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Abstract. In automated synthesis, we transform a specification into a system
that is guaranteed to satisfy the specification. In spite of the rich theory devel-
oped for system synthesis, little of this theory has been reduced to practice. This
is in contrast with of model-checking theory, which has led to industrial develop-
ment and use of formal verification tools. We see two main reasons for the lack of
practical impact of synthesis. The first is algorithmic: synthesis involves Safra’s
determinization of automata on infinite words, and a solution of parity games with
highly complex state spaces; both problems have been notoriously resistant to ef-
ficientimplementation. The second is methodological: current theory of synthesis
assumes a single comprehensive specification. In practice, however, the specifi-
cation is composed of a set of properties, which is typically evolving — properties
may be added, deleted, or modified.

In this work we address both issues. We extend the Safraless synthesis algorithm
of Kupferman and Vardi so that it handles LTL formulas by translating them to
nondeterministic generalizediBhi automata. This leads to an exponential im-
provement in the complexity of the algorithm. Technically, our algorithm reduces
the synthesis problem to the emptiness problem of a nondeterministit Bee
automatonA. The generation afd avoids determinization, avoids the parity ac-
ceptance condition, and is based on an analysis of runs of universal generalized
co-Biichi tree automata. The clean and simple structurd ehables optimiza-

tions and a symbolic implementation. In addition, it makes it possible to use in-
formation gathered during the synthesis process of properties in the process of
synthesizing their conjunction.

1 Introduction

One of the most significant developments in the area of program verification over the
last two decades has been the development of of algorithmic methods for verifying tem-
poral specifications dfinite-stateprograms; see [5]. A frequent criticism against this
approach, however, is that verification is dafeer significant resources have already
been invested in the development of the program. Since programs invariably contain er-
rors, verification simply becomes part of the debugging process. The critics argue that
the desired goal is to use the specification in the program development process in order
to guarantee the design of correct programs. This is caliegram synthesis

* A full version can be downloaded from www.cs.huji.aeJbrnak/cav06.pdf. The references
to the appendix in this extended abstract refer to this version.



In the late 1980s, several researchers realized that the classical approach to program
synthesis, where a program is extracted from a proof that the specification is satisfiable,
is well suited toclosedsystems, but not topen(also calledeactive systems [1, 6, 21].

In reactive systems, the program interacts with the environment, and a correct program
should then satisfy the specification with respect to all environments. These researchers
argued that the right way to approach synthesis of reactive systems is to consider the
situation as a (possibly infinite) game between the environment and the program. A
correct program can be then viewed as a winning strategy in this game. It turns out that
satisfiability of the specification is not sufficient to guarantee the existence of such a
strategy. Abadi et al. called specifications for which a winning strategy eretizable

Thus, a strategy for a program with inputs/imnd outputs irO maps finite sequences

of inputs (words in(27)* — the actions of the environment so far) to an outpi®in- a
suggested action for the program. A strategy can then be viewed as a labeling of a tree
with directions in2’ by labels in2°. The traditional algorithm for finding a winning
strategy transforms the specification into a parity automaton over such trees such that
a program is realizable precisely when this tree automaton is nonempty, i.e., it accepts
some infinite tree [21]. A finite generator of an infinite tree accepted by this automaton
can be viewed as a finite-state program realizing the specification. This is closely related
to the approach taken, e.g., in [23], to solve Churdobrability problem4]. Several

works during the 1990s showed how this approach to program synthesis can be carried
out in a variety of settings.

In spite of the rich theory developed for program synthesis, little of this theory
has been reduced to practice. Some people argue that this is because the realizability
problem for linear-temporal logic (LTL) specifications is 2EXPTIME-complete [21,
24], but this argument is not compelling. First, experience with verification shows that
even nonelementary algorithms can be practical, since the worst-case complexity does
not arise often (cf., the model-checking tooldMA [7]). Furthermore, in some sense,
synthesis is not harder than verification. This may seem to contradict the known fact
that while verification is “easy” (linear in the size of the model and at most exponential
in the size of the specification [16]), synthesis is hard (2EXPTIME-complete). There is,
however, something misleading in this fact: while the complexity of synthesis is given
with respect to the specification only, the complexity of verification is given with respect
to the specification and the program, which can be much larger than the specification.
In particular, it is shown in [24] that there are temporal specifications for which every
realizing program must be at least doubly exponentially larger than the specifications.
Clearly, the verification of such programs is doubly exponential in the specification, just
as the cost of synthesis.

We believe that there are two reasons for the lack of practical impact of synthe-
sis theory. The first is algorithmic and the second is methodological. Consider first
the algorithmic problem. First, constructing tree automata for realizing strategies uses
Safra’s construction for determinizingiBhi automata. This construction has been no-
toriously resistant to efficient implementations [2,27] (An alternative construction is
equally hard [2].) Second, Safra’s determinization results in automata with a very com-
plicated state space. The best-known algorithms for parity-tree-automata emptiness [13]
are nontrivial already when applied to simple state spaces. Implementing them on top



of the messy state space that results from Safra’s determinization is awfully complex,
and is not amenable to optimizations and a symbolic implementation.

Another major issue is methodological. The current theory of program synthesis
assumes that one gets a comprehensive set of temporal assertions as a starting point.
This cannot be realistic in practice. A more realistic approach would be to assume an
evolvingformal specification: temporal assertions can be added, deleted, or modified.
Since itis rare to have a complete set of assertions at the very start of the design process,
there is a need to devel@pmpositionakynthesis algorithms. Such algorithms can, for
example, refine designs when provided with additional temporal properties.

In this paper we address both issues. We focus on the case where forbidden behav-
iors are described by nondeterministic generalizédts automata on infinite words,
which are Bichi automata with multiple acceptance sets (corresponding tionteer-
tiality fairness condition of [17]). Our interest in specifying forbidden behaviors and in
using the generalizedi®hi condition is motivated by the fact that LTL formulas (and
their negation) can be conveniently translated to nondeterministic generalizgd B
automata [10]. Equivalently, one can specify allowed behavior by universal generalized
co-Biichi automata. Following [15], we offer an alternative to the standard automata-
theoretic approach. The crux of our approach is avoiding the use of Safra’s construc-
tion and of nondeterministic parity tree automata. In the approach described here, one
checks whether the specificatigris realizable using the following steps: (1) construct
a universal generalized cotBhi tree automatow,;, that accepts all realizing strategies
for 1, (2) reducé A, to an alternating weak tree automatdif, (3) translated) to
a nondeterministic Bchi tree automatony;, and (4) check that the language 4f,
is nonempty. The key is avoiding Safra’s construction, by using universal generalized
co-Biichi automata instead of deterministic parity autoniata.

The difference between our approach here and the approach in [15] is that here
we usegeneralizedco-Biichi automata, unlike the cotiBhi automata used there. This
leads to an exponential improvement in the complexity of our algorithm, as we describe
below. Extending the framework of [15] to generalized daecBi automata requires two
key technical steps. First, as our Safraless approach used a “Safraful” bound on the size
of the realizing strategies, we need to extend Safra’s construction to nondeterministic
generalized Bchi automata, obtaining an exponential improvement (with respect to an
approach that first translates the generalizad8 automaton to a#chi automaton) in
that construction. Second, we need to show how theiachBranks devised in [14] for
the analysis of runs of universal automata on words can be applied to the analysis of
runs of universal automata on finitely generated trees.

4 We use “reduced; to A,”, rather than “translatel; to A,” to indicate that4, need not be
equivalent toA,, yet the language ofl; is empty iff the language ofl; is empty.

5 A note to readers who are discouraged by the fact our method goes via several intermediate
automata: it is possible to combine the reductions into one construction, and in fact we describe
here also a direct translation of universal generalized échBautomata into nondeterministic
Buchi automata. In practice, however, it is beneficial to have many intermediate automata,
as each intermediate automaton undergoes optimization constructions that are suitable for its
particular type, cf. [12].



Beyond the improvement in complexity, the advantage of the Safraless approach is
that we get tree automata with cleanly described state spaces, which enables the appli-
cation of symbolic algorithms for Bchi tree automata emptiness. Further, we can now
obtain acompositionahklgorithm. Given a specificatiof, we first check its realizabil-
ity. Suppose now that we get an additional specificatibriWe can, of course, simply
check the realizability of) A v’ from scratch. Instead, we suggest to first check also
the realizability ofi)’. We then show how, thanks to the simple structure of the tree au-
tomata, much of the work used in checking the realizability @ndz)’ in isolation can
be reused in checking the realizability®fA ¢’. The compositional algorithm we sug-
gest can be combined with amcrementalalgorithm, in which we iteratively increase
the bound on the size of the realizing strategy. In addition, we explain how it can be
implemented symbolically.

