
Solving Games without Determinization

Thomas A. Henzinger and Nir Piterman

EPFL, Switzerland

Abstract

The synthesis of reactive systems requires the so-
lution of two-player games on graphs with ω-regular
objectives. When the objective is specified by a linear
temporal logic formula or nondeterministic Büchi au-
tomaton, then previous algorithms for solving the game
require the construction of an equivalent deterministic
automaton. However, determinization for automata on
infinite words is extremely complicated, and current im-
plementations fail to produce deterministic automata
even for relatively small inputs. We show how to con-
struct, from a given nondeterministic Büchi automa-
ton, an equivalent nondeterministic parity automaton
N that is good for solving games with objective N . The
main insight is that a nondeterministic automaton is
good for solving games if it fairly simulates the equiv-
alent deterministic automaton. In this way, we omit
the determinization step in game solving and reactive
synthesis. The fact that our automata are nondeter-
ministic makes them surprisingly simple, amenable to
symbolic implementation, and allows an incremental
search for winning strategies.

1 Introduction

One of the most ambitious goals in formal methods is
to automatically produce designs from their specifica-
tions, a process called synthesis. We are interested in
reactive systems, i.e., systems that continuously inter-
act with other programs, users, or their environment
(like operating systems or CPUs). The complexity of a
reactive system does not arise from computing a com-
plicated function but rather from the fact that it has
to be able to react to all possible inputs and maintain
its behavior forever. There are two (essentially equiva-
lent) approaches to solving the synthesis problem. The
first is by reducing it to the emptiness problem of tree
automata [27], and the second, by reducing it to solv-
ing infinite-duration two-player games [3]. We consider
the second view. The two players in the game are the
system and its environment. The environment tries to

violate the specification and the system tries to sat-
isfy it. The system wins the game if it has a strategy
such that all infinite outcomes satisfy the specification.
The winning strategy, the way in which the system up-
dates its internal variables, is then translated into an
implementation that satisfies the specification when in-
teracting with any possible environment.

More formally, a game is a directed graph where the
vertices are partitioned between player 0 (system) and
player 1 (environment). A play proceeds by moving a
token along the edges of the graph. If the token is on
a vertex of player 0, she gets to choose to which suc-
cessor to move the token. If the token is on a vertex
of player 1, she chooses the successor. When they con-
tinue in this fashion ad infinitum, the token passes an
infinite sequence of vertices. We determine who wins
the play by looking at this infinite outcome. We de-
fine winning plays either by conditions (such as parity
or Rabin conditions) on the states that occur infinitely
often along a play, or by recognizers (such as linear
temporal logic formulas or Büchi automata) of infinite
words over the alphabet of states. In either case, we
are interested in solving the game. That is, we wish to
determine from which states of the game, player 0 has
a winning strategy, i.e., a way to resolve her decisions
so that the resulting plays are winning. For example,
when the winning condition is a Rabin condition [26],
the problem of solving the game is NP-complete [4] and
the current best complexity for solving such games is
O(t·g2k·k!), where t is the number of transitions in the
game, g is the number of states, and k is the number
of pairs in the Rabin condition [16, 10]. Parity games
[5] are known to be in NP ∩ co-NP [6] and the best

complexity for solving them is O(t·gb
k

2
c), where k is

the number of priorities in the parity condition [13].

In the context of synthesis, we consider an inter-
action of the system and the environment as winning
for the system if it satisfies the specification. Thus,
it makes more sense to consider games where the win-
ning condition is given as a linear temporal logic (LTL)
formula or nondeterministic Büchi word automaton
(NBW). The way to solve such games is by reducing the

1

problem to the solution of simpler games such as par-
ity or Rabin. As part of this reduction, before taking
the product of the game with the winning condition,
we have to construct a deterministic automaton for the
winning condition. This is because every sequence of
choices made in the game has to satisfy the specifica-
tion.

The first problem we encounter when we come to de-
terminize automata on infinite words is that the Büchi
acceptance condition is not strong enough [18]. We
have to use stronger acceptance conditions like par-
ity or Rabin. Indeed, Safra suggests a determinization
construction that takes a NBW and constructs a deter-
ministic Rabin automaton [29]. Specifically, starting
from an NBW with n states, he constructs a deter-
ministic Rabin automaton with 12n·n2n states and n
Rabin pairs [29]. When we combine the game with the
deterministic automaton, we get a game with g·12n·n2n

states and t·12n·n2n transitions, where g and t are the
number of states and transitions in the original game.
The overall complexity of solving this game, therefore,
is O(t·12n·n2n(g·12n·n2n)2n·n!).1 This theory is not
applicable in practice, because Safra’s determinization
is extremely complex. Every state of the determinis-
tic automaton is a tree of colored subsets of states of
the original automaton. A transition moves states be-
tween different nodes of the tree, adds and removes
nodes, and colors them. Only recently, 16 years after
the publications of Safra’s construction, it was finally
implemented [14, 1]. These implementations are lim-
ited to determinize automata with approximately 10
states. One possible solution is to consider restricted
specifications that can be handled more efficiently (cf.
[28, 2, 25, 15]). Another possible solution is to use
nondeterministic specification automata [11, 12], which
make the approach sound but incomplete.

Here we do pursue complete solutions for most gen-
eral specifications. While we cannot improve the worst-
case complexity of synthesis, it is desirable to have an
algorithm that performs well in many cases that oc-
cur in practice, even if they involve a large number of
states. In particular, we wish to use two heuristics that
have had great success in formal verification, but can-
not be used when applying determinization. The first
is to reason symbolically about sets of states, rather
than explicitly about individual states [20]. Using a
symbolic state representation in Safra’s construction
seems impossible. Second, we wish to be able to find a
winning strategy in a game that uses a small amount

1An improvement of Safra’s determinization yields a deter-
ministic parity automaton with n2n+2 states and 2n priori-
ties [24]. The overall complexity then reduces to O(t·n2n+2(g ·

n2n+2)n).

of memory, if such a strategy exist. The memory used
by a strategy corresponds to the number of states of a
parity or Rabin specification automaton. Thus, consid-
ering small memory is not possible if we construct the
deterministic automaton as the first step of the syn-
thesis algorithm. Instead, we want to incrementally
increase, as much as necessary, the memory provided
to strategies.

For this purpose we propose a general solution that
does not involve determinization. We define good for
games automata (GFG, for short), which are the class
of nondeterministic automata that can be used in the
context of games. The main idea is that if an automa-
ton can resolve its nondeterminism in a step-wise fash-
ion, then it is good enough for reasoning about games.
The formal definition of a GFG automaton considers
a game played on the structure of the automaton in
which the opponent chooses input letters, one at a
time, and the automaton resolves its nondeterminism
for each input letter. The automaton wins if whenever
the infinite word chosen by the opponent is in the lan-
guage of the automaton, then the run chosen by the
automaton is accepting. The automaton is GFG if it
has a winning strategy in this game. We show that
a nondeterministic specification automaton with this
property can indeed be used for solving games with-
out prior determinization. That is, in the product of a
game with a GFG automaton, the winning states cor-
respond to the winning states of the original game.

In order to check if an automaton is GFG, we
give an alternative characterization: an automaton is
GFG iff it fairly simulates [9] a deterministic automa-
ton for the same language. We further show how,
given an NBW with n states, we can construct a
GFG automaton for the same language. Our construc-
tion yields a nondeterministic parity automaton with
2n·n2n states and index 2n, giving an overall complex-
ity of O(t·2n·n2n(g·2n·n2n)n) for synthesis. We also
generalize the n! lower bound on the size of the de-
terministic automaton to the size of GFG automata,
establishing that our construction is essentially opti-
mal.

The most important feature of our nondeterministic
GFG automaton is its simplicity. The automaton ba-
sically follows n different sets of subsets of the original
automaton. This leads to an amazingly simple struc-
ture and even simpler transitions, which are amenable
to symbolic implementations. Another attractive ad-
vantage of this approach is that it offers a natural hier-
archy of nondeterministic automata of increasing com-
plexity that converge to the full GFG solution. That is,
given a game and an NBW specification automaton, we
can try first solving the game with a small automaton

2

for the winning condition. If we succeed, we are done,
having found a winning strategy with small memory for
the particular game we are solving. If we fail, we in-
crease the size of the automaton (and thus the memory
size we consider), and try again. In the worst case, we
get to the full GFG construction, whose memory suf-
fices to win every game with that winning condition. If
the GFG automaton fails, then we know that the origi-
nal specification is not realizable. In Section 6, we give
a family of graphs and winning conditions for which
this incremental approach indeed leads to considerable
savings.

Recently, Kupferman and Vardi suggested another
construction that avoids determinization in certain sit-
uations [17]. Their algorithm shows how to solve the
emptiness problem of alternating parity tree automata
through a reduction to the emptiness problem of non-
deterministic Büchi tree automata. In order to use
their construction to solve games, one has to be able
to express the winning condition of the opponent by
an NBW. Thus, their algorithm can be applied to syn-
thesis for LTL specifications, because given an LTL
winning condition, we negate the LTL formula to get
the winning condition of the opponent. On the other
hand, when the winning condition is given as an NBW,
there is no easy way to complement it, and their algo-
rithm cannot be applied. Furthermore, the worst-case
complexity of their algorithm and the size of the pro-
duced strategy may be quadratically worse than the
algorithm presented here.

