
Safraless Compositional Synthesis?

Orna Kupferman1, Nir Piterman2, and Moshe Y. Vardi3

1 Hebrew University
2 Ecole Polytechnique F́ed́eral de Lausanne (EPFL)

3 Rice University and Microsoft Research

Abstract. In automated synthesis, we transform a specification into a system
that is guaranteed to satisfy the specification. In spite of the rich theory devel-
oped for system synthesis, little of this theory has been reduced to practice. This
is in contrast with of model-checking theory, which has led to industrial develop-
ment and use of formal verification tools. We see two main reasons for the lack of
practical impact of synthesis. The first is algorithmic: synthesis involves Safra’s
determinization of automata on infinite words, and a solution of parity games with
highly complex state spaces; both problems have been notoriously resistant to ef-
ficient implementation. The second is methodological: current theory of synthesis
assumes a single comprehensive specification. In practice, however, the specifi-
cation is composed of a set of properties, which is typically evolving – properties
may be added, deleted, or modified.
In this work we address both issues. We extend the Safraless synthesis algorithm
of Kupferman and Vardi so that it handles LTL formulas by translating them to
nondeterministic generalized Büchi automata. This leads to an exponential im-
provement in the complexity of the algorithm. Technically, our algorithm reduces
the synthesis problem to the emptiness problem of a nondeterministic Büchi tree
automatonA. The generation ofA avoids determinization, avoids the parity ac-
ceptance condition, and is based on an analysis of runs of universal generalized
co-Büchi tree automata. The clean and simple structure ofA enables optimiza-
tions and a symbolic implementation. In addition, it makes it possible to use in-
formation gathered during the synthesis process of properties in the process of
synthesizing their conjunction.

1 Introduction

One of the most significant developments in the area of program verification over the
last two decades has been the development of of algorithmic methods for verifying tem-
poral specifications offinite-stateprograms; see [5]. A frequent criticism against this
approach, however, is that verification is doneafter significant resources have already
been invested in the development of the program. Since programs invariably contain er-
rors, verification simply becomes part of the debugging process. The critics argue that
the desired goal is to use the specification in the program development process in order
to guarantee the design of correct programs. This is calledprogram synthesis.

? A full version can be downloaded from www.cs.huji.ac.il/∼ornak/cav06.pdf. The references
to the appendix in this extended abstract refer to this version.

2

In the late 1980s, several researchers realized that the classical approach to program
synthesis, where a program is extracted from a proof that the specification is satisfiable,
is well suited toclosedsystems, but not toopen(also calledreactive) systems [1, 6, 21].
In reactive systems, the program interacts with the environment, and a correct program
should then satisfy the specification with respect to all environments. These researchers
argued that the right way to approach synthesis of reactive systems is to consider the
situation as a (possibly infinite) game between the environment and the program. A
correct program can be then viewed as a winning strategy in this game. It turns out that
satisfiability of the specification is not sufficient to guarantee the existence of such a
strategy. Abadi et al. called specifications for which a winning strategy existsrealizable.
Thus, a strategy for a program with inputs inI and outputs inO maps finite sequences
of inputs (words in(2I)∗ – the actions of the environment so far) to an output in2O – a
suggested action for the program. A strategy can then be viewed as a labeling of a tree
with directions in2I by labels in2O. The traditional algorithm for finding a winning
strategy transforms the specification into a parity automaton over such trees such that
a program is realizable precisely when this tree automaton is nonempty, i.e., it accepts
some infinite tree [21]. A finite generator of an infinite tree accepted by this automaton
can be viewed as a finite-state program realizing the specification. This is closely related
to the approach taken, e.g., in [23], to solve Church’ssolvability problem[4]. Several
works during the 1990s showed how this approach to program synthesis can be carried
out in a variety of settings.

In spite of the rich theory developed for program synthesis, little of this theory
has been reduced to practice. Some people argue that this is because the realizability
problem for linear-temporal logic (LTL) specifications is 2EXPTIME-complete [21,
24], but this argument is not compelling. First, experience with verification shows that
even nonelementary algorithms can be practical, since the worst-case complexity does
not arise often (cf., the model-checking tool MONA [7]). Furthermore, in some sense,
synthesis is not harder than verification. This may seem to contradict the known fact
that while verification is “easy” (linear in the size of the model and at most exponential
in the size of the specification [16]), synthesis is hard (2EXPTIME-complete). There is,
however, something misleading in this fact: while the complexity of synthesis is given
with respect to the specification only, the complexity of verification is given with respect
to the specification and the program, which can be much larger than the specification.
In particular, it is shown in [24] that there are temporal specifications for which every
realizing program must be at least doubly exponentially larger than the specifications.
Clearly, the verification of such programs is doubly exponential in the specification, just
as the cost of synthesis.

We believe that there are two reasons for the lack of practical impact of synthe-
sis theory. The first is algorithmic and the second is methodological. Consider first
the algorithmic problem. First, constructing tree automata for realizing strategies uses
Safra’s construction for determinizing Büchi automata. This construction has been no-
toriously resistant to efficient implementations [2, 27] (An alternative construction is
equally hard [2].) Second, Safra’s determinization results in automata with a very com-
plicated state space. The best-known algorithms for parity-tree-automata emptiness [13]
are nontrivial already when applied to simple state spaces. Implementing them on top

3

of the messy state space that results from Safra’s determinization is awfully complex,
and is not amenable to optimizations and a symbolic implementation.

Another major issue is methodological. The current theory of program synthesis
assumes that one gets a comprehensive set of temporal assertions as a starting point.
This cannot be realistic in practice. A more realistic approach would be to assume an
evolvingformal specification: temporal assertions can be added, deleted, or modified.
Since it is rare to have a complete set of assertions at the very start of the design process,
there is a need to developcompositionalsynthesis algorithms. Such algorithms can, for
example, refine designs when provided with additional temporal properties.

In this paper we address both issues. We focus on the case where forbidden behav-
iors are described by nondeterministic generalized Büchi automata on infinite words,
which are B̈uchi automata with multiple acceptance sets (corresponding to theimpar-
tiality fairness condition of [17]). Our interest in specifying forbidden behaviors and in
using the generalized B̈uchi condition is motivated by the fact that LTL formulas (and
their negation) can be conveniently translated to nondeterministic generalized Büchi
automata [10]. Equivalently, one can specify allowed behavior by universal generalized
co-Büchi automata. Following [15], we offer an alternative to the standard automata-
theoretic approach. The crux of our approach is avoiding the use of Safra’s construc-
tion and of nondeterministic parity tree automata. In the approach described here, one
checks whether the specificationψ is realizable using the following steps: (1) construct
a universal generalized co-Büchi tree automatonAψ that accepts all realizing strategies
for ψ, (2) reduce4 Aψ to an alternating weak tree automatonAwψ , (3) translateAwψ to
a nondeterministic B̈uchi tree automatonAnψ, and (4) check that the language ofAnψ
is nonempty. The key is avoiding Safra’s construction, by using universal generalized
co-Büchi automata instead of deterministic parity automata.5

The difference between our approach here and the approach in [15] is that here
we usegeneralizedco-Büchi automata, unlike the co-Büchi automata used there. This
leads to an exponential improvement in the complexity of our algorithm, as we describe
below. Extending the framework of [15] to generalized co-Büchi automata requires two
key technical steps. First, as our Safraless approach used a “Safraful” bound on the size
of the realizing strategies, we need to extend Safra’s construction to nondeterministic
generalized B̈uchi automata, obtaining an exponential improvement (with respect to an
approach that first translates the generalized Büchi automaton to a B̈uchi automaton) in
that construction. Second, we need to show how the co-Büchi ranks devised in [14] for
the analysis of runs of universal automata on words can be applied to the analysis of
runs of universal automata on finitely generated trees.

4 We use “reduceA1 to A2”, rather than “translateA1 to A2” to indicate thatA1 need not be
equivalent toA2, yet the language ofA1 is empty iff the language ofA2 is empty.

5 A note to readers who are discouraged by the fact our method goes via several intermediate
automata: it is possible to combine the reductions into one construction, and in fact we describe
here also a direct translation of universal generalized co-Büchi automata into nondeterministic
Büchi automata. In practice, however, it is beneficial to have many intermediate automata,
as each intermediate automaton undergoes optimization constructions that are suitable for its
particular type, cf. [12].

4

Beyond the improvement in complexity, the advantage of the Safraless approach is
that we get tree automata with cleanly described state spaces, which enables the appli-
cation of symbolic algorithms for B̈uchi tree automata emptiness. Further, we can now
obtain acompositionalalgorithm. Given a specificationψ, we first check its realizabil-
ity. Suppose now that we get an additional specificationψ′. We can, of course, simply
check the realizability ofψ ∧ ψ′ from scratch. Instead, we suggest to first check also
the realizability ofψ′. We then show how, thanks to the simple structure of the tree au-
tomata, much of the work used in checking the realizability ofψ andψ′ in isolation can
be reused in checking the realizability ofψ ∧ ψ′. The compositional algorithm we sug-
gest can be combined with anincrementalalgorithm, in which we iteratively increase
the bound on the size of the realizing strategy. In addition, we explain how it can be
implemented symbolically.

2 Preliminaries

We assume familiarity with the basic notions of alternating automata on infinite trees,
cf. [11]. We include basic definitions in Appendix A.

Given an alphabetΣ and a setD of directions, aΣ-labeledD-tree is a pair〈T, τ〉,
whereT ⊆ D∗ is a tree overD and τ : T → Σ maps each node ofT to a letter
in Σ. A transduceris a labeled finite graph with a designated start node, where the
edges are labeled byD and the nodes are labeled byΣ. A Σ-labeledD-tree isregular
if it is the unwinding of some transducer. More formally, a transducer is a tupleT =
〈D,Σ, S, sin, η, L〉, whereD is a finite set of directions,Σ is a finite alphabet,S is
a finite set of states,sin ∈ S is an initial state,η : S × D → S is a deterministic
transition function, andL : S → Σ is a labeling function. We defineη : D∗ → S in the
standard way:η(ε) = sin, and forx ∈ D∗ andd ∈ D, we haveη(x · d) = η(η(x), d).
Intuitively, A Σ-labeledD-tree 〈D∗, τ〉 is regular if there exists a transducerT =
〈D,Σ, S, sin, η, L〉 such that for everyx ∈ D∗, we haveτ(x) = L(η(x)). We then say
that the size of the regular tree〈D∗, τ〉, denoted‖τ‖, is |S|, the number of states ofT .

