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Abstract. We extend the automata-theoretic framework for reasoning about infinite-
state sequential systems to handle also the global model-checking problem. Our frame-
work is based on the observation that states of such systems, which carry a finite but
unbounded amount of information, can be viewed as nodes in an infinite tree, and
transitions between states can be simulated by finite-state automata. Checking that
the system satisfies a temporal property can then be done by a two-way automaton
that navigates through the tree. The framework is known for local model checking.
For branching time properties, the framework uses two-way alternating automata. For
linear time properties, the framework uses two-way path automata. In order to solve
the global model-checking problem we show that for both types of automata, given a
regular tree, we can construct a nondeterministic word automaton that accepts all the
nodes in the tree from which an accepting run of the automaton can start.

1 Introduction

An important research topic over the past decade has been the application of model check-
ing to infinite-state systems. A major thrust of research in this area is the application of
model checking to infinite-state sequential systems. These are systems in which a state
carries a finite, but unbounded, amount of information, e.g., a pushdown store. The ori-
gin of this thrust is the important result by Müller and Schupp that the monadic second-
order theory of context-free graphs is decidable [MS85]. As the complexity involved in
that decidability result is nonelementary, researchers sought decidability results of elemen-
tary complexity. This started with Burkart and Steffen, who developed an exponential-
time algorithm for model-checking formulas in the alternation-free � -calculus with re-
spect to context-free graphs [BS92]. Researchers then went on to extend this result to the
� -calculus, on one hand, and to more general graphs on the other hand, such as pushdown
graphs [BS95,Wal96], regular graphs [BQ96], and prefix-recognizable graphs [Cau96].
One of the most powerful results so far is an exponential-time algorithm by Burkart for
model checking formulas of the � -calculus with respect to prefix-recognizable graphs
[Bur97b]. See also [BE96,BEM97,Bur97a,FWW97,BS99,BCMS00].3 Some of this the-
ory has also been reduced to practice. Pushdown model-checkers such as Mops [CW02],
Moped [ES01,Sch02], and Bebop [BR00] (to name a few) have been developed. Success-
ful applications of these model-checkers to the verification of software are reported, for
example, in [BR01,CW02].

We usually distinguish between local and global model-checking. In the first setting we
are given a specific state of the system and determine whether it satisfies a given property.
In the second setting we compute (a finite representation) of the set of states that satisfy
a given property. For many years global model-checking algorithms were the standard; in

3 Recently, it was shown that the monadic second-order theory of high-order pushdown graphs is
decidable [KNU03]. This was adapted to solve � -calculus model-checking over such graphs, but
the complexity of model-checking � -calculus on a high order pushdown graph of level � is a stack
of � exponentials [Cac03].



particular, CTL model checkers [CES86], and symbolic model-checkers [BCM � 92] per-
form global model-checking. While local model checking holds the promise of reduced
computational complexity [SW91] and is more natural for explicit LTL model-checking
[CVWY92], global model-checking is especially important where the model-checking is
only part of the verification process. For example, in [CKV01,CKKV01] global model-
checking is used to supply coverage information, which informs us what parts of the design
under verification are relevant to the specified properties. In [Sha00,LBBO01] an infinite-
state system is abstracted into a finite-state system. Global model-checking is performed
over the finite-state system and the result is then used to compute invariants for the infinite-
state system. In [PRZ01] results of global model-checking over small instances of a param-
eterized system are generalized to invariants for every value of the system’s parameter.

An automata-theoretic framework for reasoning about infinite-state sequential systems
was developed in [KV00,KPV02] (see exposition in [Cac02a]). The automata-theoretic
approach uses the theory of automata as a unifying paradigm for system specification, ver-
ification, and synthesis [WVS83,EJ91,Kur94,VW94,KVW00]. Automata enable the sep-
aration of the logical and the algorithmic aspects of reasoning about systems, yielding
clean and asymptotically optimal algorithms. Traditionally automata-theoretic techniques
provide algorithms only for local model-checking [CVWY92,KV00,KPV02]. As model-
checking in the automata-theoretic approach is reduced to the emptiness of an automaton,
it seems that this limitation to local model checking is inherent to the approach. For finite-
state systems we can reduce global model-checking to local model-checking by iterating
over all the states of the system, which is essentially what happens in symbolic model
checking of LTL [BCM � 92]. For infinite-state systems, however, such a reduction can-
not be applied. In this paper we remove this limitation of automata-theoretic techniques.
We show that the automata-theoretic approach to infinite-state sequential systems general-
izes nicely to global model-checking. Thus, all the advantages of using automata-theoretic
methods, e.g., the ability to handle regular labeling and regular fairness constraints, the
ability to handle � -calculus with backward modalities, and the ability to check realizability
[KV00,ATM03], apply also to the more general problem of global model checking.

We use two-way tree alternating automata to reason about properties of infinite-state
sequential systems. The idea is based on the observation that states of such systems can be
viewed as nodes in an infinite tree, and transitions between states can be simulated by finite-
state automata. Checking that the system satisfies a temporal property can then be done by
a two-way alternating automaton. Local model checking is then reduced to emptiness or
membership problems for two-way tree automata

In this work, we give a solution to the global model-checking problem. The set of con-
figurations of a prefix-recognizable system satisfying a � -calculus property can be infinite,
but it is regular, so it is finitely represented. We show how to construct a nondeterminis-
tic word automaton that accepts all the configurations of the system that satisfy (resp., do
not satisfy) a branching-time (resp., linear-time) property. In order to do that, we study the
global membership problem for two-way alternating parity tree automata and two-way path
automata. Given a regular tree, the global membership problem is to find the set of states
of the automaton and locations on the tree from which the automaton accepts the tree. We
show that in both cases the question is not harder than the simple membership problem (is
the tree accepted from the root and the initial state). Our result matches the upper bounds
for global model checking established in [BEM97,EHRS00,EKS01,KPV02,Cac02b]. Our
contribution is in showing how this can be done uniformly in an automata-theoretic frame-
work rather than via an eclectic collection of techniques.
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2 Preliminaries

2.1 Labeled Rewrite Systems

A labeled transition graph is
���������
	��
������������

, where
�

is a finite set of labels,
	

is a
(possibly infinite) set of states,

����	����
is a labeling function,

����	�� 	
is a transition

relation, and
���"!#	$�

is an initial state. When
�&%'���
�)(+*

, we say that
��(

is a successor of
�
, and�

is a predecessor of
�)(

. For a state
�,!-	

, we denote by
�/.���'����	����0�1�&�
�)�

, the graph
�

with
�

as its initial state. An
�
-computation is an infinite sequence of states

� � �
� � �3242425!#	�6
such that

� � ���
and for all 7-8:9 , we have

�;%<�)=��
��=
�

� * . An
�
-computation

� � �
� � �324242
induces the

�
-trace

�0%<� � *�>4�0%'� � *;>3>4>?!@� 6 . Let A . �B� 6 be the set of all
�
-traces.

A rewrite system is C �D�'���
EF�
GH�����IJ� , where
�

is a finite set of labels,
E

is a finite
alphabet,

G
is a finite set of states,

�K�;GL�MEONP�Q�
is a labeling function that depends

only on the first letter of R (Thus, we may write
�S��GT��EKUWV�X3Y#�Z�

. Note that the
label is defined also for the case that R is the empty word

X
). The finite set of rewrite rulesI

is defined below. The set of configurations of the system is
G[�WE\N

. Intuitively, the
system has finitely many control states and an unbounded store. Thus, in a configuration%^]_� R *`!aG��@EPN we refer to

]
as the control state and to R as the store. We consider here

two types of rewrite systems. In a pushdown system, each rewrite rule is
�<]_��b/� R �
]�(c�d!GS�MET�MEPNP�aG

. Thus,
IS��GL�MET�aEPNP�eG

. In a prefix-recognizable system, each
rewrite rule is

�^]_��fg�1hF�ji���]k(l�#!mGn�
reg
%'EP*,�

reg
%'E/*,�

reg
%<Eo*p�WG

, where reg
%<E/*

is
the set of regular expressions over

E
. Thus,

In�qGS�
reg
%<EP*`�

reg
%<Eo*J�

reg
%<EP*`�eG

.
For a word r !sEoN and a regular expression t ! reg

%'E/*
we write r ! t to denote that

r is in the language of the regular expression t . We note that the standard definition of
prefix-recognizable systems does not include control states. Indeed, a prefix-recognizable
system without states can simulate a prefix-recognizable system with states by having the
state as the first letter of the unbounded store. We use prefix-recognizable systems with
control states for the sake of uniform notation.

The rewrite system C starting in configuration
%<]u��� R ��* induces the labeled transition

graph
�wv+x�y{z |�y1}~ ���'���
G��HEPN����g(^��� ~ �3%<] � � R � *1� . The states of

� ~ are the configurations of
C and

��%^]_���_*���%^]k('�
��(+*1�\!/� ~ if there is a rewrite rule � !�I leading from configuration
%^]_���_*

to configuration
%^]+(<����(+*

. Formally, if C is a pushdown system, then
� ~ %1%<]_��b�><��*{�3%<]k(<� R >^�?*�*

if
�^]_��b/� R ��]k(c�H!�I ; and if C is a prefix-recognizable system, then

� ~ %1%<]_� R >���*{�3%<]k(^� R (�>�?*1*
if there are regular expressions

f
,
h

, and
i

such that R !�f ,
�K!mh

, R (o!Ki , and�^]_�
fF��h��ji���]k(c��!�I
. Note that in order to apply a rewrite rule in state

%^]_�
��* !�Gn��EwN
of a pushdown graph, we only need to match the state

]
and the first letter of

�
with the

second element of a rule. On the other hand, in an application of a rewrite rule in a prefix-
recognizable graph, we have to match the state

]
and we should find a partition of

�
to

a prefix that belongs to the second element of the rule and a suffix that belongs to the
third element. A labeled transition graph that is induced by a pushdown system is called
a pushdown graph. A labeled transition system that is induced by a prefix-recognizable
system is called a prefix-recognizable graph.

Example 1. The pushdown system
�'�_���3� z �4�
�

,V�b/����Y��{V)]{�kY����0�1IJ�
, with

I���VP�O]4�
,
b

,
b0�

,]{���
,
��]{�

,
b

, � , ]4�H� , ��]{� , � , � , ]4���,Y , and�0%<]{����bJ*H�:V�� � �^� � *�Y , �J%^]4�����o*H��V�� � Y , and�0%<]{����X�*����
when starting from

%<]4���
bJ*
in-

duces the labeled transition graph on the right.

