
where a process can access variables of all other processes.

3 Protocols with p(i, i + 1) Assertions

In many algorithms, particularly those based on ring architectures, the auxiliary asser-
tions depend only on a process and its immediate neighbors. Consider such an algo-
rithm for a ring of size N . For every j = 1, .., N , define j ⊕ 1 = (j mod N) + 1 and
j	1 = ((j−2) mod N)+1. We are interested in assertions of the type p(i, i⊕1) and
p(i, i	1). Having the ±1 operator, these assertions do not fall into our small model the-
orem that restricts the operators to comparisons (and, expressing ±1 using comparisons
requires additional quantification.) However, as we show here, there is a small model
theorem that allows proving validity of ∀∃p(i, i± 1) assertions. The size of the model,
however, is larger than the previous one, which is why we refer to it as “modest”.

3.1 Modest Model Theorem and Incomprehensible Assertions

Theorem 2 (Modest Model Theorem). Consider a parameterized FBDS S with no
type2 variables3. Let ϕ : ∀~i∃~j.R(~i,~j) be such that ~i and ~j are of type1, and R(~i,~j)
is a restricted assertion augmented by operators ⊕1 and 	1. Let K be the number of

3 This assumption is here for simplicity’s sake and can be removed at the cost of increasing the
bound.

9

universally quantified and free variables in ϕ. Assume there are L type1 7→ bool arrays
in S. Define N0 = K(2L + 1). Then:

ϕ is valid over S(N) for every N ≥ 2 iff ϕ is valid over S(N) for every N ≤ N0

Proof Outline: Let ψ = ¬ϕ, i.e,. ψ = ∃~i∀~j.¬R(~i,~j). It suffices to show that if ψ is
satisfiable, then it is satisfiable in an instantiation S(N) for some N ≤ N0.

Assume that ψ is satisfiable in some state s of S(N1) and that N1 > N0. Let u1 <

u2 < . . . < uk be the sequence of values of type1-variables which appear existentially
quantified or free in ψ. Since there are at most K such values, k ≤ K. Since N1 > N0,
either u1 > 2L or there exist some ui and ui+1 such that ui+1 − ui > 2L. We restrict
here to the latter case, and construct a state s′, in an instantiation N ′

1 < N1, such that
s′ |= ψ. This process is repeated, until we obtain an instantiation where the uj’s are
at most 2L apart from one another. (Both u1 and uk may require separate, but similar,
handling.)

Since ui+1 − ui > 2L, there exist two indices, m and n, such that ui ≤ m <

n < ui+1 and a[n] = a[m] for every type1 → type0 array a. Intuitively, removing the
processes whose indices are m + 1, . . . , n does not impact any of the other processes
uj’s, since the type1 7→ type0 values of their immediate neighbors remain the same.
After the removal, the remaining processes are renumbered, to reflect the removal.

Thus, we construct from s a new state s′, leaving the type1 variables in the range
1..m intact, and reducing the type1 indices larger than n by n − m, maintaining the
assignments of their type1 7→ type0 variables. Obviously, s′ is a state ofS(N1−(n−m))
that satisfies ψ. ut

The generation of all assertions is completely invisible; so is the checking of the
premises on the instantiated model. However, the instantiation of the modest model
requires feeding the assertions into the larger model. This can be done completely au-
tomatically, or with some user intervention. Whichever it is, while the user may see the
assertions, there is no need for the user to comprehend them. In fact, being generated
using ADD techniques, they are often incomprehensible.

3.2 Example: Dining Philosophers

We demonstrate the use of the modest model theory on validating DISTRANK on a
classical solution to the dining philosophers problem.

Consider program DINE that offers a solution to the dining philosophers problem
for anyN philosophers. The program uses semaphores for forks. In this program,N−1
philosophers, P [1], . . . , P [N−1], reach first for their left forks and then for their right
forks, while P [N] reaches first for its right fork and only then for its left fork.

The semaphore instructions ”request x” and ”release x” appearing in the program
stand, respectively, for “〈when x = 1 do x := 0〉” and “x := 1”. Consequently, we
have a compassion requirement for each ”request x”, indicating that if a process is
requesting a semaphore that is available infinitely often, it obtains it infinitely many
times.

