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Abstract

We propose to use a formal specification language as a high-level hardware description
language. Formal languages allow for compact, unambiguous representations and yield
designs that are correct by construction. The idea of automatic synthesis from specifica-
tions is old, but used to be completely impractical. Recently, great strides towards efficient
synthesis from specifications have been made. In this paper we extend these recent methods
to generate compact circuits and we show their practicality by synthesizing a generalized
buffer and an arbiter for ARM’s AMBA AHB bus from specifications given in PSL. These
are the first industrial examples that have been synthesized automatically from their speci-
fications.
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1 Introduction

In the standard hardware design flow, an implementation is first written and then
verified, often using a formal specification. In this paper we consider an alternative:
we apply an automatic high-level synthesis process which generates a correct-by-
construction gate-level implementation directly from a specification written in the
Property Specification Language (PSL). For simplicity, we will refer to this form
of high-level synthesis as “synthesis”, but emphasize that it should not be confused
with the synthesis of a gate-level description from RTL code. In this paper, we
demonstrate the viability of the synthesis approach for the derivation of correct
code from a PSL specification.

The most obvious benefit of synthesis is that it removes the need for hand-
coding the circuit. Less ambitious benefits include the possibility to construct rapid
prototypes from specification and the fact that synthesis is an extremely good way
to debug a specification, something that will gain importance as formal specifica-
tion start to be used as the basis for a manual implementation.

c©2007 Published by Elsevier Science B. V.
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Automatic synthesis of digital designs from (temporal) logical specifications
has always engaged the imagination of designers and has been considered as one of
the most ambitious and challenging problems in circuit design. First identified as
Church’s problem [6], several methods have been proposed for its solution [5,18].
The problem was considered again in [17] in the context of synthesizing reactive
modules from a specification given in Linear Temporal Logic (LTL), a subset of
PSL. The method proposed in [17] for a given LTL specification ϕ starts by con-
structing a Büchi automaton, which is then converted into a deterministic Rabin
automaton. This translation may reach a doubly exponential complexity in the size
of ϕ.

The high complexity established in [17] caused synthesis to be deemed hope-
lessly intractable and discouraged many practitioners from ever attempting to use
it for system development. Yet, there are several interesting cases where, if the
specification of the design to be synthesized is restricted to simpler automata or
partial fragments of LTL, the synthesis problem can be solved more efficiently
[14,21,1,8,11]. Major progress has been achieved in [16], which shows that de-
signs can be automatically synthesized from LTL formulas belonging to the class
of generalized reactivity of rank 1 (GR(1)), in time N 3 where N is the size of the
state space of the design. The class GR(1) covers the vast majority of properties
that appear in specifications of circuits. We have implemented the approach of [16]
in a tool called Anzu 1 , and extended it to produce not only a BDD representing a
set of possible implementations, but also an actual circuit.

We demonstrate the application of the synthesis method by means of two exam-
ples. The first is a generalized buffer from IBM, a tutorial design for which a good
specification is available. The second is the arbiter for one of the AMBA buses [2],
a characteristic industrial design that is not too big. Previous work on synthesis has
only considered toy examples such as a simple mutual exclusion protocol, an eleva-
tor controller, or a traffic light controller [8,16,10]. This is the first time a realistic
industrial example has been tackled.

This paper is a companion paper to [4]. The current paper shows the details
of the GenBuf case study, whereas [4] focuses on the AMBA example. This paper
gives a detailed description of the algorithm we developed to construct a circuit
from a BDD, describes some extensions that were not included in [4], and shows a
major improvement in the AMBA example.

The paper continues as follows: in 2, we describe how to synthesize a circuit
from specifications. In Section 3, we describe the Generalized Buffer, give its
formal specification, and show the results of synthesis. In Section 4, we do the
same for the AMBA AHB arbiter. We discuss lessons learned in Section 5 and
present our conclusions in Section 6.

1 www.ist.tugraz.at/staff/jobstmann/anzu/ contains Anzu and the specifications
described here.
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2 Synthesis

In this section, we discuss how circuits can be obtained automatically from their
PSL specifications. A thorough introduction to PSL can be found in [7]. The
specifications shown in this paper should be easy to read for someone familiar
with LTL. In particular, always , eventually! , and next! correspond to G, F,
and X, respectively; for an atomic proposition p, prev(p) holds if p held in the
previous cycle, rose(p) = ¬ prev(p) ∧ p, and fell(p) = prev(p) ∧ ¬p. Finally,
next event! (p)(ϕ) = (¬p) U (p ∧ ϕ).