��� z �{� ��� z �4� �3� z �4�

� � � �v+x y z<�\��}vlx y z<�\}v+x y z'�<}

v+x y z<�$} vlx y z<�$�\} v+x y z<�$�\��}

Consider a prefix-recognizable system C ���'���
EF�
GH�����IJ� . For a rewrite rule � = ����
,
f\=

,
h&=

,
i_=

,
��(O�`!MI

, let �g  �¡�<EF�
G   ��]
�
  �1¢   ��£   � , for ¤ !¥V)f�=1�1h&=1�1i_=1Y , be the non-

deterministic automaton for the language of the regular expression ¤ . We assume that all
initial states have no incoming edges and that all accepting states have no outgoing edges.
We collect all the states of all the automata for

f
,
h

, and
i

regular expressions. Formally,G"¦���§/¨ª©�«�¬/G"¦ ©
,
G`���§/¨ª©j«�¬"G` ©

, and
G,®o��§"¨ª©j«�¬/Gp® ©

.
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We define the size � I � of
I

as the space required in order to encode the rewrite rules
in
I

and the labeling function. Thus, in a pushdown system, � I � ����� x�z �\z |�z x���� «�¬
	 R 	 , and
in a prefix-recognizable system, � I � ����� x�z ¦ z  z ® z x���� «�¬
	 � ¦ 	��	 �  	��	 � ® 	 .

We are interested in specifications expressed in the � -calculus [Koz83] and in LTL
[Pnu77]. For introduction to these logics we refer the reader to [Eme97]. We want to model
check pushdown and prefix-recognizable systems with respect to specifications in these
logics. We differentiate between local and global model-checking. In local model-checking,
given a graph

�
and a specification � , one has to determine whether

�
satisfies � . In global

model-checking we are interested in the set of configurations
�

such that
�O.

satisfies � . As�
is infinite, we hope to find a finite representation for this set. It is known that the set of

states of a prefix-recognizable system satisfying a monadic second-order formula is regular
[Cau96,Rab72], which implies that this also holds for pushdown systems and for � -calculus
and LTL specifications.

In this paper, we extend the automata-theoretic approach to model-checking of sequen-
tial infinite state systems [KV00,KPV02] to global model-checking. Our model-checking
algorithm returns a nondeterministic finite automaton on words (NFW, for short) recogniz-
ing the set of configurations that satisfy (not satisfy, in the case of LTL) the specification.
Our results match the previously known upper bounds [EHRS00,EKS01,Cac02b].4

Theorem 1. Global model-checking for a system C and a specification � is solvable

– in time
% � I � *���>���� v�� ��� } and space

% � I � * � >j��� v�� ��� }
, where C is a pushdown system and

� is an LTL formula.
– in time

% � I � * � >&� � v�� ��� ��� �! "� } and space
% � I � * � >�� � v�� ��� ��� �! "� }

, where C is a prefix-
recognizable system and � is an LTL formula.

– in time
� � v�# ¬ #$��� ��� � %�}

, where C is a prefix-recognizable system and � is a � -calculus
formula of alternation depth & .

2.2 Alternating Two-way Automata

Given a finite set ' of directions, an ' -tree is a set
ID� ' N such that if ( > R !@I , where

( ! ' and R ! ' N , then also R !�I . The elements of
I

are called nodes, and the empty
word � is the root of

I
. For every ( ! ' and R !dI , the node R is the parent of ( > R . Each

node R*)� � of
I

has a direction in ' . The direction of the root is the symbol + (we assume
that +,)! ' ). The direction of a node ( > R is ( . We denote by -�7�t % R * the direction of node
R . An ' -tree

I
is a full infinite tree if

I�� ' N . A path . of a tree
I

is a set . �¥I such
that � ! . and for every R ! . there exists a unique ( ! ' such that ( > R ! . . Note that
our definitions here dualize the standard definitions (e.g., when ' �¥V 9 ��/�Y , the successors
of the node 9 are 9�9 and

/ 9 , rather than 9�9 and 9 / )5.
Given two finite sets ' and

�
, a
�

-labeled ' -tree is a pair
�ªI0�
E"�

where
I

is an ' -tree
and

E���I����
maps each node of

I
to a letter in

�
. When ' and

�
are not important or

clear from the context, we call
�ªI0�
E/�

a labeled tree. We say that an
%�% ' U V + Y)*�� �w* -labeled

' -tree
�^I�
E/�

is ' -exhaustive if for every node R !#I , we have
E�% R *�!eV -�7�t % R *�Y/�-� .

A tree is regular if it is the unwinding of some finite labeled graph. More formally, a
transducer 0 is a tuple

� ' ������Gw��] � �1¢;�
�g� , where ' is a finite set of directions,
�

is a finite
alphabet,

G
is a finite set of states,

] � !�G
is a start state,

¢d��G � ' ��G is a deterministic
transition function, and

���,G�� �
is a labeling function. We define

¢ � ' N � G
in the standard way:

¢$% � *-� ]4� and
¢$%21 R *M� ¢$%ª¢$% R *��31�* . Intuitively, a transducer is a

labeled finite graph with a designated start node, where the edges are labeled by ' and the
nodes are labeled by

�
. A
�

-labeled ' -tree
� ' N���45� is regular if there exists a transducer

4 In order to obtain the stated bound for prefix-recognizable systems and LTL specifications one
has to combine the result in [EKS01] with our reduction from prefix-recognizable systems to
pushdown systems with regular labeling [KPV02].

5 As will get clearer in the sequel, the reason for that is that rewrite rules refer to the prefix of words.
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0 �n� ' ������Gw��]4����¢;���g� , such that for every R ! ' N , we have
4�% R *"�q�J%ª¢$% R *1* . We then

say that the size of
� ' N���45� , denoted � 4 � , is

	 G 	
, the number of states of 0 .

Alternating automata on infinite trees generalize nondeterministic tree automata and
were first introduced in [MS87]. Here we describe alternating two-way tree automata. For
a finite set

�
, let � �

% � *
be the set of positive Boolean formulas over

�
(i.e., boolean

formulas built from elements in
�

using � and � ), where we also allow the formulas���	��

and ������ 
 , and, as usual, � has precedence over � . For a set � � � and a formula�e! � �
% � *

, we say that � satisfies
�

iff assigning
���	��


to elements in � and assigning������ 
 to elements in
��� � makes

�
true. For a set ' of directions, the extension of ' is

the set ����� % ' *o� ' UWV � ���5Y (we assume that ' � V � ���5Yd�T� ). An alternating two-way
automaton over

�
-labeled ' -trees is a tuple ! � �'����Gw��] � �#"���£"� , where

�
is the input

alphabet,
G

is a finite set of states,
] � !�G

is an initial state,
"P��G��P�D� � �

% ����� % ' *$�/G/*
is the transition function, and

£
specifies the acceptance condition.

A run of an alternating automaton ! over a labeled tree
� ' N �
EP� is a labeled tree

�ªI%$�� t �
in which every node is labeled by an element of ' N"�-G . A node in

I $
, labeled by

% R �
]�* ,
describes a copy of the automaton that is in the state

]
and reads the node R of ' N . Many

nodes of
I $

can correspond to the same node of ' N ; there is no one-to-one correspondence
between the nodes of the run and the nodes of the tree. The labels of a node and its succes-
sors have to satisfy the transition function. Formally, a run

�ªI $ � t � is a
� $

-labeled & -tree,
for some set & of directions, where

� $ � ' N`��G and
�ªI $ � t � satisfies the following:

1. � !dI $ and t % � *g�m% � �
]{�)* .
2. Consider

��!�I'$
with t %ª�?*w�¡% R �
]�* and

"�%^]_��E�% R *1*H�(� . Then there is a (possibly
empty) set

	�� �#��� % ' *`�eG , such that
	

satisfies
�
, and for all

�*)k��]c(+�o!B	
, there isi@! & such that

i >{��!#I'$
and the following hold:

– If
)`! ' , then t %ci�>3�?*��K%�)�> R ��]�(c* .

– If
)� � , then t %ªi�>{�?*F�m% R �
]k(c* .

– If
)�+�

, then R � ( >�� , for some ( ! ' and
�w! ' N , and t %cid>{�?*��m%<�5�
]k(l* .

Thus, � -transitions leave the automaton on the same node of the input tree, and
�
-transitions

take it up to the parent node. Note that the automaton cannot go up the root of the input
tree, as whenever

)�+�
, we require that R*)� � .

A run
�ªI'$�� t � is accepting if all its infinite paths satisfy the acceptance condition. We

consider here parity acceptance conditions [EJ91]. A parity condition over a state set
G

is a
finite sequence

£¥�KV�£ � �
£ � �4232424�
£�,/Y of subsets of
G

, where
£ � ��£ � ��24232?� £�,���G .

The number - of sets is called the index of ! . Given a run
�ªI�$�� t � and an infinite path

. �mI'$ , let .0/21 % . *P��G be such that
]�! .0/31 % . * if and only if there are infinitely many�d! . for which t %ª�?* ! ' N �MV�]�Y . That is, .0/21 % . * is the set of states that appear infinitely

often in . . A path . satisfies the condition
£

if there is an even 7 for which .0/31 % . * � £ = )� �
and .0/21 % . * � £ =�4 � �q� . An automaton accepts a labeled tree if and only if there exists a
run that accepts it. We denote by 5 % ! * the set of all

�
-labeled trees that ! accepts. The

automaton ! is nonempty iff 5 % ! * )�:� . The Büchi acceptance condition [Büc62] is a
private case of parity of index 3. The Büchi condition

£¡�qG
is equivalent to the parity

condition
�'����£���G"�

. A path . satisfies the Büchi condition
£

iff .0/31 % . * � £ )��� .
We say that ! is one-way if

"
is restricted to formulas in

�
�
% ' �@G"* . We say that !

is nondeterministic if its transitions are of the form 6 = «87�9;:�«=<g% ( �
] =: * ), in such cases we

write
"P��GD���D� � �?> @A>

. In the case that
	 ' 	���/

, ! is a word automaton.

Theorem 2. Given an alternating two-way parity tree automaton ! with B states and in-
dex & , we can construct an equivalent nondeterministic one-way parity tree automaton
whose number of states is exponential in B!& and whose index is linear in B!& [Var98], and
we can check the nonemptiness of ! in time exponential in B!& [EJS93].

The membership problem of an automaton ! and a regular tree
� ' N��$45� is to determine

whether ! accepts
� ' Nk�$45� ; or equivalently whether

� ' N���45�W! 5 % ! * . For
]K!SG

and
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r ! ' N , we say that ! accepts
� ' Nk�$45� from

%^]_� r * if there exists an accepting run of !
that starts from state

]
reading node r (i.e. a run satisfying Condition 2 above where the

root of the run tree is labeled by
% r ��]�* ). The global membership problem of ! and regular

tree
� ' N��$45� is to determine the set

V_%^]_� r * 	 ! accepts
� ' Nk�$45� from

%^]_� r *�Y .
We use acronyms in

V /����_Y��V�b"���aY��V������oY� V�I���DY
to denote the different types

of automata. The first symbol stands for the type of movement of the automaton: 1 for 1-
way automata (we often omit the 1) and 2 for 2-way automata. The second symbol stands
for the branching mode of the automaton:

b
for alternating and

�
for nondeterministic.