We denote an alternating tree automaton by a tupleA = 〈Σ,D,Q, qin, δ, α〉,
whereΣ is the input alphabet,D is a set of directions,Q is a finite set of states,
δ : Q × Σ → B+(D × Q) is a transition function,qin ∈ Q is an initial state, andα
specifies the acceptance condition A run ofA is accepting if all its infinite paths satisfy
the acceptance condition. For a pathπ, we denote the set of automaton states visited
infinitely often along this path byinf(π). exactly all the states that appear infinitely
often inπ. We consider here four acceptance conditions defined as follows6.

– A pathπ satisfies ageneralized B̈uchiacceptance conditionα = {F1, F2, . . . , Fk} ⊆
2Q iff for all 1 ≤ i ≤ k we haveinf(π) ∩ Fi 6= ∅. The numberk of sets inα is
called theindexof the automaton. If|α| = 1 we callα aBüchicondition.

– A pathπ satisfies ageneralized co-B̈uchiacceptance conditionα = {F1, F2, . . . , Fk} ⊆
2Q iff for some1 ≤ i ≤ k such thatinf(π)∩Fi = ∅. The numberk of sets inα is
called theindexof the automaton. If|α| = 1 we callα aco-Büchicondition.

6 We also refer to the Streett condition, but its definition is not important here.

5

– A pathπ satisfies aRabinacceptance conditionα = {〈L1, U1〉, . . . , 〈Lk, Uk〉}with
Li, Ui ⊆ Q for all 1 ≤ i ≤ k iff for some1 ≤ i ≤ k for which inf(π) ∩ Li 6= ∅
andinf(π) ∩ Ui = ∅.

For the three conditions, an automaton accepts a tree iff there exists a run that accepts
it. We denote byL(A) the set of allΣ-labeled trees thatA accepts. We also refer to a
fourth condition, which is a special case of the Büchi condition, and is referred to as the
weakcondition [20].

Below we discuss some special cases of alternating automata. The alternating au-
tomatonA is nondeterministicif for all the formulas that appear inδ, if (c1, q1) and
(c2, q2) are conjunctively related, thenc1 6= c2. (i.e., if the transition is rewritten in
disjunctive normal form, there is at most one element of{c} × Q, for eachc ∈ D, in
each disjunct). The automatonA is universalif all the formulas that appear inδ are
conjunctions of atoms inD × Q, andA is deterministicif it is both nondeterministic
and universal. The automatonA is a word automaton if|D| = 1. Then, we can omit
D from the specification of the automaton and denote the transition function ofA as
δ : Q × Σ → B+(Q). If the word automaton is nondeterministic or universal, then
δ : Q×Σ → 2Q.

We denote each of the different types of automata by an acronym in{D,N,U,A}×
{B,GB,C,GC,R}×{W,T}, where the first letter describes the branching mode of the
automaton (deterministic, nondeterministic, universal, or alternating), the second letter
describes the acceptance condition (Büchi, generalized B̈uchi, co-B̈uchi, generalized
co-Büchi, or Rabin), and the third letter describes the object over which the automaton
runs (words or trees). For example, ART are alternating Rabin tree automata and UGCT
are universal generalized co-Büchi tree automata.

3 Synthesis

Consider an UGCWS over the alphabet2I∪O, for setsI andO of input and output
signals. Therealizability problemfor S [21] is to decide whether there is astrategy
f : (2I)∗ → 2O, generated by a transducer7 such that all the computations of the system
generated byf are inL(S). We call such a strategy, agoodstrategy. A computation
ρ ∈ (2I∪O)ω is generated byf if ρ = (i0 ∪ o0), (i1 ∪ o1), (i2 ∪ o2), . . . and for all
j ≥ 1, we haveoj = f(i0 · i1 · · · ij−1).

In practice, the UGCWS originates from an LTL formulaψ that specifies the de-
sired properties of the program we synthesize. In order to getS, we first translate¬ψ
to an NGBWA¬ψ, and then dualizeA¬ψ by viewing it as a UGCW. By [29, 10],A¬ψ,
and thus alsoS, have2O(|ψ|) states and indexO(|ψ|). Alternatively, one can define
properties directly using UGCW, as done, for example, in the framework of General-
ized Symbolic Trajectory Evaluation [30], by means offair assertion graphs.

Theorem 1. The realizability problem for a given UGCW can be reduced to the nonempti-
ness problem of a UGCT with the same state space and index.

7 It is known that if some transducer that generatesf exists, then there is also a finite-state
transducer.

6

Proof: A strategyf : (2I)∗ → 2O can be viewed as a2O-labeled2I -tree. GivenS,
we define a UGCTS ′ such thatS ′ accepts a2O-labeled2I -tree〈T, τ〉 iff τ is a good
strategy forS.

Let S = 〈2I∪O, Q, qin, δ, α〉. Then,S ′ = 〈2O, 2I , Q, qin, δ′, α〉, where for every
q ∈ Q ando ∈ 2O, we haveδ′(q, o) =

∧
i∈2I

∧
q′∈δ(q,i∪o)(i, q

′). Thus, from stateq,

reading the output assignmento ∈ 2O, the automatonS ′ branches to each direction
i ∈ 2I , with all the statesq′ to which δ branches when it readsi ∪ o in stateq. It is
not hard to see thatS ′ accepts a2O-labeled2I -tree〈T, τ〉 iff for all the paths{ε, i0, i0 ·
i1, i0 · i1 · i2, . . .} of T , the infinite word(i0 ∪ τ(ε)), (i1 ∪ τ(i0)), (i2 ∪ τ(i0 · i1)), . . .
is accepted by the UGCWS as required.

We now describe an emptiness preserving translation of UGCT to NBT. The correct-
ness proof of the construction is given in Sections 4.1 and 4.2. There, we also suggest
to use ABT as an intermediate step in the construction. While this adds a step to our
chain of reductions, it enables further optimizations of the result.

For an integerc, let [c] denote the set{0, 1, . . . , c}, and let[c]odd and[c]even denote
the set of odd and even members of[c], respectively. Also, letRk(c) = [2c]even ∪
([2c]odd × {1, . . . , k}), and≤ be the lexicographical order on the elements ofRk(c).
We refer to the members ofRk(c) in [2c]even aseven ranksand refer to the members of
Rk(c) in [2c]odd×{j} asodd ranks with indexj. Note that the size ofRk(c) is c(k+1).
Our construction refers to a functionSafra(n, k), which, as we show later, is bounded
from above by12nn2nkn.

Theorem 2. LetA be a UGCT withn states and indexk. There is an NBTA′ over the
same alphabet such thatL(A′) 6= ∅ iff L(A) 6= ∅, and the number of states inA′ is
2O(n2(logn+log k)).

Proof: Let A = 〈Σ,D,Q, qin, δ, {F1, . . . , Fk}〉, and letc = Safra(n, k)n!n3. Note
thatc is 2O(n(logn+log k)). LetRk(c) be the set of functionsf : Q → Rk(c) in which
f(q), for all q ∈ Fj , is not odd with indexj. For g ∈ Rk(c), let odd(g) = {q :
g(q) is odd}. We defineA′ = 〈Σ,D,Q′, q′in, δ

′, α′〉, where
– Q′ = 3Q×Rk(c). For technical convenience, we refer to the states ofQ′ as triples
〈S,O, f〉 with O ⊆ S ⊆ Q andf ∈ Rk(c).

– q′in = 〈{qin}, ∅, g0〉, whereg0 maps all states to2c.
– For q ∈ Q, σ ∈ Σ, andd ∈ D, let δ(q, σ, d) = δ(q, σ) ∩ ({d} × Q). For two

functionsg andg′ in Rk(c), a letterσ, and directiond ∈ D, we say thatg′ covers
〈g, σ, d〉 if for all q andq′ in Q, if q′ ∈ δ(q, σ, d), theng′(q′) ≤ g(q). Then, for all
〈S,O, g〉 ∈ Q′ andσ ∈ Σ, we defineδ as follows.

• If O 6= ∅, thenδ′(〈S,O, g〉, σ) =
∧
d∈D

∨
gd covers 〈g,σ,d〉

〈δ(S, σ, d), δ(O, σ, d) \

odd(gd), gd〉.
• If O = ∅, thenδ′(〈S,O, g〉, σ) =

∧
d∈D

∨
gd covers 〈g,σ,d〉

〈δ(S, σ, d), δ(S, σ, c) \

odd(gd), gd〉.
– α′ = 2Q × {∅} ×Rk(c).

7

Corollary 1. The realizability problem for an NGBW withn states and indexk can be
reduced to the nonemptiness problem of an NBT with2O(n2(logn+log k)) states.

These bounds are exponentially better than those established in [15]. There, the
NGBW is converted to an NBW withnk states and the overall resulting complexity is
2O((nk)2(log k+logn)).

The synthesis problemfor S is to find a transducer that generates a strategy real-
izing S. Known algorithms for the nonemptiness problem can be easily extended to
return a transducer [22]. The algorithm we present here also enjoys this property, thus
it can be used to solve not only the realizability problem but also the synthesis problem.
(For a comparison of the Safraless and the Safraful approaches to synthesis from a the
perspective of program size, see [15].)