2.1 Synthesis of GR(1) Properties

We briefly review the results presented in [16] on synthesizing GR(1) properties.
We are interested in the question of realizability of PSL specifications (cf. [17]).
Assume two sets of Boolean variables X and Y . Intuitively X is the set of input
variables controlled by the environment and Y is the set of system variables. Real-
izability amounts to checking whether there exists an open controller that satisfies
the specification. Such a controller is a Mealy machine that, at any step, reads
values of the X variables and outputs values for the Y variables.

Here we concentrate on a subset of PSL for which realizability and synthesis
can be solved efficiently. The specifications we consider are of the form ϕ = ϕe →
ϕs. We require that ϕα for α ∈ {e, s} can be rewritten as a conjunction of the
following parts.

• ϕα
i – a Boolean formula which characterizes the initial states of the implemen-

tation.
• ϕα

t – a formula of the form
∧

i always Bi where each Bi is a Boolean com-
bination of variables from X ∪ Y and expressions of the form next! v where
v ∈ X if α = e, and v ∈ X ∪ Y otherwise.

• ϕα
g – has the form

∧
i∈I always eventually! Bi where each Bi is a Boolean

formula.
In order to allow formulas of other forms (e.g., always (p → (q until r)) where
p, q, and r are Boolean), we augment the set of variables by adding deterministic
monitors. Deterministic monitors are Büchi automata whose behavior is determin-
istic according to the choice of the inputs and the outputs. These monitors follow
the truth value of the expression nested inside the always operator. Deterministic
automata are easily represented in PSL by a three sets of formulas: (1) One formula
for each edge of the automaton, of the form always (s ∧ i → next! (s′)), where
s and s′ identify states and i is an input, (2) a Boolean formula representing the
initial state, and (3) a formula of the form always eventually! (B) to represent
the fairness condition, where B is a Boolean formula representing a set of states.
(An example can be found in Section 3.3.) It should be noted that even with these
restrictions, all possible (finite state) designs can be expressed as a set of properties.

We reduce the realizability problem of a PSL formula to the decision of the win-
ner in an infinite two-player game played between a system and an environment.
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The goal of the system is to satisfy the specification regardless of the actions of
the environment. A game structure is a multi-graph whose nodes are all the truth
assignments to X and Y . A node v is connected by edges to all the nodes v ′ such
that the truth assignments to X and Y satisfy ϕe

t ∧ ϕs
t , where v supplies the assign-

ments to the current values and v′ to the next values. We then group all the edges
that agree on the assignment of X in v ′ to one multi-edge. A play starts by the en-
vironment choosing an assignment to X and the system choosing a state in ϕe

i ∧ϕs
i

that agrees with this assignment. A play proceeds by the environment choosing a
multi-edge and the system choosing one of the nodes connected to this multi-edge.
The system wins if this interaction produces an infinite play that satisfies ϕe

g → ϕs
g.

We solve the game, attempting to decide whether the game is winning for the
environment or the system. If the environment is winning the specification is unre-
alizable. If the system is winning, we synthesize a winning strategy. This strategy, a
BDD, is a nondeterministic representation of a working implementation. Formally,
we have the following.

Theorem 2.1 [16] Given sets of variables X and Y and a PSL formula ϕ of the
form presented above with m and n conjuncts, we can determine using a symbolic
algorithm whether ϕ is realizable in time proportional to (mn2d+|X |+|Y|)3 where d

is the number of variables added by the monitors for ϕ.

2.2 Generating Circuits from BDDs

In this section, we describe how to construct a circuit from the strategy. The strategy
is a BDD over the variables X , Y , X ′, and Y ′, where X are input variables, Y
are output variables, and the primed versions represent next state variables. The
corresponding circuit contains |X | + |Y| flipflops to store the values of the inputs
and outputs in the last clock tick. (See Figure 1.) In every step, the circuit reads
the next input values X ′ and determines the next output values using combinational
logic with inputs I = X ∪ Y ∪ X ′ and output O = Y ′. Note that the strategy does
not prescribe a unique combinational output for every combinational input. In most
cases, multiple outputs are possible, in states that are not reachable (assuming that
the system adheres to the strategy), no outputs may be allowed.