The third symbol stands for the type of acceptance used by the automaton:
�

for Büchi
and

�
for parity, and the last symbol stands for the object the automaton is reading:

�
for

words and
I

for trees. For example, a 2APT is a 2-way alternating parity tree automaton
and an NBW is a 1-way nondeterministic Büchi word automaton.

2.3 Alternating Automata on Labeled Transition Graphs

Consider a labeled transition graph
�:�:�'����	����0�1�&�
� � �

. Let � ��V � ���J���wY . An alter-
nating automaton on labeled transition graphs (graph automaton, for short) [Wil99] 6 is a
tuple 	 �K�����
Gw�
] � �#"k�
£"� , where

�
,
G

,
] �

, and
£

are as in alternating two-way automata,
and
"P��Gs�/��� � �

% � �"G"* is the transition function. Intuitively, when 	 is in state
]

and
it reads a state

�
of
�

, fulfilling an atom
�
�H� � � (or

� � , for short) requires 	 to send a copy
in state � to some successor of

�
. Similarly, fulfilling an atom

� � requires 	 to send copies
in state � to all the successors of

�
. Thus, graph automata cannot distinguish between the

various successors of a state and treat them in an existential or universal way.
Like runs of alternating two-way automata, a run of a graph automaton 	 over a labeled

transition graph
�K�m�����
	��
��1�&�
���3�

is a labeled tree in which every node is labeled by an
element of

	B�aG
. A node labeled by

%<����]�*
, describes a copy of the automaton that is in

the state
]

of 	 and reads the state
�

of
�

. Formally, a run is a
� $

-labeled & -tree
�ªI $ � t � ,

where & is some set of directions,
� $0� 	W��G

, and
�^I'$�� t � satisfies the following:

1. � !dI $ and t % � *g�m%'�3����]4��* .
2. Consider

� !�I $
with t %^�?* � %'���
]�* and

"�%^]_���J%<�)*1*�� �
. Then there is a (possibly

empty) set
	W� � ��G , such that

	
satisfies

�
, and for all

��)���]l(c� !-	
, we have:

– If
)� � , then there is

i-! & such that
i >3� !dI $

and t %cid>{�?*��m%'����]k(l* .
– If
)J���

, then for every successor
�k(

of
�
, there is

ia! & such that
id>4�d!�I $

and
t %ªi�>4�?*���%<��(<��]k(l* .

– If
) ���

, then there is a successor
� (

of
�

and
i ! & such that

i->��s!�I'$
and

t %ªi�>4�?*���%<��(<��]k(l* .
Acceptance is defined as in 2APT runs. The graph

�
is accepted by 	 if there is an ac-

cepting run on it. We denote by 5 % 	 * the set of all graphs that 	 accepts and by 	 x ��'����Gw��]_��"k��£"�
the automaton 	 with

]
as its initial state.

We use graph automata as our branching time specification language. We say that a
labeled transition graph

�
satisfies a graph automaton 	 , denoted

� 	 � 	 , if 	 accepts
�

.
Graph automata have the same expressive power as the � -calculus. Formally,

Theorem 3. [Wil99] Given a � -calculus formula  , of length B and alternation depth & ,
we can construct a graph parity automaton 	�� such that 5 % 	�� * is exactly the set of graphs
satisfying  . The automaton 	�� has B states and index & .

We use NBW as our linear time specification language. We say that a labeled transition
graph

�
satisfies an NBW

�
, denoted

�,	 ���
, if A . y � �0%��@* )��� (where

���
is the initial

state of
�

)7. We are especially interested in cases where
���T� ���

, for some set
b��

of

6 See related formalism in [JW95].
7 Notice, that our definition dualizes the usual definition for LTL. Here, we say that a linear time

specification is satisfied if there exists a trace that satisfies it. Usually, a linear time specification is
satisfied it if all traces satisfy it.
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atomic propositions
b��

, and in languages
���K%<� ��� *j6

definable by NBW or formulas of
the linear temporal logic LTL [Pnu77]. For an LTL formula � , the language of � , denoted�0% � * , is the set of infinite words that satisfy � .

Theorem 4. [VW94] For every LTL formula � , there exists an NBW
� � with

� � v�� ��� }
states

such that
�0%�� � *�� �0% � * .

Given a graph
�

and a specification 	 , the global model-checking problem is to com-
pute the set of configurations

�
of
�

such that
��. 	 � 	 . Whether we are interested in

branching or linear time model-checking is determined by the type of automaton used.

3 Global Membership for 2APT

In this section we solve the global membership problem for 2APT. Consider a 2APT ! ��'����	��
� � �1�&��f��
and a regular tree

IT� � ' N��$45� . Our construction consists of two stages.
First, we modify ! into a 2APT ! ( that starts its run from the root of the tree in an idle
state. In this idle state it goes to a node in the tree that is marked with a state of ! . From
that node, the new automaton starts a fresh run of ! from the marked state. We convert ! (
into an NPT � [Var98]. Second, we combine � with an NBT 0 ( that accepts only trees
that have exactly one node marked by some state of ! . We check now the emptiness of this
automaton ! ( ( . From the emptiness information we derive an NFW

�
that accepts a word

r ! ' N in state
�/!e	

(i.e. the run ends in state
�

of ! ; state
�

is an accepting state of
�

)
iff ! accepts

I
from

%<��� r * .
Theorem 5. Consider a 2APT ! �[�����
	���� � �����
f\� and a regular tree

I �[� ' N���45� . We
can construct an NFW

���S� ' � C (�U-	�� t � � � �
	F� that accepts the word r in state
��!a	

iff ! accepts
I

from
%'��� r * . Let B be the number of states of ! and � its index; the NFW�

is constructible in time exponential in B�� .

Proof. Let
	

�
� 	sU�V + Y and ' �QV ( � �4232424� ( % Y . Consider the 2APT ! ( � ���:�

	
�
��	 (^����(� �1�_(<��f��

where
	 (&��	/UwV)��(� Y

,
��(�

is a new initial state and
��(

is defined as follows.

� ( %<����%��;� � *�*g�
�� � �&%'������* � )� ��(�6 :�«=< % ( �
��(� * �`� ��(�

and � � +6 :�«=< % ( �
��(� * � % � �
��(+* �`� ��(� and � � ��(

Clearly, ! ( accepts a
%�� ��	

�
*
-labeled tree

IJ(
iff there is a node R in

IJ(
labeled by

%	�;�
�)*
for some

%��;�
�)*w! �[�e	
and ! accepts the projection of

I`(
on
�

when it starts its run
from node R in state

�
. Let � �T�'�n� 	 �

�����^�����1� � �
f � � be the NPT that accepts exactly
those trees accepted by ! ( [Var98]. If ! has B states and index � then � has

% B�� * � v�
��}
states and index � % B�� * .

Let 0 ��� ' �����
Gw�
]{���1¢;��� � be the transducer inducing the labeling
4

of
I

. We con-
struct an NBT 0 ( that accepts

%�����	
�
*
-labeled trees whose projection on

�
is
4

and
have exactly one node marked by a state in

	
. Consider the NBT 0 (0�:�'� ��	 �

�
GT�
V + ���/Y���%^] � � + *���¢�(^��G ��V��/Y)� where

¢?(
is defined as follows. For

]-! G
let
��� B - =1%^]�*p��1%^¢$%^]_� ( � *����p*��3242423�3%^¢;%<]_� ( =�*�� + *��423242{��%ª¢$%^]_� ( % *{���p*1� be the tuple where the � -th element is

the (�� -successor of
]

and all elements are marked by
�

except for the 7 -th element, which
is marked by + . Intuitively, a state

%^]_���p*
accepts a subtree all of whose nodes are marked

by + . A state
%^]_� + * means that � ( is still searching for the unique node labeled by a state

in
	

. The transition to
��� B - = means that � ( is looking for that node in direction ( = ! ' .

¢ ( %�%^]_��h�*���%��;�ji�*1* �
���� ���
V_�1%^¢;%<]_� ( � *����p*��423242{��%ª¢$%^]_� ( % *����p*1��Y0h@���P�Oid� + and

�-�B�J%^]�*
V_�1%^¢;%<]_� ( � *����p*��423242{��%ª¢$%^]_� ( % *����p*1��Y0h@� + �Oi-!�	 and

�#� �0%<]�*
V
��� B - = %^]�* 	 7 !���/�2 2 &�� Y h@��id� + and

�#� �0%<]�*
�

Otherwise
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Clearly, 0 ( accepts a
%��n�@	

�
*
-labeled tree

IJ(
iff the projection of

IJ(
on
�

is exactly
4

and all nodes of
IJ(

are labeled by + except one node labeled by some state
�,!�	

.
Let ! ( (;�m���e�g	 �

� C � t ���#"k�
f � � be the product of 0 ( and � where C ��%<G-� V + ���/Y)*���
, t �H�L%�%^]{��� + *{�^���3* , " is defined below and

f � �T�^£,(� �3242424��£,(, � is obtained from
f � ��^£ � �4242324�
£ , � by setting

£,(� �D%�%<Gq�eV + ���/Y)*g��£ � *�Ua%'G��MV + Y"� �"* and for 7�� /
we

have
£ (= �T%<GL�aV �/Yk* �@£ =

. Thus, + states are visited finitely often, and otherwise only
the state of � is important for acceptance. For every state

%1%^]_��h�*��<�&*�!a%<GD�@V + ���/Yk* � �
and letter

%��;�1i$* !��L�#	
� the transition function

"
is defined by:

"w%1%�%^]_�1h\*��^�;*���%��;�ji�*1* �� ��%1%^] � ��h � *��^� � *{�4242324��%1%^] % ��h % *��<� % *�������
�u� � �4232424�<� % � !#� � %u���3%	�;�ji�*1* and��%^] � �1h � *{�4242324��%^] % �1h % *1��!d¢ ( %�%^]_��h�*���%��;�ji�*1*��

Every tree
IJ(

accepted by ! ( ( has a unique node R labeled by a state
�

of ! and all other
nodes are labeled by + , and if

I
is the projection of

Ip(
on
�

then ! accepts
I

from
%'��� R * .

The number of states of ! ( ( is � 4 � >�% B�� * � v�
��} and its index is � % B�� * . We can check
whether ! ( ( accepts the empty language in time exponential in B�� . The emptiness algorithm
returns the set of states of ! ( ( whose language is not empty [EJS93]. From now on we
remove from the state space of ! ( ( all states whose language is empty. Thus, transitions of! ( ( contain only tuples such that all states in the tuple have non empty language.