2 Preliminaries

We assume familiarity with the basic notions of alternating automata on infinite trees,
cf. [11]. We include basic definitions in Appendix A.

Given an alphabel’ and a seD of directions, a¥-labeledD-treeis a pair(T, 7),
whereT C D* is a tree overD andr : T' — X maps each node df to a letter
in X. A transduceris a labeled finite graph with a designated start node, where the
edges are labeled by and the nodes are labeled By A X -labeledD-tree isregular
if it is the unwinding of some transducer. More formally, a transducer is a tlipte
(D, X, S, sin,n, L), whereD is a finite set of directionsY is a finite alphabetS is
a finite set of states;;,, € S is an initial statey; : S x D — S is a deterministic
transition function, and. : S — X' is a labeling function. We defing: D* — S'in the
standard wayy(e) = s, and forz € D* andd € D, we haven(z - d) = n(n(x), d).
Intuitively, A X-labeled D-tree (D*, 7) is regular if there exists a transducgr =
(D, XS, sin,n, L) such that for every € D*, we haver(z) = L(n(x)). We then say
that the size of the regular tré®*, ), denoted| 7|, is |S|, the number of states Gf.

We denote an alternating tree automaton by a tuple= (¥, D, Q, ¢in, 0, @),
where XY is the input alphabetD is a set of directions() is a finite set of states,
§:Q x X — BY(D x Q) is a transition functiong;,, € @ is an initial state, and
specifies the acceptance condition A rundis accepting if all its infinite paths satisfy
the acceptance condition. For a pathwe denote the set of automaton states visited
infinitely often along this path byn f (7). exactly all the states that appear infinitely
often inw. We consider here four acceptance conditions defined as féllows

— Apathr satisfies @eneralized Bchiacceptance condition = {Fy, F», ..., Fi} C

2@ iff for all 1 < i < k we haveinf(r) N F; # (. The numbet of sets ina is

called theindexof the automaton. Ifa| = 1 we calla a Bichicondition.

— Apathr satisfies @eneralized co-Bchiacceptance conditian = {Fy, Fs, ..., Fj} C

2@ iff for some1 < i < k such thatn f(7) N F; = (). The numbek of sets ina is

called theindexof the automaton. Ifo| = 1 we calla aco-Buchicondition.

5 We also refer to the Streett condition, but its definition is not important here.



— Apathr satisfies &abinacceptance condition = {(L, U1), ..., (L, Ux)} with

L;,U; CQforalll1 <i < kiff for somel < i < k for whichinf(m) N L; # 0

andinf(r) NU; = 0.

For the three conditions, an automaton accepts a tree iff there exists a run that accepts
it. We denote byC(A) the set of all¥-labeled trees thatl accepts. We also refer to a
fourth condition, which is a special case of thiédBi condition, and is referred to as the
weakcondition [20].

Below we discuss some special cases of alternating automata. The alternating au-
tomaton.A is nondeterministidf for all the formulas that appear iy if (¢1,¢1) and
(c2, q2) are conjunctively related, then # co. (i.e., if the transition is rewritten in
disjunctive normal form, there is at most one elemenfdf x @, for eachc € D, in
each disjunct). The automatod is universalif all the formulas that appear it are
conjunctions of atoms iD x @, and.A is deterministicif it is both nondeterministic
and universal. The automatot is aword automaton if D| = 1. Then, we can omit
D from the specification of the automaton and denote the transition functighasf
§:Q x X — BY(Q). If the word automaton is nondeterministic or universal, then
§:Q x X —29,

We denote each of the different types of automata by an acronyi iV, U, A} x
{B,GB,C,GC, R} x{W, T}, where the first letter describes the branching mode of the
automaton (deterministic, nondeterministic, universal, or alternating), the second letter
describes the acceptance conditiorii¢Bi, generalized 8chi, co-Bichi, generalized
co-Biichi, or Rabin), and the third letter describes the object over which the automaton
runs (words or trees). For example, ART are alternating Rabin tree automata and UGCT
are universal generalized cdiBhi tree automata.

3 Synthesis

Consider an UGCWS over the alphabe2’“©, for setsI and O of input and output
signals. Therealizability problemfor S [21] is to decide whether there issdrategy
f:(2h)* — 29, generated by a transduésuch that all the computations of the system
generated by are inL(S). We call such a strategy, good strategy. A computation
p € (21V9) is generated byf if p = (ip U 0p), (i1 U 01), (i2 U 02), ... and for all
7 >1,we haVQ)j = f(ZO N TREE Z.jfl).

In practice, the UGCWS originates from an LTL formula) that specifies the de-
sired properties of the program we synthesize. In order t&gete first translate-)
to an NGBW.A_,,,, and then dualizel ., by viewing it as a UGCW. By [29, 10J4_,;,
and thus alseS, have2°(%)) states and inde(|+/|). Alternatively, one can define
properties directly using UGCW, as done, for example, in the framework of General-
ized Symbolic Trajectory Evaluation [30], by meandaf assertion graphs

Theorem 1. The realizability problem for a given UGCW can be reduced to the nonempti-
ness problem of a UGCT with the same state space and index.

"1t is known that if some transducer that generafesxists, then there is also a finite-state
transducer.
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Proof: A strategyf : (27)* — 29 can be viewed as 2°-labeled2’-tree. Givens,
we define a UGCTS’ such thatS’ accepts 2°-labeled2-tree (T, ) iff 7 is a good
strategy forS.

LetS = (2Y° Q, ¢in, 6, ). Then,S" = (29,27, Q, qin, &', @), where for every
g € Qando € 29, we haved'(¢,0) = A;cor Ay esq.ive) (i 4')- Thus, from state,
reading the output assignmentc 2°, the automators’ branches to each direction
i € 27, with all the stateg/ to which ¢ branches when it readsJ o in stateq. It is
not hard to see tha’ accepts 2°-labeled2’-tree (T, 7) iff for all the paths{e, iy, i -
11,80 - 11 - 29, . . } of T, the infinite Word(’i(] @] T(&)), (21 @] T(i()))7 (’LQ @] T(i() . il)), R
is accepted by the UGCW as required.

We now describe an emptiness preserving translation of UGCT to NBT. The correct-
ness proof of the construction is given in Sections 4.1 and 4.2. There, we also suggest
to use ABT as an intermediate step in the construction. While this adds a step to our
chain of reductions, it enables further optimizations of the result.

For an integer, let ] denote the sef0, 1, .. ., ¢}, and let]c]°? and[c]***" denote
the set of odd and even members[df respectively. Also, lelR;(c) = [2¢]**" U
([2¢]°44 x {1,...,k}), and< be the lexicographical order on the elementsipfc).

We refer to the members 6y, (c) in [2¢]°**™ aseven ranksind refer to the members of
Ry (c) in [2c]°44 x {} asodd ranks with inde). Note that the size aRy.(c) isc(k+1).
Our construction refers to a functidfufra(n, k), which, as we show later, is bounded
from above byl2"n2"k".

Theorem 2. Let.4 be a UGCT with: states and indek. There is an NBTA’ over the

same alphabet such that(A") # 0 iff L(A) # 0, and the number of states i’ is
QO(nZ(log n+logk)) .

Proof: LetA = (X, D,Q, qin,6,{F1,...,Fy}), and letc = Safra(n, k)n!n3. Note
thatc is 20(n(logntlogk)) | et Ry (c) be the set of functiong : Q — Ry (c) in which
f(q), for all ¢ € F}, is not odd with indexj. Forg € Ry(c), let odd(g) = {q :
9(q) is odd:. We defined’ = (¥, D, Q’, ¢.,,, 9, &), where

— @' = 39 x Ry (c). For technical convenience, we refer to the state9’dds triples
(S,0, fYwithO C S CQandf € Ry(c).

- ¢\, = {qin}, 0, go), Wheregy maps all states toc.