4 From UGCT to NBT

Recall that runs of alternating tree automata are labeled trees. By merging nodes that are
roots of identical subtrees, it is possible to maintain runs in graphs. In Section 4.2, we
prove a bounded-size run graph property for UGCT. In Section 4.2, we show how the
bounded-size property enables a simple translation of UGCT to ABT, which we then
translate to an NBT. Combining the translations results in the UGCT to NBT construc-
tion described in Theorem 2. While our construction avoids Safra’s determinization
construction, the proof of the bounded-size run-graph property makes use of the bound
the construction provides to the blow up involved in determinization. Since we handle
the generalized co-B̈uchi construction, we need a bound on the blow involved in the
determinization of NGBW. We provide such a bound in Section 4.1.

4.1 NGBW to DRW

There are two known approaches to determinization of NGBW. The first is to convert
the NGBW to an NBW [3] and then use Safra’s determinization [25]. The second is to
view the NGBW as a Streett automaton and apply Safra’s determinization of Streett au-
tomata [26]. Both approaches produce automata with(nk)O(nk) states. In this section
we show how to extend Safra’s determinization construction for the case of general-
ized Büchi automata. Our construction below produces a DRW with(nk)O(n) states,
exponentially fewer states than the approaches described.

We offer here a succinct description of the improvement. The key is to augment
Safra trees with an indexing function. In Safra’s constructions, the DRW refers to a visit
in the set of accepting states as a good event. In our extension, a good event occurs only
after visits to all the sets in the generalized Büchi condition. Thus, the idea is similar
to the indexing used in the translation of NGBW to NBW [10], but the challenge is to
combine this indexing in the state space of the DRW in a way that minimizes the blow
up in terms ofk. A correctness proof is provided in Appendix B. There, we also describe
Safra’s determinization construction for NBW. Note that the improved construction is
used only to generate the improved bound. The synthesis algorithm uses this bound but
it doesnot use Safra’s construction.

8

Theorem 3. Given an NGBW withn states and indexk, we can construct an equivalent
DRW with at most12nn2nkn states andn pairs.

Proof: LetN = 〈Σ,S, δ, s0, α〉 be an NGBW with|S| = n andα = {F1, . . . , Fk}.
LetV = [n] andV ′ = {n+1, . . . , 2n}. We construct the DRWD equivalent toN . Let
D = 〈Σ,D, ρ, d0, α〉, where the components ofD are as follows.

– A generalized Safra treet is 〈N, 1, p, ψ, l, h,R,G〉 whereN ⊆ V is a set of nodes,
1 ∈ N is the root node,p : N → N is the parenthood function,ψ : N → N
is a partial order defining “older than” on siblings,l : N → 2S is a labeling of
the nodes with subsets ofS, h : N → [k] is an indexing function associating with
every node an index in[k], andR andG are two disjoint subsets ofV . In addition
the label of every node is a proper superset of the union of the labels of its children.
The labels of two siblings are disjoint. The setD of states is the set ofgeneralized
Safra treesoverS andk.

– d0 ∈ D has a unique node1 wherel(1)={s0}, h(1)=1,R=V−{1}, andG=∅.
– The Rabin acceptance condition isα={〈L1, U1〉, . . . , 〈Ln, Un〉} whereLi = {d ∈
D | i ∈ Gd} andUi = {d ∈ D | i ∈ Rd}.

– For every treed ∈ D and letterσ ∈ Σ the transitiond′ = ρ(d, σ) is the result of
the following transformations ond. We use temporarily the set of nodesV ′. (1) For
every nodev with labelS′ replaceS′ by δ(S′, σ) and setR andG to the empty set.
(2) For every nodev with labelS′ such thath(v) = i andS′∩Fi 6= ∅, create a new
youngest childv′ ∈ V ′. Set its label toS′∩Fi and its index to1. (3) For every node
v with labelS′ and states ∈ S′ such thats belongs also to an older siblingv′ of
v, removes from the label ofv and all its descendants. (4) For every nodev whose
label is equal to the union of the labels of its children, remove all descendants ofv.
If h(v) = k, changeh(v) to 1 and addv toG. If h(v) < k, increaseh(v) by one.
(5) Remove all nodes with empty labels and add all unused names toR. (6) Change
nodes inV ′ to nodes inV .

Let Safra(n, k) be the number of generalized Safra trees for NGBW withn states and
indexk. By the above theorem,Safra(n, k) is bounded from above by12nn2nkn.

4.2 From UGCT to NBT

A bounded-size run graph property for UGCT LetA = 〈Σ,D,Q, qin, δ, α〉 be a
UGCT with α = {F1, . . . , Fk}. Recall that a run〈Tr, r〉 of A on aΣ-labeledD-tree
〈T, τ〉 is a(T ×Q)-labeled tree in which a nodey with r(y) = 〈x, q〉 stands for a copy
ofA that visits the stateq when it reads the nodex. Assume that〈T, τ〉 is regular, and is
generated by a transducerT = 〈D,Σ, S, sin, η, L〉. For two nodesy1 andy2 in Tr, with
r(y1) = 〈x1, q1〉 andr(y2) = 〈x2, q2〉, we say thaty1 andy2 aresimilar iff q1 = q2
andη(x1) = η(x2). By merging similar nodes into a single vertex, we can represent the
run 〈Tr, r〉 by a finite graphG = 〈V,E〉, whereV = S × Q andE(〈s, q〉, 〈s′, q′〉) iff
there isc ∈ D such that(c, q′) ∈ δ(q, L(s)) andη(s, c) = s′. We restrictG to vertices
reachable from the vertex〈sin, qin〉. We refer toG as therun graph ofA onT . A run
graph ofA is then a run graph ofA on some transducerT . We say thatG is accepting iff

9

every infinite path ofG has only finitely manyFj-vertices (vertices inS×Fj), for some
1 ≤ j ≤ k. SinceA is universal andT is deterministic, the run〈Tr, r〉 is memoryless
in the sense that the merging does not introduce toG paths that do not exist in〈Tr, r〉,
and thus, it preserves acceptance. Formally, we have the following:

Lemma 1. Consider a UGCTA. Let〈T, τ〉 be a tree generated by a transducerT . The
run tree〈Tr, r〉 ofA on 〈T, τ〉 is accepting iff the run graphG ofA onT is accepting.

Note thatG is finite, and its size is bounded byS ×Q. We now boundS and get a
bounded-size run-graph property for UGCT. The bound onS depends on the blow-up
involved in NGBW determinization, which we studied in Section 4.1. Essentially, the
bound depends on the side of an NRT equivalent to the UGCT, and in order to get such
an NRT we have to determinize an NGBW that accepts bad paths in runs of the UGCT.

Theorem 4. A UGCTA with n states and indexk is not empty iffA has an accepting
run graph with at mostSafra(n, k)n!n3 vertices.

From UGCT to NBT via ABT Consider a graphG′ ⊆ G. We say that a vertex〈s, q〉
is finite in G′ iff all the paths that start at〈s, q〉 are finite. For1 ≤ j ≤ k, we say that a
vertex〈s, q〉 is Fj-free in G′ iff all the vertices inG′ that are reachable from〈s, q〉 are
notFj-vertices. Note that, in particular, anFj-free vertex is not anFj-vertex.

Given a run〈Tr, r〉, we define an infinite sequence of graphsG0 ⊇ G1
1 ⊇ G2

1 ⊇
. . . Gk1 ⊇ Gk+1

1 ⊇ G1
3 ⊇ . . . Gk+1

3 ⊇ G1
5 . . . as follows. To simplify notations, we

sometimes refer toG1
2i+1 asG2i+1 and toGk+1

2i+1 asG2i+2. Thus,G1 = G1
1, G2 =

Gk+1
1 ,G3 = G1

3,G4 = Gk+1
3 , and so on.

– G0 = G.
– G1

2i+1 = G2i \ {〈s, q〉 | 〈s, q〉 is finite inG2i}.
– Gj+1

2i+1 = Gj2i+1 \ {〈s, q〉 | 〈s, q〉 is Fj-free inGj2i+1}, for 1 ≤ j ≤ k.

Lemma 2. A run graphG = 〈V,E〉 is accepting iff there isi ≤ |V | for whichG2i is
empty.

Let G be an accepting run graph. Given a vertex〈s, q〉 in G, the rank of 〈s, q〉,
denotedrank(s, q), is defined as follows:

rank(s, q) =
[

2i If 〈s, q〉 is finite inG2i.
〈2i+ 1, j〉 If 〈s, q〉 is Fj-free inGj2i+1.

Recall that, for an integerc, we have definedRk(c) = [2c]even ∪ ([2c]odd ×
{1, . . . , k}), as a set ofc(k + 1) ranks, and defined≤ as the lexicographical order
on the elements ofRk(c). For an odd rankρ = 〈2i+1, j〉, we refer toGj2i+1 asGρ. Let
c = |V |. By Lemma 2, there isi ≤ c for whichG2i is empty. Therefore, every vertex
gets a well-defined rank inRk(c).

Lemma 3. In every infinite path in an accepting run graphG, there exists a vertex
〈s, q〉 with an odd rank such that all the vertices〈s′, q′〉 on the path that are reachable
from 〈s, q〉 haverank(s′, q′) = rank(s, q).

10

We can now use the analysis of ranks in order to translate UGCT to NBT. In order
to enable further optimizations, we use ABT as an intermediate step in the construction.

Theorem 5. LetA be a UGCT withn states and indexk. There is an ABTA′ over the
same alphabet such thatL(A′) 6= ∅ iff L(A) 6= ∅, and the number of states inA′ is
2O(n(logn+log k)).

As detailed in the proof of the Theorem, the ABTA′ accepts all the regular trees
〈T, τ〉 ∈ L(A) that are generated by a transducerT = 〈D,Σ, S, sin, η, L〉 with at most
Safra(n, k)n!n2 states. Note that the run graph ofA on such〈T, τ〉 is accepting and is
of size mostSafra(n, k)n!n3. By Theorem 4, we have thatL(A′) 6= ∅ iff L(A) 6= ∅.

