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Abstract. We consider games where the winning conditions are disjunc-
tions (or dually, conjunctions) of parity conditions; we call them general-
ized parity games. These winning conditions, while ω-regular, arise nat-
urally when considering fair simulation between parity automata, secure
equilibria for parity conditions, and determinization of Rabin automata.
We show that these games retain the computational complexity of Rabin
and Streett conditions; i.e., they are NP-complete and co-NP-complete,
respectively. The (co-)NP-hardness is proved for the special case of a
conjunction/disjunction of two parity conditions, which is the case that
arises in fair simulation and secure equilibria. However, considering these
games as Rabin or Streett games is not optimal. We give an exposition
of Zielonka’s algorithm when specialized to this kind of games. The com-
plexity of solving these games for k parity objectives with d priorities, n
states, and m edges is O(n2kd·m)· (k·d)!

d!k
, as compared to O(n2kd·m)·(k·d)!

when these games are solved as Rabin/Streett games. We also extend the
subexponential algorithm for solving parity games recently introduced by
Jurdziński, Paterson, and Zwick to generalized parity games. The result-
ing complexity of solving generalized parity games is nO(

√
n) · (k·d)!

d!k
. As a

corollary we obtain an improved algorithm for Rabin and Streett games
with d pairs, with time complexity nO(

√
n) · d!.

1 Introduction

Games offer a natural framework for reasoning about systems. For example, two-
player games arise in controller synthesis. We consider the controller that we
wish to synthesize as a player in a game against an environment. The controller
has to come up with a strategy that will allow it to decide on its action given
environment inputs such that regardless of environment actions some goal is
satisfied [18].

A two-player game is a finite or infinite directed graph where the vertices
are partitioned between the two players. A play proceeds by moving a token
between the vertices of the graph. If the token is found on a vertex of player 1,
she chooses an outgoing edge and moves the token along that edge. If the token
is found on a vertex of player 2, she gets to choose the outgoing edge. The result
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is an infinite sequence of vertices. In order to determine the winner in a play we
consider the infinity set, the set of states occurring infinitely often in the play.
There are several methods to define acceptance conditions that determine which
infinity sets are winning for which player. We solve a game by computing the
set of states from which player 1 has a strategy to resolve her choices so that
regardless of player 2’s choices the play is winning; this is called the winning set
of player 1. In the games considered here, the winning set of player 1 and the
winning set of player 2 (defined dually) form a partition of the vertices of the
game [13].

The class of Rabin [17] and Streett [21] winning conditions are cannonical
forms to express all ω-regular winning conditions. Both conditions are defined us-
ing a set of pairs of subsets of the vertices of the graph. In order to win the Rabin
condition over {〈E1, F1〉, . . . , 〈Ek, Fk〉}, the infinity set has to intersect Ei and
not intersect Fi for some i. The Streett winning condition is the dual of the Ra-
bin condition. In order to win the Streett condition over {〈E1, F1〉, . . . , 〈Ek, Fk〉},
the infinity set has to either be disjoint from Ei or to intersect Fi for every i.
Rabin and Streett games with n vertices, m edges, and k pairs can be solved in
time O(m · nk · k!) [16].

Another general acceptance condition is the parity acceptance condition [7].
In the parity condition, every vertex has a priority and a play is won if the
maximal priority visited infinitely often is even. The parity condition is a special
case of Rabin and Streett conditions which is closed under complement. While
Rabin games are NP-complete (and Streett co-NP-complete) [6], parity games
are in NP ∩ co-NP [7]. Solving a parity game with m edges, n vertices, and 2k
priorities can be done in time O(m · nk) [11] or nO(

√
n) [12].

In this paper, we are interested in games where the winning condition is a
disjunction (dually, conjunction) of parity conditions. That is, instead of con-
sidering one function assigning priorities to vertices, we consider a set of such
functions. A play is winning according to this definition if for one of the func-
tions the maximal priority visited infinitely often is even. We call these winning
conditions generalized parity.

Generalized parity winning conditions arise naturally in several scenarios. As
mentioned, one of the main motivations for considering two-player games is con-
troller synthesis. In the classical setting we consider the system playing against
an arbitrary environment. Sometimes, it makes more sense to consider the case
where the environment has a goal of its own. In such a case, we are searching for
some equilibrium between the system and the environment in which both satisfy
their requirements. This led to the introduction of secure equilibria [2]. When
both players have parity winning conditions, the solution of secure equilibria
requires considering a game where the winning condition is the implication be-
tween two parity conditions. As parity objectives are closed under complement,
we can think about this as either the disjunction or the conjunction of two parity
conditions.

Two-player games arise also in the context of simulation [14, 9]. Simulation
is an important precondition for language containment between automata [4, 9]
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and is also used in the context of minimization of automata [8, 20, 1]. Simula-
tion between parity automata (automata whose acceptance condition is parity)
is naturally framed as a game whose winning condition is again the implica-
tion between two parity conditions. Finally, the disjunction of parity conditions
also arises when considering the determinization of Rabin and parity automata.
Given a Rabin automaton with one pair, we know how to create an equivalent
deterministic parity automaton [19, 15]. It follows that in order to determinize
a Rabin automaton with k pairs, we can consider the disjunction of determinis-
tic parity automata. The acceptance condition of such an automaton is again a
disjunction of parity conditions.