—Forq € Q,0 € X,andd € D, letié(q,o,d) = §(q,0) N ({d} x Q). For two
functionsg andg’ in R (c), a letters, and direction! € D, we say thay’ covers
(g,0,d) ifforall ¢ andq’ in Q, if ¢’ € §(q,0,d), theng’(¢') < g(q). Then, for all
(S,0,9) € Q" ando € X, we define) as follows.

o If O # 0, thend'((S,0,9),0) = )\ \ (6(S,0,d),8(0,0,d) \
deD g4 covers (g,o,d)
odd(ga), ga)-
o If O =0, thend’((S,0,9),0) = N\ \/ (6(S,0,d),5(S,0,¢)\
deD g4 covers (g,0,d)

0dd(9gq), ga)-
— o/ =29 x {0} x Ry(c).



Corollary 1. The realizability problem for an NGBW Withstates and indek can be
reduced to the nonemptiness problem of an NBT 9fftfi " (log n+log k) states,

These bounds are exponentially better than those established in [15]. There, the
NGBW is converted to an NBW withk states and the overall resulting complexity is
20((nk)2(10g k+log n))

The synthesis problerfor S is to find a transducer that generates a strategy real-
izing S. Known algorithms for the nonemptiness problem can be easily extended to
return a transducer [22]. The algorithm we present here also enjoys this property, thus
it can be used to solve not only the realizability problem but also the synthesis problem.
(For a comparison of the Safraless and the Safraful approaches to synthesis from a the
perspective of program size, see [15].)

4 From UGCT to NBT

Recall that runs of alternating tree automata are labeled trees. By merging nodes that are
roots of identical subtrees, it is possible to maintain runs in graphs. In Section 4.2, we
prove a bounded-size run graph property for UGCT. In Section 4.2, we show how the
bounded-size property enables a simple translation of UGCT to ABT, which we then
translate to an NBT. Combining the translations results in the UGCT to NBT construc-
tion described in Theorem 2. While our construction avoids Safra’s determinization
construction, the proof of the bounded-size run-graph property makes use of the bound
the construction provides to the blow up involved in determinization. Since we handle
the generalized co{Bhi construction, we need a bound on the blow involved in the
determinization of NGBW. We provide such a bound in Section 4.1.

4.1 NGBW to DRW

There are two known approaches to determinization of NGBW. The first is to convert
the NGBW to an NBW [3] and then use Safra’s determinization [25]. The second is to
view the NGBW as a Streett automaton and apply Safra’s determinization of Streett au-
tomata [26]. Both approaches produce automata with©("*) states. In this section

we show how to extend Safra’s determinization construction for the case of general-
ized Bichi automata. Our construction below produces a DRW itt) ©(") states,
exponentially fewer states than the approaches described.

We offer here a succinct description of the improvement. The key is to augment
Safra trees with an indexing function. In Safra’s constructions, the DRW refers to a visit
in the set of accepting states as a good event. In our extension, a good event occurs only
after visits to all the sets in the generalizeddBi condition. Thus, the idea is similar
to the indexing used in the translation of NGBW to NBW [10], but the challenge is to
combine this indexing in the state space of the DRW in a way that minimizes the blow
up interms of. A correctness proof is provided in Appendix B. There, we also describe
Safra’s determinization construction for NBW. Note that the improved construction is
used only to generate the improved bound. The synthesis algorithm uses this bound but
it doesnotuse Safra’s construction.



Theorem 3. Given an NGBW with states and indek, we can construct an equivalent
DRW with at most2"n?" k" states anch pairs.

Proof: LetN = (X, S,4,s0, ) be an NGBW with|S| = nanda = {Fi,..., F}.
LetV = [n]andV’ = {n+1,...,2n}. We construct the DRWD equivalent toV. Let
D = (X, D,p,do, ), where the components &f are as follows.

— A generalized Safra treeis (N, 1,p, 9,1, h, R, G) whereN C V is a set of nodes,
1 € N is the root nodep : N — N is the parenthood function; : N — N
is a partial order defining “older than” on siblings; N — 2° is a labeling of
the nodes with subsets 6f h : N — [k] is an indexing function associating with
every node an index ifk], and R andG are two disjoint subsets df. In addition
the label of every node is a proper superset of the union of the labels of its children.
The labels of two siblings are disjoint. The detof states is the set @feneralized
Safra treeoverS andk.

— dp € D has a unique nodewherel(1)={so}, h(1)=1, R=V —{1}, andG=0.

— The Rabin acceptance conditiomis={(L,U1), ..., (L,,U,)} whereL; = {d €
D|ieGq}tandU; ={d € D |i€ Ry}

— For every treel € D and letters € X the transitiond’ = p(d, o) is the result of
the following transformations ot We use temporarily the set of nodgs (1) For
every nodev with label S’ replaceS’ by 6(S’, o) and setk andG to the empty set.
(2) For every node with label S’ such that:(v) = i andS’ N F; # (), create a new
youngest child’ € V. Setits label t&6” N F; and its index td.. (3) For every node
v with label S” and states € S’ such thats belongs also to an older sibling of
v, removes from the label ofv and all its descendants. (4) For every nedghose
label is equal to the union of the labels of its children, remove all descendamnts of
If h(v) = k, changeh(v) to 1 and addv to G. If h(v) < k, increaséi(v) by one.
(5) Remove all nodes with empty labels and add all unused nanfeq& Change
nodes inV’ to nodes inV.

O

Let Safra(n, k) be the number of generalized Safra trees for NGBW witltates and
indexk. By the above theoren$iafra(n, k) is bounded from above b\2"n?"k".

4.2 From UGCT to NBT

A bounded-size run graph property for UGCT Let A = (¥, D,Q, ¢;n,0,c) be a
UGCT witha = {F1,..., Fx}. Recall that a runT,., r) of A on aX-labeledD-tree
(T, )y is a(T x Q)-labeled tree in which a nodewith r(y) = (z, ¢) stands for a copy
of A that visits the statge when it reads the node Assume thatT’, 7 is regular, and is
generated by a transducér= (D, X, S, s;,, 1, L). For two nodeg; andys, in 7., with
r(y1) = (x1,q1) andr(y2) = (x2, ¢2), we say that; andy. aresimilariff ¢g; = ¢o
andn(z,) = n(z2). By merging similar nodes into a single vertex, we can represent the
run (T;.,r) by afinite graphG = (V, E), whereV = S x Q andE((s, q), (s',¢")) iff
there isc € D such that(c, q’) € §(q, L(s)) andn(s, c) = s’. We restrictG to vertices
reachable from the verte;,,, ¢ ). We refer toG as therun graph of A on7. A run
graph ofA is then a run graph ofl on some transducér. We say that: is accepting iff



every infinite path of> has only finitely many;-vertices (vertices it$ x F;), for some
1 < j < k. SinceA is universal and is deterministic, the rudT;., r) is memoryless
in the sense that the merging does not introdud® tmths that do not exist i{i’., ),
and thus, it preserves acceptance. Formally, we have the following:

Lemma 1. Consider a UGCTA. Let(T, 7) be a tree generated by a transducrThe
run tree(T,., ) of A on (T, 7) is accepting iff the run grapli’ of 4 on7 is accepting.

Note that(G is finite, and its size is bounded %/ x Q. We now boundS and get a
bounded-size run-graph property for UGCT. The boundaepends on the blow-up
involved in NGBW determinization, which we studied in Section 4.1. Essentially, the
bound depends on the side of an NRT equivalent to the UGCT, and in order to get such
an NRT we have to determinize an NGBW that accepts bad paths in runs of the UGCT.

Theorem 4. A UGCT A with n states and indek is not empty iff4 has an accepting
run graph with at mosBafra(n, k)n!n? vertices.

From UGCT to NBT via ABT  Consider a grapti’ C G. We say that a vertefs, ¢)
is finitein G’ iff all the paths that start dfs, ¢) are finite. Forl < j < k, we say that a
vertex(s, q) is F;-freein G’ iff all the vertices inG’ that are reachable frors, ¢) are
not F;-vertices. Note that, in particular, dj-free vertex is not ad;-vertex.

Given a run(T,., r), we define an infinite sequence of graghs 2 G1 2 G2 D
.G DG D @l D ... GET D GL ... as follows. To simplify notations, we
sometimes refer t@:3,, | asGaiy1 and 0G4, asGaiyo. Thus,Gy = Gi, Go =
Gl Gs = GY, Gy = G5 and so on.

- Go=G.
— Gt = G2 \ {(s,9) | (s, q) is finite in Gy}
- szjr—h = Ggi+1 \ {(s,a) | (s, q) is Fj-free invazH}' for1 <j<k.