2 Preliminaries

2.1 Nondeterministic Automata

A nondeterministic automaton is N = 〈Σ, S, δ, s0, α〉,
where Σ is a finite alphabet, S is a finite set of states,
δ : S × Σ → 2S is a transition function, s0 ∈ S is an
initial state, and α is an acceptance condition to be
defined below. A run of N on a word w = w0w1 · · · is
an infinite sequence of states t0t1 . . . ∈ Sω such that
t0 = s0 and forall i ≥ 0 we have ti+1 ∈ δ(ti, wi).
For a run r = s0s1 . . ., let inf(r) = {s ∈ S | s =
si for infinitely many i’s} be the set of all states oc-
curring infinitely often in the run. We consider three
acceptance conditions. A Rabin condition α is a set
of pairs {〈L1, U1〉, . . . , 〈Lk, Uk〉} where forall i we have
Li, Ui ⊆ S. A run is accepting according to the Rabin
condition α if for some i we have inf(r) ∩ Li 6= ∅ and
inf(r)∩Ui = ∅. That is, for some pair 〈Li, Ui〉 the run
visits Li infinitely often and Ui finitely often. A parity
condition α is a partition {F0, . . . , Fk} of S. We call
k the index of the parity condition. A run is accepting
according to the parity condition α if for some even

i we have inf(r) ∩ Fi 6= ∅ and forall i′ < i we have
inf(r)∩Fi′ = ∅. That is, the minimal set to be visited
infinitely often is even. A Büchi condition is F ⊆ S.
A run is accepting according to the Büchi condition F
if inf(r) ∩ F 6= ∅. That is, the run visits infinitely of-
ten states from F . A word w is accepted by N if there
exists some accepting run of N over w. The language
of N is the set of words accepted by N . Formally,
L(N) = {w | w is accepted by N}. Two automata are
equivalent if they accept the same language.

Given a set of states S ′ ⊆ S and a letter σ ∈ Σ, we
denote by δ(S′, σ) the set

⋃

s∈S′ δ(s, σ).

An automaton is deterministic if for every state s ∈
S and letter σ ∈ Σ we have |δ(s, σ)| = 1. In that case
we write δ : S × Σ → S.

We denote automata by acronyms in {N,D} ×
{R,P,B} × {T,W}. The first symbol stands for the
branching mode of the automaton: N for nondeter-
ministic and D for deterministic. The second symbol
stands for the acceptance condition of the automaton:
R for Rabin, P for parity, and B for Büchi. The last
symbol stands for the object the automaton is reading:
T for trees and W for words. For example, a DPW is
a deterministic parity word automaton and an NBT is
a nondeterministic Büchi tree automaton.

2.2 Games

A game is a tuple G = 〈V, V0, V1, ρ,W 〉 where V is the
set of locations or states of the game, V0 and V1 are
a partition of V to locations of player 0 and player 1
respectively, ρ ⊆ V × V is the transition relation or
edges, and W ⊆ V ω is the winning set of G.

A play in G is a maximal sequence of locations π =
v0v1 · · · such that forall i ≥ 0 we have (vi, vi+1) ∈ ρ. A
play π is winning for player 0 if π ∈ W or π is finite
π = π′v and v ∈ V1 (i.e., player 1 cannot move from
the last location in π). Otherwise, player 1 wins.

A strategy for player 0 is a partial function f :
V ∗ × V0 → V such that whenever f(πv) is defined
(v, f(πv)) ∈ ρ. We say that a play π = v0v1 · · ·
is f -conform if whenever vi ∈ V0 we have vi+1 =
f(v0 · · · vi). The strategy f is winning from v if every
f -conform play that starts in v is winning for player
0. We say that player 0 wins from v if she has a win-
ning strategy. The winning region of player 0, is the
set of states from which player 0 wins. We denote the
winning region of player 0 by W0. A strategy, winning
strategy, win, and winning region are defined dually for
player 1. We solve a game by computing the winning
regions W0 and W1. For the kind of games handled by
this paper W0 and W1 form a partition of V [8].

Also here, we consider parity and Rabin winning

3

conditions. These are defined just like for automata
over the locations of the game. The following Theorem
summarizes the complexity of solving games.

Theorem 2.1 [13, 16] Given a game G with g states
and t transitions we can solve G in time
• O(t·gb

k

2
c) where G is a parity game of index k.

• O(t·g2k·k!) where G is a Rabin game with k pairs.2

We are also interested in more general winning con-
ditions. We define W using an NBW over the al-
phabet V (or some function of V). Consider a game
G = 〈V, V0, V1, ρ,W 〉 and an NBW N over the alpha-
bet V such that W = L(N). We abuse notations and
write G = 〈V, V0, V1, ρ,N〉 or just G = 〈V, ρ,N〉. The
common approach to solving such games is by reducing
them to either Rabin or parity games. Consider a game
G = 〈V, V0, V1, ρ,W 〉 and a deterministic automaton
M = 〈V,M, η, v0, α〉 whose alphabet is V such that
L(M) = W . We define the product of G and M to be
the game G × M = 〈V ×M,V0 ×M,V1 ×M,ρ′,W ′〉
where ((v, s), (v′, s′)) ∈ ρ′ iff (v, v′) ∈ ρ and s′ = η(s, v)
and W ′ contains all the plays whose projection on the
second component is winning according to α. A mon-
itor for G is a deterministic automaton M such that
v is winning for player 0 in G iff (v,m0) is winning for
player 0 in G×M. The common way to solve a game
G = 〈V, ρ,N〉 where N is an NBW is constructing
an equivalent DRW D [29] and considering the prod-
uct G × D. Unfortunately, determinization has defied
implementation until recently and it cannot be imple-
mented symbolically [31, 1, 14]. This means that the-
oretically we know very well how to solve such games,
however practically we find it very difficult to do so.
Formally, we have the following.

Theorem 2.2 Consider a game G = 〈V, ρ,N〉 where
N is an NBW with n states. We can construct a DRW
D equivalent to N with 12n·n2n states and n pairs.
The Rabin game that is the product of G and D can be
solved in time O(t·12n·n2n(g·12n·n2n)2nn!) where g is
the number of states in V and t is the size of ρ.3

It is a common wisdom that nondeterministic au-
tomata cannot be used for game monitoring. In this
paper we show that this claim is false. We define non-
deterministic automata that can be used for game mon-
itoring, we term such automata good for games (GFG).
We show one possible way of deciding when an automa-
ton is GFG and give a construction that takes an NBW

2We note that by reducing Rabin games to parity games we
can solve Rabin games in time O(t(g·k!)k).

3Using a recent improvement of Safra’s determinization, we
can construct a DPW with n2n+2 states and index 2n and the
overall complexity reduces to O(t·n2n+2(g · n2n+2)n) [24].

and produces a GFG NPW. Our NPW is much simpler
than the DRW constructed by [29], has fewer states, it
is amenable to symbolic implementation, and allows a
natural hierarchy of automata of increasing complexity
that lead to the full solution.

3 Good for Games Automata

In this section we define when an automaton can be
used as a monitor for games. We term such automata
as good for games (GFG for short). We show that our
definition is strong enough, namely, we can indeed use
such automata for game monitoring.

In order to define GFG automata we consider the
following game. Let M = 〈Σ,M, η,m0, α〉 be an au-
tomaton. The monitor game is a game played on
the set of states M . The game proceeds in rounds
in which player 1 chooses a letter and player 0 an-
swers with a successor state of previous location read-
ing that letter. Formally, a play is a maximal sequence
π = m0σ0m1σ1 · · · such that forall i ≥ 0 we have
mi+1 ∈ η(mi, σi). That is, a play produces an infi-
nite word w(π) = σ0σ1 · · · and a run r(π) = m0m1 · · ·
of M on w(π). A play π is winning for player 0 if π
is infinite and in addition either w(π) is not in L(M)
or r(π) is an accepting run on w(π). Otherwise, player
1 wins. That is, player 0 wins if she never gets stuck
and in addition either the resulting word constructed
by player 1 is not in the language or (the word is in the
language and) the resulting run of M is accepting.

A strategy for player 0 is a partial function f :
(M ·Σ)+→M such that whenever f(πmσ) is defined
we have f(πmσ) ∈ η(m,σ). We say that a play
π = m0σ0m1σ1 · · · is f -conform if forall i ≥ 0 we have
mi+1 = f(m0 · · ·σi). The strategy f is winning from
m if every f -conform play that starts in m is winning
for player 0. We say that player 0 wins from m if she
has a winning strategy fromm. We say that M is GFG
automaton if player 0 wins from m0.