We have attempted two methods to build the combinational logic, one based on
[12] and one based on computing cofactors. The approach of [12] yields a circuit
that can generate, for a given input, any output allowed by the strategy. To this
end, it uses a set of extra inputs to the combinational logic. Note that this is more
general than what we need: a circuit that always yields one valid output given an
input. We will see later that this generality comes at a heavy price in terms of the
size of the logic.

The second method to build the combinational logic uses the pseudo code
shown in Figure 2. We write o ∈ O for a combinational output and i ∈ I for
a combinational input. The strategy is denoted by S and O\o is the set of combina-
tional outputs excluding output o. For every combinational output o we construct
a function f in terms of I that is compatible with the given strategy BDD. The al-
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Fig. 1. Diagram of generated circuit

for all o in O do
S’ = exists O\o . S
p = positive cofactor of o in S’
n = negative cofactor of o in S’
// (*)
careset = p*!n + !p*n
f[o] = p minimized wrt. careset
S = S[substitute f[o] for o]

od

Fig. 2. Algorithm to construct a circuit from a BDD

p = p * !n
n = n * !p
for all inputs i

p’ = exists i. p
n’ = exists i. n
if p’ * n’ = 0 then
p = p’; n = n’;

fi
end

Fig. 3. Extension to algorithm

gorithm proceeds through the combinational outputs o one by one: First, we build
S’ to get a BDD that restricts only o in terms of I. Then we build the positive and
negative cofactors (p,n) of S’ with respect to o, that is, we find the sets of inputs
for which o can be 1 (0, respectively). For the inputs that occur in the positive and
in the negative cofactor, both values are allowed. The combinational inputs that are
neither in the positive nor in the negative cofactor are outside of the winning region
and thus represent situations that cannot occur (as long as the environment satisfies
the assumptions). Thus, f has to be 1 in p ∧ ¬n and 0 in ¬p ∧ n, which give us
the set of care states. We minimize the positive cofactors with the care set to obtain
the function f . Finally, we substitute variable o in S by f , and proceed with the
next variable. The substitution is necessary since a combinational outputs may be
related.

The resulting circuit is constructed by writing the BDDs for the functions using
CUDD’s DumpBlif command [19]. We then optimize the result using ABC [3] and
map it to a library of standard cells. We also use ABC to estimate the number of
gates needed.

In the following we describe two extensions that are simple and effective. (Cf.
Section 3.3 and Section 4.)
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Optimizing the Cofactors
The algorithm presented in Figure 2 generates a function in terms of the com-

binational inputs for every combinational output. Some outputs may not depend
on all inputs and we would like to remove unnecessary inputs from the functions.
Given the positive and the negative cofactor of a variable o, if the cofactors do not
overlap when we existentially quantify variable i, variable i is not needed to dis-
tinguish between the states where o has to be 1 and where o has to be 0, and we
can simply leave it out. We adapt the algorithm in Figure 2 by inserting the code
shown in Figure 3 at the spot marked with (*).

Removing Dependent Variables
After computing the combinational logic, we perform dependent variables anal-

ysis [9] on the set of reachable states to simplify the generated circuit. Given a
Boolean function f over x0, x1, · · ·xn, a variable xi is functionally dependent in f

iff ∀xi.f = 0. Note that if xi is functionally dependent, it is uniquely determined by
the remaining variables of f and can be replaced by a function g(x0, · · ·xi−1, xi+1 · · ·xn).

Suppose our generated circuit has the set R(X ∪ Y) of reachable states. If a
state variable s is functionally dependent in R, we can remove the corresponding
flipflop in the circuit, and instead compute its value as a function of the values of
the other flipflops.

3 Generalized Buffer Case Study

3.1 Description of the Generalized Buffer

The generalized buffer (henceforth GenBuf ) is a design that has been developed
by IBM as a tutorial for the Rulebase verification tool 2 . GenBuf comes with a
relatively complete specification in PSL.

Figure 4 contains a block diagram of the design and its interface. Dashed boxes
represent the environment. GenBuf is a family of buffers parameterized by a num-
ber n. It transmits data from n senders to two receivers. Data is offered by the
senders in an arbitrary order, and is received by the receivers in round-robin order.
The buffer has a handshake protocol with each sender and each receiver. For each
sender i, GenBuf has an input StoB REQ(i) (sender to buffer request), which sig-
nals a request to send, and an output BtoS ACK(i) (buffer to sender acknowledge).
Furthermore, each sender has a 32-bit databus to send data to the buffer. The buffer
contains a four-slot FIFO to hold the data.