Lemma 2. A run graphG = (V, E)) is accepting iff there i$ < |V| for which Go; is
empty.

Let G be an accepting run graph. Given a vertexq) in G, therank of (s, q),
denotedrank(s, q), is defined as follows:

(s, q) = 21 If (s, q) is finite in Ggi.‘
TS D =04 11, 5) If (s, q) is Fj-freeinGy, ;.
Recall that, for an integet, we have defined?;(c) = [2¢]*"*" U ([2¢]°%¢ x

{1,...,k}), as a set oi(k + 1) ranks, and defineet as the lexicographical order
on the elements aky (c). For an odd rank = (2i+ 1, j), we refer toG%, , asG,,. Let

¢ = |V|. By Lemma 2, there i$ < ¢ for which G4, is empty. Therefore, every vertex
gets a well-defined rank iRy (c).

Lemma 3. In every infinite path in an accepting run gragh, there exists a vertex
(s, ¢) with an odd rank such that all the verticés, ¢’) on the path that are reachable
from (s, q) haverank(s', q') = rank(s,q).
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We can now use the analysis of ranks in order to translate UGCT to NBT. In order
to enable further optimizations, we use ABT as an intermediate step in the construction.

Theorem 5. Let A be a UGCT with: states and indek. There is an ABTA’ over the

same alphabet such tha(A’") # 0 iff L(A) # 0, and the number of states i#’ is
2O(n(logn+log k)).

As detailed in the proof of the Theorem, the ABYT accepts all the regular trees
(T, 7) € L(A) that are generated by a transdu€er (D, X, S, s;,,,n, L) with at most
Safra(n, k)n!n? states. Note that the run graph.dfon such(T 7) is accepting and is
of size mostSafra(n, k)n!n3. By Theorem 4, we have that(A") # 0 iff L(A) # 0.

The state space ol’ is Q' = Q x Ri(c). Intuitively, whenA’ is in state(q, p) as
it reads the node € T, it guesses that the rank of the verigxXz), ¢) of G is p. The
transitions ofA’ allows the guessed ranks to decrease, but makes sure that if a state is
in F;, then guessed rank for it cannot be odd with ingeBy Lemma 3, the guessed
ranks should eventually converge to some odd rank, which is checked by the acceptance
condition of A’ 8

In [18], Miyano and Hayashi describe a translation of ABW to NBW. In Theorem 6
below (see also [19]), we present (a technical variant of) their translation, adapted to
tree automata,

Theorem 6. Let.A be an ABT with: states. There is an NBA with 2°(") states, such
that £(A') = £(A).

Combining Theorems 5 and 6, one can reduce the nonemptiness problem for UGCT
to the nonemptiness problem for NBT. Consider a UG&Twith n states and in-
dex k. If we translate4 to an NBT by going through the ABT we have obtained
in Theorem 5, we end up with an NBT witt?”""*""**"* states, as the ABT has
20(n(logntlogk)) gtates. In order to complete the construction, and get the NBT de-
scribed in the proof of Theorem 2, we exploit the special structure of the ABT and
show that only20(n*(logn+log k) states of the NBT constructed in Theorem 6 may
participate in an accepting run.

5 Compositional Synthesis

A serious drawback of current synthesis algorithms is that they assume a comprehen-
sive set of temporal assertions as a starting point. In practice, however, specifications
are evolving: temporal assertions are added, deleted, or modified during the design pro-
cess. In this section we describe how our synthesis algorithm can seppgvbsitional
synthesis, where the temporal assertions are given one by one. We show how the Safra-
less approach enables us, when we check the realizability\xaf’, to use much of the

work done in checking the realizability @f and+)’ in isolation. Devising a composi-

tional synthesis algorithms to other forms of composition, &g+ 1, is an interesting
research problem.

8 Readers familiar with weak automata [20], would note that our automaton is in fact an alter-
nating weak tree automaton. It is the special structure of weak automata that enables some of
the optimizations we describe below.
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Our compositional algorithm extends timeremental-synthesedgorithm described
in [15]. Essentially, we show that when we construct and check the emptiness of the
NBT to which realizability ofy) A ¢’ is reduced, we can use much of the work done
in the process of checking the emptiness of the two (much smaller) NBTs to which
realizability of1) and+’ is reduced (in isolation).

We first review the incremental-synthesis idea from [15]. Recall that our construc-
tion is based on the fact we can bound the maximal rank that a vertex in an accepting run
graphG gets. Often, the sequencg), G, G, ... of graphs described in Section 4.2
converges to the empty graph very quickly, making the bound on the maximal rank
much smaller (see [12] for an analysis and experimental results for the case of UCW).
Accordingly, one can regard the bounds a parameter in the construction: start with a
small parameter, and increase it if necessary.

To see how this is done, consider the combined construction described in Theo-
rem 2. Starting with a UGCH with state spac€) of sizen, we tooke = Safra(n, k)n!n?

(an upper bound on the size of the minimal accepting run grapl) ,adnd constructed
an NBT A’ with state spac8® x Ry (c), whereR(c) is the set of functiong : Q —

Ry (c) in which f(g) is not odd with index;j for all ¢ € F;. Forl < ¢, let Ri[l] be
the restriction ofR, to functions with ranger;. (1), and letA4’[]] be the NBT.A’ with ¢
being replaced by Recall that the NBTA4'[I] is empty iff all the run graphs ofl of size

at most/ are not accepting. Thus, coming to check the emptinegs tfie incremental
approach proceeds as follows: start with a srhatid check the nonemptiness.4f[/].

If A’'[]] is not empty, thend is not empty, and we can terminate with a “nonempty”
output. Otherwise, increageand repeat the procedure. Whes- ¢ and.A4’[l] is still
empty, we can terminate with an “empty” output.

As argued for UCTs in [15], it is possible to take advantage of the work done during
the emptiness test od’[l;], when testing emptiness of [I5], for 2 > [;. To see this,
note that the state space.4f[l;] consists of the union &f¥ x R [l;] (the state space of
A'[l1]) with 39 x (R [l2] \ Ri[l1]) (states whos¢ € Ry [l2] has a state that is mapped
to a rank greater thah). Also, since ranks can only decrease, once the NB[T;]
reaches a state of'[/1], it stays in such states forever. So, if we have already checked
the nonemptiness ofl’[l;] and have recorded the classification of its states to empty
and nonempty, the additional work needed in the nonemptiness tekfigf concerns
only states i8¢ x (R[la] \ R [l1])-

We can now describe how the incremental approach can be extended to a composi-
tionalone. LetS = (¥, Q, 6, gin, {F1, ..., Fx})andS’ = (X, Q", ¢, ¢},,.. {F{, ..., Fl.})
be UGCWs specifying required behaviors. et |Q| andn’ = |Q’|. Without loss of
generality, assume that the state spagemd(Q’ are disjoint. We can define the inter-
section ofS andS’ as the UGCWP obtained by puttings andS’ “side by side”; thu
P=(XQuUQ,0Ud {qn ¢}, {FLVUQ,.. . FLUQ FfUQ,....,F,UQ}).

Note that it is indeed the case thdthas an accepting run on a woudiff both S and
S’ has an accepting run an.

Let A and A’ be the NBTs to which realizability of andS’ is reduced, respec-

tively. A non-compositional approach generates the NBT that corresponHs By

% For technical simplicity, we allowP to have two initial states. This can be easily ovoided by
adding a new initial state whose transitions are the union of the transitions;froamdg.,.
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Theorem 2, this results in an NB with state spacg&@“Q" x Ry, (p)?Y<’, for
p = Safra(n+n’, k+k")(n])!(n+n’)3. On the other hand, the state spaced and.A’
are much smaller, and a8€ x Rj(c)? and3®?’ x Ry (<)<, for ¢ = Safra(n, k)n!n?
andc’ = Safra(n’, k")n'In'3. respectively.

Let us examine the structure of the state spaéeé wfore carefully. Each of its states
can be viewed as a triplé5 U S, OUO’, f),forO C S C Q,0' C S C @', and
f:QUQ" — Rpyw(p). For f as above, leff|o and fo- denote the restrictions of
fto Q and@’, respectively. Note that if maps the states ifi to ranks inRy(c) and
maps states it$” to ranks inRy(¢'), then the statéS U S",O U O', f) corresponds
to the stategS, O, f|) of Aand(S’, 0, fio/) of A’. Moreover, if one of these states
is empty, so igS U S’,O U O’, f). This observation is the key to our compositional
algorithm.