We show how to use GFG automata for game mon-
itoring. Let M = 〈V,M, η,m0, α〉 be a GFG au-
tomaton and consider a game G = 〈V, V0, V1, E,M〉.
We construct the following game. Let G × M =
〈V ′, V ′

0 , V
′
1 , E

′,W ′〉 where V ′=V ×M×{0, 1}, V ′
0=(V ×

M × {0}) ∪ (V0 × M × {1}), V ′
1=(V1 × M ×

{1}), E′={((v,m, 0), (v,m′, 1)) | m′ ∈ η(m, v)} ∪
{((v,m, 1), (v′,m, 0)) | (v, v′) ∈ E}, and W ′={π ∈
V ′ω | π ⇓

M
satisfies α}. Wlog, we assume that the

acceptance condition of M is closed under finite stut-
tering (which is true for Büchi, parity, and Rabin).

When M is a GFG we can use G×M to solve G.

Theorem 3.1 Player 0 wins from location v in G iff
she wins from location (v,m0, 0) in G×M.

4

A win in G×M is easily translated to a win over G
by forgetting the M component. In the other direction,
a winning strategy in G is combined with a winning
strategy in the monitor game over M to produce a
combined strategy in G×M. As the strategy used in
G is winning, the resulting play is accepted by M. As
the strategy in the monitor game is winning it follows
that the projection of the play on the states of M is an
accepting run. The full proof is given in Appendix A.

We established that GFG automata are useful for
solving games. We show how to check whether an au-
tomaton is GFG and how to construct GFG automata.

4 Checking the GFG Property

In this section we suggest one possible way of establish-
ing that an automaton is GFG. We prove that an au-
tomaton is GFG by showing that it fairly simulates an-
other GFG for the same language. By definition every
deterministic automaton is GFG. This follows from the
fact that player 0 does not have a choice in the monitor
component. Hence, if an automaton fairly simulates
the deterministic automaton for the same language, it
is GFG. We define fair simulation [9] and show that
fair simulation establishes the GFG property.

4.1 Fair Simulation

We define fair simulation [9]. Consider two automata
N=〈Σ, S, δ, s0, α〉 and R=〈Σ, T, ρ, t0, β〉. In order to
define fair simulation we define the fair-simulation
game. Given N and R, let GN,R=〈V, V0, V1, ρ,W 〉 be
the game with the following components.
• V = (S × T) ∪ (S × T × Σ).
• V0 = S × T × Σ and V1 = S × T .

•
ρ = {((s, t), (s′, t, σ)) : s′ ∈ δ(s, σ)} ∪

{((s, t, σ), (s, t′)) | t′ ∈ δ(t, σ)}
Given an infinite play π = v0v1 · · · we define π1 to
be the projection of π on the states in S and π2 to
be the projection of π on the states in T . Player 0
wins a play π if π is infinite and whenever π1 is an
accepting run of N then π2 is an accepting run of R
(wlog, the acceptance condition is closed under finite
stuttering). If player 0 wins the fair-simulation game
from state (s, t) then t fairly simulates s, denoted by
s≤f t. If both s≤f t and t≤fs then s and t are fair-
simulation equivalent, denoted s=f t. If s0≤f t0 we say
that R fairly simulates N , denoted N≤fR.

4.2 Proving an Automaton GFG

Here we show that if an automaton N fairly simulates
a GFG automaton D for the same language then N is
a GFG automaton as well.

Theorem 4.1 Let N be a nondeterministic automa-
ton and D a GFG automaton such that L(N) = L(D).
Then D≤fN implies N is GFG.

Proof: Let N=〈Σ, N, ρ, n0, α〉 and D=〈Σ, D, η, d0,
β〉. Let GD,N = 〈V, V0, V1, ρ,W 〉 be the fair-simulation
game between D and N and suppose D≤fN . Let
f : V ∗ × V0 → V be a winning strategy for player 0 in
GD,N . We denote the monitor game over D by G1 and
the monitor game over N by G2. Let h : (D×Σ)+ → D
be the winning strategy of player 0 in G1. We compose
f and h to resolve the choices of player 0 in G2. We
use the choices of player 1 in G2 to simulate choices of
player 1 in G1. Then h instructs us how to simulate
player 1 in GD,N and the choice of f in GD,N trans-
lates to the choice of player 0 in G2. Accordingly, we
construct plays in the three games that adhere to the
following invariants.

• The plays in GD,N and G1 are f -conform and h-
conform respectively.

• The projection of the play in G2 on Σ is the pro-
jection on Σ of the plays in G1 and GD,N .

• The projection of the play in G1 on the states of D
is the projection of the play in GD,N on the states
of D.

• The projection of the play in GD,N on the states
of N is the projection of the play in G2 on the
states of N .

We call such plays matching. The initial position in
G2 is n0, the initial position in G1 is d0, and the ini-
tial position in GD,N is (d0, n0). Obviously, these are
matching plays.

Let π2= n0σ0 n1σ1 · · · ni be a play in G2, let π1=
d0σ0 m1σ1 · · · mi be a play in G1, and let πs= (d0, n0)
(d1, n0, σ0) (d1, n1) · · · (di, ni) be a play in GD,N . As-
sume that π1, π2, and πs are matching. Let σi be the
choice of player 1 in G2. We set di+1 to h(π1σi) and set
π′

1 = π1σidi+1. Let (di+1, ni+1) be f(πs(di+1, ni, σi))
and set π′

s = πs(di+1, ni, σi)(di+1, ni+1). Finally, we
play ni+1 in G2. By definition of GD,N it follows that
ni+1 ∈ ρ(ni, σi). The plays π′

1, π
′
s, and π′

2 are match-
ing. Clearly, we can extend the plays according to this
strategy to infinite plays.

Let π1, πs, and π2 be some infinite plays constructed
according to the above strategy. Let w be the projec-
tion of π2 on Σ. If w /∈ L(N) then player 0 wins in G2.
Assume that w ∈ L(N). As h is a winning strategy
in G1, we conclude that the projection of π1 on D is
an accepting run of D. As f is a winning strategy in
GD,N , we conclude that the projection of πs on N is
also accepting. As the projections of π2 and πs on N
are equivalent we are done.

5

The above condition is not only sufficient it is also
necessary. Given two equivalent GFG automata we
can use the strategies in the respective monitor games
to construct a winning strategy in the fair-simulation
game. In fact, all GFG automata that recognize the
same language are fair-simulation equivalent.

5 Constructing GFG Automata

In this section we describe a construction of a GFG au-
tomaton for a given language. We start with an NBW
and end up with a GFG NPW. In order to prove that
our NPW is indeed a GFG we prove that it fairly sim-
ulates the DRW for the same language [29].

5.1 From NBW to NPW

The idea behind the construction of the NPW is to
mimic the determinization construction [29]. Safra
constructs a tree of subset constructions. We re-
place the tree structure by nondeterminism. We simply
follow the sets maintained by the Safra trees without
maintaining the tree structure. In addition we have to
treat acceptance. This is similar to the conversion of
alternating Büchi word automata to NBW [21]: a sub-
set is marked accepting when all the paths it follows
visit the acceptance set at least once, when this hap-
pens we start again. The result is a very simple GFG
NPW.

Let N = 〈Σ, S, ρ, s0, α〉 be an NBW such that |S| =
n. We construct a GFG NPW P = 〈Σ, Q, η, q0, α′〉
with the following components.
• The set of states Q is an n-tuple of annotated sub-

sets of S.
Every state in a subset is annotated by 0 or 1. The
annotation 1 signifies that this state is reachable
along a path that visited the acceptance set α of
N recently. When a state s is annotated 1 we say
that it is marked and when it is annotated 0 we
say that it is unmarked. Such an annotated subset
can be represented by an element C ∈ {0, 1, 2}S

where C(s) = 0 means s is not in the set, C(s) = 1
means that s is in the set and is unmarked, and
C(s) = 2 means that s is in the set and is marked.
For simplicity of notation we represent such an
annotated set C by a pair of sets (A,B) ∈ 2S ×2S

where B ⊆ A such that s ∈ B means C(s) = 2,
s ∈ A − B means C(s) = 1, and s /∈ A means
C(s) = 0. We abuse notations and write (A,B) ∈
{0, 1, 2}S. We write (A,B) ⊆ (C,D) to denote
A ⊆ C and B ⊆ D.
In addition we demand that a set is contained in
the B part of some previous set and disjoint from
all sets between the two. If some set is empty

then all sets after it are empty as well. A formal
definition of Q is given in Figure 1.

• In order to define the transition η we need a few
definitions.
For a set (A,B) ∈ {0, 1, 2}S, a letter σ ∈ Σ, and
i ∈ {0, 1} let succ((A,B), σ, i) denote the set de-
fined in Figure 1.
That is, given a set (A,B) ⊆ {0, 1, 2}S, the pos-
sible successors (A′, B′) are subsets of the states
reachable from (A,B). We add to the marked
states all visits to α and if all states are marked
then we unmark them 4. In the case that i = 1 we
are completely free in the choice of B′.
Given sets (A,B), (C,D) ∈ {0, 1, 2}S and letter
σ ∈ Σ, let trans((A,B), σ, (C,D)) be as follows.

trans((A,B), σ, (C,D))=
{

succ((A,B), σ, 0) A 6= ∅
succ((C,D), σ, 1) A = ∅

That is, we may choose a successor of either (A,B)
or (C,D). We may use (C,D) only if (A,B) is
empty. In this case, we may choose to initialize
the set of markings as we wish. As succ((A,B), σ)
includes every subset of ρ(A, σ) it is always possi-
ble to choose the empty set and in the next step
to choose a subset of (the successors of) (C,D).
The transition η is defined for every state q ∈
Q and letter σ ∈ Σ as follows. Let q =
〈(A1, B1), . . . , (An, Bn)〉.