As explained, parity conditions are a special case of Rabin and Streett con-
ditions. It follows that generalized parity conditions are again a special case of
Rabin and Streett conditions. Indeed, every parity condition is in particular a
Rabin condition, and a disjunction of Rabin conditions is again a Rabin condi-
tion. Dually, every parity condition is a Streett condition, and a conjunction of
Streett conditions is again a Streett condition. On the other hand, generalized
parity conditions are also more general than Rabin and Streett conditions. This
is because a Rabin condition is a disjunction of parity conditions with three pri-
orities, and a Streett condition is a conjunction of parity conditions with three
priorities. It is an interesting question whether generalized parity conditions re-
tain the computational hardness of Rabin and Streett conditions. We would also
like to devise specialized algorithms for generalized parity conditions that out-
perform the natural reduction to Rabin and Streett conditions. These are the
two questions considered in this paper.

We show that generalized parity conditions are NP and co-NP complete,
suggesting that the computational complexity of Rabin and Streett conditions is
retained. Our lower bound applies already to the special case of a disjunction/
conjunction of two parity conditions, which is the case that arises in secure
equilibria and in fair simulation.

We give specialized algorithms that outperform the reduction of generalized
parity conditions to Rabin and Streett conditions. Specifically, Zielonka’s algo-
rithm [22] when specialized to a disjunction of k parity objectives with d priorities
works in time proportional to O(m ·n2kd · (k·d)!

d!k
) (compared to O(m ·n2kd ·(k ·d)!)

when these games are solved as Rabin or Streett games). We generalize the tech-
niques of the subexponential algorithm for solving parity games [12] to general-
ized parity games. The resulting complexity of solving generalized parity games
is nO(

√
n) · (k·d)!

d!k
. As a corollary we obtain an improved algorithm for Rabin and

Streett games with k pairs, with time complexity nO(
√

n) ·k!, as compared to the
previous best known algorithm with time complexity O(m · nk · k!) [16].

In the full version we also show how to extend the direct rank computa-
tion [11, 16] to generalized parity conditions. The resulting complexity of solving
generalized parity games is O(m ·nkd · (k·d)!

d!k
) (as compared to O(m ·nkd ·(k ·d)!)).
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2 Definitions

We consider turn-based deterministic games played by two players with a con-
junction / disjunction of parity objectives; we call them generalized parity games.
We define game graphs, plays, strategies, objectives, and the notion of winning.

Game graphs. A game graph G = ((S,E), (S1, S2)) consists of a directed graph
(S,E) with a finite state space S and a set E of edges, and a partition (S1, S2)
of the state space S into two sets. The states in S1 are player-1 states, and the
states in S2 are player-2 states. For a state s ∈ S, we write E(s) = {t ∈ S |
(s, t) ∈ E} for the set of successor states of s. We assume that every state has
at least one outgoing edge, i.e., E(s) is nonempty for all states s ∈ S. Given
a set U ⊆ S, if in the subgraph induced by U every state has at least one
outgoing edge, then the subgraph is called a subgame, denoted G � U . Formally,
G � U = ((S ∩ U,E ∩ (U × U)), (S1 ∩ U, S2 ∩ U)).

Plays. A game is played by two players: player 1 and player 2, who form an
infinite path in the game graph by moving a token along edges. They start by
placing the token on an initial state, and then they take moves indefinitely in
the following way. If the token is on a state in S1, then player 1 moves the token
along one of the edges going out of the state. If the token is on a state in S2,
then player 2 does likewise. The result is an infinite path in the game graph;
we refer to such infinite paths as plays. Formally, a play is an infinite sequence
〈s0, s1, s2, . . .〉 of states such that (sk, sk+1) ∈ E for all k ≥ 0. We write Ω for
the set of all plays.

Strategies. A strategy for a player is a recipe that specifies how to extend
plays. Formally, a strategy σ for player 1 is a function σ: S∗ ·S1 → S that, given
a finite sequence of states (representing the history of the play so far) which
ends in a player 1 state, chooses the next state. The strategy must choose only
available successors, i.e., for all w ∈ S∗ and s ∈ S1 we have σ(w · s) ∈ E(s). The
strategies for player 2 are defined analogously. We write Σ and Π for the sets of
all strategies for player 1 and player 2, respectively. Strategies in general require
memory to remember the history of plays. An equivalent definition of strategies
is as follows. Let M be a set called memory. A strategy with memory can be
described as a pair of functions: (a) a memory-update function σu: S ×M →M
that, given the memory and the current state, updates the memory; and (b) a
next-state function σn: S×M → S that, given the memory and the current state,
specifies the successor state. The strategy is finite-memory if the memory M is
finite. An important special class of strategies are the memoryless strategies.
A strategy is memoryless if the memory M is a singleton set. The memoryless
strategies do not depend on the history of a play, but only on the current state.
Each memoryless strategy for player 1 can be specified as a function σ: S1 → S
such that σ(s) ∈ E(s) for all s ∈ S1, and analogously for memoryless player-2
strategies. Given a starting state s ∈ S, a strategy σ ∈ Σ for player 1, and
a strategy π ∈ Π for player 2, there is a unique play, denoted ω(s, σ, π) =
〈s0, s1, s2, . . .〉, which is defined as follows: s0 = s and for all k ≥ 0, if sk ∈ S1,
then σ(s0, s1, . . . , sk) = sk+1, and if sk ∈ S2, then π(s0, s1, . . . , sk) = sk+1.
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Conjunction and disjunction of parity objectives. We consider game
graphs with a conjunction of parity objectives for player 1, and the complemen-
tary disjunction of parity objectives for player 2. For a play ω = 〈s0, s1, s2, . . .〉,
we define Inf(ω) = {s ∈ S | sk = s for infinitely many k ≥ 0} to be the set of
states that occur infinitely often in ω. We also define reachability and safety
objectives as they will be useful in the analysis of the algorithms.
Reachability and safety objectives. Given two sets T, F ⊆ S of states, the reach-
ability objective Reach(T ) requires that some state in T be visited, and dually,
the safety objective Safe(F ) requires that only states in F be visited. Formally,
the sets of winning plays are Reach(T ) = {〈s0, s1, s2, . . .〉 ∈ Ω | ∃k ≥ 0. sk ∈ T}
and Safe(F ) = {〈s0, s1, s2, . . .〉 ∈ Ω | ∀k ≥ 0. sk ∈ F}. The reachability and
safety objectives are dual in the sense that Reach(T ) = Ω \ Safe(S \ T ).
Parity objectives; conjunctions and disjunctions. For d ∈ N, we let [d] =
{0, 1, . . . , d} and [d]+ = {1, 2, . . . , d}. Let p : S → [d] be a function that as-
signs a priority p(s) to every state s ∈ S. The parity objective requires that
the maximal priority occurring infinitely often is even. Formally, the set of win-
ning plays is Parity(p) = {ω ∈ Ω | max(Inf(ω)) is even}. For a priority function
p : S → [d], we denote by p : S → [d+ 1]+ the priority function p(s) = p(s) + 1
for all s ∈ S. Then Parity(p) = Ω \ Parity(p), i.e., parity objectives are
closed under complementation. For i = 1, 2, . . . , k, consider k priority functions
pi : S → [di]. The objective ConjParity(p1, p2, . . . , pk) is the conjunction of the
parity objectives defined by pi, i.e., ConjParity(p1, p2, . . . , pk) =