As outlined in Section 2.4, we transform the FBDS into a compassion-free FBDS by
adding two new boolean arrays, nvr1 and nvr2, each nvr`[i] corresponding to the request

10

in N : natural where N > 1
local y : array [1..N] of bool where y = 1

N−1

i=1

P [i] ::

2

6

6

6

6

6

6

4

loop forever do
2

6

6

6

6

4

`0 : NonCritical
`1 : request y[i]
`2 : request y[i ⊕ 1]
`3 : Critical
`4 : release y[i], y[i ⊕ 1]

3

7

7

7

7

5

3

7

7

7

7

7

7

5

‖ P [N] ::

2

6

6

6

6

6

6

4

loop forever do
2

6

6

6

6

4

`0 : NonCritical
`1 : request y[1]
`2 : request y[N]
`3 : Critical
`4 : release y[N], y[1]

3

7

7

7

7

5

3

7

7

7

7

7

7

5

Fig. 4. Program DINE: Solution to the Dining Philosophers Problem

of process i at location `. Fig. 5 describes the variables, initial conditions, and justice
requirements of the FBDS we associate with Program DINE.

V :

y, nvr1, nvr2 : array [1..N] of bool
π : array [1..N] of [0..4]

ff

Θ : ∀i. (π[i] = 0 ∧ y[i] ∧ ¬nvr1[i] ∧ ¬nvr2[i])

J :

8

>

>

>

>

>

>

>

>

>

:

{J1[i] : nvr1[i] ∨ π[i] 6= 1 | i ∈ [1..N]} ∪
{J2[i] : nvr2[i] ∨ π[i] 6= 2 | i ∈ [1..N]} ∪
{J3[i] : π[i] 6= 3 | i ∈ [1..N]} ∪
{J4[i] : π[i] 6= 4 | i ∈ [1..N]}

9

>

>

>

>

>

>

>

>

>

;

Fig. 5. FBDS for Program DINE

The progress property of the original system is (π[z] = 1)=� � (π[z] = 3), which
be proved in two steps, the first establishing that (π[z] = 1)=� � (π[z] = 2) and the
second establishing that (π[z] = 2)=� � (π[z] = 3). For simplicity of presentation,
we restrict discussion to the latter progress property.

Since P [N] differs from P [1], . . . , P [N−1], and since it accesses y[1], which is
also accessed by P [1], and y[N], which is also accessed by P [N−1], we choose some
z in the range 2, . . . , N − 2 and prove progress of P [z]. The progress property of the
other three processes can be established separately (and similarly.) Taking into account
the translation into a compassion-less system, the property we attempt to prove is

(π[z] = 2) =� � (π[z] = 3 ∨ Err) (2 ≤ z ≤ N − 2)

where

Err =
∨N−1

i=1
(π[i] = 1 ∧ y[i] ∧ nvr1[i]) ∨ (π[i] = 2 ∧ y[i+ 1] ∧ nvr2[i])

∨ (π[N] = 1 ∧ y[1] ∧ nvr1[N]) ∨ (π[N] = 2 ∧ y[N] ∧ nvr2[N])

3.3 Automatic Generation of Symbolic Assertions

Following the guidelines in [10], we instantiate DINE according to the small model
theorem, compute the auxiliary concrete constructs for the instantiation, and abstract
them. Here, we chose an instantiation of N0 = 6 (obviously, we need N0 ≥ 4; it

11

seems safer to allow at least a chain of three that does not depend on the “special”
three, hence we obtained 6.) For the progress property, we chose z = 3, and attempt to
prove (π[3] = 2)=� � (π[3] = 3). Due to the structure of Program DINE, process P [i]
depends only on it neighbors, thus, we expect the auxiliary constructs to include only
assertions that refer to two neighboring process at the time. We chose to focus on pairs
of the form (i, i	 1).