On the receiver side, a similar interface exists. It connects the buffer to each
receiver using the output BtoR REQ(j) (buffer to receiver request) and the input
RtoB ACK(j) (receiver to Buffer acknowledge). The receivers share a single 32-bit
data bus.

2 See http://www.haifa.ibm.com/projects/verification/RB Homepage/tutorial3/.
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Fig. 4. Block diagram of GenBuf with four senders

Genbuf consists of a controller, a FIFO, and a multiplexer. We synthesize the
controller from its specification, while assuming that the implementation of the
FIFO and the multiplexer are given. FIFOs and multiplexers are standard pieces of
logic and synthesizing them from specifications would make the task unnecessarily
complex, especially because they involve 32-bit data buses.

The control logic communicates with the FIFO through two outputs and two
inputs. The outputs ENQ (enqueue data) and DEQ (dequeue oldest data) are used to
fill and empty the FIFO. The inputs FULL and EMPTY tell the controller whether
the FIFO is ready to receive or send data. The controller communicates with the
multiplexer using a multi-bit output called SLC determines which signal from the
clients is loaded when ENQ is asserted.

The interface between a sender and GenBuf is a four-phase handshake:
(i) Sender i initiates the transfer by raising StoB REQ(i). One cycle later, it puts

its data on the bus.
(ii) At least one tick after StoB REQ(i) is raised, GenBuf raises BtoS ACK(i)

and reads the data.
(iii) One tick after BtoS ACK(i) is raised, the sender lowers StoB REQ(i). From

this time on, it is no longer required to keep the data on the bus.
(iv) GenBuf eventually lowers BtoS ACK(i). It may take several cycles to do

so. A new transfer may not be initiated by sender i until one cycle after
BtoS ACK(i) is lowered.

The handshake between GenBuf and the receivers is similar, except that in this case
GenBuf initiates the transfer and with the exception that in Step 4 the acknowledge
signal is lowered one cycle after the request is lowered.
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3.2 Formal Specification

We will now present the specification that we have developed for GenBuf. It is
closely related to IBM’s original specification. Since we do not synthesize the FIFO
and multiplexer automatically, we have removed the specifications that stated that
they work correctly and we have added formulas that specify the interaction with
the FIFO and multiplexer.

The PSL formulas for the specification can be found in Table 1. In the table, we
use i ∈ {0, . . . , n} to denote the number of a sender. We use j ∈ {0, 1} to denote
a receiver.

Communication with Senders
Guarantee 1 A request from a sender is always acknowledged. Furthermore, the
acknowledgement is eventually lowered.

Guarantee 2 Immediate acknowledges are forbidden, because the data of the sender
are not valid until one step after the assertion of request.

Guarantee 3 There is no acknowledgement without a request.

Guarantee 4 An acknowledge is not deasserted unless the sender deasserts its re-
quest first.

Assumption 1 A request is not lowered until it is served. The signal StoB REQ(i)
is lowered one cycle after BtoS ACK(i) is raised and it cannot be raised until one
cycle after BtoS ACK(i) is lowered.

Guarantee 5 Only one sender sends data at any one time.

Communication with Receivers
Assumption 2 A request from the buffer is always acknowledged. Furthermore,
the acknowledgement is lowered one tick after the request is lowered.

Assumption 3 An acknowledgement is not deasserted unless the buffer deasserts
its request first.

Assumption 4 There is no acknowledgement without a request.

Guarantee 6 A request is not lowered until it is served. The request is lowered
one cycle after the acknowledgement is raised and it cannot be raised until one
cycle after the acknowledgement is lowered.

Guarantee 7 GenBuf does not request both receivers simultaneously. GenBuf will
not make two consecutive requests to any receiver. (This guarantees round-robin
scheduling.)

Guarantee 8 GenBuf will deassert its request to receiver j one cycle after receiver
j acknowledged the request.

8
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Interface to the FIFO and the Multiplexer
Guarantee 9 The select and enqueue signals follow the acknowledgements to the
senders.

Guarantee 10 Data is dequeued when the transfer to the receiver has completed.