⋂k
i=1 Parity(pi).

Similarly, the objective DisjParity(p1, p2, . . . , pk) is the disjunction of the par-
ity objectives defined by pi, i.e., DisjParity(p1, p2, . . . , pk) =

⋃k
i=1 Parity(pi).

The conjunction and disjunction of parity objectives are dual in the sense that
ConjParity(p1, p2, . . . , pk) = Ω \ DisjParity(p1, p2, . . . , pk). If all priority func-
tions have range [d] and there are k priority functions, then we refer to this class
of conjunctions and disjunctions of parity objectives as (∧, k, [d]) and (∨, k, [d]),
respectively. Similarly, if all priority functions have range [d]+ and there are k
priority functions, then we refer to this class of conjunctions and disjunctions
of parity objectives as (∧, k, [d]+) and (∨, k, [d]+), respectively. Parity objectives
with priority functions with range [1] are called coBüchi objectives, and with
range [2]+ they are called Büchi objectives.
Rabin and Streett objectives. A Rabin specification for the game graph G is a
finite set F = {〈E1, F1〉, . . . , 〈Ed, Fd〉} of pairs of sets of states, that is, Ej ⊆ S
and Fj ⊆ S for all 1 ≤ j ≤ d. The pairs in F are called Rabin pairs. The
Rabin specification F requires that for some Rabin pair 1 ≤ j ≤ d, all states
in the left set Ej be visited finitely often, and some state in the right set Fj

be visited infinitely often. Thus, the Rabin objective defined by F is the set
Rabin(F) = {ω ∈ Ω | ∃1 ≤ j ≤ d.(Inf(ω) ∩ Ej = ∅ ∧ Inf(ω) ∩ Fj 6= ∅)} of
winning plays. The complements of Rabin objectives are called Streett objectives.
A Streett specification for G is likewise a set F = {〈E1, F1〉, . . . , 〈Ed, Fd〉} of pairs
of sets of states Ej ⊆ S and Fj ⊆ S. The pairs in F are called Streett pairs.
The Streett specification F requires that for all Streett pairs 1 ≤ j ≤ d, if some
state in the left set Fj is visited infinitely often, then some state in the right set
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Ej is visited infinitely often. Formally, the Streett objective defined by F is the
set Streett(F) = {ω ∈ Ω | ∀1 ≤ j ≤ d.(Inf(ω) ∩ Ej 6= ∅ ∨ Inf(ω) ∩ Fj = ∅)}
of winning plays. The Rabin and Streett objectives are dual in the sense that
Streett(F) = Ω \ Rabin(F). The parity objectives are a subclass of the Rabin
objectives that is closed under complementation. It follows that every parity
objective is both a Rabin objective and a Streett objective.
Relationship between objectives. It may be noted that given k priority
functions p1, p2, . . . , pk with ranges [2d1], [2d2] . . ., [2dk], the disjunction of the
parity objectives can be expressed as a Rabin objective with

∑k
i=1 di pairs, and

the conjunction of the parity objectives can be expressed as a Streett objective
with

∑k
i=1 di pairs. Conversely, a Rabin objective Rabin(F) with k pairs can be

expressed as an objective in (∨, k, [3]+) as follows: for each pair 〈Ei, Fi〉 consider
the priority function pi : S → [3]+ such that pi(s) = 3 if s ∈ Ei, and 2 if s ∈
Fi \ Ei, and 1 otherwise; then DisjParity(p1, p2, . . . , pk) = Rabin(F). Similarly,
a Streett objective Streett(F) with k pairs can be expressed as an objective in
(∧, k, [2]) as follows: for each pair 〈Ei, Fi〉 consider the priority function pi : S →
[2] such that pi(s) = 2 if s ∈ Ei, and 1 if s ∈ Fi \ Ei, and 0 otherwise; then
ConjParity(p1, p2, . . . , pk) = Streett(F).
Winning strategies and sets. Given a game graph G and an objective Φ ⊆ Ω
of winning plays for player 1, a strategy σ ∈ Σ is a winning strategy for player 1
from a state s ∈ S if for all player-2 strategies π ∈ Π, the play ω(s, σ, π) is
winning, i.e., ω(s, σ, π) ∈ Φ. The winning strategies for player 2 are defined
analogously. A state s ∈ S is winning for player 1 with respect to the objective
Φ if player 1 has a winning strategy from s. Formally, the set of winning states
for player 1 with respect to the objective Φ in a game graph G is WG