We first compute ϕa(i, i	 1), which is the abstraction of the set of reachable states.
We distinguish between three cases, i = 1, i = N , and i = 2, . . . , N−1. For the first,
we project the concrete ϕ on 1 and 6 (and generalize to 1 and N), for the second, we
project the concrete ϕ on 6 and 5 (and generalize to N and N−1), and for the third we
project the concrete ϕ on 3 and 2 (and generalize to i and i−1). Thus, for the general
i 6∈ {1, N} case we obtain:

ϕa(i, i−1) =

(

(y[i−1] → π[i−1] < 2) ∧ (π[i−1] > 2 → π[i] < 2)
∧ (y[i] ↔ π[i−1] < 3) ∧ (π[i] < 2)

)

We then take :

ϕa = ϕa(1, N) ∧ ϕa(N,N−1) ∧ ∀i 6= 1, N.ϕa(i, i−1)

and define pend
a = reach

a ∧ ¬Err ∧ π[3] = 2.
For the helpful sets, and the δ’s, we obtain, as expected, assertions of the type p(i, i	

1). E.g., for every j = z + 1, . . . , N−1, we get

ha
2 [j] : π[j−1] = 2 ∧ nvr2[j−1] ∧ π[j] = 2 ∧ ¬nvr2[j]
δ2[j] : ¬nvr2[j] ∧ (π[j−1] = 2 ∧ nvr2[j−1] → π[j] < 3)

Thus, the proof of inductiveness of ϕ, as well as all premises of DISTRANK are now of
the form covered by the modest model theorem.

To compute the size of the instantiation needed, note that the product of ranges of
type1 7→ type0 variables is 40 (5 locations, and 2 each for the fork and two nvr’s). There
are three free variables in the system, 1 and N , and N−1. (The reason we include
N−1 is, e.g., its explicit mention in ϕa). Following the remarks on the modest model
theorem, since the three variables are consecutive, and since all constructs have we only
have i	 1, the size of the (modest) model we need to take is 40(u+ 1) + 1, where u is
the number of universally quantified variables. Since u ≤ 2 for each of D1–D6 (it is 0
for D4, 1 for D1, and 2 for D2, D3, and D5), we chose an instantiation of 121.

The following tables present the number of BDD nodes computed for each auxiliary
construct, and the time it took to validate each of the inductiveness ofϕ and the premises
D1–D6 on the instantiation.

4 Imposing Ordering on Transitions

In the previous section we showed how to deal with helpful assertions that are, strictly
speaking, universal, but the “cause” for the universal quantifier is a ∓1 operation, that,
once admitted into the set of restricted assertions, results in the helpful assertions be-
ing unquantified. In this section we study helpful assertions that are “truly” universal.

12

Construct BDD nodes

ϕ 1,779
pend 3,024
ρ 10,778
hp’s < 10
δ ≤ 10

Premise Time to Validate

ϕ (inductiveness) 0.39 seconds
D1 < 0.01 seconds
D2 0.42 seconds
D3 163.74 seconds
D4 0.01 seconds
D5 138.59 seconds
D6 0.02 seconds

Universal helpful assertions appear quite frequently. As a matter of fact most helpful as-
sertions seem to be of the type h(i) : ∀j.p(i, j) where i is the index of the process who
can take a helpful step, and all other processes (j) satisfy some supporting conditions.
However, such a helpful assertion presents a problem when trying to verify premise
D4 of rule DISTRANK, since we obtain an EA-disjunct in the premise. In this section
we show a new proof rule for progress, that allows us to order the helpful assertions in
terms of the precedence of their helpfulness. “The helpful” assertion is then the minimal
in the ordering, so that we can avoid the disjunction in the r-h-s of Premise D4.

4.1 Pre-Ordering Transitions

A binary relation � is a pre-order over domain D if it is reflexive, transitive, and total.
Let S be a FBDS. Let the set of transitions be T (N) = [0..4] × N (as in Subsec-

tion 2.5). For every state in S(N), define a pre-order � over T . From the totality of
�, every S(N)-state has some τ`[i] ∈ T which is minimal according to �. We replace
premise D4 in DISTRANK with a premise stating that that for every pending state s,
the transition that is minimal in s is also helpful at s. We call the new rule PRERANK

and, to avoid confusion, name its premises R1–R6. Thus, PRERANK is exactly like
DISTRANK, with the addition of a pre-order � : Σ → 2T ×T , and replacing D4 by:

R4. For every τ1 ∈ T , pend ∧

∧

τ2∈T

τ1 � τ2

 −→ hτ1

In order to automate the application of PRERANK, we need to be able to automatically
generate the pre-order relation �. As usual, we first instantiate S(N0), compute con-
crete �, and then use the method project&generalize to compute an abstract �a. The
main problem is the computation of the concrete �. We define s |= τ1 � τ2 if:

s |= ((¬hτ2
∧ pend) W (hτ1

∧ pend)) ∨ ¬((¬hτ1
∧ pend) W (hτ2

∧ pend)) (1)

where W is the weak-until or unless operator.
The intuition behind the first disjunct is that for a state s, hτ1

is “helpful earlier”
than hτ2

if every path leading from s that reaches hτ1
doesn’t reach hτ2 before. The

role of the second disjunct is to guarantee the totality of �, so that when hτ1
precedes

hτ2
in some of computations, and hτ2

precedes hτ1
in others, we obtain both τ1 � τ2

and τ2 � τ1. To abstract a formula ϕ(τ`1 [i]) W ϕ(τ`2 [j]), we use project&generalize,

13

projecting onto processes i and j. To abstract the negation of such a formula, we first
abstract the formula, and then negate the result. Therefore, to abstract Formula (1), we
abstract each disjunct separately, and then take the disjunction of the abstract disjuncts.

4.2 Case Study: Bakery

Consider again program BAKERY of Example 1, and suppose we want to verify the
liveness property (π[z] = 1)=� � (π[z] = 3). We instantiate the system to N0 = 3,
and obtained the auxiliary assertions ϕ, pend , and the h’s and δ’s4. After applying
the project&generalize method, we obtain for h`[i], two type of assertions. One is for
the case that i = z, and then, as expected, h2[z] is the most interesting one, having
an A-construct claiming the z’s ticket is the minimal among ticket holders. The other
case is for j 6= z, and there we have a similar A-construct (for j’s tickets minimality)
for ` = 2, 3, 4. For the pre-order, one must consider every τ`1 [i] � τ`2 [j] for every
`1, `2 = 1, ..., 4 and i = z 6= j, i = j 6= z, i, j 6= z for (`1, i) 6= (`2, j). We list here the
results for τ`1 [i] � τ`2 [j] for i 6= z that are not trivially T. We deonte:

α(i, j) : π[i] = 2 → y[j] < y[i]; β(i, j) : π[i] = 2 ∧ y[i] < y[j];
γ(i, L) : π[i] ∈ L→ y[z] < y[i]

τ1[i] τ2[2] τ3[i] τ4[i]

τ1[j]
i = j

∨ j 6= z
∨ π[z] = 2

j 6= z ∧ π[z] = 2 ∧ α(j, z)
∨ i = j = z ∧ π[z] = 1

j = z
∨ π[z] = 2 ∧ α(j, z) ∧ π[j] 6= 3

j = z
∨ π[z] = 2 ∧ α(j, z)

∧π[j] < 3

τ2[j]
j 6= z

∨ π[z] = 2

i = j
∨ β(i, j)
∨ π[j] 6= 2
∨ j 6= z ∧ y[z] < y[i]

j = z
∨ i = j ∧ π[j] 6= 3
∨ π[z] = 1
∨ i 6= j ∧ (π[j] /∈ {2, 3}∨

β(i, j) ∨ y[z] < y[j])

j = z
∨ i = j ∧ π[j] < 3
∨ π[z] = 1
∨ i 6= j ∧ (π[< 2 ∨ β(i, j)

∨ y[z] < y[j])

τ3[j]
j 6= z

∨ π[z] = 2

¬(i = j = z) ∧ (π[z] = 1
∨β(i, j) ∨ π[i] = 3
∨γ(j, [2, 3])

i = j ∨ j = z
∨ β(i, j) ∨ π[i] = 3
∨ γ(j, [2, 3])

i = j ∨ j = z
∨ β(i, j) ∨ π[i] = 3
∨ γ(j, [0, 1])
∨ π[z] = 1

τ4[j]
j 6= z

∨ π[z] = 2

i, j 6= z ∧ (π[z] = 1∨
β(i, j) ∨ π[i]|2∨
γ(j, z)

j = z ∨ β(i, j)
∨ i 6= j ∧ π[i] > 2
∨ γ(j, [2, 3])

i = j ∨ j = z
∨ β(i, j) ∨ π[i] > 2
∨ γ(j, [2..4])

Using the above pre-order, we succeeded in validating Premises R1–R6 of PRE-
RANK, thus establishing the liveness property of program BAKERY.

References

1. K. R. Apt and D. Kozen. Limits for automatic program verification of finite-state concurrent
systems. Information Processing Letters, 22(6), 1986.