We are ready to construct the NFW
�

. The states of
�

are the states of ! ( ( in
%'G �

V + Yk* � � in addition to
	

(the set of states of ! ). Every state in
	

is an accepting sink of�
. For the transition of

�
we follow transitions of + -states. Once we can transition into a

tuple where the + is removed, we transition into the appropriate accepting states.
Let

� �K� ' � C (_U�	�� t ��� � �
	F� , where C (�� C � %<GD�@V + Y,� �"* , t � is the initial state
of ! ( ( , 	 is the set of states of ! (accepting sinks in

�
), and � is defined below.

Consider a state
%�%^]_� + *��^�;* ! C ( . Its transition in ! ( ( is of the form"o%1%�%^]_� + *��^�;*���%^�0%<]�*�� + *1*F�� ��%1%<] � ���p*��<� � *��4232423�3%1%<]4=�� + *{�^��='*��3242423�3%�%^] % ���p*��<� % *�� ����

] � ��¢$%^]_� ( � * and� � � �3242324�^� % ��!d� � %u�O��%^�J%^]�*�� + *1*��"o%1%�%^]_� + *��^�;*���%^�0%<]�*�����*�*F�� ��%1%<] � ���p*��<� � *��4232423�3%1%<] % ���p*��<� % *�� ����
] � ��¢$%<]_� ' � * and�u� � �3242423�^� % ��!�� � % �O��%^�0%<]�*�� + *1*��

For every tuple
��%1%<] � ���p*��<� � *{�4232424��%1%<]4=�� + *��<��='*��4232423�3%1%<] % ���p*��<� % *1� , we add

%1%<]3=1� + *��^�&='* to
� %1%�%^]_� + *{�^�;*�� ( =�* . For every tuple

�1%�%^] � ���p*{�^� � *��3242423�3%�%^] % ���p*{�^� % *�� , we add the letter
�

used in the transition to � %1%�%^]_� + *{�^�;*���X�* .
Lemma 1. A word r ! ' N is accepted by

�
in a state

�,!-	
iff ! accepts

I
from

% r ���)* .
The proof of the Lemma is in Appendix A.

4 Global Model Checking of Branching Time Properties

In this section we solve the global model-checking for branching time specifications by a
reduction to the global membership problem for 2APT. The construction is somewhat dif-
ferent from the construction in [KV00] as we use the global-membership of 2APT instead
of the emptiness of 2APT.

Consider a rewrite system C � �����
EF�
Gw�
���IJ� . Recall that a configuration of C is a
pair

%<]_� R *�!#G��PE N . Thus, the store R corresponds to a node in the full infinite
E

-tree. An
automaton that reads the tree

EwN
can memorize in its state space the state component of the

configuration and refer to the location of its reading head in
E\N

as the store. We would like
the automaton to “know” the location of its reading head in

EHN
. A straightforward way to

do so is to label a node R !#EwN by R . This, however, involves an infinite alphabet. We show
that labeling every node in

EoN
by its direction is sufficiently informative to provide the
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2APT with the information it needs in order to simulate transitions of the rewrite system.
Let
�'EoN���4��\�

be the tree where
4�% R *g� -�7�t % R * .

Theorem 6. Given a pushdown system C ���'����E���Gw���0�1IJ� and a graph automaton
� �

�'�����a� r � �#"k�
£"� , there is a 2APT ! on
E

-trees and a function � that associates states

of ! with states of C such that ! accepts
�<EwN���4 � �

from
% �O� R * iff

�ov���v � }�z |3}~ 	 � �
. The

automaton ! has � %$	 G 	�> � I � > 	 E�	 * states, and has the same index as
�

.

States of the automaton ! have three components: a state of
�

, a state of C , and navi-
gation information. States are partitioned into action states and navigation states. An action
state that includes state r of

�
and state

]
of C and reads node R (in an accepting run of

! ) means that
�

starting in r accepts
� v+x�z |3}~ . A navigation state, contains the informa-

tion on how to navigate to a new node in the tree. From an action state, in order to check
that the requirements imposed by state r of

�
on the graph

�Hvlx�z |�}~ , the transition
� r ( is

simulated by ! by sending a copy that navigates to some successor of configuration
%^]_� R *

and from there applies new actions. A transition
� r ( is simulated by ! by sending copies

that navigate to all the successors of configuration
%<]_� R * . The full proof of Theorem 6 is in

Appendix B.1.
We extend the above construction to prefix-recognizable systems. Again the two-way

automaton navigates through the full
E

-tree and simulates transitions of the rewrite system.
In order to apply a rewrite rule

�<]_��f = �1h = �1i = ��]k(l�
, the automaton goes up the tree along a

word in
f =

, it checks that the suffix is in
h =

by sending a separate copy to the root, and
moves downwards along a word in

i =
.

Theorem 7. Given a prefix-recognizable system C � �����
EF�
Gw�
���IJ�
and a graph au-

tomaton
� �D�'�����a� r ���#"���£"� , there is a 2APT ! on

E
-trees and a function � that asso-

ciates states of ! with states of C such that ! accepts
�'EwN���4 � �

from
%u��� R * iff

�ov���v � }�z |�}~ 	 �
�

. The automaton ! has � %$	 G 	�> � I � >"	 E
	 * states, and has the same index as
�

.

As in the case of pushdown systems, states of the automaton ! contain a state of
�

,
a state of C , and navigation information. The navigation information, relating to a rewrite
rule

�<]_��f\=j��h�=��ji�=1�
]k(+�
, is a state of an automaton �   for ¤ !�V�f\=j��h�=��ji�=�Y . Again, states are

partitioned into action and navigation states, this time navigation states are either universal
or existential (indicating whether they are part of a

�
transition of

�
or a

�
transition

of
�

). In order to simulate a transition
� r ( , existential navigation states are used. The

automaton ! guesses a transition
�<]_��f = �1h = �1i = ��]k(c� !dI

, it spawns an existential navigation
state that contains the initial state of � ¦ © . The navigation phase continues by emulating
the run of � ¦ © while going up the tree (towards the root). Once an accepting state of � ¦ ©
is reached, ! spawns an extra navigation process that is in charge of going to the root
and ensuring that the current location is a member in

h =
(that is, spawn a navigation state

with a state of �  © ). Simultaneously, ! proceeds with a navigation state that contains a
state of � ® © . It emulates a run of � ® © backwards and guesses a word in

i5=
. In order to

simulate a transition
� r ( , universal navigation states are used. In order to check all possible

successors of the configuration
%^]_� R * , the behavior of universal navigation states is dual.

The full proof of Theorem 7 is in Appendix B.2.
The constructions in Theorems 6 and 7 reduce the global model-checking problem to

the global membership problem of a 2APT. By Theorem 5, we then have the following.

Theorem 8. Global model-checking for a pushdown or a prefix-recognizable system C ��'����E���Gw���0�1IJ�
and a graph automaton

� � �������a� r � ��"k��£"� , can be solved in time
exponential in B!& , where B � 	 G
	)> � I � > 	 E�	 and & is the index of

�
.

Together with Theorem 3, we can conclude with an EXPTIME bound also for the global
model-checking problem of � -calculus formulas, matching the lower bound in [Wal96].
Note that the fact the same complexity bound holds for pushdown and prefix-recognizable
rewrite systems stems from the different definition of � I � in the two cases.
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5 Two-way Path Automata on Trees

Path automata on trees are a hybrid of nondeterministic word automata and nondeter-
ministic tree automata: they run on trees but have linear runs. Here we describe two-way
nondeterministic Büchi path automata. We introduced path automata in [KPV02], where
they are used to give an automata-theoretic solution to the local linear time model check-
ing problem8. A two-way nondeterministic Büchi path automaton (2NBP, for short) on�

-labeled ' -trees is a 2ABT where the transition is restricted to disjunctions. Formally,
	 ���'�������^�5���#"���£"�

, where
�

,
�

,
���

, and
£

are as in an NBW, and
"�� � �s� �

� v������<v < }�� ��}
is the transition function. A path automaton that visits the state

�
and reads the

node R !WI chooses a pair
% - �<�&(c*P! "�% �O��4�% R *�* , and then follows direction - and moves

to state
� (

. It follows that a run of a 2NBP on a labeled tree
� ' N ��45� is a sequence of pairs

t �K% R � �<� � *��3% R � �^� � *��324232 . The run is accepting if it visits
£

infinitely often. As usual, 5 % 	 *
denotes the set of trees accepted by 	 . We measure the size of a 2NBP by two parameters,
the number of states and the size,

	 " 	���� � « � �	� «�
 	 "�%<���$1�*�	
, of the transition function.

We studied in [KPV02] the emptiness and membership problems for 2NBP. Here, we
consider the global membership problem of 2NBP. We show that the reduction used in
[KPV02] from the membership problem of 2NBP to the emptiness problem of ABW, can
be used to construct an NFW

�
that accepts the word r ! ' N in state

�e! �
(i.e. the run

ends in state
�

of 	 ; state
�

is an accepting sink of
�

) iff 	 accepts
� ' N �$45� from

%^]_� r * .
Theorem 9. Consider a 2NBP 	 �:����� ���<� � �#"k�
£"� and a regular tree

� ' N���45� . We can
construct an NFW

���D� ' �
G"(_U ����]4��� � � �"� that accepts the word r in a state
�M! �

iff
	 accepts

I
from

%u��� r * . We construct
�

in time � %3	 � 	 � >�	 " 	^> � 4 � * and space � %$	 � 	 � > � 4 � * .

The first thing that we do is slightly modify the 2NBP. We add an ‘idle’ state, in which
the automaton starts its run from the root. In this idle state, the automaton navigates to
some arbitrary node of the tree. Then, the automaton transitions to an arbitrary state and
starts a ‘normal’ run. The ‘idle’ state masks the fact that we would like to identify all the
pairs

%^]_� r * from which the tree is accepted. Thus, the new automaton 	 ( navigates to the
node r in the idle state and then transitions into state

]
. If
%^]_� r * is accepted the sequence

leading to the idle state to r can be prolonged into a full accepting run.
We showed in [KPV02] how to construct an ABW

b
that is not empty iff 	 ( accepts

the tree
I

. In the proof, we translate an accepting run of
b

on
1?6

into an accepting run of
	 ( on

I
and vice versa. Thus, there is a 1-1 and onto correspondence between runs of

b
on1�6

and runs of 	 ( on
I

. We extract from the emptiness information on
b

the pairs
%^]_� r *

such that 	 x accepts the tree from node r . The full proof of Theorem 9, which is rather
involved, is in Appendix D.