1 (Φ) = {s ∈
S | ∃σ ∈ Σ. ∀π ∈ Π. ω(s, σ, π) ∈ Φ}. Analogously, the set of winning states
for player 2 with respect to an objective Ψ ⊆ Ω of winning plays for player 2 is
WG

2 (Ψ) = {s ∈ S | ∃π ∈ Π. ∀σ ∈ Σ. ω(s, σ, π) ∈ Ψ}. If the game graph is clear
from the context, we drop the superscript. We say that there exists a memoryless
winning strategy for player 1 with respect to the objective Φ if there exists such
a strategy from all states in W1(Φ); and similarly for player 2.

Theorem 1 (Determinacy and complexity [6]).
1. For all game graphs G = ((S,E), (S1, S2)), all Streett objectives Φ for

player 1, and the complementary Rabin objective Ψ = Ω \Φ for player 2, the
following assertions hold.
– We have W1(Φ) = S \W2(Ψ).
– There exists a memoryless winning strategy for player 2, and a finite-

memory winning strategy for player 1.
2. Given a game graph G, a Streett objective Φ for player 1, the complementary

Rabin objective Ψ = Ω\Φ for player 2, and a state s, the problem of deciding
whether s ∈ W2(Ψ) is NP-complete, and deciding whether s ∈ W1(Φ) is co-
NP-complete.

Closed sets and attractors. Two notions that will play key roles in the anal-
ysis of the algorithms are the notions of closed sets and attractors.
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Closed sets. A set U ⊆ S of states is a closed set for player 1 if the following
two conditions hold: (a) for all states u ∈ (U ∩ S1), we have E(u) ⊆ U , i.e., all
successors of player-1 states in U are again in U ; and (b) for all u ∈ (U ∩ S2),
we have E(u) ∩ U 6= ∅, i.e., every player 2 state in U has a successor in U . A
player-1 closed set is also called a trap for player 1. The closed sets for player 2
are defined analogously. For every closed set U for player `, for ` ∈ {1, 2}, the
game G � U is a subgame.

Proposition 1. Consider a game graph G, and a closed set U for player 2. For
every objective Φ for player 1, we have WG�U

1 (Φ) ⊆WG
1 (Φ).

Attractors. Given a game graph G, a set U ⊆ S of states, and a player ` ∈ {1, 2},
the set Attr `(U,G) contains the states from which player ` has a strategy to reach
a state in U against all strategies of the other player; that is, Attr `(U,G) =
W`(Reach(U)). The set Attr1(U,G) can be computed inductively as follows: let
R0 = U ; let Ri+1 = Ri ∪ {s ∈ S1 | E(s) ∩ Ri 6= ∅} ∪ {s ∈ S2 | E(s) ⊆
Ri} for all i ≥ 0; then Attr1(U,G) =

⋃
i≥0Ri. The inductive computation of

Attr2(U,G) is analogous. For all states s ∈ Attr1(U,G), define rank(s) = i if
s ∈ (Ri \ Ri−1), that is, rank(s) denotes the least i ≥ 0 such that s is included
in Ri. Define a memoryless strategy σ ∈ Σ for player 1 as follows: for each state
s ∈ (Attr1(U,G)∩S1) with rank(s) = i, choose a successor σ(s) ∈ (Ri−1∩E(s))
(such a successor exists by the inductive definition). It follows that for all states
s ∈ Attr1(U,G) and all strategies π ∈ Π for player 2, the play ω(s, σ, π) reaches
U in at most |Attr1(U,G)| transitions.

Proposition 2. For all game graphs G, all players ` ∈ {1, 2}, and all sets
U ⊆ S of states, the set S \Attr `(U,G) is a closed set for player `.

Notation. For a game graph G = ((S,E), (S1, S2)), a set U ⊆ S, and ` ∈ {1, 2},
we write G \Attr `(U,G) to denote the game graph G � (S \Attr `(U,G)).

3 Computational Complexity

In this section we study the computational complexity of generalized parity
games. We consider (∨, k, [d]) and (∧, k, [d]) objectives and present complexity
results varying both k and d. Observe that if both k and d are constants, then
generalized parity games can be solved in polynomial time (by reduction to
Rabin and Streett objectives with a constant number of pairs). The next theorem
completes the complexity analysis. Other than the last hardness result (part 5)
of Theorem 2, all other results can be easily derived (see [3] for details); and
part 5 of Theorem 2 is proved in Lemma 1.

Theorem 2. Given a game graph G, the following assertions hold.
1. For objectives Ψ in (∨, k, [d]) and Φ in (∧, k, [d]), and a state s: whether

s ∈W2(Ψ) and s ∈W1(Φ) can be decided in NP and co-NP, respectively.
2. For objectives Ψ in (∨, k, [3]+) and Φ in (∧, k, [2]), and a state s: (a) whether

s ∈W2(Ψ) is NP-hard, and (b) whether s ∈W1(Φ) is co-NP-hard.
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3. For objectives Φ in (∨, k, [2]+) or (∧, k, [2]+) or (∨, k, [1]) or (∧, k, [1]), and
a state s: whether s ∈W1(Φ) (or s ∈W2(Φ)) can be decided in PTIME.