The state space ofA′ isQ′ = Q × Rk(c). Intuitively, whenA′ is in state〈q, ρ〉 as
it reads the nodex ∈ T , it guesses that the rank of the vertex〈η(x), q〉 of G is ρ. The
transitions ofA′ allows the guessed ranks to decrease, but makes sure that if a state is
in Fj , then guessed rank for it cannot be odd with indexj. By Lemma 3, the guessed
ranks should eventually converge to some odd rank, which is checked by the acceptance
condition ofA′.8

In [18], Miyano and Hayashi describe a translation of ABW to NBW. In Theorem 6
below (see also [19]), we present (a technical variant of) their translation, adapted to
tree automata,

Theorem 6. LetA be an ABT withn states. There is an NBTA′ with 2O(n) states, such
thatL(A′) = L(A).

Combining Theorems 5 and 6, one can reduce the nonemptiness problem for UGCT
to the nonemptiness problem for NBT. Consider a UGCTA with n states and in-
dex k. If we translateA to an NBT by going through the ABT we have obtained
in Theorem 5, we end up with an NBT with22O(n(log n+log k))

states, as the ABT has
2O(n(logn+log k)) states. In order to complete the construction, and get the NBT de-
scribed in the proof of Theorem 2, we exploit the special structure of the ABT and
show that only2O(n2(logn+log k)) states of the NBT constructed in Theorem 6 may
participate in an accepting run.

5 Compositional Synthesis

A serious drawback of current synthesis algorithms is that they assume a comprehen-
sive set of temporal assertions as a starting point. In practice, however, specifications
are evolving: temporal assertions are added, deleted, or modified during the design pro-
cess. In this section we describe how our synthesis algorithm can supportcompositional
synthesis, where the temporal assertions are given one by one. We show how the Safra-
less approach enables us, when we check the realizability ofψ ∧ψ′, to use much of the
work done in checking the realizability ofψ andψ′ in isolation. Devising a composi-
tional synthesis algorithms to other forms of composition, e.g.,ψ′ → ψ, is an interesting
research problem.

8 Readers familiar with weak automata [20], would note that our automaton is in fact an alter-
nating weak tree automaton. It is the special structure of weak automata that enables some of
the optimizations we describe below.

11

Our compositional algorithm extends theincremental-synthesisalgorithm described
in [15]. Essentially, we show that when we construct and check the emptiness of the
NBT to which realizability ofψ ∧ ψ′ is reduced, we can use much of the work done
in the process of checking the emptiness of the two (much smaller) NBTs to which
realizability ofψ andψ′ is reduced (in isolation).

We first review the incremental-synthesis idea from [15]. Recall that our construc-
tion is based on the fact we can bound the maximal rank that a vertex in an accepting run
graphG gets. Often, the sequenceG0, G1, G2, . . . of graphs described in Section 4.2
converges to the empty graph very quickly, making the bound on the maximal rank
much smaller (see [12] for an analysis and experimental results for the case of UCW).
Accordingly, one can regard the boundc as a parameter in the construction: start with a
small parameter, and increase it if necessary.

To see how this is done, consider the combined construction described in Theo-
rem 2. Starting with a UGCTAwith state spaceQ of sizen, we tookc = Safra(n, k)n!n3

(an upper bound on the size of the minimal accepting run graph ofA), and constructed
an NBTA′ with state space3Q ×Rk(c), whereR(c) is the set of functionsf : Q →
Rk(c) in which f(q) is not odd with indexj for all q ∈ Fj . For l ≤ c, let Rk[l] be
the restriction ofRk to functions with rangeRk(l), and letA′[l] be the NBTA′ with c
being replaced byl. Recall that the NBTA′[l] is empty iff all the run graphs ofA of size
at mostl are not accepting. Thus, coming to check the emptiness ofA, the incremental
approach proceeds as follows: start with a smalll and check the nonemptiness ofA′[l].
If A′[l] is not empty, thenA is not empty, and we can terminate with a “nonempty”
output. Otherwise, increasel, and repeat the procedure. Whenl = c andA′[l] is still
empty, we can terminate with an “empty” output.

As argued for UCTs in [15], it is possible to take advantage of the work done during
the emptiness test ofA′[l1], when testing emptiness ofA′[l2], for l2 > l1. To see this,
note that the state space ofA′[l2] consists of the union of3Q×Rk[l1] (the state space of
A′[l1]) with 3Q× (Rk[l2] \Rk[l1]) (states whosef ∈ Rk[l2] has a state that is mapped
to a rank greater thanl1). Also, since ranks can only decrease, once the NBTA′[l2]
reaches a state ofA′[l1], it stays in such states forever. So, if we have already checked
the nonemptiness ofA′[l1] and have recorded the classification of its states to empty
and nonempty, the additional work needed in the nonemptiness test ofA′[l2] concerns
only states in3Q × (R[l2] \ Rk[l1]).

We can now describe how the incremental approach can be extended to a composi-
tional one. LetS = 〈Σ,Q, δ, qin, {F1, . . . , Fk}〉 andS ′ = 〈Σ,Q′, δ′, q′in, {F ′

1, . . . , F
′
k′}〉

be UGCWs specifying required behaviors. Letn = |Q| andn′ = |Q′|. Without loss of
generality, assume that the state spacesQ andQ′ are disjoint. We can define the inter-
section ofS andS ′ as the UGCWP obtained by puttingS andS ′ “side by side”; thus9

P = 〈Σ,Q ∪ Q′, δ ∪ δ′, {qin, q′in}, {F1 ∪ Q′, . . . , Fk ∪ Q′, F ′
1 ∪ Q, . . . , F ′

k′ ∪ Q}〉.
Note that it is indeed the case thatP has an accepting run on a wordw iff both S and
S ′ has an accepting run onw.

Let A andA′ be the NBTs to which realizability ofS andS ′ is reduced, respec-
tively. A non-compositional approach generates the NBT that corresponds toP . By

9 For technical simplicity, we allowP to have two initial states. This can be easily ovoided by
adding a new initial state whose transitions are the union of the transitions fromqin andq′in.

12

Theorem 2, this results in an NBTU with state space3Q∪Q
′ × Rk+k′(p)Q∪Q

′
, for

p = Safra(n+n′, k+k′)(n′n)!(n+n′)3. On the other hand, the state spaces ofA andA′

are much smaller, and are3Q ×Rk(c)Q and3Q
′ ×Rk′(c′)Q

′
, for c = Safra(n, k)n!n3

andc′ = Safra(n′, k′)n′!n′3. respectively.
Let us examine the structure of the state space ofU more carefully. Each of its states

can be viewed as a triplet〈S ∪ S′, O ∪ O′, f〉, for O ⊆ S ⊆ Q, O′ ⊆ S′ ⊆ Q′, and
f : Q ∪ Q′ → Rk+k′(p). For f as above, letf|Q andf|Q′ denote the restrictions of
f to Q andQ′, respectively. Note that iff maps the states inS to ranks inRk(c) and
maps states inS′ to ranks inRk′(c′), then the state〈S ∪ S′, O ∪ O′, f〉 corresponds
to the states〈S,O, f|Q〉 of A and〈S′, O′, f|Q′〉 of A′. Moreover, if one of these states
is empty, so is〈S ∪ S′, O ∪ O′, f〉. This observation is the key to our compositional
algorithm.

For l ≤ c andl′ ≤ c′, letU [l, l′] denote the NBTU restricted to states〈S ∪ S′, O ∪
O′, f〉 in which f(q), for q ∈ S, is inRk(l) andf(q′), for q′ ∈ S′, is inRk′(l′). We
check the emptiness ofU incrementally and compositionally as follows. We start with
small l1 andl′1 and check the emptiness ofU [l1, l′1]. Doing so, we first mark as empty
all states〈S∪S′, O∪O′, f〉 for which either〈S,O, f|Q〉 is empty inA or 〈S′, O′, f|Q′〉
is empty inA′, and continue the emptiness check only in the (expectedly much smaller)
state space. IfU [l1, l′1] is not empty, we are done. Otherwise, we increase our parameters
to l2 andl′2, with l2 ≥ l1 andl′2 ≥ l′1. Note that we need not increase both parameters.
Checking the emptiness ofU [l2, l′2], we make use of the information gathered in the
emptiness checks ofA[l2],A′[l′2], as well asU [l1, l′1]. The procedure continues until we
either reachlj and l′j for which U [lj , l′j] is not empty, in which case the specification
is realizable, or we find thatU [p, p] is empty, in which case the specification is not
realizable.

We note that, as with the incremental approach, the significant advantage of the
compositional approach is when the specification is realizable, and especially when
U [l, l′] is not empty forl and l′ smaller thanc andc′ – thus we can use information
aboutA andA′ all the way to the positive response. We also note that the incremental
approach is possible due to the simple structure of the state spaces of the NBTs to
which we have reduced the realizability problem. This simple structure also makes it
easy to implement our approach symbolically: the state space of the NBT consists of
sets of states and a ranking function, it can be encoded by Boolean variables, and the
NBT’s transitions can be encoded by relations on these variables and a primed version
of them. The fixpoint solution for the nonemptiness problem of NBT (c.f., [28]) then
yields a symbolic solution to the original UGCT nonemptiness problem. Moreover,
checking the emptiness ofU [lj , l′j], we can use BDDs for the empty states inA[lj],
A[l′j], andU [lj−1, l

′
j−1]. Finally, as discussed in [15], the BDDs that are generated

by the symbolic nonemptiness procedure can be used to generate a symbolic witness
strategy, from which we can synthesize a sequential circuit implementing the strategy.

References

1. M. Abadi, L. Lamport, and P. Wolper. Realizable and unrealizable concurrent program spec-
ifications. In16th ICALP, LNCS 372, pp 1–17. Springer-Verlag, 1989.

13

2. C. S. Althoff, W. Thomas, and N. Wallmeier. Observations on determinization of büchi
automata. In10th CIAA, LNCS. Springer-Verlag, 2005.