Guarantee 11 No enqueue when the FIFO is full and we do not dequeue data, and
no dequeue when it is empty.

Guarantee 12 If the FIFO is not empty, a dequeue will ensue eventually.

Assumption 5 The FIFO behaves correctly. If we enqueue and dequeue simul-
taneously or not at all, the status of the FIFO does not change. If data is only
enqueued (dequeued, resp.), the FIFO must not be empty (full) in the next cycle.

Initially, the buffer we synthesized from the specification above ignored the
FIFO. Instead it would wait until it could send data to a receiver before accepting
data from a sender. Hence, we added the following property, which ensures that the
FIFO is used.
Guarantee 13 If the FIFO is not full and a sender requests to send data, the data
is enqueued either in this or in the next step.

3.3 Synthesis

As explained in Section 2.1, not all PSL specifications can be synthesized directly.
We first have to translate Guarantees 1, 2, 7, 12 and Assumption 2 into a suitable
form.

Taking the Guarantee 4, 6, and Assumption 4 into account, we can combine
Guarantee 1 and 2 to

∀i : always eventually! (StoB REQ(i) ↔ BtoS ACK(i))

and we can rewrite Assumption 2 to

∀j : always eventually! (BtoR REQ(i) ↔ RtoB ACK(i)).

For Guarantee 12 and the second part of Guarantee 7 we have to build deterministic
monitors. Although there are formulas for which no deterministic monitor exists,
and constructing such monitors is hard in general [13], constructing them is very
simple for the formulas considered in this paper.

For instance, Figure 5 shows the deterministic automaton for Guarantee 12 stat-
ing that always (¬EMPTY → eventually! DEQ). We used the standard ap-
proach to construct Büchi automata from LTL formulas (e.g., [20]) with a slightly
modified form of the standard expansion rules. In particular, we used the expan-
sion rule eventually! q equals q∨ (¬q∧next! eventually! q) and the fact that
¬EMPTY → ϕ equals EMPTY ∨ (¬EMPTY ∧ ϕ).

After the specification has been brought into the proper form, it is synthesized
using the algorithm described in Section 2. In Figure 6 we show the time needed

9
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Table 1
PSL specification

G1
∀i : always (StoB REQ(i) → eventually! BtoS ACK(i))

∀i : always (¬StoB REQ(i) → eventually! ¬BtoS ACK(i))

G2 ∀i : always (rose(StoB REQ(i)) → ¬BtoS ACK(i))

G3 ∀i : always (rose(BtoS ACK(i)) → prev(StoB REQ(i)))

G4 ∀i : always ((BtoS ACK(i) ∧ StoB REQ(i)) → next! BtoS ACK(i))

A1
∀i : always (StoB REQ(i) ∧ ¬BtoS ACK(i) → next! StoB REQ(i))

∀i : always (BtoS ACK(i) → next! ¬StoB REQ(i))

G5 ∀i∀i′ 6= i : always ¬(BtoS ACK(i) ∧ BtoS ACK(i′))

A2
∀j : always (BtoR REQ(j) → eventually! RtoB ACK(j))

∀j : always (¬BtoR REQ(j) → next! ¬RtoB ACK(j))

A3 ∀j : always (BtoR REQ(j) ∧ RtoB ACK(j) → next! RtoB ACK(j))

A4 ∀j : always (RtoB ACK(j) → prev(BtoR REQ(j)))

G6
∀j : always (BtoR REQ(j) ∧ ¬RtoB ACK(j) → next! BtoR REQ(j))

∀j : always (RtoB ACK(j) → next! ¬BtoR REQ(j))

G7

always ¬(BtoR REQ(0) ∧ BtoR REQ(1)).

∀j : always (rose(BtoR REQ(j) → next!

next event! (rose(BtoR REQ(0)) ∨ rose(BtoR REQ(1))(¬BtoR REQ(j)))).