4. For objectives Φ in (∨, 1, [d]) or (∧, 1, [d]), and a state s: whether s ∈W1(Φ)
(or s ∈W2(Φ)) can be decided in NP ∩ co-NP.

5. For objectives Ψ in (∨, 2, [d]) and Φ in (∧, 2, [d]), and a state s: whether
s ∈W2(Ψ) is NP-hard, and whether s ∈W1(Φ) is co-NP-hard.

Lemma 1. Given a game graph G, an objective Ψ in (∨, 2, [d]), and a state s,
deciding whether s ∈W2(Ψ) is NP-hard.

Proof. We present a reduction from SAT. Consider a SAT formula ψ with clauses
C0, C1, . . . , Cm over boolean variables x0, x1, . . . , xn. We denote by C the set of
all clauses and by X the set of all variables. A literal is a variable or its negation
(i.e, xi or ¬xi). We denote by l a literal and by L the set of all literals. We
now construct a game graph G = ((S,E), (S1, S2)) and an objective Ψ that is
obtained as a disjunction of two parity objectives.
1. State space and transitions. We have S1 = {s0}; S2 = C ∪ L and E =

{(s0, Ci) | Ci ∈ C} ∪ {(Ci, l) | Ci ∈ C, l occurs in Ci} ∪ {(l, s0) | l ∈ L}.
Hence player 1 chooses between the clauses, and in each clause player 2 can
choose a literal that makes the clause true, and from the literals the next
state is the starting state s0.

2. Priority functions. We specify priority functions p1 : S → [2n] and p2 : S →
[2n] as follows:

p1(s) =


0 s ∈ C; or s = s0;
2k s = xk;
2k + 1 s = ¬xk;

p2(s) =


0 s ∈ C; or s = s0;
2k s = ¬xk;
2k + 1 s = xk;

We analyze the game with objective Ψ = DisjParity(p1, p2) for player 2. Since
the objective is a Rabin objective it suffices to analyze the memoryless strategies
as candidate winning strategies for player 2. We analyze the following two cases.
1. Satisfiability implies winning. Let A : X → {0, 1} be a satisfying assignment

for ψ. We define Â : X → L as follows: for x ∈ X we have Â(x) = x if
A(x) = 1 and ¬x otherwise. Fix a memoryless strategy π : S2 → S for
player 2, as follows: for Ci ∈ C pick a literal lk that appears in Ci and
Â(xk) = lk (such a literal exists since A is a satisfying assignment), and set
π(Ci) = lk. Now consider any strategy σ for player 1. Let lj be the maximal
literal that appear infinitely often along the play ω(s0, σ, π). Observe that
both xj and ¬xj cannot appear infinitely often. If lj = xj , then Parity(p1)
is satisfied, and if lj = ¬xj , then Parity(p2) is satisfied. Hence, player 2 has
a winning strategy.

2. Winning implies satisfiability. Consider a pure memoryless strategy π for
player 2. If there exists Cj , Ck such that π(Cj) = xi and π(Ck) = ¬xi, then
we show that π is not winning for player 2; otherwise, it is easy to construct
a satisfying assignment from the memoryless strategy π. Consider Cj , Ck

such that π(Cj) = xi and π(Ck) = ¬xi, and the strategy σ for player 1 that
alternates between Cj and Ck at s0. Then we have max(p`(Inf(ω(s, σ, π)))) =
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max{p`(xi), p`(¬xi)} = 2i+1, for ` ∈ {1, 2}. It follows that π is not a winning
strategy for player 2, contrary to our assumption.

4 The Classical Algorithm

We first present the classical algorithm (Zielonka’s algorithm) for games with
conjunctions and disjunctions of parity objectives. We start with an informal de-
scription of the algorithm; a formal description is given as Algorithm 1. Without
loss of generality we consider all priority functions to have the range [1..(2d+1)]
for some d.

Notations. We consider k priority functions p1 : S → [2d1], p2 : S →
[2d2], . . . , pk : S → [2dk]. The objective Φ for player 1 is the conjunction
ConjParity(p1, p2, . . . , pk) of the parity objectives and the objective for player 2
is the complementary objective Ψ = DisjParity(p1, p2, . . . , pk). We use the fol-
lowing notation: (a) for pi : S → [2di], we denote by MaxEven(pi) = p−1(2di)
the set of maximal even priority states, and if we consider a subgame defined
by a subset Sj of states with pi : Sj → [2d̂i] for d̂i ≤ di, we denote by
MaxEven(pi) = p−1(2d̂i) the maximal even priority states in the subgame; and
(b) for pi : S → [2di], we denote by MaxOdd(pi) = p−1(2di − 1) the set of maxi-
mal odd priority states. If we consider a subgame defined by a subset Sj of states
with pi : Sj → [2d̂i] for d̂i ≤ di, then we denote by MaxOdd(pi) = p−1(2d̂i − 1)
the maximal odd priority states in the subgame.

Informal description of the classical algorithm. The algorithm computes
the set of states that are winning for player 2 according to the disjunction of
parity conditions. If all parity conditions contain only states of priority 1, then
obviously player 2 is losing. Indeed, every infinite play visits the maximal pri-
ority 1 according to all disjuncts. Suppose that no such void parity condition
exists. The algorithm proceeds by choosing one of the disjuncts. Let d denote
the maximal odd priority occurring in this disjunct. Then we compute the states
from which player 2 wins by visiting priority d finitely often and visiting d − 1
infinitely often, or eventually avoiding both of them and winning according to
the lower priorities of this disjunct or one of the other disjuncts. In order to
compute this set of states, we first compute the set of states from which player 1
can force a visit to priority d; clearly we want to avoid these states so we con-
sider the arena without these states. We now search for a trap of player 1 that
is composed of two parts: first some states with priority d − 1 and player 2’s
attractor to these states, and second, some states that are winning for player 2
with the simpler winning condition. When we find such a trap, we conclude that
it is winning for player 2, remove it from the arena, and continue with the rest.
If we do not find such a trap for every one of the disjuncts, we conclude that
player 1 wins from all the states that remain.