6 Global Linear Time Model Checking

In this section we solve the global model-checking for linear time specifications. As branch-
ing time model-checking is exponential in the system and linear time model-checking is
polynomial in the system, we do not want to simply reduce linear time model-checking to
branching time model-checking. We have to develop methods specifically for linear time.
We solve the global model-checking problem by a reduction to the global membership
problem of 2NBP. Again, the main difference from the construction in [KPV02] is the
usage of the global-membership problem of 2NPT.

As in the previous section, the 2NBP reads the full infinite
E

-tree. It uses its location
as the store and memorizes as part of its state the state of the rewrite system. As before,

8 There is a similar type of automata called Tree Walking Automata. These are automata that read fi-
nite trees and expect the nodes of the tree to be labeled by the direction and by the set of successors
of the node. Tree walking automata are used in XML queries. See [EHvB99,Nev02].
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for pushdown systems it is sufficient to label a node in the tree by its direction. For prefix-
recognizable systems the label is more complex and reflects the membership of R in the
regular expressions that are used in the transition rules.

In order to handle pushdown systems we use again the tree
�<E�Nk�$4��\�

. We construct a
2NBP 	 that reads

�<EoN��$4��\�
. The state space of 	 contains a component that memorizes the

current state of the rewrite system. The location of the reading head in
�<E�N���4����

represents
the store of the current configuration. Thus, in order to know which rewrite rules can be
applied, 	 consults its current state and the label of the node it reads.

Theorem 10. Given a pushdown system C ���'���
EF�
GH�����IJ� and an NBW
�[���'�����a� r ���1¢;�
£"� ,

there is a 2NBP 	 on
E

-trees and a function � that associates states of 	 with states of
C such that 	 accepts

�'EoNk�$4 � �
from

%<��� R * iff
�wv���v . }�z |�}~ 	 � �

. The automaton 	 has� %$	 G 	�> � I � > 	 � 	 *
states and the size of its transition function is � % � I � >"	 � 	 *

.

The full proof is in Appendix C.1.
We now turn to consider prefix-recognizable systems. Again the configuration of a

prefix-recognizable system C �K�����
EF�
Gw�
���IJ� consists of a state in
G

and a word in
E\N

.
So, the store content is still a node in the tree

EwN
. However, in order to apply a rewrite

rule it is not enough to know the direction of the node. Recall that in order to represent the
configuration

%^]_� R *p!�Gq�@EON , our 2NBP memorizes the state
]

as part of its state space
and it reads the node R !aEoN . In order to apply the rewrite rule � = �L�^]_�
f�=��1h&=j�ji�=���]k(l� , the
2NBP has to go up the tree along a word

�a!Wf =
. Then, if R �D�H>�� , it has to check that�M!�h =

, and finally guess a word
��(F!�i =

and go downwards
�?(

to
��(;>k�

. Finding a prefix�
of R such that

�M!�f =
, and a new word

� ( !ei =
is done as in the case of branching time

by emulating the automata � ¦ © and � ® © . How can the 2NBP know that
�a!�h =

? Instead
of labeling each node R !mEwN only by its direction, we can label it also by the regular
expressions

h
for which R !ah . Thus, when the 2NBP runs � ¦ © up the tree, it can tell, in

every node it visits, whether
�

is a member of
h =

or not. If
�M! h =

, the 2NBP may guess
that time has come to guess a word in

i =
and run � ® © down the guessed word.

Thus, in the case of prefix-recognizable systems, the nodes of the tree whose mem-
bership is checked are labeled by both their directions and information about the regular
expressions

h
. We denote this tree by

�<EHN��$4���
and give its full definition in Appendix C.2.

Theorem 11. Given a prefix-recognizable system C �D�'���
EF�
GH�����IJ� and an NBW
� �

�'�����a� r ���1¢;��£"� , there is a 2NBP 	 on
E

-trees and a function � that associates states of 	
with states of C such that 	 accepts

�<EwNk�$4  �
from

%'��� R * iff
� v���v . }�z |3}~ 	 � �

. The automaton
	 has � %$	 G 	5>�%$	 G ¦ 	" 	 G ® 	 *>�	 I 	�> 	 � 	 *

states and the size of its transition function is� % � I � > 	 � 	 *
.

The proof is in Appendix C.2. Combining Theorems 9, 10 and 11, we get the following.

Theorem 12. Global model-checking for a rewrite system C and NBW
�

is solvable

– in time � %1% � I � >"	 � 	 * � *
and space � %1% � I � > 	 � 	 * � *

when C is a pushdown system.
– in time

% � I � >�	 � 	 * � >�� � v�� �  � }
and space

%3	 I 	�> 	 � 	 * � >�� � v�� �  � }
when C is a prefix-

recognizable system.

Our complexity coincides with the one in [EHRS00], for pushdown systems, and with
the result of combining [EKS01] and [KPV02], for prefix-recognizable systems.

7 Conclusions

We have shown how to extend the automata-theoretic approach to model-checking infi-
nite state sequential rewrite systems to global model-checking. In doing so we have shown

11



that the restriction of automata-theoretic methods to local model-checking is not an in-
herent restriction of this approach. Our algorithms generalize previous automata-theoretic
algorithms for local model-checking [KV00,KPV02]. We match the complexity bounds
of previous algorithms for global model-checking [EHRS00,EKS01,KPV02,Cac02b] and
show that a uniform solution exists in the automata-theoretic framework.

We believe that our algorithms generalize also to micro-macro stack systems [PV03]
and to high order pushdown systems [KNU03,Cac03] as the algorithms for local model-
checking over these types of systems are also automata-theoretic. Recently, Alur et al. sug-
gested the logic CARET, that can specify non-regular properties [AEM04]. Our algorithm
generalizes to CARET specifications as well.
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A Proof of Lemma 1

Lemma 1. A word r ! ' N is accepted by
�

in a state
�,!-	

iff ! accepts
I

from
% r ���)* .

Proof. Given a node r ! ' N and a state
��! 	

let the tree
I .� be the unique

%��n�M	
�
*
-

labeled tree whose projection on
�

is
I

and its unique node labeled by a state in
	

is r
that is labeled by

�
.

Suppose that
�

accepts r with the run t ��%�%^] � � + *{�^� � *��3242423�3%�%^] 
 � + *��<� 
 *���� that
ends in

�
. We construct an accepting run tree t (P� ' N@� C of ! ( ( on

IJ.� . Let t (�%^X�*��%1%<] � � + *{�^� � * . Clearly, t (�%<X�*�� t � . Continue by induction the run t ( from a node R !
' N labeled by

%1%<]3=
� + *��<��='* . From the definition of
�

it follows that for every two ad-
jacent states in t , %�%^]3=�� + *{�^��='*���%1%^]3= �

� � + *��<��= �
� * the transition

"�%�%1%<]3=�� + *��<��=<*{�3%	�;� + *1* of! ( ( contains a tuple
� %%^] = �

�
� ���p*

,
� = �

�
� *

,
24242

,
%1%^] = �

�� � + *{�^�
=

�
�� *

,
23242

,
%�%^] = �

�% ���p*��<� = �
�% *0�

such that
��� �J%^]3='*

,
] = �

�� � ]4=
�

� ,
� = �

�� �S��=
�

� and for every
�

we have that the lan-

guage of
%1%^] = �

�� �
f\*{�^� = �
�� *

is not empty. For
� )� � we add some accepting run tree of%1%<] = �

�� ���p*��^� = �
�� *

under R > ( � . We label R > ( � by
%�%^] =

�
� � + *��^� = �

� * . Similarly, when we
reach the end of the run of

�
, the transition

"�%1%�%^] 
 � + *{�^� 
 *{�3%^�J%^]�*{�
�)*1* contains a tuple
�

%1%<] 
 �
�

� ���p*{�^� 
 �
�

� *
,
23242

,
%�%^] 
 �

�% ���p*��<� 
 �
�% *�

such that for every state in the tuple its lan-
guage is not empty. We now add a complete accepting run tree below every successor of
the node R and complete the accepting run t ( of ! ( ( . It follows from the definition of ! ( (
that ! accepts

I
from

%'��� r * .
Suppose that ! accepts

I
from

%<��� r * then we conclude that ! ( ( accepts
I`.� and from

the accepting run of ! ( ( we construct an accepting run of
�

on r that ends in state
�
.

B Reductions from Branching Time Model Checking

B.1 Pushdown Systems

Theorem 6. Given a pushdown system C ���'����E���Gw���0�1IJ� and a graph automaton
� �

�'�����a� r � �#"k�
£"� , there is a 2APT ! on
E

-trees and a function � that associates states

of ! with states of C such that ! accepts
�<EwN���4 � �

from
% �O� R * iff

�ov���v � }�z |3}~ 	 � �
. The

automaton ! has � %$	 G 	�> 	 C 	k>"	 E�	 * states, and has the same index as
�

.

Proof. Let
E��qV�b � �3242424��b 
 Y and

�L�KE�UMV + Y . Recall that in order to apply a rewrite
rule of a pushdown system from configuration

%<]_� R * , it is sufficient to know
]

and the
first letter of R . Let

�'E�N���4��\�
be the

E
-labeled

E
-tree such that for every R !qEHN we

have
4��g% R *@� -�7�t % R * . Note that

�<EoNk�$4��\�
is a regular tree of size

	 E
	  /
. We define! �m�'E������1¢;�^�����
f\� as follows.

–
� ��%�� �eGT� ���	.���� %ªI`*1* , where ���	.��	� %ªIJ*w�LEoN is the set of all suffixes of words
R !sEoN for which there are states

]_�
]�(�!sG
and

bn!sE
such that

�^]_�
b"� R ��]�(c�/! I .
Intuitively, when ! visits a node R !�EwN in state

� r ��]_���?� , it checks that
� ~ with initial

state
%<]_�1�`> R * is accepted by

� �
. In particular, when

�w� � , then
� ~ with initial state%<]_� R * (the node currently being visited) needs to be accepted by

� .
. States of the

form
� r ��]_� � � are called action states. From these states ! consults

"
and

I
in order

to impose new requirements on the exhaustive
E

-tree. States of the form
� r ��]_����� , for�M!aE

� , are called navigation states. From these states ! only navigates downwards�
to reach new action states.