G8 ∀j : always (RtoB ACK(j) → next! (¬BtoR REQ(j)))

G9
always (ENQ ↔ ∃i : rose(BtoS ACK(i)))

∀i : always (rose(BtoS ACK(i)) → SLC = i)

G10 always (DEQ ↔ (fell(RtoB ACK(0)) ∨ fell(RtoB ACK(1)))

G11
always ((FULL ∧ ¬DEQ) → ¬ENQ)

always (EMPTY → ¬DEQ)

G12 always (¬EMPTY → eventually! DEQ)

A5

always ((DEQ ↔ ENQ) → (EMPTY ↔ next! EMPTY)))

always ((DEQ ↔ ENQ) → (FULL ↔ next! FULL))

always ((ENQ ∧ ¬DEQ) → next! ¬EMPTY)

always ((DEQ ∧ ¬ENQ) → next! ¬FULL)

A13 always ((¬FULL ∧ ∃i : StoB REQ(i)) → (ENQ ∨ next! ENQ))

10
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Fig. 7. Size of the GenBuf circuits

to synthesize GenBuf for different numbers of senders, excluding the time taken
by ABC to optimize the circuit, which is typically a few seconds. We have plotted
the time taken to generate the circuits using the method based on [12], the time
needed by our algorithm, our algorithm with the optimization of the cofactors, and
our algorithm with optimization of the cofactors and removal of dependent vari-
ables. (See Section 2.2.) The time for synthesis remains under one minute and is
similar for all methods. (We can not explain why synthesis is much faster when
we have nine senders.) We are able to synthesize specifications of GenBuf up to
60 senders. Therefore our implementation needs approximately 13 hours. Syn-
thesis for a specification containing 70 senders did not complete within 35 hours,
but a stable memory consumption of 1GB leaves us optimistic that we are able to
generate a circuit for 70 senders too.

In Fig. 7 we show the number of gates of the resulting circuits after optimiza-
tion by ABC. The method based on [12] yields circuits that are about an order
of magnitude larger than ours. (For more than 6 senders, this method yields cir-
cuits that are too large for ABC to handle.) Optimizing the cofactors yields about
16%. Removing the dependent variables reduces the number of latches by 5% to
12%. Which dependent variables are found is hard to predict, but usually includes
ENQ and some or all of the SLC signals. (These signals can be inferred from the
BtoS ACK(s)ignals.)

Optimization by ABC yields an improvement in number of gates of about 20%.
It should be noted that the growth of the circuit is well-behaved, but a circuit of
5 000 gates is still very large.
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4 AMBA AHB Case Study

In this section we summarize a case study that we performed on the Advanced
High-Performance Bus (AHB)We present new results that are significantly better
than the ones in [4].

The AHB is an on-chip communication standard that connects such devices as
processor cores, cache memory, and DMA controllers. The bus allows up to 16
masters to communicate (read or write) with up to 16 clients. The bus consists of
a data bus, an address bus. At any time, only one master is allowed to access each
of the buses. Access to the address bus is controlled by the arbiter, which is the
subject of this section.

An access to the bus can be locked or unlocked, and either a single transfer or
a burst, which consists of a specified or unspecified number of transfers. A locked
access may not be interrupted, so the arbiter has to take the different access modes
into account.

To access the bus, a master drives the address and control signals to indicate
the type of transfer it wants. Slaves are passive and can only respond to a request.
The arbiter decides the next owner of the bus and whether its access will be locked.
Then, it asserts the corresponding control signals to indicates its decision, and when
the current transfer is finished, the bus is handed over.

We derived a formal specification from the AMBA AHB standard for the arbiter.
The standard allows for a variety of bus protocols including priority-based and fair
buses. We wrote a specification for a fair bus, synthesized it, and constructed a
circuit. Subsequently, we constructed a circuit as described in Section 2.2.

In our initial experiments [4], we were only able to synthesize arbiters for up
to four masters, for larger arbiters the synthesis algorithm ran out of memory when
building the strategy. (2GB of memory were available.) After rewriting the speci-
fication, without changing its meaning, we can handle up to ten masters. The time
for synthesis is shown in Figure 8 and ranges from a few second to 6.5 hours. Most
of the time is spent in reordering BDDs. (We do not know why synthesis for nine
masters is faster then for eight.)

In Figure 9, we show the number of gates of the arbiter as a function of the
number of masters using our algorithms and a manual implementation. For one
master the manual and the automatically generated implementation have approxi-
mately the same size. The automatically generated implementations grow rapidly
with the number of masters, while the manual implementations are nearly indepen-
dent of the number of masters. The automatically generated implementation for ten
master is about a hundred times larger than the manual implementation.

The automatically generated arbiter implements a round-robin arbitration scheme.
This can be explained from the construction of the strategy in the synthesis algo-
rithm, but it is also the simplest implementation of a fair arbiter. We have validated
our specification by combining the resulting arbiter with manually written masters
and clients, with which it cooperates without problems.