Forl < candl’ < ¢, leti[l,1’] denote the NBT/ restricted to state§S U .S, O U
O’, f) in which f(q), for ¢ € S,isin Ri(l) and f(¢'), for ¢’ € S',is in Ry (I'). We
check the emptiness &f incrementally and compositionally as follows. We start with
smalll; andl{ and check the emptiness#fi, 1]. Doing so, we first mark as empty
all stateg/ SUS’,OU0’, f) for which either(S, O, fq) isempty inA or (S",0’, fio/)
is empty inA’, and continue the emptiness check only in the (expectedly much smaller)
state space. lff[l1, /1] is not empty, we are done. Otherwise, we increase our parameters
to Iy andll, with I, > 1y andl) > I}. Note that we need not increase both parameters.
Checking the emptiness of[l-, I5], we make use of the information gathered in the
emptiness checks of[l2], A'[l5], as well ad/[l;, }]. The procedure continues until we
either reachl; and!; for which[l;, %] is not empty, in which case the specification
is realizable, or we find that/[p, p] is empty, in which case the specification is not
realizable.

We note that, as with the incremental approach, the significant advantage of the
compositional approach is when the specification is realizable, and especially when
U[l,7'] is not empty forl and!’ smaller thanc and¢’ — thus we can use information
about4 and A’ all the way to the positive response. We also note that the incremental
approach is possible due to the simple structure of the state spaces of the NBTs to
which we have reduced the realizability problem. This simple structure also makes it
easy to implement our approach symbolically: the state space of the NBT consists of
sets of states and a ranking function, it can be encoded by Boolean variables, and the
NBT's transitions can be encoded by relations on these variables and a primed version
of them. The fixpoint solution for the nonemptiness problem of NBT (c.f., [28]) then
yields a symbolic solution to the original UGCT nonemptiness problem. Moreover,
checking the emptiness of[l;,1}], we can use BDDs for the empty statesAf;],

A[l%], andU[l;—1,1;_,]. Finally, as discussed in [15], the BDDs that are generated
by the symbolic nonemptiness procedure can be used to generate a symbolic withess
strategy, from which we can synthesize a sequential circuit implementing the strategy.
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A Definition of Trees and Alternating Automata

Given a setD of directions, atree overD, or D-treg for short, is a sef” C D* such that if
x-c € T,wherex € D" andc € D, thenalsar € T. If T = D*, we say thaf is a full D-tree.
The elements df” are callechodes and the empty worel is theroot of T'. For everyz € T, the
nodesz - ¢, for ¢ € D, are thesuccessorsf x. A pathr of a treeT is a setr C T such that
e € w and for everyr € m, eitherz is a leaf or there exists a uniques D such thatr - ¢ € .

For a setX, let B (X) be the set of positive Boolean formulas over(i.e., Boolean formu-
las built from elements iX usingA andV), where we also allow the formulasie (an empty
conjunction) andalse (an empty disjunction). For a s&t C X and a formulad € B*(X),
we say thatt” satisfied iff assigningtrue to elements il and assignindalse to elements in
X \ 'Y maked) true. AnAlternating tree automatois A = (¥, D, Q, ¢in, 0, &), whereX'is the
input alphabetD is a set of directionsy is a finite set of states, : Q@ x ¥ — BT (D x Q)
is a transition functiong;,, € @ is an initial state, andr specifies the acceptance condition (a
condition that defines a subset@f’; several types of acceptance conditions can be defined).

The alternating automatad runs onX-labeled full D-trees. Arun of A over aX-labeled
D-tree(T, 1) is a(T x Q)-labeled N-tre€/T;., r). Each node of’. corresponds to a node @f.
Anode inT,, labeled by(z, ¢), describes a copy of the automaton that reads the nadd" and
visits the state;. Note that many nodes @f. can correspond to the same nod&/bfThe labels
of a node and its successors have to satisfy the transition function. For(fially, satisfies the
following:

1. e € T, andr(e) = (&, gin)-

2. Lety € T, with r(y) = (z,q) andd(q,7(x)) = 6. Then there is a (possibly empty) set
S = {(co,9),(c1,q1), .-, (n=1,9n-1)} C D X @Q, such thatS satisfiesd, and for alll
0<i<n-—1,wehavey-i € T.andr(y i) = (x- ¢, q).

For example, if(T, ) is a {0, 1}-tree with7(¢) = a and&(qin,a) = ((0,q1) V (0,g2)) A
((0,g3) V (1,g2)), then, at levell, the run{T.,r) includes a node labele@, ¢:) or a node
labeled(0, ¢2), and includes a node labeléd, g3) or a node labeledl, ¢-). Note that if, for
somey, the transition functiom has the valuérue, theny need not have successors. Als@an
never have the valuialsein a run. A run(7’., r) is accepting if all its infinite paths satisfy the
acceptance condition. Given a r{f,, ) and an infinite pathr C T, letinf(7) C @ be such
thatg € inf(x) if and only if there are infinitely many € = for whichr(y) € T x {q}. That
is, in f () contains exactly all the states that appear infinitely oftem.iAcceptance is defined
by placing conditions own f () for all pathsr ofthe run.

In [20], Muller et al. introducealternating weak tree automat#n a weak automaton, we
have a Richi acceptance conditiom C Q and there exists a partition @} into disjoint sets,
Q1,...,Qm, such that for each s&p;, eitherQ; C «, in which caseR); is anaccepting set
or Q; Na = 0, in which caseR; is arejecting setIn addition, there exists a partial order
on the collection of the);’s such that for everyy € Q; andq’ € Q; for which ¢’ occurs in
d(q,0), for somes € X, we have; < @Q;. Thus, transitions from a state @; lead to states
in either the samé); or a lower one. It follows that every infinite path of a run of an alternating
weak automaton ultimately gets “trapped” within so@g The path then satisfies the acceptance
condition if and only ifQ; is an accepting set.

B From NGBW to DRW

We give an exposition of Safra’s construction [25] and then proceed with our extension that
handles NGBW.
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B.1 Determinization of NBW

Here we describe the determinization of NBW [25]. We construct an ordered tree of subset
constructions. Every node in the tree is labeled by the states it follows. The labels of siblings are
disjoint and the label of a node is a strict superset of the labels of its descendants. The transition of
a tree replaces the label of every node by the set of possible successors. If the label now includes
some accepting states, we add a new youngest child to the node with all these accepting states.
Intuitively, the states that label the children of a node have already visited an accepting state.
Thus, the states in the label of a node that are not in the labels of its descendants are states that
still owe a visit to the acceptance set. We move states occurring in more than one child of a node to
the older child. If the label of a node becomes equal to the union of labels of its children then we
mark this node as accepting and remove all its descendants. We associate a Rabin pair with every
node in the tree. Erasing a node is a bad event, which should occur finitely often. Finding that a
node is accepting is a good event. If some node eventually remains in the tree and is accepting
infinitely often the run is accepting.
Let NV = (X, S, 4, so, ) be an NBW with|S| = n. LetV = [n] andV’ = {n+1,...,2n}.

A Safra treet overS is a tuple(V, 1, p, ¢, [, R, G) where the components ofare as follows.

— N C Vis aset of nodes.
1 € N is the root node.

— p:N—N is the parenthood function. We call children of the same rsdloléngs

— ¢:N—N is a partial order defining “older than” on siblings.

— I:N—2% is a labeling of the nodes with subsetsf

— R,G C V are two disjoint subsets &f, defining the set ofed andgreennodes.
In addition we require that the label of every node is a proper superset of the union of the labels
of its children and that the labels of two siblings are disjoint.

Proposition 1. [25, 15] The number of nodes in a Safra tree is at mosThe number of Safra
trees overs is at mostl2"n2",

Proof: As the labels of siblings are disjoint and the union of labels of children is a proper subset
of the label of the parent it follows that every node is the minimal (according to the subset order
on the labels) to contain (at least) some stageS. It follows that there are at mostnodes.

The number of ordered trees ennodes is thenth Catalan number. That €at(n) =
% < 4™, We represent the naming of nodes py [n] — [n] that associates th#h node
with its namef (7). There are at most™ such functions. The labeling functionis S — [n]
wherel(s) = ¢« means that belongs to theth node and all its ancestors. Finally, we represent
R andG by a functiona : V' — {0, 1,2} such thatu(:) = 0 meansthat ¢ RUG, a(i) = 1
means that € R, anda(i) = 2 means that € G. There are at most” such functions.