Correctness and time complexity. The following theorem states the cor-
rectness and complexity of Algorithm 1. The correctness proof is similar to the
correctness proofs in [5, 22, 10]; see [3] for details. If we denote the run time
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Algorithm 1 Classical Algorithm for Disjunction of Parity Objectives
Input: a 2-player game graph G = ((S, E), (S1, S2)) and

priority functions p1 : S → [2d1], p2 : S → [2d2], . . . , pk : S → [2dk].
Output: W2 ⊆ S.
1. return DisjParityWin(G,p1, p2, . . . , pk);

procedure DisjParityWin(G,p1, p2, . . . , pk)
1. if (for all i = 1, 2, . . . , k we have di = 0)

1.1 return ∅;
2. foreach i = 1, 2, . . . , k such that di 6= 0

2.1 G1 := G \Attr1(MaxOdd(pi), G);
2.2 H1 := G1 \Attr2(MaxEven(pi), G1); j := 0;
2.3 repeat

2.3.1 j := j + 1;
2.3.2 Wj := DisjParityWin(Hj , p1, p2, . . . , pi : Hj → [2di − 1]+, . . . , pk);

2.3.3 W j := Attr1(Hj \Wj , Gj);

2.3.4 Gj+1 := Gj \W j ;
2.3.5 Hj+1 := Gj+1 \Attr2(MaxEven(pi), Gj+1);

2.4 until (Wj = ∅ or Wj = Hj);
2.5 if (Wj = Hj)

2.5.1 return Attr2(Gj , G) ∪ DisjParityWin(G \Attr2(Gj , G),p1, . . . , pk);
end foreach;

3. return ∅;

of the algorithm by T (n, d1, d2, . . . , dk), then the following recurrence holds:
T (n, d1, d2, . . . , dk) = O(m) + n2 ·

∑k
i=1 T (n − 1, d1, d2, . . . , di − 1, . . . , dk). The

bound T (n, d1, d2, . . . , dk) ≤ O(m · n2d) ·
(

d
d1,d2,...,dk

)
follows.

Theorem 3 (Correctness and run time). Given a game graph G =
((S,E), (S1, S2)) and priority functions p1 : S → [2d1], p2 : S → [2d2], . . . , pk :
S → [2dk], the following assertions hold.
1. If W is the output of Algorithm 1, then W = W2(DisjParity(p1, p2, . . . , pk)),

and S \W = W1(ConjParity(p1, p2, . . . , pk)).
2. The run time of Algorithm 1 is O(m · n2d) ·

(
d

d1,d2,...,dk

)
, where n = |S|,

m = |E|, and d =
∑k

i=1 di.

Remark. In the case of Rabin or Streett objectives the above algorithm is
identical to the one in [5, 22, 10]. Indeed, if every disjunct has 3 priorities, then
for all i we have di = 1, and

(
d

d1,d2,...dk

)
is d!. On the other hand, if we reduce

ConjParity(p1, . . . , pk) to a Streett objective, we get d = Σk
i=1di pairs, and the

classical Streett algorithm [22] would compute in time O(m · n2d · d!).

5 A New Algorithm

In this section we present a new algorithm for games with disjunctions and
conjunctions of parity objectives. The algorithm is inspired by the algorithm

10



of [12] for parity games. The algorithm is based on the notion of dominions; it
tries to identify small dominions cheaply. We now define dominions and study
the complexity to compute nonempty dominions (if they exist).

Dominions. Given a game graph G = ((S,E), (S1, S2)) with priority functions
p1, p2, . . . , pk, we consider the objectives Φ = ConjParity(p1, p2, . . . , pk) and Ψ =
DisjParity(p1, p2, . . . , pk) for player 1 and player 2, respectively.
1. A set U ⊆ S is a dominion for player 1, if U is a player-2 closed set and

player 1 has a winning strategy for objective Φ from all states in U in the
subgame G � U ;

2. A set U ⊆ S is a dominion for player 2, if U is a player-1 closed set and
player 2 has a winning strategy for objective Ψ from all states in U in the
subgame G � U .

The following lemma characterizes the computation of dominions (see [3] for
details).

Lemma 2. Let G be a game graph with n states. Consider priority func-
tions p1, p2, . . . , pk, and objectives Φ = ConjParity(p1, p2, . . . , pk) and Ψ =
DisjParity(p1, p2, . . . , pk) for player 1 and player 2, respectively. Let pi : S →
[2di] and d =

∑k
i=1 di. A dominion for player 1 or player 2 of size at most `,

for ` ≥ 1, if one exists, can be computed in time nO(`) ·O(d).

We use the following notation in the sequel. Given a game graph G =
((S,E), (S1, S2)) with priority functions p1, p2, . . . , pk, and objectives Φ =
ConjParity(p1, p2, . . . , pk) and Ψ = DisjParity(p1, p2, . . . , pk) we denote by
DisjParityDominion(G, p1, p2, . . . , pk, `) a procedure that returns a dominion of
size at most ` for player 2 (if one exists) and runs in time |S|O(`) · O(d); if
the procedure returns empty set, then all dominions for player 2 have at least
` + 1 states. Similarly, ConjParityDominion(G, p1, p2, . . . , pk, `) is a procedure
that returns a dominion of size at most ` for player 1 (if one exists) and runs in
time |S|O(`) · O(d); if the procedure returns the empty set, then all dominions
for player 1 have at least `+ 1 states.