12



Bloem, Galler, Jobstmann, Piterman, Pnueli, Weiglhofer

 0

 5000

 10000

 15000

 20000

 25000

 1  2  3  4  5  6  7  8  9  10

sy
nt

he
si

s 
tim

e 
(s

)

no. of senders

synthesis+reorder
BDD reordering

Fig. 8. Time to synthesize AMBA bus

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 1  2  3  4  5  6  7  8  9  10

no
. o

f g
at

es

no. of masters

 unoptimized
 optimized cofactors

 handwritten

Fig. 9. Size of the AMBA circuits

5 Discussion

In this section we discuss the most important benefits and drawbacks of automatic
synthesis, as we perceive them.

Writing the formal specification for the generalized buffer was straightforward.
This may be ascribed in part to the simplicity of the block and in part to the clear
specification provided by IBM (although the specification was neither complete,
nor free of mistakes).

On the other hand, writing a complete formal specification for the AMBA arbiter
was not trivial. First, many aspects of the arbiter are not defined in ARM’s standard.
Such ambiguities would lead to long discussions on how someone implementing a
bus device could read the standard, and which behavior the arbiter should allow.
Note that the same problem occurs when writing a VERILOG implementation for
the arbiter.

Construction of a complete specification is an iterative process. For the ar-
biter in particular, this process was cumbersome, and we encountered problems
formulating certain requirements. These problems were best solved by introducing
additional signals (much like one does when writing a manual implementation). In
the process, we wrote several unrealizable specifications, and some specifications
that yielded circuits that did not adhere to our expectations. (A simple example of
unexpected behavior for GenBuf is described and resolved in Section 3.2, Guaran-
tee 13.) The tool complains about unrealizable specifications, but does not offer any
help in pinpointing the problem. Likewise, unexpected behavior is typically very
easy to find, but not always easy to remedy. Some work on tools for debugging
specifications has taken place [15], but further research, in particular in connection
with realizability, is needed.

The effort for a manual implementation of a parameterized circuit usually does
not depend strongly on the parameter. The same is not true for automatic synthesis:
the time for synthesis and the size of the resulting circuit grow with the parame-
ter. (The parameter is the number of senders in case of GenBuf and the number of
masters in case of the arbiter). Moreover, the generated gate-level output is com-
plicated and cannot easily be changed by hand. The huge gap between the size of
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the manual and the automatic implementations can be explained with the fact that
a specification allows for (possibly infinitely) many implementations. Computing
a strategy following [16] restricts this set of implementations to a smaller but still
possibly infinite set. When we generate a circuit, we pick one implementation from
this set. The smallest circuit implementing the specification may not comply with
the computed strategy, and if it does it is still very hard to find it. However, we
expect that the resulting circuit can be improved further by using more intelligent
methods to generate the circuits, which will be important if this methodology is to
become accepted.

On the upside, the resulting PSL specification is short, readable, and easy to
modify, much more so than a manual implementation in VERILOG. The synthesis
algorithm was also a excellent tool to get the specifications consistent and com-
plete. Although the construction of the specifications was sometimes bothersome,
we doubt we would have managed to write a complete and consistent specification
without the synthesis tool.

Automatic synthesis is first and foremost applicable to control circuitry. We
are looking into methods to combine manually coded data paths with automati-
cally synthesized control circuitry, which takes the form of a controller synthesis
problem.

6 Conclusions

When specifications are available early, automatic synthesis can be used to obtain a
first implementation, yielding a functional test environment when critical blocks are
replaced by manual implementations. Furthermore, these implementations function
as a valuable sanity check for the specification, which is very important when a
manual implementation is to be based on the formal specification.

Although automatic synthesis has long been pursued, only recent developments
have made it applicable to realistic examples. This paper, together with its compan-
ion [4], presents the first time that real-life blocks have been synthesized from their
specifications. The circuits that we obtain are quite large, but the approach is still
young and only a few avenues for optimization have been pursued. We attempted
to generate circuits using an approach of [12]. A second attempt using cofactors
yielded circuits that are an order of magnitude smaller, and optimizations to that
approach yielded a significant improvement. We expect that future research will
yield further large improvements, making automatic synthesis a real alternative to
manual coding of some types of circuits.
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