4 cs.nyu.edu/acsys/Tlv/assertions contains full list of assertions and pre-order definitions

14

2. T. Arons, A. Pnueli, S. Ruah, J. Xu, and L. Zuck. Parameterized verification with automati-
cally computed inductive assertions. In CAV’01, pages 221–234. LNCS 2102, 2001.

3. K. Baukus, Y. Lakhnesche, and K. Stahl. Verification of parameterized protocols. Journal of
Universal Computer Science, 7(2):141–158, 2001.

4. N. Bjørner, I. Browne, E. Chang, M. Colón, A. Kapur, Z. Manna, H. Sipma, and T. Uribe.
STeP: The Stanford Temporal Prover, User’s Manual. Technical Report STAN-CS-TR-95-
1562, Computer Science Department, Stanford University, 1995.

5. N. Bjørner, I. Browne, and Z. Manna. Automatic generation of invariants and intermediate
assertions. In 1st Intl. Conf. on Principles and Practice of Constraint Programming, pages
589–623. LNCS 976, 1995.

6. E. Clarke, O. Grumberg, and S. Jha. Verifying parametrized networks using abstraction and
regular languages. In (CONCUR’95), pages 395–407. LNCS 962, 1995.

7. M. Colon and H. Sipma. Practical methods for proving program termination. In CAV’02,
pages 442–454. LNCS 2404, 2002.

8. E. Emerson and V. Kahlon. Reducing model checking of the many to the few. In (CADE’00),
pages 236–255, 2000.

9. E. A. Emerson and K. S. Namjoshi. Reasoning about rings. In POPL’95, 1995.
10. Y. Fang, N. Piterman, A. Pnueli, and L. Zuck. Liveness with invisible ranking. In G. Levi and

B. Steffen, editors, Proc. of the 5th workshop on Verification, Model Checking, and Abstract
Interpretation. Springer-Verlag, 2004. To appear.

11. E. Gribomont and G. Zenner. Automated verification of szymanski’s algorithm. In
TACAS’98, pages 424–438. LNCS 1384, 1998.

12. V. Gyuris and A. P. Sistla. On-the-fly model checking under fairness that exploits symmetry.
In CAV’97. LNCS 1254, 1997.

13. B. Jonsson and M. Nilsson. Transitive closures of regular relations for verifying infinite-state
systems. In TACAS’00. LNCS 1785, 2000.

14. Y. Kesten, N. Piterman, and A. Pnueli. Bridging the gap between fair simulation and trace
inclusion. In Proc. 15th Intl. Conference on Computer Aided Verification (CAV’03), volume
2775 of Lect. Notes in Comp. Sci., Springer-Verlag, pages 381–393, 2003.

15. Y. Kesten and A. Pnueli. Control and data abstractions: The cornerstones of practical formal
verification. Software Tools for Technology Transfer, 4(2):328–342, 2000.

16. Y. Kesten, A. Pnueli, E. Shahar, and L. Zuck. Network invariants in action. In CONCUR’02,
pages 101–105. LNCS 2421, 2002.

17. D. Lesens, N. Halbwachs, and P. Raymond. Automatic verification of parameterized linear
networks of processes. In POPL’97, 1997.

18. Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety. Springer-Verlag,
1995.

19. K. McMillan. Verification of an implementation of Tomasulo’s algorithm by compositional
model checking. In CAV’98, pages 110–121. LNCS 1427, 1998.

20. A. Pnueli, S. Ruah, and L. Zuck. Automatic deductive verification with invisible invariants.
In TACAS’01, pages 82–97. LNCS 2031, 2001.

21. A. Pnueli, J. Xu, and L. Zuck. Liveness with (0, 1,∞)-counter abstraction. In CAV’02,
pages 107–122. LNCS 2404, 2002.

22. E. Shahar. The TLV Manual, 2000. http://www.wisdom.weizmann.ac.il/˜verify/tlv.
23. N. Shankar, S. Owre, and J. Rushby. The PVS proof checker: A reference manual. Technical

report, Comp. Sci.,Laboratory, SRI International, Menlo Park, CA, 1993.
24. L. Zuck, A. Pnueli, and Y. Kesten. Automatic verification of free choice. In Proc. of the

3rd workshop on Verification, Model Checking, and Abstract Interpretation, pages 208–224.
LNCS 2294, 2002.

15