The new algorithm. The new algorithm is based on the following simple
observations about the sets obtained by the classical algorithm.

Fact 1. The set Gj obtained in Step 2.5.1 of Algorithm 1 is a player-2 dominion
in the game G.

Fact 2. The set Hj \ Wj obtained in Step 2.3.2 of Algorithm 1 is a player-1
dominion in the subgame Gj .
With the above observations we obtain the new algorithm from the classical
algorithm as follows; the formal description is presented as Algorithm 2.
1. Before Step 2 of the classical algorithm (which corresponds to Step 3 of

Algorithm 2) we invoke DisjParityDominion(G, p1, p2, . . . , pk, `) with ` =⌈√
|S|

⌉
; if a nonempty set U is obtained, then we remove U and its player-2

attractor as a subset of the player-2 winning set, and proceed on the subgame;
else we proceed as the classical algorithm.
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Algorithm 2 New Algorithm for Disjunction of Parity Objectives
Input: a 2-player game graph G = ((S, E), (S1, S2)) and

priority functions p1 : S → [2d1], p2 : S → [2d2], . . . , pk : S → [2dk].
Output: W2 ⊆ S.
1. return DisjParityWin(G,p1, p2, . . . , pk);

procedure DisjParityWin(G,p1, p2, . . . , pk)
1. if (for all i = 1, 2, . . . , k we have di = 0)

1.1 return ∅;
2. U :=DisjParityDominion(G, p1, p2, . . . , pk, `) for ` =

lp
|S|

m
;

2.1 if (U 6= ∅)
2.1.1 return Attr2(U, G) ∪ DisjParityWin(G \Attr2(U, G),p1, p2, . . . , pk);

3. foreach i = 1, 2, . . . , k such that di 6= 0
3.1 G1 := G \Attr1(MaxOdd(pi), G);
3.2 H1 := G1 \Attr2(MaxEven(pi), G1); j := 0;
3.3 repeat

3.3.1 j := j + 1;

3.3.2 U :=ConjParityDominion(Hj , p1, p2, . . . , pk, `) for ` =
lp

|S|
m
;

3.3.2.1 if (U 6= ∅)
3.3.2.1.1 W j := Attr1(U, Gj); goto step 3.3.5;

3.3.3 Wj := DisjParityWin(Hj , p1, p2, . . . , pi : Hj → [2di − 1]+, . . . , pk);

3.3.4 W j := Attr1(Hj \Wj , Gj);

3.3.5 Gj+1 := Gj \W j ;
3.3.6 Hj+1 := Gj+1 \Attr2(MaxEven(pi), Gj+1);

3.4 until (Wj = ∅ or Wj = Hj);
3.5 if (Wj = Hj)

3.5.1 return Attr2(Gj , G) ∪ DisjParityWin(G \Attr2(Gj , G),p1, . . . , pk);
end foreach;

3. return ∅;

2. Before Step 2.3.2 of the classical algorithm (which corresponds to Step 3.3.3
of Algorithm 2), we invoke ConjParityDominion(G, p1, p2, . . . , pk, `) with ` =⌈√

|S|
⌉
; if a nonempty set U is obtained, then we remove U and its player-

1 attractor and proceed to Step 2.3.4 (Step 3.3.5 of Algorithm 2); else we
proceed as the classical algorithm.

Correctness. The correctness of Algorithm 2 is immediate from the correctness
of the classical algorithm and from Proposition 1.
Time complexity. We now analyze the time complexity of Algorithm 2. Let
us denote by T (n, d1, d2, . . . , dk) the run time of the algorithm on graphs with n
states and priority functions p1, p2, . . . , pk with pi : S → [2di], for i = 1, 2, . . . , k.
Let d =

∑k
i=1 di. By Lemma 2, Step 2 takes nO(

√
n) · O(d) time. For simplicity

we will drop the O(·) from O(d); the whole analysis can be easily carried out
with O(d). We now analyze the following cases.
1. If Step 2 succeeds, then at least one state is removed and we need to solve

a subgame with one state less (which takes time T (n− 1, d1, d2, . . . , dk)).
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2. If Step 2 fails, then any dominion for player 1 in G must have size at least√
n; hence the dominion Gj discovered at Step 3.5.1 must be of size at

least
√
n (as otherwise it would have been discovered in Step 2). Hence the

DisjParityWin call at Step 3.5.1 requires to solve a subgame of size at most
n −

√
n, and this requires time T (n −

√
n, d1, d2, . . . , dk). We now analyze

the loop in Step 3.3: we analyze the work for one priority function, and
then sum it up for all k priority functions. For a fixed priority function pi,
Step 3.3.2 is executed at most n times, and by Lemma 2, each time it requires
at most nO(

√
n) · d time. Hence the total work of Step 3.3.2 requires at most

n · nO(
√

n) · d = nO(
√

n) · d time. We now analyze Step 3.3.3: since 3.3.3 is
invoked upon failure of Step 3.3.2, the discovered set Hj \Wj (which is a
dominion) has at least size

√
n. Hence this step is executed

√
n times; the

first time on a game graph with n − 1 states and the range of the priority
function pi being [2di − 2], and each subsequent time, with at most n−

√
n

states and the range of pi being [2di − 2]. Hence the total work of the loop
for the priority function pi is

nO(
√

n)·d+T (n−1, d1, . . . , di−1, . . . , dk)+
√
n·T (n−

√
n, d1, . . . , di−1, . . . , dk).