3. Y. Choueka. Theories of automata onω-tapes: A simplified approach.JCSS, 8:117–141,
1974.

4. A. Church. Logic, arithmetics, and automata. InICM, 1962, pp 23–35, 1963.
5. E.M. Clarke, O. Grumberg, and D. Peled.Model Checking. MIT Press, 1999.
6. D.L. Dill. Trace theory for automatic hierarchical verification of speed independent circuits.

MIT Press, 1989.
7. J. Elgaard, N. Klarlund, and A. M̈oller. Mona 1.x: new techniques for WS1S and WS2S. In

10th CAV, LNCS 1427, pp 516–520. Springer-Verlag, 1998.
8. E.A. Emerson. Automata, tableaux, and temporal logics. InWLP, LNCS 193, pp 79–87.

Springer-Verlag, 1985.
9. E.A. Emerson and C. Jutla. Tree automata,µ-calculus and determinacy. In32nd FOCS, pp

368–377, 1991.
10. R. Gerth, D. Peled, M.Y. Vardi, and P. Wolper. Simple on-the-fly automatic verification of

linear temporal logic. InProtocol Specification, Testing, and Verification, pp 3–18. 1995.
11. E. Gr̈adel, W. Thomas, and T. Wilke.Automata, Logics, and Infinite Games: A Guide to

Current Research. LNCS 2500. Springer-Verlag, 2002.
12. S. Gurumurthy, O. Kupferman, F. Somenzi, and M.Y. Vardi. On complementing nonde-

terministic B̈uchi automata. In12th CHARME, LNCS 2860, pp 96–110. Springer-Verlag,
2003.

13. M. Jurdzinski. Small progress measures for solving parity games. In17th STACS, LNCS
1770, pp 290–301. Springer-Verlag, 2000.

14. O. Kupferman and M.Y. Vardi. From complementation to certification. In10th TACAS,
LNCS 2988, pp 591–606. Springer-Verlag, 2004.

15. O. Kupferman and M.Y. Vardi. Safraless decision procedures. In46th FOCS, 2005.
16. O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs satisfy their

linear specification. In12th POPL, pp 97–107, 1985.
17. Z. Manna and A. Pnueli.The Temporal Logic of Reactive and Concurrent Systems: Specifi-

cation. Springer-Verlag, 1992.
18. S. Miyano and T. Hayashi. Alternating finite automata onω-words.TCS, 32:321–330, 1984.
19. A.W. Mostowski. Regular expressions for infinite trees and a standard form of automata. In

CT, LNCS 208, pp 157–168. Springer-Verlag, 1984.
20. D.E. Muller, A. Saoudi, and P.E. Schupp. Alternating automata, the weak monadic theory of

the tree and its complexity. In13th ICALP, LNCS 226. Springer-Verlag, 1986.
21. A. Pnueli and R. Rosner. On the synthesis of a reactive module. In16th POPL, pp 179–190,

1989.
22. M.O. Rabin. Weakly definable relations and special automata. InSymp. Math. Logic and

Foundations of Set Theory, pp 1–23. 1970.
23. M.O. Rabin. Automata on infinite objects and Church’s problem.AMS, 1972.
24. R. Rosner.Modular Synthesis of Reactive Systems. PhD thesis, Weizmann Institute of Sci-

ence, 1992.
25. S. Safra. On the complexity ofω-automata. In29th FOCS, pp 319–327, 1988.
26. S. Safra. Exponential determinization forω-automata with strong-fairness acceptance con-

dition. In 24th STOC, 1992.
27. S. Tasiran, R. Hojati, and R.K. Brayton. Language containment using non-deterministic

omega-automata. In8th CHARME, LNCS 987, pp 261–277, 1995. Springer-Verlag.
28. M.Y. Vardi and P. Wolper. Automata-theoretic techniques for modal logics of programs.

JCSS, 32(2):182–221, 1986.
29. M.Y. Vardi and P. Wolper. Reasoning about infinite computations.IC, 115(1):1–37, 1994.

14

30. J. Yang and C.J.H. Seger. Introduction to generalized symbolic trajectory evaluation. In19th
DAC, pp 360–367. IEEE, 2001.

15

A Definition of Trees and Alternating Automata

Given a setD of directions, atree overD, or D-tree, for short, is a setT ⊆ D∗ such that if
x · c ∈ T , wherex ∈ D∗ andc ∈ D, then alsox ∈ T . If T = D∗, we say thatT is a fullD-tree.
The elements ofT are callednodes, and the empty wordε is theroot of T . For everyx ∈ T , the
nodesx · c, for c ∈ D, are thesuccessorsof x. A pathπ of a treeT is a setπ ⊆ T such that
ε ∈ π and for everyx ∈ π, eitherx is a leaf or there exists a uniquec ∈ D such thatx · c ∈ π.

For a setX, letB+(X) be the set of positive Boolean formulas overX (i.e., Boolean formu-
las built from elements inX using∧ and∨), where we also allow the formulastrue (an empty
conjunction) andfalse (an empty disjunction). For a setY ⊆ X and a formulaθ ∈ B+(X),
we say thatY satisfiesθ iff assigningtrue to elements inY and assigningfalse to elements in
X \ Y makesθ true. AnAlternating tree automatonisA = 〈Σ,D,Q, qin, δ, α〉, whereΣ is the
input alphabet,D is a set of directions,Q is a finite set of states,δ : Q × Σ → B+(D × Q)
is a transition function,qin ∈ Q is an initial state, andα specifies the acceptance condition (a
condition that defines a subset ofQω; several types of acceptance conditions can be defined).

The alternating automatonA runs onΣ-labeled fullD-trees. Arun of A over aΣ-labeled
D-tree〈T, τ〉 is a(T ×Q)-labeled IN-tree〈Tr, r〉. Each node ofTr corresponds to a node ofT .
A node inTr, labeled by(x, q), describes a copy of the automaton that reads the nodex of T and
visits the stateq. Note that many nodes ofTr can correspond to the same node ofT . The labels
of a node and its successors have to satisfy the transition function. Formally,〈Tr, r〉 satisfies the
following:

1. ε ∈ Tr andr(ε) = 〈ε, qin〉.
2. Let y ∈ Tr with r(y) = 〈x, q〉 andδ(q, τ(x)) = θ. Then there is a (possibly empty) set
S = {(c0, q0), (c1, q1), . . . , (cn−1, qn−1)} ⊆ D × Q, such thatS satisfiesθ, and for all
0 ≤ i ≤ n− 1, we havey · i ∈ Tr andr(y · i) = 〈x · ci, qi〉.

For example, if〈T, τ〉 is a {0, 1}-tree with τ(ε) = a and δ(qin, a) = ((0, q1) ∨ (0, q2)) ∧
((0, q3) ∨ (1, q2)), then, at level1, the run〈Tr, r〉 includes a node labeled(0, q1) or a node
labeled(0, q2), and includes a node labeled(0, q3) or a node labeled(1, q2). Note that if, for
somey, the transition functionδ has the valuetrue, theny need not have successors. Also,δ can
never have the valuefalse in a run. A run〈Tr, r〉 is accepting if all its infinite paths satisfy the
acceptance condition. Given a run〈Tr, r〉 and an infinite pathπ ⊆ Tr, let inf(π) ⊆ Q be such
thatq ∈ inf(π) if and only if there are infinitely manyy ∈ π for which r(y) ∈ T × {q}. That
is, inf(π) contains exactly all the states that appear infinitely often inπ. Acceptance is defined
by placing conditions oninf(π) for all pathsπ ofthe run.

In [20], Muller et al. introducealternating weak tree automata. In a weak automaton, we
have a B̈uchi acceptance conditionα ⊆ Q and there exists a partition ofQ into disjoint sets,
Q1, . . . , Qm, such that for each setQi, eitherQi ⊆ α, in which caseQi is anaccepting set,
or Qi ∩ α = ∅, in which caseQi is a rejecting set. In addition, there exists a partial order≤
on the collection of theQi’s such that for everyq ∈ Qi andq′ ∈ Qj for which q′ occurs in
δ(q, σ), for someσ ∈ Σ, we haveQj ≤ Qi. Thus, transitions from a state inQi lead to states
in either the sameQi or a lower one. It follows that every infinite path of a run of an alternating
weak automaton ultimately gets “trapped” within someQi. The path then satisfies the acceptance
condition if and only ifQi is an accepting set.

B From NGBW to DRW

We give an exposition of Safra’s construction [25] and then proceed with our extension that
handles NGBW.

16

B.1 Determinization of NBW

Here we describe the determinization of NBW [25]. We construct an ordered tree of subset
constructions. Every node in the tree is labeled by the states it follows. The labels of siblings are
disjoint and the label of a node is a strict superset of the labels of its descendants. The transition of
a tree replaces the label of every node by the set of possible successors. If the label now includes
some accepting states, we add a new youngest child to the node with all these accepting states.
Intuitively, the states that label the children of a node have already visited an accepting state.
Thus, the states in the label of a node that are not in the labels of its descendants are states that
still owe a visit to the acceptance set. We move states occurring in more than one child of a node to
the older child. If the label of a node becomes equal to the union of labels of its children then we
mark this node as accepting and remove all its descendants. We associate a Rabin pair with every
node in the tree. Erasing a node is a bad event, which should occur finitely often. Finding that a
node is accepting is a good event. If some node eventually remains in the tree and is accepting
infinitely often the run is accepting.

LetN = 〈Σ,S, δ, s0, α〉 be an NBW with|S| = n. LetV = [n] andV ′ = {n+1, . . . , 2n}.
A Safra treet overS is a tuple〈N, 1, p, ψ, l, R,G〉 where the components oft are as follows.

– N ⊆ V is a set of nodes.
– 1 ∈ N is the root node.
– p:N→N is the parenthood function. We call children of the same nodesiblings.
– ψ:N→N is a partial order defining “older than” on siblings.
– l:N→2S is a labeling of the nodes with subsets ofS.
– R,G ⊆ V are two disjoint subsets ofV , defining the set ofredandgreennodes.

In addition we require that the label of every node is a proper superset of the union of the labels
of its children and that the labels of two siblings are disjoint.