η(q, σ) = Q ∩
n

Π
i=1

trans((Ai, Bi), σ, (A1, B1))

Intuitively, (A1, B1) hold the set of states that are
reachable from the initial state. The other sets cor-
respond to guesses as to which states from (A1, B1)
to follow in order to ignore the non-accepting runs.
Whenever one of the sets gets empty, it can be
loaded by a set of successors of (A1, B1). It follows
that in order to change a guess, the automaton has
to empty the respective set and in the next move
to load a new set.
Notice, that emptying a set forces the automaton
to empty all the sets above it and load them again
from (A1, B1).

• q0 = 〈({s0}, {s0} ∩ α), (∅, ∅), . . . , (∅, ∅)〉
That is , the first set is initialized to the set that
contains the initial state of N . All other sets are
initialized to the empty set.

4The decision to allow the set B to decrease nondeterminis-
tically may seem counter intuitive. This is equivalent to ‘forget-
ting’ that some of the followed paths visited α. This is more
convenient and allows more freedom. In particular, it simplifies
the proofs below.

6

Q =















〈(A1, B1), . . . , (An, Bn)〉

∣

∣

∣

∣

∣

∣

∣

∣

∀i (Ai, Bi) ∈ {0, 1, 2}S

∀i Ai = ∅ implies Ai+1 = ∅

∀i < j

[

either Ai ∩ Aj = ∅
or Aj ⊆ Bi

]















succ((A,B), σ, i) =



































{

(A′, B′)

∣

∣

∣

∣

A′ ⊆ ρ(A, σ) and
B′ ⊆ (ρ(B, σ) ∩ A′) ∪ (A′ ∩ α)

}

B 6= A and i = 0

{

(A′, B′)

∣

∣

∣

∣

A′ ⊆ ρ(A, σ) and
B′ ⊆ A′ ∩ α

}

B = A and i = 0

{

(A′, B′)

∣

∣

∣

∣

A′ ⊆ ρ(A, σ) and
B′ ⊆ A′

}

i = 1

Figure 1. The set of states Q and the function succ.

• Consider a state q = 〈(A1, B1), . . . , (An, Bn)〉. We
define indE(q) to be the minimal value k in [2..n]
such that Ak = ∅ or n + 1 if no such value ex-
ists. Formally, indE(q) = min{k, n+ 1 | 1 < k ≤
n and Ak = ∅}. Similarly, indF (q) is the minimal
value k in [2..n] such that Ak = Bk and Ak 6= ∅ or
n+ 1 if no such value exists. Formally, indF (q) =
min{k, n+ 1 | 1 < k ≤ n and Ak = Bk 6= ∅}.
The parity condition α′ is 〈F0, . . . , F2n−1〉 where
− F0={q | A1=B1 and A1 6=∅}.
− F2i+1={q | indE(q)=i+2 and indF (q)≥i+2}.
− F2i+2={q | indF (q)=i+2 and indE(q)>i+2}.

As all sets greater than indE(q) are empty, the odd
sets require that forall sets Ai 6= Bi or Ai = ∅. In
these cases indF (q) = n + 1. Notice that we do
not consider the case that (A1, B1) is empty. This
is a rejecting sink state.

We first show that N and P are equivalent. We
show that P contains N by using the run of N . We
use the first set in a state of P to follow singletons from
the run of N . The proof that P is contained in N is
similar to the proof that the DRW constructed by Safra
is contained in the language of N [29]. The full proof
is given in Appendix B.

Lemma 5.1 L(P) = L(N).

Let D be the DRW constructed by Safra [29]. We
show that P fairly simulates D. In fact D also fairly
simulates P . This follows immediately from the two
having the same language and D being deterministic
[9]. Thus, D and P are fair-simulation equivalent.

Lemma 5.2 D≤fP.

The proof proceeds by showing how to choose a state
of P that maintains the same sets as the tree state of
the deterministic automaton. Part of the problem is
in linearizing the nodes in the tree. This is done by

maintaining a permutation π that minimizes the nodes
that are oldest in the tree (over all nodes). We use this
permutation π to associate the ith set in the state of
P with node π(i) in the tree state of D.

5.2 Complexity Analysis

We analyze the complexity of the automaton presented
above. We count the number of states of the automa-
ton and analyze the complexity of using it for solving
games.

Theorem 5.3 Given an NBW N with n states, we
can construct a GFG NPW P with 2nn2n states and
index 2n.

Proof: We represent a state of P as a tree of subsets.
The pair (Ai, Bi) is a son of the pair (Ai′ , Bi′) such
that Ai ⊆ Bi′ . This tree structure is represented by a
function p : [n] → [n].

We map every state of N to the minimal node in the
tree (according to the parenthood relation) to which it
belongs. Thus, the partition to A1, . . . , An is repre-
sented by a function l : S → [n].

Every state of N that appears in a pair (Ai, Bi) and
also in some son (Ai′ , Bi′) belongs to Bi. In addition
we have to remember all the states s of N that appear
in some set Ai, in no descendant of Ai and in addition
appear in Bi. It suffices to remember the subset of all
these states.

To summarize, there are at most nn parenthood
functions, nn state labelings, and 2n subsets of S. This
gives a total of 2n·n2n states.

The above stated bound improves on the size of the
DRW constructed by Safra [29] by a factor of 6n. In
addition, the NPW is much simpler than the DRW.
As mentioned, Safra’s construction proved very hard

7

to implement. Existing constructions [1, 14] enumer-
ate the states. The structure of the NPW above is
much simpler and amenable to symbolic methods.5 We
note that very simple modifications can be made to
the NPW without harming its GFG structure. We
could remove the restrictions on the containment or-
der between the labels in the sets or tighten them to
be closer to the restrictions imposed on the trees in the
DRW. This would result in augmenting and reducing
the number of states between n2n and n3n. The best
structure may depend not on the final number of states
but rather on which structure is best represented sym-
bolically. It may be the case that looser structures may
have a better symbolic representation and work better
in practice.

We compare the usage of our automata in the con-
text of game solving to other methods. Consider a
game G = 〈V, V0, V1, ρ,W 〉 where W is given by an
NBW N = 〈V, S, ρ, s0, α〉. Let |S| = n, and let g and
t be the number of states and transitions of G respec-
tively. Using Safra’s construction, we construct a DRW
R with 12n·n2n states and n pairs. According to The-
orem 2.1, we can solve the resulting Rabin game in
time O(t·12n·n2n(g·12n·n2n)2n·n!). If we use our GFG
NPW, we replace 12n·n2n above by 2n·n2n. In addi-
tion, the exponent reduces from 2n to n and the n!
multiplier disappears. That is, we can solve the result-
ing parity game in time O(t·n2n+2(g·n2n+2)n). Notice,
that in this case the construction of Kupferman and
Vardi cannot be applied directly [17]. In order to ap-
ply their construction, Kupferman and Vardi need an
NBW for the complement of the winning condition.

In the context of LTL games (i.e., games with LTL
winning conditions) Kupferman and Vardi’s construc-
tion can be applied. Their construction can be ap-
plied in time O(t·12n·n2n·n!(g·12n·n2n·n!)2n). We note
that even if we use the symbolic algorithm for solv-
ing parity games [7] our upper bound increases to
O(t·n2n+2(g·n2n+2)2n), which is still significantly bet-
ter than previous approaches.

We note that in the context of emptiness of alternat-
ing parity tree automata our GFG construction cannot
be applied. This is similar to the reason why Kupfer-
man and Vardi’s method cannot be used for games
with NBW winning condition. In this case, we have to
construct a GFG NPW for the complement language,
which we do not know how to do.

5We note that the GFG NPW is larger than the DPW con-
structed in [24] by a factor of 2n. The construction in [24] is
slightly simpler than Safra’s construction but still maintains the
tree structure that proved hard to implement.

5.3 Lower Bound

We use the lower bound on memory needed for win-
ning strategies to show that our construction is in some
sense optimal. We generalize Michel’s lower bound on
the size of determinization [22, 19]. That is, we con-
struct a game with an NBW acceptance condition that
requires n! memory. Given that our GFG automaton
can be used as the memory, this proves that every GFG
automaton for the given language has at least n! states.

We start by defining the winning condition. The
winning condition is defined by the NBW Nn =
〈Σn, Sn, ρn, S

n
0 , {0}〉 where Σn = {1, . . . , n,#}, Sn =

{0, . . . , n}, Sn
0 = {1, . . . , n}, and the transition ρ is de-

fined for every state i ∈ {0, . . . , n} and letter σ ∈ Σn

as follows.

ρ(i, σ) =







{σ} i = 0 and σ 6= #
{0, i} i 6= 0 and i = σ
{i} Otherwise

The following lemma characterizes the language of N .

Lemma 5.4 [22, 19] The following statements are
equivalent. (a) w ∈ L(Nn). (b) There exist let-
ters i1, . . . , ik ∈ {1, . . . , n} such that the sequences
i1i2, . . . , ik−1ik, iki1 appear infinitely often in w.