– In order to define
¢d� �B�o�D� � �

% ����� %<EP*�� �"* , we first define the function ��
�
��� ¬ �
� � � � G@� E�� � �

% ���8� %'E/*�� �"* . Intuitively, ��
�
���� ¬ transforms atoms participating
in
"

to a formula that describes the requirements on
� ~ when the rewrite rules in

I
are

applied to words of the form
b >{EwN

. For
)`! � , r ! � ,

]P!#G
, and

b¥!�E
we define

��
�
��� ~ %*)k� r ��]_��b`*F�
�� � � ��% r �
]_� � *1� If

)� �9 � x�z �\z �)z x���� «�¬ ���5��% r �
] ( ���?*1� If
)� �

6 � x�z �\z �)z x � � «�¬F���5��% r �
]k(<���?*1� If
)� �
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Note that
I

may contain no tuples in
V�]�Y ��V)b,Y �WEoN ��G

(that is, the transition
relation of

� ~ may not be total). In particular, this happens when
bm� + (that is, for

every state
]P!�G

the configuration the state
%^]_� � * of

� ~ has no successors). Then, we
take empty conjunctions as

�2� ��

, and take empty disjunctions as ����*� 
 .

In order to understand the function ��
�
��� ~ , consider the case
)/� �

. When
�

reads
the configuration

%<]_��be> R * of the input graph, fulfilling the atom
� �

requires 	 to send
copies in state r to all the successors of

%^]_�
bK> R * . The automaton ! then sends to
the node R copies that check whether all the configuration

%<]c('�1�H> R * , with
� ~ %�%^]_�
b�>

R *��3%<] ( �1�/> R *�* , are accepted by
�

with initial state r .
Now, for a formula

�H! � �
% � � �K* , the formula ��
�
��� ~ % �5��]_��b`*�! � �

% ����� %<EP*�� �"*
is obtained from

�
by replacing an atom

��)�� r � by the atom ��
�
��� ~ %�)k� r ��]_�
bJ* . We can
now define

¢
for all

b¥!�E�U@V + Y as follow.
� ¢$%�� r �
]_� � ���
bJ*g� ��
�
��� ~ %�"�% r ���J%^]_�
bJ*1*{��]_�
bJ* .
� ¢$%�� r �
]_���m>3�?����b`*��m%<����� r �
]_�1�?�1* .

Thus, in action states, ! reads the direction of the current node and applies the rewrite
rules of C in order to impose new requirements according to

"
. In navigation states, !

needs to go downwards
�¥>4�

.
–
£,(

is obtained from
£

by replacing each set
£ =

by the set
£\= ��G�� ���	.��	� % C * .

The function � associates with state
% r �
]_��X�* the state

]
of C . For other states, � is unde-

fined.

B.2 Prefix-Recognizable Systems

Theorem 7. Given a prefix-recognizable system C � �����
EF�
Gw�
���IJ�
and a graph au-

tomaton
� �D�'�����a� r � �#"���£"� , there is a 2APT ! on

E
-trees and a function � that asso-

ciates states of ! with states of C such that ! accepts
�'EwN���4 � �

from
%u��� R * iff

�ov���v � }�z |�}~ 	 �
�

. The automaton ! has � %$	 G 	�>"	 C 	�>"	 E�	 * states, and has the same index as
�

.

Proof. Let
G��S�:G/¦ U�G`�UWGp®

be the union of all the state spaces of the automata
associated with regular expressions that participate in

I
.

As in the case of pushdown systems, ! uses the labels of the tree to learn the state inEPN
that each node corresponds to. As there, ! applies to the transition function

"
of

�
the rewrite rules of C . Here, however, the application of the rewrite rules on atoms of the
form

� r and
� r is more involved, and we describe it below. Assume that ! wants to

check whether
� �

accepts
� v+x�z |3}~ , and it wants to proceed with an atom

� r ( in "�% r * . The

automaton ! needs to check whether
� � �

accepts
� v+x � z �{}~ for some configuration

%^]l(^���?*
reachable from

%^]_� R * . That is, a configuration
%^] ( �1�?*

for which there is
�^]_�
f = �1h = �1i = ��] ( ��!

I
and partitions R (�>3� and

��(5>3�
, of R and

�
, respectively, such that R ( is accepted by � ¦ © ,�

is accepted by �  © , and is
��(

accepted by � ® © . The way ! detects such a configuration%^]_���?*
is the following. From the node R , the automaton ! simulates the automaton � ¦ ©

upwards (that is, ! guesses a run of � ¦ © on the word it reads as it proceeds on direction
�

from R towards the root of the
E

-tree). Suppose that on its way up to the root, ! gets to a
state in

£ ¦ ©
as it reads the node

�H!-EoN
. This means that the word read so far is in

f =
, and

can serve as the prefix R ( above. If this is indeed the case, then it is left to check that the
word

�
is accepted by �  © , and that there is a state that is obtained from

�
by prefixing it

with a word
�?($!di =

that is accepted by 	 . � . To check the first condition, ! sends a copy in
direction

�
that simulates a run of �  © , hoping to reach a state in

£  ©
as it reaches the root

(that is, ! guesses a run of �  © on the word it reads as it proceeds from
�

up to the root
of the

E
-tree). To check the second condition, ! simulates the automaton � ® © backwards

down the tree. A node
�?(3>'�w!�EPN

that ! reads as it encounters the initial state
] �® ©

can serve
as the node

�
we are after. The case for an atom

� r ( is similar, only that here ! needs to
check whether

� .
accepts

�wv+x�z �4}~ for all configurations
%<]+('�1�?*

reachable from R , and thus
the choices made by ! for guessing the partition R (?>4� of R and the prefix

�'(
of
�

are dual.
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In order to follow the above application of rewrite rules, the state space of ! is
� �

� �eG �-ID�MG � ��V������&Y
. Thus, a state is a 5-tuple

���n� r �
]_�3�^]�(���f = �1h = �1i = ��]��{�
�����{� ,
where

�e!qV������&Y
is the simulation mode (depending on whether we are applying C to

an
�

or an
�

atom),
�^]�('��f = �1h = �ji = �
]��

is the rewrite rule in
I

we are applying, and
��!

G ¦ © UHG  © UHG ® ©
is the current state of the simulated automaton9. A state where

�J��] �® ©
is

an action state,where we apply C on the transitions in
"
. Other states are navigation states.

The formal definition of the transition function of ! follows quite straightforwardly from
the definition of the state space and the explanation above.

The acceptance condition of ! is the adjustment of
£

to the new state space. That is, it
is obtained from

£
by replacing each set

£ =
by the set

£ = � G¥�HI�� G �® �#V������&Y
. We add���Ge� I#�,%<G � � G �® *_�`V��\Y

as the maximal even set and
� �Ge��I#�,%<G � � G �® *_�`V��&Y

as
the maximal odd set. This way, in existential mode we exclude runs in which the simulation
phase continues forever while allowing them in universal mode. Indeed, as we assumed that
initial states have no incoming arrows, as long as ! does not reach the initial state of � ® ©
it cannot visit lower sets in the acceptance condition.

C Reductions from Linear Time Model Checking

C.1 Pushdown Systems

Theorem 10. Given a pushdown system C ���'���
EF�
GH�����IJ� and an NBW
�[���'�����a� r � �1¢;�
£"� ,

there is a 2NBP 	 on
E

-trees and a function � that associates states of 	 with states of
C such that 	 accepts

�'EoNk�$4����
from

%<��� R * iff
� v���v . }�z |�}~ 	 � �

. The automaton 	 has� %$	 G 	�> � I � > 	 � 	 *
states and the size of its transition function is � % � I � >"	 � 	 *

.

Proof. We define 	 �m�'E������^� � �#"���£,(l� , where

–
�L� �Z�MGq� � 1 7 � ��%ªIJ* . Intuitively, when 	 visits a node R !�EwN in state

� r �
]_�1�?� ,
it checks that C with initial configuration

%^]_�1� > R * is accepted by
� �

. In particular,
when

��� � , then C with initial configuration
%^]_� R * needs to be accepted by

� �
. As

before, states of the form
� r ��]_� � � are action states where 	 imposes new requirement

on
�<EoNk�$4 � �

. States of the form
� r �
]_�1�?� , for

��!-E
� , are navigation states.

– The transition function
"

is defined for every state in
� r �
]_� R �/! � �@GL� � 1 7 � ��%ªIJ*

and letter
b¥!-E

as follows.
� "�%�� r �
]_��X����
bJ* �¥V_%1� r (<�
]k(^���?�����_*e� r (O!�¢$% r ���J%^]_��b`*1* and

�<]_��b"���;��]k(l� !#I,Y
.

� "�%�� r �
]_����>{�?����b`*F�KV�%1� r ��]_���?�����o*�Y .
Thus, in action states, 	 reads the direction of the current node and applies the rewrite
rules of C in order to impose new requirements according to

¢
. In navigation states, 	

needs to go downwards
�¥>4�

, so it continues in direction
�

.
–
£,(O�qV�� r ��]_��X���� r !M£ and

] !eGoY
. Note that only action states can be accepting

states of 	 .

The function � associates with state
% r ����]_��X�* of 	 the state

]
of C . For other states �

is undefined.
Assume first that 	 accepts

�'EONk�$4����
when starting its run in state

% r � �
]_��X�* from node
R . Then, there exists an accepting run t �:%1% r � ��]_�
X�*�� R *���%1% r � ��] � ��f � *�� R � *{�424232 of 	 on�<EoNk�$4 � �

. Extract from t the subsequence
%1% r � ��]_��X�*{� R *{�3%�% r = � ��]3= � ��X�*�� R = � *{�424232 of action

states. As the run is accepting and only action states are accepting states we know that
this subsequence is infinite. By the definition of

"
, the sequence

%<] = � � R = � *{�3%^] = � � R = � *��324242
corresponds to an infinite path in the graph

� ~ . Also, by the definition of
£ (

, the run

9 Note that a straightforward representation of � results in �	��
 �
���
 ��
���
 �	
���
 �
 � states. Since,
however, the states of the automata for the regular expressions are disjoint, we can assume that the
tuple in � that each automaton corresponds to is uniquely defined from it.

16



r ��� r = � � r = � �423242 is an accepting run of
�

on the trace of this path. Hence,
� ~ contains an% R ��]�* -trace that is accepted by

�
, thus

% R ��]�* 	 ���
.

Assume now that
%<]_� R * 	 � � . Then, there exists a path

%^]_� R *{�3%^] � � R � *��324242 in � ~ whose
trace does not satisfy � . There exists an accepting run r ��� r � �423242 of ��� � on this trace.
The combination of the two sequence serves as the subsequence of the action states in an
accepting run of 	 . It is not hard to extend this subsequence to an accepting run of 	 on�<E N �$4 � �

from
%1% r ���
]_��X�*�� R * .