To summarize, the number of trees is at mgfst 3" - n™ - n™ = 12"n>". 0

We construct the DRWD equivalent toV. LetD = (X, D, p, do, o) where the components
of D are as follows.
D is the set of Safra trees ovér
do is the tree with a single nodelabeled{ s, } whereR=V—{1} andG = 0.
The Rabin acceptance conditionis {(L1,U1), ..., (Ln,Un)} WhereL; = {d € D | i €
Gd} andU; = {d ecD | i€ Rd}
For every treel € D and letterc € X the transitiond’ = p(d, o) is the result of the
following transformations od. We temporarily use the s&t’ of nodes.
1. For every node with label S’ replaceS’ by §(S’, o) and setR andG to the empty set.
2. For every nodev with label S’ such thatS’ N o # 0, create a new youngest child
v’ € V', Setits label t&5’' N a.
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3. For every node with label S’ and states € S’ such thats belongs also to an older
sibling v’ of v, removes from the label ofv and all its descendants.

4. For every node whose label is equal to the union of the labels of its children, remove
all descendants aof. Add v to G.

5. Remove all nodes with empty labels and add all unused nanies to

6. Change the nodes I’ to nodes inV.

Proposition 2. [25] L(D) = L(N).

B.2 Determinization of NGBW

We now present the determinization of NGBW. Intuitively, we take the above construction and
add indices to each node. Whenever all the runs followed by a naagexed: (where: is not

the maximal index) visit the sdf;, we increase the index afto i + 1. Whenever all the runs
followed by a nodey indexed by the maximal indek visit the setF},, we markv as accepting

and change its index th Applying our construction results in a DRW wit2"n2?" k" states and

n pairs.

Let V' = (X, 5,4, s0,a) be an NBW with|S| = n anda = {F},..., Fi}. LetV = [n]
andV’ = {n +1,...,2n}. A generalized Safra treeover S andk is (N, 1,p,,l, h, R, G)
whereN, 1, p, ¢, I, R, andG are as in Safra trees, and: N — [k] is an indexing function
associating with every node an index{ij.

The following proposition is proven much like the similar proposition for Safra trees (Propo-
sition 1).

Proposition 3. The number of generalized Safra trees ofeandk is at most12"n " k".

Proof: Just like Safra trees there are at mostodes. We have to add the functibn N — [k],
which associates an index with every node. This multiplies the number of staké's by [

We show that the DRWD constructed in Section 4.1 is equivalenttd The proof is an
extension of the proof in [25].

Proposition 4. L(D) = L(N).

Proof: Considerw € L(N'). We have to show € L(D). Letr = sos; - - - be an accepting run
of N onw. Letr’ = dod - - - be the run ofD onw and letd; = (N;, 1, pi, i, i, hi, Ri, Gi). It
is simple to see that for all> 0 we haves; € [;(1). It follows that for all; > 0 we havel ¢ R;.

If step 4 is applied infinitely often to node 1 (equivalentlye G; infinitely often, or during the
transformation of the trees the labelloéquals the labels of its children) thehsatisfies the pair
(L1, Un).

Otherwise, from some point onwardss#hwe have that step 4 is not applied to nddend
the index of nodd is constant. Lej; be this point and let; be the index of nodé. There exists
a pointj’ > j1 such thats; € F;, . It follows that for allj > ;' we haves; belongs to some son
v1 Of 1. Notice, that the rum may start in some son dfand move to an older son. This, however,
can happen only finitely often and hence we trgaas constant. There exists a point after which
r remains inv; forever. Leto; be the point such that for all > o1 we haves; € I;(v1). It
follows that for allo > o1 we havev; ¢ R, andd, ¢ U, .

Suppose that step 4 is appliedupinfinitely often (equivalentlyp, € G, infinitely often).
The the runy’ satisfies the Rabin paitl.,,U,, ) andr’ is accepting. Otherwise, step 4 is ap-
plied tov; finitely often. We construct by induction a sequenge. . . , vx such that eventually
v1, ..., v all remain in the tree andbelongs to all of them. As the number of active nodes in a
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tree (nodew such thatf(v) # 0) is bounded by: we can repeat the process only finitely often.
Hencew is accepted bip.

In the other direction, consider € L(D). Letr’ = dod: - - - be the accepting run @ onw
whered; = (N;, 1, pi, ¥s, li, hiy Ri, G5). Let (L, Uy ) be the Rabin pair for whicli, is visited
infinitely often andU, is visited finitely often.

We first prove three propositions.

Proposition 5. For every; € N, v € V, and every state € [;(v), we haves is reachable from
so readingw|0, 7 — 1].

Proof: We prove the proposition for all € V' by induction oni. Clearly, it holds for; = 0.
Suppose that it holds far As l;+1(v) C §(1;(v"), w;) for somev’ € V, it follows that every
state inl;41 (v) is reachable froms, readingw0, 7]. O

Proposition 6. Consideri, i’ € N such that < ¢'. Suppose that (a) € V is a leaf in the trees
d;,dy (b)foralli < a < ¢ we havel, ¢ U, and (c)h; (v) = h;(v) + 1and foralli < a < 4’
we haveh, (v) = h;(v). Then every statein [, (v) is reachable from some stateliffv) reading
wli,s" — 1] with a run that visitsF., ().

Proof: By assumption, the sdf, is not visited between andi’. Hence, the node is not
removed in the transition from, to d,+1 for all i < a < #’. In addition from minimality ofi’ it
follows that for alli < a < ' we haver, (v) = r;(v).

We prove that for every < a < i’ and every descendant of v, every state in,(v’)
is reachable from some state lif{v) along a run visitingF',, (). In the case that' = i + 1
then, all the states ify/ (v) are inF}, () and we are done. Otherwise, consider the descendant
v’ of v appearing ind;+1 (there is at most one, it must exist &ss minimal). Asl;+1(v') C
0(l:i(v), ws) N F, () the claim follows fori + 1. Suppose that the claim is true fefand prove
for a + 1. We know that for every descendaritof v eitherl, ;1 (v") C §(la(v), wa) N Fr, () OF
for some descendant’ of v we havel,+1(v') C §(lo(v"), w,) (@ndv’ may bev”). As during
the transformation frord;, _, to d;/ the labell;s (v) equals the union of the labels of children of
v (from 4’ being minimal and-;/ (j) = r;(j) + 1) the proposition follows. U

Proposition 7. Consideri,i’ € N such thati < i’. Suppose that (a) for somec V we have
d;,d; € L, and (b) forall: < a < " we havel, ¢ U,. Then every statein l;/ (v) is reachable
from some state if (v) readingw][i, i’ — 1] with a run that visits all sets io.

Proof: Asd; € L, we know thatv appears ini;. By assumption, the séf, is not visited
betweeni andi’. Hence, the node is not removed in the transition fromh, to d,; for all
i<a<i.

In addition, consider the sequence of indieg§j + 1) betweeni andi’. As bothd, andd,
and inL,, we know that;(v) = 1 andr,s (v) = 1. Thenthere exist= i1 < iz < -+ < i <
such that for ali; < a < 441 we haver,(v) = L.

From Proposition 6 it follows that every stateip, , (v) is reachable from some stateljp(v)
readingw(i;, i,41 — 1] with a run that visitsF;. It follows that every state ify/ (v) is reachable
from some state iy (v) readingw(i, i’ — 1] with a run that visits,, for everyl <m < k. O

We construct an infinite tree with finite branching degree. The root of the tree corresponds to
the initial state ofA/. Every node in the tree is labeled by some staté&/odnd a time stamp.
An edge between the nodes labe(sdk) and (¢, j) corresponds to a run starting $nending in
t, readinguwli, j — 1], and visitingF; for all 1 < ¢ < k. From Konig's Lemma this tree contains
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an infinite branch. The composition of all the run segments in this infinite branch is an infinite
accepting run of\ onw.