It follows that the only words not in L(Nn) are
the words w for which there exists some permutation
i1 · · · in over 1..n such that eventually w contains only
subsequences of i1 · · · in enclosed by #.

We now define the game Gn. Intuitively, the game
allows player 1 to choose a permutation π and then
player 0 chooses a permutation π′. Player 1 then
chooses two values in [n] and reverses the order in which
they appear in π′. It follows that if player 0 chooses
the same permutation as player 1 then player 1 has no
choice but to ‘close a cycle’. If player 0 chooses a differ-
ent permutation, then player 1 can choose a pair whose
order in π′ is in accordance with π. Formally, we have
the following. Let Π denote the set of permutations
over [n]. The game Gn is 〈V, V0, V1, E,Nn〉 with the
following components.

• V = {0, 1} ∪ [n]2 ∪
⋃

π∈Π

Vπ where

Vπ = {π, π1,2, . . . , π1,n, π2,1, . . . , π2,n−1}.
The states 0, 1, and π ∈ Π are labeled by #. A
state (i, j) ∈ [n]2 is labeled by j, and where π =
i1 · · · in we have πj,l is labeled by il.

• V0 = {1} and V1 = V − V0.

• The transition is E = E0∪E1∪E2∪
⋃

π∈Π

Eπ where

− E0={(0, (1, j)), ((n, j), 1) | j ∈ [n]}.
− E1={((i, j), (i+1, j′)) | i, j, j′ ∈ [n] and i<n}.

8

−E2={(1, π), (π, π1,j), (π2,j , 0) | π∈Π and j∈[n]}.
− Eπ={(π1,j , π2,l) | j>l}.

A play proceeds by rounds that start in state 0. The
round starts by player 1 choosing a sequence of n la-
bels (or rather a permutation). Then player 0 chooses
a permutation π ∈ Π which is followed by player 1
choosing a pair ordered according to the inverse of this
permutation. Finally, the play returns to state 0. We
show that player 0 wins this game however she cannot
do that with less than n! memory.

It follows that every GFG Pn such that L(Pn) =
L(Nn) has at least n! states. A full proof is given in
Appendix C. Formally, we have the following.

Theorem 5.5 There exists a family of NBW Nn such
that Nn has n states and the minimal GFG automaton
equivalent to Nn has at least n! states.

6 Incremental Construction

Our automata have a natural incremental structure.
We simply choose how many sets of states to follow
in a state of the GFG automaton. Consider a game
G = 〈V,E,N〉, where N is an NBW with n states. We
can apply the construction from Section 5 but use only
2 sets (i.e., restrict the sets 3, . . . , n to the empty set).
We then combine the restricted automaton with G and
try to solve the resulting game. If we find that the
states that interest us in the game are winning we stop.
Otherwise, we try a less restricted automaton with 3
sets, then 4 sets, etc. If we increase the number of sets
to n and still find that the states that interest us are
losing, then we conclude that the game is indeed lost.
The result is a series of games of increasing complexity.
The first automaton has 2n·2n+2 states and four priori-
ties, resulting in complexity O(t·2n·nn+2(g·n2·nn+2)2),
where g and t are the number of states and transitions
in G respectively. In general, the i−1th automaton has
2n·in+i states and 2i priorities, resulting in complexity
O(t·2n·in+i(g·2n·in+i)i). In this section we show that
this incremental approach is indeed useful. We give
a family of games and automata that require almost
the full power of our construction. Furthermore, we
identify several sets of edges in each game such that
removing one set of edges allows us to remove one set
from the GFG automaton and still identify the winning
regions correctly.

We give a recursive definition of the game Gi. The
game G0 is 〈V 0, ∅, V 0, ρ0,N 0〉 where V 0 = S0 = {s00}
and ρ0 = {(s00, s

0
0)}. The acceptance condition is given

with respect to labeling of the states of the game, to
be defined below. The game Gi is 〈V i, ∅, V i, ρi,N i〉
where V i = V i−1 ∪ Si, Si = {si

1, s
i
2, s

i
3}, ρ

i = ρi−1 ∪
T i ∪ Ri, and T i = {(si

1, s
i
2), (s

i
1, s

i
3), (s

i
2, s

i
2), s

i
3, s

i
3)} ∪

2 4

230 45

6

0

1

Figure 2. The game G3.

((
⋃

i′<i Si′) × {si
1}) and Ri = {si

3} × (
⋃

i′<i Si′). The
labeling on the states of the game is defined as follows.
We set L(s00) = 0 and forall i ≥ 1 we set L(si

1) = 2i−1,
L(si

2) = 2i− 2, and L(si
3) = 2i. The graph depicted in

Figure 2 is G3. Notice that Gi−1 is contained in Gi.
The winning condition is the automaton N i =

〈[2i+ 2], [2i+ 2], η, 2i+ 2, [2i+ 2]even〉 where [2i]even

is the set of even values in [2i] and η is as follows.

η(2i, j) =














∅ j > 2i
{2i} j = 2i
{j, j+1, j+3, . . . , 2i−1} j < 2i is even
{j, j+2, . . . , 2i− 1} j < 2i is odd

η(2i+ 1, j) =














∅ j > 2i+ 2
{2i+ 2} j = 2i+ 2
{j, j+1, j+3, . . . , 2i+1} j < 2i+ 2 is even
{j, j+2, . . . , 2i+1} j < 2i+ 2 is odd

It is also the case that Ni−1 is contained in Ni.
We show that forall i we have player 0 wins from

every state in Gi. Furthermore, in order to use our
GFG construction from Section 5 we have to use i+1
sets. That is, if we take the product of the graph Gi

with the GFG that uses i+1 sets (Pi), then player 0
wins form every state in the resulting parity game. We
further show that this does not hold for the GFG with
i sets. That is, player 1 wins from some of the states
in the product of Gi and Pi−1. Finally, the edges in
Gi are

⋃

i′≤i T
i′ ∪ Ri′ . Consider a set of edges Ri′ for

i′ < i. We show that if we remove Ri′ from Gi, then we
can remove one set from the GFG. If we now remove
Ri′′ for i′′ < i we can remove another set from the GFG
and so on. Full proofs are given in Appendix D.

7 Conclusion and Future Work

We introduced a definition of nondeterministic au-
tomata that can be used for game monitoring. We
accompanied our definition with a construction that
takes an NBW and constructs a GFG NPW with 2nn2n

9

states. In comparison, the DRW constructed by Safra
has 12n·n2n states. In addition, the structure of the
NPW is much simpler and we suggested that it be im-
plemented symbolically.

We also suggest an incremental approach to solving
games. The algorithm of Kupferman and Vardi also
shares this property [17]. In addition, their algorithm
allows to reuse the work done in the earlier stages of
the incremental search. We believe that the symmetric
structure of our automata will allow a similar saving.
Another interesting problem is to find a property of
game graphs that determines the number of sets re-
quired in the GFG construction.

Starting from a Rabin or a parity automaton, it is
easy to construct an equivalent Büchi automaton. This
suggests that we can apply our construction to Rabin
and parity automata as well. Recently, it has been
shown that tailored determinization constructions for
these type of automata can lead to great savings in the
number of states. A similar question is open for GFG
automata, as well as for Streett automata.

Finally, we mentioned that our GFG automaton
cannot be used for applications like emptiness of alter-
nating tree automata. The reason is that emptiness of
alternating tree automata requires co-determinization,
i.e., producing a deterministic automaton for the com-
plement of the original language. We are currently
searching for ways to construct a GFG automaton for
the complement language.

Acknowledgment We thank M.Y. Vardi for pointing
out the disadvantages of the construction in [17].

References

[1] C. S. Althoff, W. Thomas, and N. Wallmeier. Obser-
vations on determinization of büchi automata. In 10th

CIAA, LNCS. Springer-Verlag, 2005.
[2] E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Con-

troller synthesis for timed automata. In SSC, pp 469–
474, 1998.

[3] J.R. Büchi and L.HG. Landweber. Solving sequen-
tial conditions by finite-state strategies. Trans. AMS,
138:295–311, 1969.

[4] E.A. Emerson and C. Jutla. The complexity of tree
automata and logics of programs. In 29th FOCS, pp
328–337, 1988.

[5] E.A. Emerson and C. Jutla. Tree automata, µ-calculus
and determinacy. In 32nd FOCS, pp 368–377, 1991.

[6] E.A. Emerson, C. Jutla, and A.P. Sistla. On model-
checking for fragments of µ-calculus. In 5th CAV,
LNCS 697, pp 385–396, 1993. Springer-Verlag.

[7] E.A. Emerson and C.-L. Lei. Efficient model checking
in fragments of the propositional µ-calculus. In 1st

LICS, pp 267–278, 1986.
[8] Y. Gurevich and L. Harrington. Trees, automata, and

games. In 14th STOC, pp 60–65. ACM, 1982.

[9] T.A. Henzinger, O. Kupferman, and S. Rajamani. Fair
simulation. In 8th Concur, LNCS 1243, pp 273–287,
1997. Springer-Verlag.

[10] F. Horn. Streett games on finite graphs. In 2nd GDV,
2005.