Proposition 1. [25, 15] The number of nodes in a Safra tree is at mostn. The number of Safra
trees overS is at most12nn2n.

Proof: As the labels of siblings are disjoint and the union of labels of children is a proper subset
of the label of the parent it follows that every node is the minimal (according to the subset order
on the labels) to contain (at least) some states ∈ S. It follows that there are at mostn nodes.

The number of ordered trees onn nodes is thenth Catalan number. That isCat(n) =
(2n)!

n!(n+1)!
≤ 4n. We represent the naming of nodes byf : [n] → [n] that associates theith node

with its namef(i). There are at mostnn such functions. The labeling function isl : S → [n]
wherel(s) = i means thats belongs to theith node and all its ancestors. Finally, we represent
R andG by a functiona : V → {0, 1, 2} such thata(i) = 0 means thati /∈ R ∪ G, a(i) = 1
means thati ∈ R, anda(i) = 2 means thati ∈ G. There are at most3n such functions.

To summarize, the number of trees is at most4n · 3n · nn · nn = 12nn2n.

We construct the DRWD equivalent toN . LetD = 〈Σ,D, ρ, d0, α〉 where the components
of D are as follows.

– D is the set of Safra trees overS.
– d0 is the tree with a single node1 labeled{s0} whereR=V−{1} andG = ∅.
– The Rabin acceptance conditionα is {〈L1, U1〉, . . . , 〈Ln, Un〉} whereLi = {d ∈ D | i ∈
Gd} andUi = {d ∈ D | i ∈ Rd}.

– For every treed ∈ D and letterσ ∈ Σ the transitiond′ = ρ(d, σ) is the result of the
following transformations ond. We temporarily use the setV ′ of nodes.

1. For every nodev with labelS′ replaceS′ by δ(S′, σ) and setR andG to the empty set.
2. For every nodev with label S′ such thatS′ ∩ α 6= ∅, create a new youngest child
v′ ∈ V ′. Set its label toS′ ∩ α.

17

3. For every nodev with labelS′ and states ∈ S′ such thats belongs also to an older
siblingv′ of v, removes from the label ofv and all its descendants.

4. For every nodev whose label is equal to the union of the labels of its children, remove
all descendants ofv. Add v toG.

5. Remove all nodes with empty labels and add all unused names toR.
6. Change the nodes inV ′ to nodes inV .

Proposition 2. [25] L(D) = L(N).

B.2 Determinization of NGBW

We now present the determinization of NGBW. Intuitively, we take the above construction and
add indices to each node. Whenever all the runs followed by a nodev indexedi (wherei is not
the maximal index) visit the setFi, we increase the index ofv to i + 1. Whenever all the runs
followed by a nodev indexed by the maximal indexk visit the setFk, we markv as accepting
and change its index to1. Applying our construction results in a DRW with12nn2nkn states and
n pairs.

Let N = 〈Σ,S, δ, s0, α〉 be an NBW with|S| = n andα = {F1, . . . , Fk}. Let V = [n]
andV ′ = {n + 1, . . . , 2n}. A generalized Safra treet overS andk is 〈N, 1, p, ψ, l, h,R,G〉
whereN , 1, p, ψ, l, R, andG are as in Safra trees, andh : N → [k] is an indexing function
associating with every node an index in[k].

The following proposition is proven much like the similar proposition for Safra trees (Propo-
sition 1).

Proposition 3. The number of generalized Safra trees overS andk is at most12nn2nkn.

Proof: Just like Safra trees there are at mostn nodes. We have to add the functionh : N → [k],
which associates an index with every node. This multiplies the number of states bykn.

We show that the DRWD constructed in Section 4.1 is equivalent toN . The proof is an
extension of the proof in [25].

Proposition 4. L(D) = L(N).

Proof: Considerw ∈ L(N). We have to showw ∈ L(D). Letr = s0s1 · · · be an accepting run
of N onw. Let r′ = d0d1 · · · be the run ofD onw and letdi = 〈Ni, 1, pi, ψi, li, hi, Ri, Gi〉. It
is simple to see that for alli ≥ 0 we havesi ∈ li(1). It follows that for alli ≥ 0 we have1 /∈ Ri.
If step 4 is applied infinitely often to node 1 (equivalently,1 ∈ Gi infinitely often, or during the
transformation of the trees the label of1 equals the labels of its children) thenr′ satisfies the pair
〈L1, U1〉.

Otherwise, from some point onwards inr′ we have that step 4 is not applied to node1 and
the index of node1 is constant. Letj1 be this point and leti1 be the index of node1. There exists
a pointj′ > j1 such thatsj′ ∈ Fi1 . It follows that for allj > j′ we havesj belongs to some son
v1 of 1. Notice, that the runr may start in some son of1 and move to an older son. This, however,
can happen only finitely often and hence we treatv1 as constant. There exists a point after which
r remains inv1 forever. Leto1 be the point such that for allo > o1 we havesi ∈ li(v1). It
follows that for allo > o1 we havev1 /∈ Ro anddo /∈ Uv1 .

Suppose that step 4 is applied tov1 infinitely often (equivalently,v1 ∈ Gi infinitely often).
The the runr′ satisfies the Rabin pair〈Lv1 , Uv1〉 andr′ is accepting. Otherwise, step 4 is ap-
plied tov1 finitely often. We construct by induction a sequencev1, . . . , vk such that eventually
v1, . . . , vk all remain in the tree andr belongs to all of them. As the number of active nodes in a

18

tree (nodesv such thatl(v) 6= ∅) is bounded byn we can repeat the process only finitely often.
Hence,w is accepted byD.

In the other direction, considerw ∈ L(D). Let r′ = d0d1 · · · be the accepting run ofD onw
wheredi = 〈Ni, 1, pi, ψi, li, hi, Ri, Gi〉. Let 〈Lb, Ub〉 be the Rabin pair for whichLb is visited
infinitely often andUb is visited finitely often.

We first prove three propositions.

Proposition 5. For everyi ∈ N, v ∈ V , and every states ∈ li(v), we haves is reachable from
s0 readingw[0, i− 1].

Proof: We prove the proposition for allv ∈ V by induction oni. Clearly, it holds fori = 0.
Suppose that it holds fori. As li+1(v) ⊆ δ(li(v

′), wi) for somev′ ∈ V , it follows that every
state inli+1(v) is reachable froms0 readingw[0, i].

Proposition 6. Consideri, i′ ∈ N such thati < i′. Suppose that (a)v ∈ V is a leaf in the trees
di, di′ (b) for all i ≤ a ≤ i′ we haveda /∈ Uv and (c)hi′(v) = hi(v) + 1 and for all i < a < i′

we haveha(v) = hi(v). Then every states in li′(v) is reachable from some state inli(v) reading
w[i, i′ − 1] with a run that visitsFri(v).

Proof: By assumption, the setUv is not visited betweeni and i′. Hence, the nodev is not
removed in the transition fromda to da+1 for all i ≤ a < i′. In addition from minimality ofi′ it
follows that for alli ≤ a < i′ we havera(v) = ri(v).

We prove that for everyi < a < i′ and every descendantv′ of v, every state inla(v′)
is reachable from some state inli(v) along a run visitingFri(v). In the case thati′ = i + 1
then, all the states inli′(v) are inFri(v) and we are done. Otherwise, consider the descendant
v′ of v appearing indi+1 (there is at most one, it must exist asi′ is minimal). Asli+1(v

′) ⊆
δ(li(v), wi) ∩ Fri(v) the claim follows fori + 1. Suppose that the claim is true fora and prove
for a+ 1. We know that for every descendantv′ of v eitherla+1(v

′) ⊆ δ(la(v), wa)∩Fra(v) or
for some descendantv′′ of v we havela+1(v

′) ⊆ δ(la(v′′), wa) (andv′ may bev′′). As during
the transformation fromdi′−1 to di′ the labelli′(v) equals the union of the labels of children of
v (from i′ being minimal andri′(j) = ri(j) + 1) the proposition follows.

Proposition 7. Consideri, i′ ∈ N such thati < i′. Suppose that (a) for somev ∈ V we have
di, di′ ∈ Lv and (b) for alli < a < i′ we haveda /∈ Uv. Then every states in li′(v) is reachable
from some state inli(v) readingw[i, i′ − 1] with a run that visits all sets inα.

Proof: As di ∈ Lv we know thatv appears indi. By assumption, the setUv is not visited
betweeni and i′. Hence, the nodev is not removed in the transition fromda to da+1 for all
i ≤ a < i′.

In addition, consider the sequence of indicesra(j + 1) betweeni andi′. As bothdi anddi′

and inLv we know thatri(v) = 1 andri′(v) = 1. Then there existi = i1 < i2 < · · · < ik < i′

such that for allil ≤ a < il+1 we havera(v) = l.
From Proposition 6 it follows that every state inlil+1(v) is reachable from some state inlil(v)

readingw[il, il+1 − 1] with a run that visitsFl. It follows that every state inli′(v) is reachable
from some state inli(v) readingw[i, i′ − 1] with a run that visitsFm for every1 ≤ m ≤ k.

We construct an infinite tree with finite branching degree. The root of the tree corresponds to
the initial state ofN . Every node in the tree is labeled by some state ofN and a time stampi.
An edge between the nodes labeled(s, i) and(t, j) corresponds to a run starting ins, ending in
t, readingw[i, j − 1], and visitingFi for all 1 ≤ i ≤ k. From König’s Lemma this tree contains

19

an infinite branch. The composition of all the run segments in this infinite branch is an infinite
accepting run ofN onw.