C.2 Prefix-Recognizable Systems

Let
V3h � �3242424�1h 
 Y be the set of regular expressions

h;=
such that there is a rewrite rule�^]_�
f�=��1h&=j�1i_=���]k(l��! I

. Let 0  © �:�'E�� �  © ��] � © ��¢k © ��£O © � be the deterministic automaton

for the language of
h��=

(where
���

is the reversed language of
�

). For a word R !KE N ,
we denote by

¢� © % R * the unique state that 0  © reaches after reading the word R � . Let� � E ��� �	� = � 
 �  © . For a letter
�D!K�

, let
� � 7 � , for 7 !DV 9 �424232 B Y , denote the 7 -th

element in
�

(that is,
� � 9 � !�E and

� � 7	� ! �  © for 7 �L9 ). Let
�<EoNk�$4  �

denote the
�

-
labeled

E
-tree such that

4  %^X�*,�[� + ��]
� � �3242324��]

��
 �
, and for every node

b¥> R !BE � , we
have

4  %^b > R *F���^b/�1¢  � %<bW> R *��4232423�1¢  
$%^b > R *1� . Thus, every node R is labeled by -�7�t % R *
and the vector of states that each of the deterministic automata reach after reading R � . Note
that

4  % R * � 7 � !�£  © iff R � !#h �= i.e. R !�h = . Note also that
�<EoN���4  �

is a regular tree whose
size is exponential in the sum of the lengths of the regular expressions

h � �4232423�1h 
 .

Theorem 11. Given a prefix-recognizable system C �D�'���
EF�
GH�����IJ� and an NBW
� �

�'�����a� r ���1¢;��£"� , there is a 2NBP 	 on
E

-trees and a function � that associates states of 	
with states of C such that 	 accepts

�<E N �$4���
from

%'��� R * iff
� v���v . }�z |3}~ 	 � �

. The automaton
	 has � %$	 G 	5>�%$	 G ¦ 	" 	 G ® 	 *>�	 I 	�> 	 � 	 *

states and the size of its transition function is� % � I � > 	 � 	 *
.

The proof resembles the proof for pushdown systems. This time, the application of a
rewrite rule � = � �^]_��f = �1h = �ji = �
]k(+� involves an emulation of the automata � ¦ © (upwards)
and � ® © (downwards). Accordingly, one of the components of the states of the 2NBP is a
state of either � ¦ © or � ® © . Action states are states in which this component is the initial state
of � ® © . From action states, the 2NBP chooses a new rewrite rule � = � ���^]k('��f = � �1h = � �ji = � ��]k( (+� ,
and it applies it as follows. First, it enters the initial state of � ¦ © � , and runs � ¦ © � up the tree
until it reaches a final state. It then verifies that the current node is in the language of

h = � ,
in which case it moves to a final state of � ® © � and runs it backward down the tree until it
reaches a new action state.

Proof. We define 	 �m����� ���^�j����"k��£,(+� as follows.

–
����Eq��� 
=� � �  © .

–
�K�¥V_� r �
]_�
��� � = � 	 r ! �a��]/!-Gw� � = �K�<]k(<�
f = �1h = �1i = ��]�� !dI� and

�,!�G ¦ © U#G ® © Y
Thus,

	
holds in its state a state of

�
, a state in

G
, the current state in

G ¦
or
G ®

, and
the current rewrite rule being applied. A state

� r �
]_�
���3�<]�(<�
f = �1h = �1i = ��]���� is an action
state if

�
is the initial state of � ® © , that is

����] �® ©
. In action states, 	 chooses a new

rewrite rule � = � �T�<]_��f = � �1h = � �ji = � ��]k(l� . Then 	 updates the
�

component according to
the current location in the tree and moves to the state

] �¦ © � , the initial state of � ¦ © � .
Other states are navigation states. If

�w!eG ® ©
is a state in � ® © (that is not initial), then

	 chooses a direction in the tree, a predecessor of the state in
G ® ©

reading the chosen
direction, and moves in the chosen direction. If

�,!-Go¦ ©
is a state of � ¦ © then 	 moves

up the tree (towards the root) while updating the state of � ¦ © . If
�,!#£�¦ ©

is an accepting
state of � ¦ © and

4�% R * � 7 � !-£O © marks the current node R as a member of the language
of
h�=

then 	 moves to an accepting state
��!�£\® ©

of � ® © (recall that initial states and
accepting states have no incoming / outgoing edges respectively).
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– The transition function
"

is defined for every state in
�

and letter in
�D� EW� � 
=  � �  ©

as follows.

"�%1� r ��]_�
��� � = �{����*F�

���������������������� ���������������������

� %1� r ��]_�
��('� � =����#��* ���� �
=\�m�<]k(^�
f�=��1h&=1�1i_=1��]��
��(O!�¢�¦ © %'��� � � 9�� * � §�� � %1� r ��]_����(<� � =<�{��X�* ������
� = ���^]k('��f = ��h = �ji = ��]��{��,!#£ ¦ © � ��($!#£ ® © �
and

� � 7 � !�£  ©
� �

�

�,!�G"¦

� %1� r ��]_�
� ( � � = ���
�P* ���� �
= ���^]k(<��f = �1h = �ji = �
]��
�"!�¢ ® © %<� ( ���P*

and
�q!�E � §���� ��� %1� r ('��]k( (<�
��('� � = � ���
X�*

��������
� = �K�<]k(<�
f = �1h = �1i = ��]����
� = � ���^]_�
f = � ��h = � �ji = � ��]k( (l���
r (�!d¢$% r �
�0%^]_� � � 9�� *�*���J�B] �® ©

and
��(�� ] �¦ © �

� �����
�

�,!�Gp®

Thus, when
�"!-G ¦

the 2NBP 	 either chooses a successor
�)(

of
�

and goes up the tree
or in case

�
is an accepting state of � ¦ © and

� � 7 � !�£  © then 	 chooses an accepting
state of � ® © .
When

�w!aGp®
the 2NBP 	 either guesses a direction

�
and chooses a

�
-predecessor� (

of
�

or in case
�`��] �® ©

is the initial state of � ® © , the automaton 	 updates the state of�
, chooses a new rewrite rule � = � �L�<]_��f = � �1h = � �ji = � ��]k( (c� and moves to the initial state] �¦ © � of � ¦ © � .

–
£,(��KV�� r ��]_����� � = � 	 r !�£��\]P!-Gw� � = �m�^]k('��f = �1h = �ji = �
]���� and

�J� ] �® © Y
Only action states may be accepting. As initial states (of � ® © ) have no incoming edges,
in an accepting run, no navigation stage can last indefinitely.

The function � associates with state
% r � ��]_�
]

�® © ���^]k('��f\=j��h�=��ji�=j��]���*
the state

]
of C . For other

states, � is undefined.
As before we can show that a

%<��� R * trace that satisfies
�

and the rewrite rules used to
create this trace can be used to produce a run of 	 on

�<EHN���4���
starting from node R in state% r � ��]_����� � =<* where � =��K�<]k(<�
f�=1�1h&=1�1i_=1��]�� and

�J� ] �® ©
.

Similarly, an accepting run of 	 on
�<EwN���4  �

starting from node R in state
% r ����]_����� � = *

where � = ���^]k(<��f = ��h = �ji = �
]�� and
�J� ] �® ©

is used to find a
%^]_� R * -trace in

� ~ that is accepted
by
�

.

Notice that there is some redundancy in the states of 	 . If we assume that a transi-
tion

�<]_��f = ��h = �ji = �
]k(l�
is recognized by the states in

G ¦ © U�G ® ©
, then we can remove the

I
component from � .

D The reduction from 2NBP to 1AWW

D.1 Definition of Alternating Automata on infinite words

An alternating Büchi automaton on words (ABW for short) is
bK���'����Gw��]����1¢;�
£"�

where�
,
G

,
]4�

, and
£

are as in NBW and
¢K� G � � � �

�
%jV 9 ��/�Y��WG"* is the transition

function. A run of
b

on an infinite word r � r � r � 23242 is a labeled IIN -tree
%^I� t * where

t ��I � IIN
�eG

. A node R labeled by
% 7 �
]�* describes a copy of the automaton in state]

reading letter r = . The labels of a node and its successors have to satisfy the transition
function

¢
. Formally,

X@!�I
and t %^X�* � % 9 �
] � * and for all nodes R with t % R *�� % 7 �
]�*

and
¢$%^]_� r =�*p� � there is a (possibly empty) set

V_% � � ��] � *{�424232{�3% � 
 ��] 
 *�Y 	 � � such thatV R > /��423242{� R > B Y�� I and for every
/�� )�� B we have , t % R >	)4*�S% 7  ��� ��] � * . Thus,

a 9 -transition leaves the automaton reading the same letter. Note that for 2NBP we call
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transitions that leave the automaton in the same location
X
-transitions and for ABW we call

them 9 -transitions.
A run of an ABW is accepting if every infinite path visits the accepting set infinitely

often. As before, a word r is accepted by
b

if
b

has an accepting run on the word. We
similarly define the language

�0%^b`*
of
b

.
Again, the size of the automaton is determined by the number of its states and the size

of its transition function. The size of the transition function is
	 ¢ 	;� � x « � � � «�
 	 ¢$%<]_�$1�*�	

where, for a formula in
�

�
%�V 9 ��/�Y/�@G"* we define

	 % � ��]�*�	;� 	 �2�	��
 	;� 	 ������ 
 	&�,/
and	 � � � � � 	�� 	 � � � � � 	�� 	 � � 	 �	 � � 	  /

.

Theorem 12. [VW86] Given an ABW over 1-letter alphabet
b[�:��V 15Y��
Gw�
]����1¢;�
£"�

we
can check whether

�J%^bJ*
is empty in time � %3	 ¢ 	 * and space � %$	 G 	 * .

The emptiness algorithm can also produce a table
I��_G�� V 9 ��/�Y such that

I/%^]�*�� /
iff
�0%<b x * )� � . A simple extension of the algorithm can produce for a state

]
such that�0%<b x * )� � an accepting (ultimately periodic) run of

b x
on

1 6
.

D.2 The proof

Theorem 9. Consider a 2NBP 	 �m�'��� ���<�O��"k��£"� and a regular tree
IB��� ' Nk�$45� . We can

construct an NFW
� ��� ' ��G"(
U ����] � � � ���"� that accepts the word r in a state

��! �
iff 	

accepts
I

from
%u�O� r * . We construct

�
in time � %3	 � 	 � > 	 " 	�> � 4 � * and space � %$	 � 	 � > � 4 � * .