[11] A. Harding, M. Ryan, and P.Y. Schobbens. A new
algorithm for strategy synthesis in ltl games. In 11th

TACAS, LNCS 3440, pp 477–492. Springer, 2005.
[12] B. Jobstmann, A. Griesmayer, and R. Bloem. Program

repair as a game. In 17th CAV, LNCS 3576, pp 226–
238. Springer-Verlag, 2005.

[13] M. Jurdzinski. Small progress measures for solving
parity games. In 17th STACS, LNCS 1770, pp 290–
301. Springer-Verlag, 2000.

[14] J. Klein and C. Baier. Experiments with deterministic
ω-automata for formulas of linear temporal logic. In
10th CIAA, LNCS. Springer-Verlag, 2005.

[15] Y. Kesten, N. Piterman, and A. Pnueli. Bridging the
gap between fair simulation and trace containment. IC,
200(1):35–61, 2005.

[16] O. Kupferman and M.Y. Vardi. Weak alternating au-
tomata and tree automata emptiness. In 30th STOC,
pp 224–233, 1998.

[17] O. Kupferman and M.Y. Vardi. Safraless decision pro-
cedures. In 46th FOCS, 2005.

[18] L.H. Landweber. Decision problems for ω–automata.
MST, 3:376–384, 1969.

[19] C. Löding. Methods for the transformation of ω-
automata: Complexity and connection to second-order
logic. MSc, Kiel, 1998.

[20] K.L. McMillan. Symbolic Model Checking. 1993.
[21] S. Miyano and T. Hayashi. Alternating finite automata

on ω-words. TCS, 32:321–330, 1984.
[22] M. Michel. Complementation is more difficult with

automata on infinite words. CNET, Paris, 1988.
[23] R. Milner. An algebraic definition of simulation be-

tween programs. In 2nd IJCAI, pp 481–489. 1971.
[24] N. Piterman. From nondeterminstic Büchi and Streett

automata to deterministic parity automata. submit-
ted.

[25] P. Madhusudan R. Alur, S. La Torre. Playing games
with boxes and diamonds. In 14th Concur, LNCS 2761,
pp 127–141, 2003. Springer-Verlag.

[26] M.O. Rabin. Decidability of second order theories and
automata on infinite trees. AMS, 141:1–35, 1969.

[27] M.O. Rabin. Automata on infinite objects and
Church’s problem. AMS, 1972.

[28] P.J.G. Ramadge and W.M. Wonham. The control
of discrete event systems. Trans. on Control Theory,
77:81–98, 1989.

[29] S. Safra. On the complexity of ω-automata. In 29th

FOCS, pp 319–327, 1988.
[30] S. Safra. Exponential determinization for ω-automata

with strong-fairness acceptance condition. In 24th

STOC, 1992.
[31] S. Tasiran, R. Hojati, and R.K. Brayton. Language

containment using non-deterministic omega-automata.
In 8th CHARME, LNCS 987, pp 261–277, 1995.
Springer-Verlag.

[32] M.Y. Vardi and P. Wolper. Automata-theoretic tech-
niques for modal logics of programs. JCSS, 32(2):182–
221, 1986.

10

A Proofs from Section 3

We prove Theorem 3.1.

Proof: One direction is simple. If player 0 wins from
(v,m0, 0) it is simple enough to show that she wins
from v. We take the projection of her strategy on the
states of G.

In the other direction we have to show that whenever
player 0 wins from v in G she wins from (v,m0, 0) in
G×M. We do this by combining the winning strategy
in G with the winning strategy in the monitor game
over M. Let f : V ∗ · V0 → V be a winning strategy
for player 0 in G. Let g : (M · Σ)+ → M be a win-
ning strategy for player 0 in the monitor game over
M. Consider the following strategy h : V ′∗ · V ′

0 → V ′

for player 0 in G×M. Let π= (v0,m0, 0), (v0,m1, 1),
(v1,m1, 0), (v1,m2, 1), . . ., (vi,mi, β) be a play. When
β = 0 we have |π| is odd and we denote by π0 the se-
quence m0v0m1v1 · · ·mivi. Notice that π0 is a prefix of
a play in the monitor game. When β = 1 we have |π|
is even and we denote by π1 the sequence v0v1 · · · vi.
Notice that π1 is a prefix of a play in G.

h(π) =

{

g(π0) β = 0
f(π1) β = 1

Consider an h-conform infinite play π= (v0,m0, 0),
(v0,m1, 1), Let π0 and π1 denote the limit of the
projections defined above. We have to show that π0

is an accepting run of M. It can be seen that π1 is
an f -conform play in G and that π0 is a g-conform
play in the monitor game over M. As f is a win-
ning strategy, it follows that π1 ∈ L(N) or equiva-
lently π1 ∈ L(M). As g is a winning strategy, it fol-
lows that r(π0) = π0 ⇓

M
is an accepting run of M on

w(π0) = π0 ⇓
V
= π1.

B Definitions and Proofs for Section 5

B.1 From NBW to DRW

Here we describe Safra’s determinization [29]. The con-
struction takes an NBW and produces an equivalent
DRW.

Let N = 〈Σ, S, δ, s0, α〉 be an NBW with |S| = n.
Let V = [n] and V ′ = {n+1, . . . , 2n}. A Safra tree t
over S is a tuple 〈N, 1, p, ψ, l, E, F 〉 where the compo-
nents of t are as follows.
• N ⊆ V is a set of nodes.
• 1 ∈ N is the root node.
• p:N→N is the parenthood function. We call chil-

dren of the same node siblings.
• ψ:N→N is a partial order defining “older than”

on siblings.

• l:N→2S is a labeling of the nodes with subsets of
S.

• E,F ⊆ V are two disjoint subsets of V , defining
the set of red and green nodes.

In addition we require that the label of every node is a
proper superset of the union of the labels of its children
and that the labels of two siblings are disjoint.

Claim B.1 [29, 17] The number of nodes in a Safra
tree is at most n. The number of Safra trees over S is
at most 12nn2n.

Proof: As the labels of siblings are disjoint and the
union of labels of children is a proper subset of the label
of the parent it follows that every node is the minimal
(according to the subset order on the labels) to contain
(at least) some state s ∈ S. It follows that there are at
most n nodes.

The number of ordered trees on n nodes is the nth
Catalan number. That is Cat(n) = (2n)!

n!(n+1)! ≤ 4n. We

represent the naming of nodes by f : [n] → [n] that
associates the ith node with its name f(i). There are
at most nn such functions. The labeling function is
l : S → [n] where l(s) = i means that s belongs to the
ith node and all its ancestors. Finally, we represent
E and F by a function a : V → {0, 1, 2} such that
a(i) = 0 means that i /∈ E ∪ F , a(i) = 1 means that
i ∈ E, and a(i) = 2 means that i ∈ F . There are at
most 3n such functions.

To summarize, the number of trees is at most
4n·3n·nn·nn = 12n·n2n.

We construct the DRW D equivalent to N . Let
D = 〈Σ, D, ρ, d0, α

′〉 where the components of D are
as follows.
• D is the set of Safra trees over S.
• d0 is the tree with a single node 1 labeled {s0}

where E=V−{1} and F = ∅.
• Let α′={〈L1, U1〉, . . . , 〈Ln, Un〉} be the Rabin ac-

ceptance condition where Li = {d ∈ D | i ∈ Fd}
and Ui = {d ∈ D | i ∈ Ed}.

• For every tree d ∈ D and letter σ ∈ Σ the tran-
sition d′ = ρ(d, σ) is the result of the following
transformations on d. We temporarily use the set
V ′ of nodes.

1. For every node v with label S ′ replace S′ by
δ(S′, σ) and set E and F to the empty set.

2. For every node v with label S ′ such that S′∩
α 6= ∅, create a new youngest child v′ ∈ V ′.
Set its label to S′ ∩ α.

3. For every node v with label S ′ and state s ∈
S′ such that s belongs also to the label of an
older sibling v′ of v, remove s from the label
of v and all its descendants.

11

4. For every node v whose label is equal to the
union of the labels of its children, remove all
descendants of v. Add v to F .

5. Remove all nodes with empty labels and add
all unused names to E.

6. Change the nodes in V ′ to nodes in V .

Claim B.2 [29] L(D) = L(N).

Theorem B.3 [29] Given an NBW N with n states
we can construct a DRW D with 12nn2n states and n
pairs, such that L(N) = L(D).

B.2 Proof of Lemma 5.1

Proof: We show first that L(N) ⊆ L(P). Consider
a word w ∈ Σω and an accepting run r = s0s1 · · · of
N on w. Consider the run r′ = q0q1 . . . of R where
qi = 〈(Ai, Bi), (∅, ∅), . . . , (∅, ∅)〉. We set Ai = {si}. We
set Bi = Ai ∩ α if Bi−1 = ∅ and Bi = ∅ if Bi−1 6= ∅.
That is, the run of R uses the first set to follow the
singletons in the run of N . As r visits α infinitely
often, r′ visits F0 infinitely often and r′ is accepting.