Let (s0, 0) label the root ofT . Let 〈Lv, Uv〉 be the pair such thatLv is visited infinitely often
andUv finitely often. Leti0 be the minimal location such thatUv is not visited afteri0. Let i1 be
the minimal location such thati1 > i0 anddi1 ∈ Lv (that is step 4 was applied tov). For every
states in li1(v) we add a node toT , label it by(s, i1) and connect it to the root. We extend the
tree by induction. We have a tree with leafs labeled by the states inla(v) stamped by timea, and
da ∈ Lv (step 4 was applied tov). That is, for every states in la(v) there exists a leaf labeled
(s, a). We know thatLv is visited infinitely often. Hence, there existsa′ > a such thatda′ ∈ Lv

(step 4 is applied tov). For every states′ in la′(v) we add a node toT and label it(s′, a′).
From Proposition 7 states′ is reachable from states ∈ la(v) readingw[a, a′ − 1]. We connect
the node(s′, a′) to the node(s, a). From Proposition 5 it follows that every edge(s0, 0), (s′, i′)
corresponds to some run starting ins0, ending ins′, and readingw[0, i′−1]. From Proposition 7,
every other edge in the tree(s, a), (s′, a′) corresponds to some run starting ins, ending ins′,
readingw[a, a′ − 1], and visitingFm for all 1 ≤ m ≤ k. From König’s Lemma there exists an
infinite branch in the tree. This infinite branch corresponds to an accepting run ofN onw.

Theorem 7. Given an NGBW withn states and indexk, it is possible to construct an equivalent
DRW with at most12nn2nkn states andn pairs.

C Proofs from Section 4.2

C.1 Proof of Lemma 1

Proof: We say that a pathπ = y0·y1·y2 · · · of 〈Tr, r〉 corresponds to a pathπ′ = 〈s0, q0〉, 〈s1, q1〉, 〈s2, q2〉, . . .
of G iff s0 = sin, q0 = qin, and there is a pathx0, x1, x2, . . . of T , with xi+1 = xi · ci, such
that for all i ≥ 0, we have thatr(yi) = 〈xi, qi〉 andη(si, ci) = si+1. Thus,π′ describes the
states ofT andA that the copy ofA whose evolution is recorded in the pathπ visits. Clearly,
for all 1 ≤ j ≤ k, we have thatπ has infinitely many nodesyi with r(yi) ∈ T × Fj iff π′ visits
infinitely manyFj-vertices. By the definition ofG, each path of〈Tr, r〉 corresponds to a single
path ofG. Also, each pathπ′ of G has at least one pathπ of 〈Tr, r〉 such thatπ corresponds to
π′. To see this, note that since〈T, τ〉 is induced byT , thenT = D∗ and for allx ∈ D∗, we
have thatτ(x) = L(η(x)). In addition, by the definition ofG, for all i ≥ 0 there isci ∈ D
such that(ci, qi+1) ∈ δ(qi, L(si)) andη(si, ci) = si+1; the sequence of thesexi’s induces a
pathx0, x1, x2, x3, . . . of T , with xi+1 = xi · ci. The run ofA on 〈T, τ〉 contains a copy that
reads this path and visitsq0, q1, q2, . . ., and the pathπ of 〈Tr, r〉 describes this copy. Hence, for
every1 ≤ j ≤ k, we have that〈Tr, r〉 has an infinite path that visitsFj finitely often iff G has
an infinite path with finitely manyFj-vertices, and we are done.

C.2 Proof of Theorem 4

Proof: Assume first thatA has an accepting run graphG (of any size) on some transducer
T . Let 〈T, τ〉 be the tree generated byT . Thus,T = D∗ and for allx ∈ D∗ we have that
τ(x) = L(η(x)). Consider the run〈Tr, r〉 of A on 〈T, τ〉. By Lemma 1,〈Tr, r〉 is accepting.
Hence,A is not empty.

For the other direction, consider the UGCTA. By [9], there is a DRTAd equivalent toA,
which is constructed as follows. LetA′ be an NGBW that runs over a branch of an input tree for
A and checks whetherA has a rejecting path over this branch. The NGBWA′ is obtained by
dualizingA and following the run read in the input. Thus,A′ has the same state space and index
asA. LetA′′ be a DRW that is equivalent toA′ (by Theorem 3). Now, we construct a DRWA′′′

20

for the complementary language, and runA′′′ over all branches of the input tree to check that all
paths of the run tree ofA are accepting. This yields the DRTAd that is equivalent toA.

By Theorem 3, the DRWA′′ has at most12nn2nkn states. The DRWA′′′ and the DRTAd

have at mostn′ = 12nn2nknn! states [26]. By [8], an NRT withn′ states is not empty iff it
accepts a regular tree generated by a transducer withn′ states. The state space of the run graph
of A on such a transducer is then bounded bynn′ = 12nn2n+3knn!. Since the run ofA on the
tree is accepting, Lemma 1 implies that so is the run graph.

C.3 Proof of Lemma 2

Proof: Assume first thatG is accepting. We prove that for alli ≥ 0, the graphG2i has at most
|V | − i vertices. In particular,G2|V | has at most0 vertices, so there isi ≤ |V | for whichG2i

is empty. The proof proceeds by an induction oni. Clearly,G0 has at most|V | vertices. For the
induction step, we prove that for alli ≥ 0, if G2i contains vertices that are not finite, thenG2i+1

contains at least oneFj-free vertex, for some1 ≤ j ≤ k. It follows that the transition fromG2i

toG2i+2 either results in an emptyG2i+2 or involves a removal of at least one vertex.
Consider the graphG2i and assume by way of contradiction that it contains a vertex〈s0, q0〉

that is not finite, and yet no vertex inG2i+1 is Fj-free, for all1 ≤ j ≤ k. Consider the graph
G2i+1. All the vertices inG2i+1 are not finite, and therefore, each of the vertices inG2i+1 has
at least one successor. Consider the vertex〈s0, q0〉 in G2i+1. Since, by the assumption, it is not
F1-free, there exists anF1-vertex〈s′0, q′0〉 reachable from〈s0, q0〉. Let 〈s1, q1〉 be a successor of
〈s′0, q′0〉. By the assumption,〈s1, q1〉 is also notF2-free. Hence, there exists anF2-vertex〈s′1, q′1〉
reachable from〈s1, q1〉. Let〈s2, q2〉 be a successor of〈s′1, q′1〉. By the assumption,〈s2, q2〉 is also
notF3-free. Hence, there exists anF3-vertex〈s′3, q′3〉 reachable from〈s2, q2〉. We can continue
similarly and construct an infinite sequence of vertices〈sh, qh〉, 〈s′h, q′h〉 such that for allh ≥
0, the vertex〈s′h, q′h〉 is anF(h mod k)+1-vertex reachable from〈sh, qh〉, and 〈sh+1, qh+1〉 is
a successor of〈s′h.q′h〉. Such a sequence, however, corresponds to a path inG that visitsFj

infinitely often, for all1 ≤ j ≤ k, contradicting the assumption thatG is accepting.
Assume now thatG is rejecting. Then,G contains an infinite pathπ with infinitely many

Fj-vertices, for all1 ≤ j ≤ k. We prove that for alli ≥ 0, all the vertices〈s, q〉 in π are inG2i.
The proof proceeds by induction oni. The vertices inπ are clearly members ofG0. Also, if all
the vertices inπ are members ofG2i, it must be that they are neither finite norFj-free inG2i+1,
for all 1 ≤ j ≤ k, so they stay inG2i+2.

C.4 Proof of Lemma 3

Proof: Consider a run graphG = 〈V,E〉. Let c = |V |. We prove the following two claims.
1. For every vertex〈s, q〉 in G andρ ∈ R(c), we have〈s, q〉 6∈ Gρ iff rank(s, q) < ρ.
2. For every two vertices〈s, q〉 6= 〈s′, q′〉 in G, if 〈s′, q′〉 is reachable from〈s, q〉, then

rank(s′, q′) ≤ rank(s, q).
We start with Claim (1): for every vertex〈s, q〉 in G andρ ∈ R(c), we have〈s, q〉 6∈ Gρ iff

rank(s, q) < ρ.
We first prove that ifrank(s, q) < ρ then〈s, q〉 6∈ Gρ. Letrank(s, q) = ρ′. By the definition

of ranks,〈s, q〉 is finite orFj-free (for the appropriate1 ≤ j ≤ k) in Gρ′ . Hence,〈s, q〉 is
removed fromGρ′ . Hence, asρ > ρ′, also〈s, q〉 6∈ Gρ.

For the other direction, we proceed by an induction onρ. SinceG0 = G, the case where
ρ = 0 is immediate. For the induction step, we distinguish between two cases. For the caseρ =
〈2i+1, j〉, consider a vertex〈s, q〉 6∈ Gj+1

2i+1. If 〈s, q〉 6∈ Gj
2i+1, the lemma’s requirement follows

from the induction hypothesis. If〈s, q〉 ∈ Gj
2i+1, then〈s, q〉 is Fj-free inGj

2i+1. Accordingly,

21

rank(〈s, q〉) = 〈2i + 1, j〉, meeting the lemma’s requirement. For the caseρ = 2i, consider
a vertex〈s, q〉 6∈ G1

2i+1. If 〈s, q〉 6∈ G2i, the lemma’s requirement follows from the induction
hypothesis. If〈s, q〉 ∈ G2i, then〈s, q〉 is finite inG2i. Accordingly,rank(〈s, q〉) = 2i, meeting
the lemma’s requirement.

We now prove Claim (2): for every two vertices〈s, q〉 6= 〈s′, q′〉 in G, if 〈s′, q′〉 is reachable
from 〈s, q〉, thenrank(s′, q′) ≤ rank(s, q).

We distinguish between two cases. Ifrank(〈s, q〉) = 2i is even, then〈s, q〉 is finite inG2i.
Hence, either〈s′, q′〉 is not inG2i, in which case, by Claim (1), we have thatrank(〈s′, q′〉) < 2i,
or 〈s′, q′〉 is in G2i, in which case, being reachable from〈s, q〉, it must be finite inG2i, with
f(〈s′, q′〉) = 2i, and we are done.