Let (so,0) label the root off. Let (L., U,) be the pair such thdi, is visited infinitely often
andU, finitely often. Letio be the minimal location such th&, is not visited aftet,. Leti, be
the minimal location such tha{ > io andd;, € L, (that is step 4 was applied i9. For every
states in [;, (v) we add a node t@’, label it by (s, 1) and connect it to the root. We extend the
tree by induction. We have a tree with leafs labeled by the states:if stamped by time, and
de € L, (step 4 was applied to). That is, for every state in [,(v) there exists a leaf labeled
(s,a). We know thatl_, is visited infinitely often. Hence, there exists> a such thatl,: € L,
(step 4 is applied t@). For every state’ in I,/ (v) we add a node t@ and label it(s’, a’).
From Proposition 7 stat€ is reachable from state € I, (v) readingw|a,a’ — 1]. We connect
the nodg(s’, a’) to the nodgs, a). From Proposition 5 it follows that every edge), 0), (s, ')
corresponds to some run startingsin ending ins’, and readingv|0, i’ — 1]. From Proposition 7,
every other edge in the tré®, a), (s’,a’) corresponds to some run startingspending ins’,
readingw(a, a’ — 1], and visitingF,, for all 1 < m < k. From Konig’s Lemma there exists an
infinite branch in the tree. This infinite branch corresponds to an accepting AMfroofw. [

Theorem 7. Given an NGBW with, states and indek, it is possible to construct an equivalent
DRW with at most2™n?" k™ states anch pairs.

C Proofs from Section 4.2

C.1 Proof of Lemma 1

Proof: We say thata path = yo-y1-y2 - - - of (T, ) corresponds to a pat = (so, qo), {51, q1), {s2, @2}, - - -

of G iff so = sin, g0 = ¢in, and there is a pathy, z1, z2,... of T, with ;41 = x; - ¢;, such
that for all¢ > 0, we have that(y;) = (zs,¢:;) andn(si,c;) = si41. Thus,n’ describes the
states of7 and.A that the copy ofA whose evolution is recorded in the pathvisits. Clearly,
forall 1 < j < k, we have thatr has infinitely many nodeg; with r(y;) € T x Fj iff 7’ visits
infinitely many F;-vertices. By the definition of?, each path of 7., r) corresponds to a single
path of G. Also, each path’ of G has at least one pathof (7', r) such thatr corresponds to
7. To see this, note that sind&’, 7) is induced by7, thenT = D* and for allz € D*, we
have thatr(z) = L(n(x)). In addition, by the definition o&, for all i > 0 there isc; € D
such that(c;, gi+1) € 6(qi, L(s;)) andn(ss, ci) = si+1; the sequence of thesg’s induces a
pathzo, 1, x2,xs,... of T, with ;41 = z; - ¢;. The run of 4 on (T, 7) contains a copy that
reads this path and visits, q1, g2, . . ., and the pathr of (7., r) describes this copy. Hence, for
everyl < j < k, we have that7’, r) has an infinite path that visitg; finitely often iff G has
an infinite path with finitely many;-vertices, and we are done. 0

C.2 Proof of Theorem 4

Proof: Assume first thatd has an accepting run gragh (of any size) on some transducer
T. Let (T, ) be the tree generated l%. Thus,T” = D* and for allz € D* we have that
7(z) = L(n(z)). Consider the rufT:.,r) of A on (T, 7). By Lemma 1,(T;,r) is accepting.
Hence, A is not empty.

For the other direction, consider the UGCT. By [9], there is a DRTA? equivalent taA,
which is constructed as follows. Let’ be an NGBW that runs over a branch of an input tree for
A and checks whethed has a rejecting path over this branch. The NGBWis obtained by
dualizing.A and following the run read in the input. Thu4, has the same state space and index
asA. Let A” be a DRW that is equivalent td’ (by Theorem 3). Now, we construct a DRW"
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for the complementary language, and tdf{ over all branches of the input tree to check that all
paths of the run tree ofl are accepting. This yields the DRA™ that is equivalent toA.

By Theorem 3, the DRWA” has at most2"n>"k" states. The DRWA’” and the DRT.A?
have at mosk’ = 12"n*"k"n! states [26]. By [8], an NRT wit’ states is not empty iff it
accepts a regular tree generated by a transducemistates. The state space of the run graph
of A on such a transducer is then boundediay = 12"n>" T3k n!. Since the run ofd on the
tree is accepting, Lemma 1 implies that so is the run graph. |

C.3 Proof of Lemma 2

Proof: Assume first tha: is accepting. We prove that for all> 0, the graph2; has at most
|[V| — i vertices. In particularz,|1,| has at mos@ vertices, so there is < |V| for which Ga;
is empty. The proof proceeds by an inductioniolearly, Gy has at mostV| vertices. For the
induction step, we prove that for all> 0, if G2; contains vertices that are not finite, th6p; 1
contains at least ong;-free vertex, for someé < j < k. It follows that the transition frond+;
to G242 either results in an empt§2;12 or involves a removal of at least one vertex.

Consider the grapti; and assume by way of contradiction that it contains a vedexgo)
that is not finite, and yet no vertex {211 is Fj-free, for all1 < 5 < k. Consider the graph
Ga2i+1. All the vertices inG2;+1 are not finite, and therefore, each of the vertice&'i1 has
at least one successor. Consider the veftexqo) in G2;+1. Since, by the assumption, it is not
Fi-free, there exists aR’ -vertex(sg, q;) reachable frondso, qo). Let {s1, ¢1) be a successor of
{0, qo)- By the assumption(s1, ¢1 ) is also notF»-free. Hence, there exists #-vertex(s’, ¢;)
reachable frongsi, q1). Let (s2, g2) be a successor ¢f, g1 ). By the assumption(sz, ¢2) is also
not F3-free. Hence, there exists dfy-vertex(ss, ¢5) reachable fron{sz, ¢2). We can continue
similarly and construct an infinite sequence of verti¢es, q1.), (s}, q),) such that for all, >
0, the vertex(s},, gi) iS @n Fx mod k)+1-vertex reachable frondsy, gn), and (sp+1, qnt1) is
a successor ofsj,.q;,). Such a sequence, however, corresponds to a path timat visits F;
infinitely often, for alll < j < k, contradicting the assumption th@tis accepting.

Assume now thaty is rejecting. Then(z contains an infinite pathr with infinitely many
Fj-vertices, for alll < j < k. We prove that for alf > 0, all the verticess, g) in 7 are inGa;.
The proof proceeds by induction enThe vertices inr are clearly members df,. Also, if all
the vertices inr are members off2;, it must be that they are neither finite nBy-free inGai41,
forall 1 < j <k, so they stay itGa;+2. |

C.4 Proof of Lemma 3

Proof: Consider a run grapy = (V, E). Letc = |V|. We prove the following two claims.
1. For every verteXs, ¢) in G andp € R(c), we have(s, q) € G, iff rank(s,q) < p.
2. For every two verticegs,q) # (s',¢') in G, if (s’,q’) is reachable from(s, q), then

rank(s’,q") < rank(s, q).

We start with Claim (1): for every vertefs, ¢) in G andp € R(c), we have(s, ¢) € G,, iff
rank(s,q) < p.

We first prove that ifrank(s, q) < pthen(s,q) & G,. Letrank(s,q) = p’. By the definition
of ranks, (s, ¢) is finite or F;-free (for the appropriaté < j < k) in G,/. Hence,(s, q) is
removed from&,,. Hence, ap > p’, also(s, ¢) € G,.

For the other direction, we proceed by an inductionpoisinceGo = G, the case where
p = 0 is immediate. For the induction step, we distinguish between two cases. For the€ase
(2i+1, 5), consider a vertexs, q) ¢ G311 If (s, q) & G2, , the lemma’s requirement follows
from the induction hypothesis. Ifs,q) € G, ,, then(s, q) is F;-free inG3, ;. Accordingly,
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rank((s,q)) = (2¢ + 1,j), meeting the lemma’s requirement. For the case 2i, consider
avertex(s, q) ¢ Gi;1. If (s,q) & G2, the lemma’s requirement follows from the induction
hypothesis. If(s, g) € G2, then(s, g) is finite in G2,. Accordingly, rank((s, ¢)) = 2i, meeting
the lemma’s requirement.

We now prove Claim (2): for every two verticés, g) # (s’,¢’) in G, if (s, ¢’} is reachable
from (s, q), thenrank(s', ¢') < rank(s, q).

We distinguish between two casesriink((s, q¢)) = 2i is even, then(s, ¢) is finite in G2;.
Hence, eithels’, ¢') is not inGa;, in which case, by Claim (1), we have thatk({s’, ¢')) < 21,
or (s',q’) is in Ga;, in which case, being reachable from g), it must be finite inG>;, with
f((s',q")) = 2i, and we are done.