We have to show that L(P) ⊆ L(N). Consider a
word w = w0w1 · · · ∈ Σω and an accepting run r′ =
q0q1 · · · of P on w where forall i ≥ 0 we have qi =
〈(Ai

1, B
i
1), . . . , (A

i
n, B

i
n)〉. Let 2k be the minimal index

such that F2k is visited infinitely often.
We first prove two claims.

Claim B.4 For every i ∈ N, j ∈ [n], and every state
s ∈ Ai

j we have s is reachable from s0 reading w[0, i−1].

Proof: We prove the claim for all j ≥ 1 by induction
on i. Clearly, it holds for i = 0. Suppose that it holds
for i. As Ai+1

j ⊆ ρ(Ai
j′ , wi) for some j′ (either j is 1

and j′ is 1, j′ is j and Ai
j 6= ∅, or j′ is 1) it follows that

every state in Ai+1
j is reachable from s0 reading w[0, i].

Claim B.5 Consider i, i′ ∈ N such that i < i′ and
qi, qi′ ∈ F2j for some j and forall j ′ < 2j and forall

i < a < i′ we have qa /∈ Fj′ . Then every state in Ai′

j+1

is reachable from some state in Ai
j+1 reading w[i, i′−1]

with a run that visits α.

Proof: By assumption, for every j ′ < 2j the set Fj′ is
not visited between i and i′. Hence, for j′′ ≤ j+ 1 and
for i ≤ a ≤ i′ we haveAa

j′′ 6= ∅. It follows that forall i ≤

a < i′ we have (Aa+1
j+1 , B

a+1
j+1) ∈ succ((Aa

j+1, B
a
j+1), wa).

We show that for every a such that i < a ≤ i′ every
state in Ba

j+1 is reachable from some state in Ai
j+1

along a run visiting F . As Bi+1
j+1 = ρ(Ai

j+1, wi) ∩ α

this is obviously true for i+ 1. Suppose it is true for a
and prove for a + 1. We know Ba+1

j = ρ(Ba
j+1, wa) ∪

(Aa+1
j+1 ∩α). So every state in Ba+1

j+1 is either a successor

of a state in Ba
j+1 or is a state in α. As Ai′

j+1 = Bi′

j+1

the claim follows.

We construct an infinite tree with finite branching
degree. The root of the tree corresponds to the initial
state of N . Every node in the tree is labeled by some
state of N and a time stamp i. An edge between the
nodes labeled by (s, i) and (t, j) corresponds to a run
starting in s, ending in t, reading w[i, j−1], and visiting
α. From König’s lemma this tree contains an infinite
branch. The composition of all the run segments in
this infinite branch is an infinite accepting run of N on
w.

Let (s0, 0) label the root of t. Let i be the maximal
location such that forall j < 2k the set Fj is not visited
after i. Let i′ be the minimal location such that i′ > i
and Ai′

k+1 = Bi′

k+1. For every state s in Ai′

k+1 we add
a node to t, label it by (s, i′) and connect it to the
root. We extend the tree by induction. We have a tree
with leafs labeled by the states in Aa

k+1 stamped by
time a, and Aa

k+1 = Ba
k+1. That is, for every state s in

Aa
k+1 there exists a leaf labeled (s, a). We also know

that Aa
k+1 is not empty. We know that F2k is visited

infinitely often. Hence, there exists a′ > a such that
Aa′

k+1 = Bk′

j 6= ∅. For every state s′ in Aa′

k+1 there
exists a state s in Aa

k+1 such that s′ is reachable form
s reading w[a, a′ − 1]. We add (s′, a′) as a son of (s, a).
From Claim B.4 it follows that every edge (s0, 0), (s′, i′)
corresponds to some run starting in s0, ending in s′,
and reading w[0, i′ − 1]. From Claim B.5, every other
edge in the tree (s, a), (s′, a′) corresponds to some run
starting in s, ending in s′, reading w[a, a′ − 1], and
visiting α. From König’s lemma there exists an infinite
branch in the tree. This infinite branch corresponds to
an accepting run of N on w.

B.3 Proof of Lemma 5.2

Proof: The simulation relation H associates a state
d of D with a state q of P if the label of the root in d is
a subset of the first set in q and the labels of the sons of
the root is a subset of the marked states in the first set
in q. Formally,H = {(d, q) | l(1) ⊆ A1 and

⋃

i>1 l(i) ⊆
B1}.

We establish that H is a fair-simulation. During
simulation, we maintain a permutation π : [n] → [n]
that associates the ith set in the state of the DPW
with a node π(i) in the tree-state of the DRW. The
permutation π is similar to the index appearance record

12

[30]. While playing the fair-simulation game, this per-
mutation is updated according to the changes done
to the state of D and to the state of P . Con-
sider two states d and q such that d≤fq. Let d =
〈N, 1, p, ψ, l, F, E〉 and q = 〈(A1, B1), . . . , (An, Bn)〉.
Let d′ = 〈N ′, 1, p′, ψ′, l′, F ′, E′〉 be δ(d, σ). Let π be the
permutation that maintains the association between d
and q. We set π′ to the permutation that is obtained
from π by moving all the nodes in E ′ to the end of
π′ so that nodes in E′ ∩ N ′ appear before nodes in
E′−N ′. We choose q′ ∈ η(q, σ) such that d′≤fq

′ in a
way that best mimics the transition from d to d′. We
choose q′ = 〈(A′

1, B
′
1), . . . , (A

′
n, B

′
n)〉 so that forall i ei-

ther A′
i = l′(π(i)) and B′

i is the union of the labels of
the descendants of π(i) in d′ or A′

i = ∅.

For a node v ∈ d we introduce the notation l(�v) to
denote the union of the labels of sons of v. Formally,
l(�v) =

⋃

v′:p(v′)=v l(v
′). We distinguish between two

possible moves in going from q to q′. The first type
of move is initialization where we set q′ in a structure
that is similar to that of d′ according to π′. The second
type of move is simulation where we have q and d of
a similar structure according to π and q′ follows the
transition from d to d′ according to π′.

The initialization move sets A′
1 to l′(1) and B′

1 to
l′(�1). Forall i > 1 we set A′

i = B′
i = ∅. As d≤fq it

follows that l(1) ⊆ A1 and l(�1) ⊆ B1 so this is a legal
move of P . We assume that π is the permutation so
that π(i) = i′ and i′ is the ith active node in d according
to the numbers of the nodes. We set π′ according to
the update policy explained above.

We explain now a simulation move. A simulation
move starts from states d and q such that forall i we
have either Ai = l(π(i)) and Bi = l(�π(i)) or Ai =
Bi = ∅. We build the simulation move so that d′ and
q′ maintains the same invariant according to π′. We
first set the permutation π′. The permutation π′ is
obtained from π by moving all the values i such that
i ∈ E′ to the end. We keep the values in E ′ ∩ N
before the values in E′−N . For example, if π = 1234,
N = {1, 3, 4}, and E′ = {2, 4} then π′ = 1342. We are
now ready to handle the sets in q′. We handle them
according to their order.

• If π(i) was removed during the transition to d′ or
is not in d′ (i.e, π(i) ∈ E′), we set Ai′ = Bi′ = ∅
forall i′ ≥ i (notice that we use π(i) and not π′(i)).
Clearly, this is a legal transition in P .

• Otherwise, it is the case that π(i) remains in d′ and
so do π(i′) forall i′ < i. It follows that π′(i) = π(i).

– Consider the case that π(i) exists in d and in
d′. It must be the case that Ai = l(π(i)) 6= ∅
and Bi = l(�π(i)). We set A′

i = l′(π(i))
and B′

i = l′(�π(i)). In the case that B′
i = ∅

in d′ node i has no descendants. As forall
i′ ≤ i we already set A′

i′ = l′(π(i′)) and B′
i′ =

l′(�π(i′)) this is a legal transition of in P .
– If Ai = ∅ and l′(π(i)) 6= ∅ then we set A′

i =
l′(π(i)) and B′

i = l′(�π(i)). In this case, we
can choose a subset of the successors of A1

and choose freely which states to mark. It
follows that this is a legal transition in P .

It is simple to see that starting from states d≤fq such
that forall i we have either Ai = l(π(i)) and Bi =
l(�π(i)) or Ai = Bi = ∅ we produce states d′≤fq

′ that
maintain the same invariant and in addition A′

i = ∅ in
the case that some i′ ≤ i is removed in the transition
from d to d′.

We show that the choice of successors as above as-
sociates a fair run of D with a fair run of P . Consider
a state q0 of P such that d0 ≤ q0. Let r = d0d1 · · ·
where di = 〈Ni, 1, pi, li, fi, ei〉 be an accepting run of
D on w = w0w1 · · · and let r′ = q0q1 · · · be the run
of P constructed according to the above strategy. Let
qi = 〈(Ai

1, B
i
1), . . . , (A

i
n, B

i
n)〉. Let π0π1 · · · be the se-

quence of permutations that maintain the association
between the sets of qi and the nodes in di. By assump-
tion r is accepting. By construction, forall i > 0 we
have Ai

1 = li(1) and Bi
1 = li(�1).