If f(〈s, q〉) = 〈2i+ 1, j〉 is odd, then〈s, q〉 isFj-free inGj
2i+1. Hence, either〈s′, q′〉 is not

in Gj
2i+1, in which case, by Claim (1), we have thatf(〈s′, q′〉) < 〈2i + 1, j〉, or 〈s′, q′〉 is in

Gj
2i+1, in which case, being reachable from〈s, q〉, it must beFj-free inGj

2i+1, in which case
f(〈s′, q′〉) = 〈2i+ 1, j〉, and we are done.

Since even ranks are given to finite vertices, we are done.

C.5 Proof of Theorem 5

Proof: LetA = 〈Σ,D,Q, qin, δ, α〉, and letc = 12nn2n+3knn!. The ABTA′ accepts all the
regular trees〈T, τ〉 ∈ L(A) that are generated by a transducerT = 〈D,Σ, S, sin, η, L〉 with at
most12nn2n+2knn! states. Note that the run graph ofA on such〈T, τ〉 is accepting and is of
size mostc. By Theorem 4, we have thatL(A′) 6= ∅ iff L(A) 6= ∅.

We defineA′ = 〈Σ,D,Q′, q′in, δ
′, α′〉, where

– Q′ = Q×Rk(c). Intuitively, whenA′ is in state〈q, ρ〉 as it reads the nodex ∈ T , it guesses
that the rank of the vertex〈η(x), q〉 of G is ρ. An exception is the initial stateq′in explained
below.

– q′in = 〈qin, 2c〉. That is,qin is paired with2c, which is an upper bound on the rank of
〈η(ε), qin〉.

– We defineδ′ by means of a function

release : B+(D ×Q)×Rk(c) → B+(D ×Q′).

Given a formulaθ ∈ B+(D × Q), and a rankρ ∈ Rk(c), the formularelease(θ, i) is ob-
tained fromθ by replacing an atom(d, q) by the disjunction

W
ρ′≤ρ(d, 〈q, i

′〉). For example,
if k = 3, thenrelease((1, q) ∧ (2, s), 2) = ((1, 〈q, 2〉) ∨ (1, 〈q, (1, 1)〉) ∨ (1, 〈q, (1, 2)〉) ∨
(1, 〈q, (1, 3)〉)∨(1, 〈q, 0〉))∧((2, 〈s, 2〉)∨(2, 〈s, (1, 3)〉)∨(2, 〈s, (1, 2)〉)∨(2, 〈s, (1, 1)〉)∨
(2, 〈s, 0〉)).
Now, δ′ : Q′×Σ → B+(D×Q′) is defined, for a state〈q, ρ〉 ∈ Q′ andσ ∈ Σ, as follows.

δ′(〈q, ρ〉, σ) =

»
release(δ(q, σ), ρ) If q 6∈ Fj or ρ is not odd with indexj.
false If q ∈ Fj andρ is odd with indexj.

That is, if the current guessed rank isρ then, by employingrelease, the run can move in
its successors to every rank that is smaller than or equal toρ. If, however,q ∈ Fj and the
current guessed rank is odd with indexj, then, by the definition of ranks, the current guessed
rank is wrong, and the run is rejecting.

– α′ = Q× [2c]odd . That is, infinitely many guessed ranks along each path should be odd.

We prove thatA′ accepts all the regular trees〈T, τ〉 ∈ L(A) that are generated by a trans-
ducerT = 〈D,Σ, S, sin, η, L〉 with at most12nn2n+2knn! states. Note that the run graph ofA

22

on such〈T, τ〉 is accepting and is of size mostc. By Theorem 4, we then have thatL(A′) 6= ∅
iff L(A) 6= ∅.

We first prove thatL(A′) ⊆ L(A). Consider a tree〈T, τ〉 accepted byA′. Let 〈Tr, r
′〉 be

the accepting run ofA′ on 〈T, τ〉. Consider theT ×Q-labeled tree〈Tr, r〉 where for ally ∈ Tr

with r′(y) = (x, 〈q, ρ〉), we haver(y) = (x, q). Thus,〈Tr, r〉 projects out theRk(c) element of
the labels of〈Tr, r

′〉. It is easy to see that〈Tr, r〉 is a run ofA on 〈T, τ〉. Indeed, the transitions
of A′ only annotate transitions ofA by ranks. We show that〈Tr, r〉 is an accepting run. Since
〈Tr, r

′〉 is accepting, then, by the definition ofα′, each infinite path of〈Tr, r
′〉 gets trapped in

a setQ × {ρ} for some oddρ. By the definition ofδ′, no accepting run can visit a state〈q, ρ〉
with an oddη of indexj andq ∈ Fj . Hence, the infinite path actually gets trapped in the subset
(Q \Fj)×{ρ} of Q×{ρ}. Consequently, in〈Tr, r〉, all the paths visit states inFj only finitely
often, and we are done.

It is left to prove that ifT = 〈D,Σ, S, sin, η, L〉 is a transducer with at most12nn2n+2knn!
states and the run graph ofA onT is accepting, thenA′ accepts the regular tree generated byT .
LetT be as above and letG be the accepting run graph ofA onT . Consider the(T×Q′)-labeled
IN-tree〈T ′

r, r
′〉 defined as follows.

– ε ∈ T ′
r andr′(ε) = (ε, 〈qin, 2c〉).

– Let y ∈ T ′
r be such thatr′(y) = (x, 〈q, ρ〉). By the definition of〈T ′

r, r
′〉 so far,〈η(x), q〉

is a vertex inG . Let δ(q, τ(x)) = {〈d1, q1〉, . . . , 〈dm, qm〉}. By the definition ofG, the
vertex 〈η(x), q〉 has successors〈s1, q1〉, . . . , 〈sm, qm〉 such that for all1 ≤ i ≤ m, we
have thatη(η(x), di) = si. Then, for all1 ≤ i ≤ m, we havey · i ∈ T ′

r, andr′(y · i) =
(x · di, 〈qi, rank(η(xi), qi)〉).

We claim that〈T ′
r, r

′〉 is an accepting run ofA′ on 〈T, τ ′〉. We first prove that〈T ′
r, r

′〉 is a legal
run. Sinceq′in = 〈qin, 2c〉, the root ofT ′

r is labeled legally. We now consider the other nodes
of T ′

r. Let {(s1, q1), . . . , (sm, qm)} be the successors of(ε, qin) in G, with si = η(sin, di).
As c is the maximal rank that a vertex can get, each successor(si, qi) hasrank(si, qi) ≤ k.
Thus, as2c is even, the set{(c1, 〈q1, rank(x1, q1)〉), . . ., (cm, 〈qm, rank(xm, qm)〉)} satisfies
δ′(〈qin, 2c〉, τ(ε)). Hence, the first level ofT ′

r is labeled legally. For the other levels, consider
a nodey ∈ T ′

r such thaty 6= ε. Let r′(y) = (x, 〈q, ρ〉). By the definition of〈T ′
r, r

′〉, we
have that(η(x), q) is a vertex ofG with rank(η(x), q) = ρ. Let {(s1, q1), . . . , (sm, qm)} be
the successors of(η(x), q) in G with si = η(sin, di). As argued in the proof of Lemma 3,
for all 1 ≤ i ≤ m, we haverank(si, qi) ≤ ρ. Also, by the definition of ranks, it cannot be
that q ∈ Fj and ρ is odd with indexj. Therefore, the set{(d1, 〈q1, rank(η(x1), q1)〉), . . .,
(dm, 〈qm, rank(η(xm), qm)〉)} satisfiesδ′(〈q, ρ〉, τ(x)). Hence, the tree〈T ′

r, r
′〉 is a legal run

of A′ on 〈T, τ ′〉. Finally, by Lemma 3, each infinite path of〈T ′
r, r

′〉 gets trapped in a set with an
odd rank, thus〈T ′

r, r
′〉 is accepting.

We now analyze the size ofQ′. Recall that the size ofRk(c) is c(k+1), with c = 12nn2n+3knn!.
Thus, the size ofQ′ = Q×Rk(c) is 12nn2n+4knn!(k + 1) = 2O(n(log n+log k)).

C.6 Proof of the construction in Theorem 2

Proof: We prove that the construction described Theorems 5 and 6 result in the NBT described
in Theorem 2.

Let A = 〈Σ,D,Q, qin, δ, α〉 with |Q| = n. Let c = 12nn2n+3knn!. Consider a state
〈S,O〉 of the NBT constructed fromA as described above. Each of the setsS andO is a subset
of Q×Rk(c). We say that a setP ⊆ Q×Rk(c) is consistentiff for every two states〈q, ρ〉 and
〈q′, ρ′〉 in P , if q = q′ thenρ = ρ′. We claim the following: (1) Restricting the states of the NBT
to pairs〈S,O〉 for whichS is a consistent subset ofQ×Rk(c) is allowable; that is, the resulting

NBT is equivalent. (2) There are2O(n2(log n+log k)) consistent subsets ofQ×Rk(c).

23

In order to prove Claim (1), recall that the ABT visiting a state〈q, ρ〉 when reading a node
x ∈ T corresponds to a guess that the rank of the vertex〈η(x), q〉 of an accepting run graphG is
ρ. Since every vertex inG has a unique rank, the copies of ABT that are generated in an accepting
run that corresponds toG are consistent, in the sense that the different copies that read the same
nodex agree on the rank that〈η(x), q〉 has inG. When the NBT visits a state〈S,O〉, all the states
in S correspond to copies of the ABT that read the same node. Hence, a state〈S,O〉 for whichS
is inconsistent corresponds to a node in the run of the ABT whose copies are inconsistent. Hence,
the NBT can ignore states〈S,O〉 with inconsistentS.

In order to prove Claim (2), observe that we can characterize a consistent set by the projection
of its pairs onQ, augmented by an assignmentf : Q → Rk(c). The size ofRk(c) is bounded

by ck. Since there are2n such projections and(ck)n = 2O(n2(log n+log k)) such assignments, we
are done.

By the two claims, asO is always a subset ofS, we can restrict the state space of the NBT to
2O(n2(log n+log k)) states. The construction that follows is described in the proof of Theorem 2.