Thus the total work when Step 2 fails is obtained by summing over i = 1 to
k, and then adding T (n −

√
n, d1, d2, . . . , dk) (the work after Step 3.5.1 on

the reduced game graph). Therefore we conclude that the total work when
Step 2 fails is

k∑
i=1

(
nO(

√
n) · d +T (n− 1, d1, d2, . . . , di − 1, . . . , dk) (1)

+
√
n · T (n−

√
n, d1, d2, . . . , di − 1, . . . , dk)

)
+ T (n−

√
n, d1, d2, . . . , dk).

Thus we obtain that T (n, d1, d2, . . . , dk) = nO(
√

n)·d+max{Term1,Term2}, where
Term1 = T (n−1, d1, d2, . . . , dk) (when Step 2 succeeds) and Term2 = Expression
(1) (when Step 2 fails). If T (n, d1, d2, . . . , dk) = nO(

√
n)·d+T (n−1, d1, d2, . . . , dk),

then easily we obtain that T (n, d1, d2, . . . , dk) = nO(
√

n) · d · n = nO(
√

n) · d. We
now analyze the recurrence T (n, d1, d2, . . . , dk) = nO(

√
n) ·d+Term2, where Term2

is the Expression (1). The following lemmas analyze the recurrence. Lemma 3
follows by induction.

Lemma 3. Consider the following recurrence: T (n, d1, d2, . . . , dk) is nO(
√

n) ·d+
(1) if n ≥ 2, and

(
d

d1,d2,...,dk

)
otherwise. Then T (n, d1, d2, . . . , dk) ≤ nO(

√
n) · k ·

d ·
(

d
d1,d2,...,dk

)
· t(n), where t(n) is 1 + t(n− 1) + (

√
n+ 1) · t(n−

√
n) if n ≥ 2,

and 1 otherwise.

We now show that the recurrence t(n) = 1 + t(n − 1) + (
√
n + 1) · t(n −

√
n)

satisfies the bound that t(n) = nO(
√

n). In [12] a similar recurrence was analyzed.
In [12] the recurrence t(n) = 1 + t(n− 1) + t(n−

√
n) was proved to satisfy the

bound nO(
√

n). In the next lemma we show that the bound of [12] can be proved
also for our recurrence.
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Lemma 4. Consider the following recurrence: t(n) is 1 + t(n− 1) + (
√
n+ 1) ·

t(n−
√
n) if n ≥ 2, and 1 otherwise. Then t(n) = nO(

√
n).

Proof. To bound t(n) we will analyze the following tree:
1. there is a root labeled n (this correspond to the term 1 of the recurrence);
2. if n > 1, then it has a left child labeled n− 1 and the sub-tree of t(n− 1) is

attached to this child (this correspond to the term t(n−1) of the recurrence);
3. if n > 1, then it has (d

√
ne+ 1) right children labeled n−b

√
nc and the sub-

tree of t (n− b
√
nc) is attached to each of the right children (this correspond

to the term (
√
n + 1) · t(n −

√
n) of the recurrence). For simplicity we will

drop the ceilings d·e and floors b·c below.
The number of nodes in the tree is a bound for our recurrence. We now bound
the number of the nodes in the tree. A node in the tree with no sub-tree is
referred as a leaf.
Length of a path. Any path in the tree from root down to a leaf has length at
most n (as the label decrease by at least 1 at every step).
Right children in a path. We now bound the number right children on a path
from the root down to a leaf. Consider a path from the root to a leaf and we
consider the number of right children possible in a segment of the path between
label k and k

2 . For every choice of a right children appear in this segment the

label goes down by at least
√

k
2 ; and hence the number of possible right children

in this segment is at most
k
2√

k
2

=

√
k

2
. Hence the number of right children

in a path from root to the leaf can be bounded by considering the bound on
segments: n to n

2 ; then n
2 to n

4 ; then n
4 to n

8 ; and so on. This yields the bound
√
n ·

( ∑∞
i=1

1√
2i

)
= O(

√
n).

The number of paths. We now bound the number of paths in the tree. The length
of a path is at most n; there are at most O(

√
n) right children; every choice of

a left child in the path is unique and for every choice of a right children there
are at most (

√
n + 1) choices (since any node can have at most (

√
n + 1) right

children). Hence we obtain the following bound for the number distinct paths(
n

O(
√
n)

)
· (
√
n+ 1)O(

√
n) = nO(

√
n). Hence the desired result follows.

Combining the analysis of the recurrence and the correctness of Algorithm 2, we
obtain the following result.

Theorem 4 (Correctness and run time). Given a game graph G =
((S,E), (S1, S2)) and priority functions p1 : S → [2d1], p2 : S → [2d2], . . . , pk :
S → [2dk], the following assertions hold.
1. If W is the output of Algorithm 2, then W=W2(DisjParity(p1, p2, . . . , pk)),

and S \W=W1(ConjParity(p1, p2, . . . , pk)).
2. The run time of Algorithm 2 is nO(

√
n) ·O(k · d) ·

(
d

d1,d2,...,dk

)
, where n = |S|

and d =
∑k

i=1 di.
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Remark. In the special case of Rabin and Streett objectives with k pairs, the
run time of Algorithm 2 is nO(

√
n) ·O(k2) · k!. For comparison, the algorithm in

[16] works in time O(m ·nk+1 · k · k!). We conclude that the algorithm presented
above is of better complexity when the number of pairs is larger than

√
n.
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