Proof. Consider the 2NBP 	 (��D�'�����,(ª�^������"k(<�
£"� where
�,(;� ��UMV
�5�kY

and
�����! �

is a
new state, for every

�#! �
and

�M!@�
we have

"�(<% �O� ��*F� "�% �O����*
, and for every

�M!-�
we

have
"�(<% �5������*�� 6 :�«=< %u����� ( * � 6 � « � % � �^�;* . Thus, 	 ( starts reading

� ' N���45� from the root
in state

���
, the transition of

���
includes either transitions down the tree that remain in state�5�

or transitions into one of the other states of 	 . Thus, every accepting run of 	 ( starts with
a sequence

% � � � r � *���%u� � � r � *��3242423�3% � � � r 
 *���%u�O� r 
 *��423242 . Such a run is a witness to the fact
that 	 accepts

� ' N���45� from
%u�O� r 
 * . We would like to recognize all words r ! ' N and

states
��(�! �

for which there exist runs as above with
�����;(

and r 
 � r .
Consider the regular tree

� ' N���45� . Let 0�� be the transducer that generates the labels
of
4

where 0�� ��� ' ����� ��� � - � � �1� � ��� � � . For a word r ! ' N we denote by
� � % r * the

unique state that 0�� gets to after reading r . In [KPV02] we construct the ABW ! ���V 1�Y��
GH��]{���1¢;��£,(l�
as follows.

–
GK�K%��,(�Ue% �,(O� �,(l*1* � ��� �MV + ���/Y .

–
] � �K� � � � -

�
�
� + � .

–
£,(���%^£�� � � �MV + Yk*$Ue% �,($� � � �@V��/Y)* .

In order to define the transition function we have the following definitions. Two functions
� ¦ � �,(�� �,(0� V + ���/Y where

fL!mV + ���/Y , and for every state
�¥! �/(

and alphabet
letter

�K!¥�
the set ���� is the set of states from which

�
is reachable by a sequence ofX

-transitions reading letter
�

and one final
�
-transition reading

�
. Formally

�
	 %u����]�*�� +

��� % �O��]�*g�
� + if

�#!#£
or
]P!�£�

otherwise

� �� �
���� ��� � (

��������

�5�4���
� � �424232{�
� 
 !�% �,(l* � such that�3�`����(<��� 
 ������ 9� 7� B �g�<X��
� = � ! "k('%<� =�4 � ����*�� and���5��� 
 � ! "�%'� 
 4 � � ��*
� �����
�
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Now
¢

is defined for every state in
G

as follows.

¢$% �O� - ��f�*F��� 6 � � « �!� 6  « � 	 z � � %1� �O�^�&(^� - ��h���� 9 * � %��u��(<� - �1h\��� 9 *6 :�«=< 6 � : z � � � «�� � v � z ���kv���}^} %��u�&(<��� � % - � ( *�� + �{��/)*6 � �jz � ��� «�� �^v � z ���)v���}ª} %��u�&(<� - � + ��� 9 *
¢$%u� � �<� � � - �
f\*F� � 6 � ��z � ��� «�� �ªv ��� z � � v���}ª} %��u��(<�^� � � - � � ¦�% ��('�^� � *1�{� 9 *

6 � � « � � 6  � �
 � O¦
	 %1� � � �^��(<� - � �  � % � � �^�&(+*���� 9 * �%1�u�&(^�<� � � - � �  � %u�&(^�<� � *1��� 9 *��6 :�«=< z � : z � � � «�� � v ��� z � � v���}ª} 6 � � � «��� �������� � %��u� ( �<� ( ( ��� � % - � ( *�� � ¦�% � ( �^� ( ( *1�{��/)*

Finally, we replace every state of the form
V��u���^��� - ��f�� 	 either

��!d£
or
fM� + Y by

�2� ��

.

The following claim establishes the connection between ! and 	 ( .
Claim. [KPV02] 5 % ! * )��� iff

� ' N ��45��! 5 % 	 *
The proof in [KPV02] translates an accepting run of 	 ( on

� ' N ��45� into an accepting
run tree of ! on

1_6
and vice versa. It follows from the proof, that whenever the language

of a state
%u��� - ��f�* is not empty, then there exists an accepting run of 	 ( on the regular tree� ' N���4 � � where

4 � is the labeling induced by the transducer 0 � . Similarly, whenever the
language of a state

%u� � �^� � � - �
f\* is not empty, then there exists a partial run of 	 ( that starts
and ends in the root of

� ' N���4 � � . Furthermore, if
fM� �

then this partial run contains a state
in
£

.
As shown in [KPV02] the number of states of ! is � %$	 � 	 � > � 4 � * and the size of its

transition is � %3	 " 	�> 	 � 	 � > � 4 � * . It is also shown there that because of the special structure
of ! its emptiness can be computed in space � %$	 � 	 � > � 4 � * and in time � %3	 " 	)> 	 � 	 � > � 4 � * .
As previously explained, from the emptiness algorithm we can get a table

I¥��Gm� V 9 ��/�Y
such that

I/%<]�*H� /
iff
�0% ! x * )�[� . Furthermore, we can extract from the algorithm an

accepting run of ! x on
1�6

. It follows that in case
%u��� - ��f�* ! ��� � � �eV + ���/Y the run is

infinite and the algorithm in [KPV02] can be used to extract from it an accepting run of
�

on the regular tree
� ' Nk�$4 � � . If

%u���^�&(^� - �
f\*�! ��� ��� ��� �wV + ���/Y the run is finite and the
algorithm in [KPV02] can be used to extract from it a run of

�
on the regular tree

� ' N��$4 � �
that starts in state

�
and ends in state

�;(
both reading the root of ' N .

We are now ready to construct the NFW
�

. Let
� � � ' ��G ( U ����]4��� � � �"� whereG,(���%�V
�5�kY�U�%jV��5��Y`� �"*�*�� ��� ��V + ���/Y and

�
is the set of states of 	 (that serves also

as the set of accepting states),
]3�J�m% �5��� -

�
�
� + * is the initial state of ! , and � is defined as

follows.
Consider a state

% � � � - �
f\* !#G,( , its transition in ! is

¢$%u� � � - �
f\*F��� 6 � « � 6  « � 	 z � � %1� �5���^�O� - ��h���� 9 * � %1� �O� - ��h���� 9 *6 :�«=<g%��u� � ��� � % - � ( *{� + �{��/�*6 � « � %1� �O� - � + ��� 9 *
For every ( ! ' such that the language of

%u� � �1� � % - � ( *�� + * is not empty, we add
% � � ��� � % - ,

( *�� + * to � %�%u� � � - �
f\*{� ( * . For every state
�

such that the language of
%u� � �^��� - �1h�* is not

empty and the language of
% �O� - ��h�* is not empty, we add

%u� � �<�O� - ��h�* to � %1% � � � - ��f�*�� � * .
For every state

��! �
such that the language of

%u��� - � + * is not empty, we add (the accepting
state)

�
to � %1% ����� - �
f\*{� � * .

Consider a state
% �����<�O� - �
f\* !-G,( , its transition in ! is

¢$% �5���^�O� - �
f\*�� � 6 � � « � %1�u�&('�^�O� - � � ¦ % ��(<�^�;*1��� 9 *6 � � « � 6  � �
 � �¦�	 %��u� � �<��(<� - � �  � %u� � �<��(l*1��� 9 * �%��u�&(<�<�O� - � �  � % ��('�^�;*1�{� 9 *��

6 :�«=< 6 � � «��� �������� %1� �5���^��(<�1� � % - � ( *{� � ¦ %u�����^�&(+*�����/�*
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For every ( ! ' and for every
�;($! � � � v���}� such that the language of

%u�&���^�&(^��� � % - � ( *�� � ¦ % �5�
,
�&(+*�*

is not empty, we add
% �����<��(<�1� � % - � ( *{� � ¦ %u�5� , ��(l*1* to � %1% �5���^�&(^� - �
f\*{� ( * . For every

state
�&(

such that the language of
%u�;(^�<�O� - � � ¦ % ��(<�^�&*�* is not empty, we add

�;(
to � %�%u�����<�O� - ��f�*�� � * .

For every state
�&(

such that the language of
% �����^�&(^� - ��h � * is not empty and the language of%u�&(^�<�O� - ��h � * is not empty, we add

%u�&���<��(<� - �1h � * to � %�%u�����<�O� - ��f�*�� � * .
This completes the definition of the automaton. We have to show that for every word

r ! ' N accepted by
�

in state
��! �

we have that
� ' N���45� is accepted by 	 from

%<��� r * .
Lemma 2. A word r ! ' N is accepted by

�
in a state

��! �
iff 	 accepts

� ' N���45� from%u��� r * .
Proof. Consider some run t � B ��� B � �3242324� B � of

�
. Denote by r��)t - % t � 7 * the sequence

( � >3>4> ( , of letters read by
�

in the run B ���423242 B = .
Suppose that

�
accepts r . There exists an accepting run t of

�
on r . The run t has the

following form t � %u����� - ���
fO�)*��3242423�3% �5��� - 
 �
f 
 *��3% �5���^��( � � - ( � �
f�( � *��324242�%u�����^�&( % � - ( % ��f\( % *{�
� .
It is simple to see that r � r��)t - % t � B  & * . We construct an accepting run of 	 on

� ' N���45�
starting from

% r �
�)* . Consider the state
%u�&���^�&( � � - ( � �
f�( � * . From the definition of

�
it follows

that the language of
% �&( � � - ( � �
f�( � * is not empty. Hence, there exists an accepting run tree of

	 starting from
�&(

that accepts
� ' N���4 � � � � . We change this accepting run into an accepting

run of 	 that starts from r��)t - % t � B  /)*
. This serves as the suffix of our run. Consider the

transition from
%u� � �^�&(= � - (= ��f\(= * to

% � � �^��(=
�

� � - (= �
� ��f\(=

�
� * . According to the definition of

�
it

results from one of the following:

– The disjunct
%u�����^� (=

�
� � - (= �

� �
f (=
�

� * � %u� (= �
� � - (= �

� �<� (= �1h�* where - = �
� � - = and it is an

X
transition.

– The disjunct
%u� � �<��(=

�
� � - (= �

� ��f\(=
�

� * where - (= �
� � � � % - (= � ( * , r��)t - % t � B  7  /�*H�

r��)t - % t � B  7 *\> ( ,
�&(=

�
� ! � � � v���}� �© and the transition reads the letter ( .

In the first case, there exists a run segment that connects
��(=

�
� to

��(=
that starts and ends

in the root of
� ' N���4 � © � . We change this run to start and end in r��)t - % t � B  7 * and add it

before the current suffix of the run of 	 . In the second case, we add the state
�
(=

�
� reading

r��)t - % t � B  7 �/�*
before the current suffix. By the fact that

��(=
�

� ! � � � v���}� �© this is a valid
transition of 	 .

The last transition of t adds the initial state
�

before the current suffix and we are done.
In the other directions, suppose that 	 accepts

I
from

% r �
�)* . We construct an accepting
run of 	 ( that starts from the root of

I
by padding the run with a prefix of

� �
states. We

translate this run of 	 ( into an accepting run of ! as in [KPV02]. The run of
�

follows the
prefix of the run of ! that contains

� �
and ends in

�
.
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