If f((s,q)) = (2¢+1,7)isodd, then(s, q) is F;-free inG%iH. Hence, eithets’, ¢') is not
in G3,.,,, in which case, by Claim (1), we have that(s’,¢')) < (2i + 1,5), or (s',¢) is in
G;‘M, in which case, being reachable fro@ ¢), it must beF}-free in G;H, in which case
f((s',q")) = (2i + 1, ), and we are done.

Since even ranks are given to finite vertices, we are done. O

C.5 Proof of Theorem 5

Proof: Let A = (X, D,Q,qin, 0, ), and letc = 12"n**T3k"n!. The ABT A’ accepts all the
regular treesT, ) € L(.A) that are generated by a transdu€et= (D, X, S, sin,n, L) with at
most12"n*"T2k"n! states. Note that the run graph.dfon such(T, 7) is accepting and is of
size most. By Theorem 4, we have th#x(A") # 0 iff L(A) # 0.

We defined’ = (X, D,Q’, ¢, &', a’), where

- Q' = Q x Rg(c). Intuitively, when A’ is in state(q, p) as it reads the node € T, it guesses
that the rank of the vertefy(z), ¢) of G is p. An exception is the initial statg,, explained
below.

- @i, = {Gin,2c). That is,q:,, is paired with2¢, which is an upper bound on the rank of
(), qin)-

— We defined’ by means of a function

release : BT (D x Q) x Ry(c) — BY(D x Q).

Given a formuled € B (D x Q), and arank € Ry (c), the formularelease (0, i) is ob-

tained fromé by replacing an atortil, ¢) by the disjunctionl/ ,,_ (d, (g, i')). For example,
it k = 3, thenrelease((1,q) A (2,5),2) = (1, (g,2)) V (1, (g, (1L, 1)) V (1, {g. (1,2))) v
El, E(L (%‘SDW(L (@, ONA(2, (5,2)V (2, (5, (1,3)))V(2, (5, (1,2))) V(2, (s, (1, 1)) V
2,(s,0))).

Now, &' : Q' x ¥ — B1(D x Q') is defined, for a statéy, p) € Q" ando € X, as follows.

release(6(q, o), p) If ¢ € F; or pis not odd with index;.

/ p—
(g p),0) = false If ¢ € F; andp is odd with index;.

That is, if the current guessed rankgdshen, by employingelease, the run can move in
its successors to every rank that is smaller than or equal fo however,q € F; and the
current guessed rank is odd with indgxhen, by the definition of ranks, the current guessed
rank is wrong, and the run is rejecting.

- o = Q x [2¢]°*. That is, infinitely many guessed ranks along each path should be odd.

We prove thatd’ accepts all the regular tre€®, ) € L£(.A) that are generated by a trans-
ducer? = (D, X, S, sin,n, L) with at most12"n?"T2k"n! states. Note that the run graph.4f
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on such(T, ) is accepting and is of size mastBy Theorem 4, we then have tha{.A’) # 0
iff L(A) # 0.

We first prove that.(A') C L(A). Consider a tre€T’, 7) accepted byd’. Let (T, r’) be
the accepting run oft’ on (T', 7). Consider thd" x Q-labeled tredT;., r) where for ally € T;.
with v’ (y) = (z, {q, p)), we haver(y) = (x, q). Thus,(T,,r) projects out theR, (c) element of
the labels of T, r'). It is easy to see thgf’., r) is a run of.A on (T, 7). Indeed, the transitions
of A’ only annotate transitions oA by ranks. We show thafT’., ) is an accepting run. Since
(T, r'") is accepting, then, by the definition af, each infinite path ofT;., ') gets trapped in
a setQ x {p} for some oddp. By the definition of§’, no accepting run can visit a statg p)
with an oddn of indexj andq € Fj. Hence, the infinite path actually gets trapped in the subset
(Q\ F;) x {p} of Q x {p}. Consequently, ifT, r), all the paths visit states ifi; only finitely
often, and we are done.

Itis left to prove that if7 = (D, X, S, s,n, n, L) is a transducer with at mos2™n2"+2£"n!
states and the run graphdfon 7 is accepting, them’ accepts the regular tree generatediby
LetT be as above and |ét be the accepting run graphdfon 7. Consider th€7 x Q')-labeled
N-tree (T}, r’) defined as follows.

— e € Ty andr’(g) = (¢, (gin, 2¢)).

— Lety € Ty be such that'(y) = (z, (g, p)). By the definition of(T}., r’) so far,(n(z), ¢)
is a vertex inG . Let§(q, 7(z)) = {{d1,q1),- ., {dm,qm)}. By the definition ofG, the
vertex (n(z), q) has successor&1, q1),. .-, (Sm,gm) such that for alll < i < m, we
have thaty(n(z),d;) = s;. Then, for alll < i < m, we havey -i € T}, andr’(y - i) =
(m - di, <qiv Tank(n($i)7 Qz)>)

We claim that(7}, r’) is an accepting run oft’ on (T, 7’). We first prove thatT;., r') is a legal
run. Sinceg;,, = (gn, 2¢), the root ofT;. is labeled legally. We now consider the other nodes
of T Let {(s1,q1),- .., (Sm,gm)} be the successors ¢, g;n) in G, with s; = n(sin,d;).
As c is the maximal rank that a vertex can get, each succdssoy;) hasrank(s;,q) < k.
Thus, a2c is even, the sef(c1, (g1, rank(x1,¢1))), - - ., (Cm, (Gm, rank(zm, gm)))} satisfies
8 ({gin, 2¢), 7()). Hence, the first level of;. is labeled legally. For the other levels, consider
a nodey € Ty such thaty # e. Letr'(y) = (z,{q,p)). By the definition of(T},r’), we
have that(n(z), q) is a vertex ofG with rank(n(z),q) = p. Let{(s1,q1),...,(Sm,qm)} be
the successors diy(z), q) in G with s; = n(sin, d;). As argued in the proof of Lemma 3,
forall 1 < i < m, we haverank(s;,q;) < p. Also, by the definition of ranks, it cannot be
thatq € F; andp is odd with indexj. Therefore, the sef(d, (g1, rank(n(z1),q1))), - ..,
(dm, {Gm, Tank(n(zm), gm)))} satisfiess’ ((g, p), 7(x)). Hence, the tre€T;,r’) is a legal run
of A" on (T, 7). Finally, by Lemma 3, each infinite path ¢f;., ') gets trapped in a set with an
odd rank, thugT;, r’) is accepting.

We now analyze the size 6F . Recall that the size d&y,(c) is c(k+1), with ¢ = 12"n?"3k™n),
Thus, the size o)’ = Q x Ry(c) is 12"n* "M k" nl(k 4 1) = 20(n(logntlog k) O

C.6 Proof of the construction in Theorem 2

Proof: We prove that the construction described Theorems 5 and 6 result in the NBT described
in Theorem 2.
Let A = (2,D,Q, gin,d,a) with |Q| = n. Letc = 12™n*""3k"nl. Consider a state
(S, O) of the NBT constructed frondl as described above. Each of the sg¢@ndO is a subset
of @ x Ry(c). We say that a séP C @) x Rx/(c) is consistentff for every two stategq, p) and
(¢, p")in P,if ¢ = ¢’ thenp = p’. We claim the following: (1) Restricting the states of the NBT
to pairs(S, O) for which S is a consistent subset &f x Ry (c) is allowable; that is, the resulting

NBT is equivalent. (2) There ag® (" (s n+leg k) consistent subsets 6f x Ry (c).
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In order to prove Claim (1), recall that the ABT visiting a stétep) when reading a node
x € T corresponds to a guess that the rank of the veliéx), ¢) of an accepting run grap® is
p. Since every vertex ity has a unique rank, the copies of ABT that are generated in an accepting
run that corresponds 1@ are consistent, in the sense that the different copies that read the same
nodez agree on the rank that(z), ¢) has inG. When the NBT visits a statgs, O), all the states
in S correspond to copies of the ABT that read the same node. Hence, &%téefor which S
is inconsistent corresponds to a node in the run of the ABT whose copies are inconsistent. Hence,
the NBT can ignore states, O) with inconsistents.

In order to prove Claim (2), observe that we can characterize a consistent set by the projection
of its pairs on@, augmented by an assignmeft Q@ — Ry (c). The size ofRy(c) is bounded
by ck. Since there are" such projections angtk)™ = 20 (legn-+los ) gch assignments, we
are done.

By the two claims, a® is always a subset &, we can restrict the state space of the NBT to
90(n?(log ntlog kb)) giates. The construction that follows is described in the proof of Theorem 2.

O