Let 〈Lk, Uk〉 be the pair according to which r is ac-
cepting. That is, Lk appears infinitely often in r and
Uk finitely often. It follows that from some point on-
wards the node k is always in di. Formally, there exists
i′ such that forall i > i′ we have k ∈ Ni and k /∈ Ei. In
addition, for every i > i′ there exists j > i such that
k ∈ Fj . Equivalently, in the transition from dj−1 to dj

step 4 is applied to node k.

Consider the sequence of permutations π0π1 · · ·. As
forall i > i′ we have k /∈ Ei, it follows that forall i > i′

we have π−1
i (k) does not increase. Hence, there exists

some o′ > i′ such that forall o > o′ we have π−1
o (k) = p

for some p.

By the strategy above, forall o > o′ and for every
p′ ≤ p we have li(πi(p

′)) = Ai
p′ 6= ∅ and li(�πi(p

′)) =

Bi
p′ . As forall o > o′ and forall p′ ≤ p we have Ai

p′ 6= ∅
it follows that F2l+1 for 2l + 1 < 2p + 2 are visited
finitely often in r′. However, Lk is visited infinitely
often in r. Forall o ≥ o′ we have Bi

p = li(�πi(p))
and Lk is visited in r when node k = π(p) has no
descendants. It follows that infinitely often Bi

p = ∅
and F2p+2 is visited infinitely often in r′.

We conclude that r′ is an accepting run of P .

C Proof of Lower Bound

Claim C.1 Player 0 wins from every state in G.

13

Proof: Player 0 uses as memory a permutation π ∈
Π. Let +1 impose some cyclic order on Π. The strategy
of player 0 is in state 1 choose the successor π and then
increase the memory to π + 1.

We show that this strategy is winning. Suppose
that infinitely often player 1 chooses sequences from
different permutations during the passage of the re-
gions [n]2. Clearly, by Lemma 5.4 the sequence of la-
bels is accepted by Nn. Suppose that eventually player
0 always chooses the same permutation π. As player
0 tries all permutations in cyclic order, she infinitely
often chooses the same permutation π. Then player 1
chooses some pair in π in reverse order. It follows that
some pair in π appears infinitely often in the play in
reverse order and by Lemma 5.4 the sequence of labels
is accepted by Nn.

Claim C.2 Winning G requires n! memory values.

Proof: Suppose that player 0 can use at most n!− 1
memory values. Then, one of the outgoing edges from
state 1 cannot be used. Let π be this unreachable per-
mutation. Player 1 chooses the permutation π in the
first section. Then player 0 chooses some permutation
π′ 6= π. Let π = i0 · · · in and π′ = i′0 · · · i

′
n. Then

there exists l < m and l′ < m′ such that il = i′m′ and
im = i′l′ . Player 1 chooses i′m′ and then i′l′ . Thus,
player 1 chooses a pair that conforms with the order
imposed by π. By Lemma 5.4 player 1 wins.

D Proof of Incremental Construction

Claim D.1 Forall i ≥ 0, player 0 wins from every
location in Gi.

Proof: We prove the claim by induction on i. In G0

it is easy to see that player 0 wins.
Assume that player 0 wins from every location in

Gi−1. Consider an infinite play in Gi. Either, the play
eventually stays in Gi−1 and is winning for player 0
by the induction assumption. Otherwise, there are two
options, either the play eventually remains in state si

2

or the play visits si
3 infinitely often. In the first case,

the run of Ni that waits until the play gets stuck in
si
2 and then goes to state 2i − 2 and remains there is

winning. Thus, such plays are won by player 0. In the
second case, the run of Ni that visits 2i+ 2 whenever
the play is in si

3 and is in 2i − 1 at all other times is
winning. Again, such plays are won by player 0.

Let Pi denote the GFG constructed from Ni with
i + 1 sets according to the construction in Section 5.
We show that Pi is sufficient in order to determine that
player 0 wins from every state in Gi. For a game G, we

say that G is won by player 0 and that player 0 wins
G if player 0 wins from every state in G.

Claim D.2 Forall i ≥ 0, player 0 wins the parity game
Gi ×Pi.

Proof: We prove the claim by induction on i. For the
case i = 0 the claim holds. Indeed, even the product
of G0 and N0 is won by player 0.

Suppose that the product of Gi−1 and Pi−1 is won
by player 0. We show that the product of G and Pi is
won by player 0. We have i+1 sets in Pi. The first set
is used to monitor the reachable states in Ni. While
the play stays in Gi−1 we use the rest i sets in Pi in
order to mimic the behavior in the product of Gi−1

and Pi−1. Whenever, the play leaves Gi−1 and enters
Si = V i −V i−1 there are two options. In case that the
play ends in si

2 and stays there forever, we can use the
first set to follow the state 2i of Ni and win. In case
that the play returns to Gi−1 via si

3 then we keep in
the first set of Pi only the state 2i + 2. At this point
all the states in the first set are marked and Pi visits
the set F0.

A play that visits si
3 infinitely often is winning for

player 0 as F0 is visited infinitely often. Otherwise, a
play eventually remains in Gi−1 and is won by induc-
tion.

Let q0 denote the initial state of Pi. By definition
q0 uses just the first set that contains the initial state
of Ni. It follows that q0 can be viewed as the initial
state of all the automata Pi′ for i′ ≤ i.

Claim D.3 Forall i ≥ 1, player 1 wins from (s00, q0)
in Gi ×Pi−1.

Proof: We prove the claim for the case i = 1. Con-
sider the gameG1×P0. The automaton P0 uses one set
of marked states. The play starts in the state (s00, q0)
and q0 follows the reachable states in N1. As long as
the play stays in s00 the reachable states in N1 are 0, 1
and 1 is unmarked. The winning strategy of player 1
is to stay in s00 as long as the first (and only) set in P0

follows the state 1 of N1. As long as this is the case,
the first set in P0 is not marked as accepting. In order
to mark the first set in P0 accepting, player 0 has to
choose to remove the state 1 of N1. Once this is done,
player 1 chooses to go to s11 and the single set of P0

becomes empty. It follows that player 0 looses from
(s00, q0).

Suppose that the claim holds for i−1 and prove for
i. The game starts in (s00, q0). As long as the first
set in Pi−1 is used to monitor the full set of reachable
state in Ni player 1 stays in Gi−1. It follows that the

14

state 2i+1 of Ni is followed in the first set and this set
cannot be marked accepting. As long as the first set of
Pi−1 contains 2i+1 player 1 remains in Gi−1. It follows
that player 0 can use only i−1 sets in Pi−1 to follow a
play in Gi−1. By induction, player 0 looses. If at some
point player 0 decides to give up on following the state
2i+1 in the first set of Pi−1, player 1 immediately goes
to si

1. The first set in Pi−1 gets empty and player 0
looses.

Consider some set I ⊆ [i] such that i ∈ I . Let G
I

i

denote the game with states Si and edges (
⋃

i′≤i T
i)∪

(
⋃

i′∈I R
i′). That is, G

I

i includes only the transitions

in Ri′ for i′ ∈ I .

Claim D.4 Forall I ⊆ [i] such that i ∈ I and |I | = j,

player 0 wins the parity game G
I

i ×Pj .

Proof: For G1 we demand that 1 ∈ I so this is equiv-

alent to Claim D.2. Consider the game G
{2}

2 and the
automaton P1 (with two sets). The winning strategy of
player 0 is to use the first set to monitor the reachable
states (i.e., maintain the state 3 of N2). While the play
is in S0 the second set follows the state 0 of N2. While
the play is in S1 the second set follows the states 1, 2 of
N2. Whenever the play visits S2 the first set is reduced
to follow the state 4 of N2 and is marked accepting. If
S2 is visited infinitely often then F0 is visited infinitely
often and the play is winning for player 0. If S2 is vis-
ited finitely often then F1 is visited finitely often (set
2 is empty) and F2 is visited infinitely often (set 2 is
fully marked).

Consider the game G
I

i . Let i′ be the maximal in
I ′=I−{i} and j′=|I ′| = j−1. By induction, the prod-

uct of G
I
′

i′ and Pj′ is won by player 0. We use the first
set in Pj to follow the set of reachable states of Ni. As
long as the play is in Gi′ we use the rest of the sets to
simulates Pj′ . Once the play goes to Si′′ for i′ < i′′ < i
we throw away the information in all the sets but the
first set. We use the second set to follow the states
2i′′ + 2 and 2i′′ + 1. If the play visits infinitely often
Si then F0 is visited infinitely often and player 0 wins.
If the play eventually stays in Gi′ then Pj′ is sufficient
by induction. If the play eventually stays in Gi′′ for
i′ < i′′ < i then one set in addition to the first set is
sufficient.

Claim D.5 Forall I ⊆ [i] such that i ∈ I and j =
|I |−1, player 1 wins from (s00, q0) in GI

i ×Pj .

Proof: Consider the game G
{2}

2 and the automaton
P0. Clearly, player 1 wins.

Consider a set I ⊆ [i] such that i ∈ I . Let i′ < i be
the maximal in I−{i}. Let I ′ = I−{i} and j′ = |I ′| =
j−1. By induction, player 1 wins from (s00, q0) in the

product G
I
′

i′ ×Pj′ . As before, when playing in G
I

i ×Pj

the first set in Pj must be used to follow the reachable
states in Ni. We use the induction assumption to give
a winning strategy for player 1.

15

