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Abstract. We introduce strategy logic, a logic that treats strategies in
two-player games as explicit first-order objects. The explicit treatment
of strategies allows us to handle nonzero-sum games in a convenient and
simple way. We show that the one-alternation fragment of strategy logic,
is strong enough to express Nash-equilibrium, secure-equilibria, as well
as other logics that were introduced to reason about games, such as
ATL, ATL∗, and game-logic. We show that strategy logic is decidable, by
constructing tree automata that recognize sets of strategies. While for
the general logic, our decision procedure is non-elementary, for the simple
fragment that is used above we show that complexity is polynomial in
the size of the game graph and optimal in the formula (ranging between
2EXPTIME and polynomial depending on the exact formulas).

1 Introduction

In graph games, two players move a token across the edges of a graph in order
to form an infinite path. The vertices are partitioned into player-1 and player-2
nodes, depending on which player chooses the successor node. The objective of
player 1 is to ensure that the resulting infinite path lies inside a given winning set
Ψ1 of paths. If the game is zero-sum, then the goal of player 2 is to prevent this.
More generally, in a nonzero-sum game, player 2 has her own winning set Ψ2.

Zero-sum graph games have been widely used in the synthesis (or control)
of reactive systems [19, 21], as well as for defining and checking the realizability
of specifications [1, 7], the compatibility of interfaces [6], simulation relations
between transition systems [16, 10], and for generating test cases [3], to name
just a few of their applications. The study of nonzero-sum graph games has been
more recent, with assume-guarantee synthesis [4] as one of its applications.

The traditional formulation of graph games consists of a two-player graph
(the “arena”) and winning conditions Ψ1 and Ψ2 for the two players (in the
zero-sum case, Ψ1 = ¬Ψ2), and asks for computing the winning sets W1 and W2

of vertices for the two players (in the zero-sum case, determinacy [15] ensures
that W1 = ¬W2). To permit the unambiguous, concise, flexible, and structured
expression of problems and solutions involving graph games, researchers have
introduced logics that are interpreted over two-player graphs. An example is the
temporal logic ATL [2], which replaces the unconstrained path quantifiers of CTL
with constrained path quantifiers: while the CTL formula ∀Ψ asserts that the
path property Ψ is inevitable —i.e., Ψ holds on all paths from a given state—



the ATL formula 〈〈1〉〉Ψ asserts that Ψ is enforcible by player 1 —i.e., player 1 has
a strategy so that Ψ holds on all paths that can result from playing that strat-
egy. The logic ATL has proved useful for expressing proof obligations in system
verification, as well as for expressing subroutines of verification algorithms.

However, because of limitations inherent in the definition of ATL, several
extensions have been proposed [2], among them the temporal logic ATL∗, the
alternating-time µ-calculus, and a so-called game logic of [2]: these are motivated
by expressing general ω-regular winning conditions, as well as tree properties of
computation trees that result from fixing a strategy of one player (module check-
ing [14]). All of these logics treat strategies implicitly through modalities. This
is convenient for zero-sum games, but awkward for nonzero-sum games. Indeed,
it was not known if Nash equilibria, one of the most fundamental concepts in
game theory, can be expressed in these logics.

In order to systematically understand the expressiveness of game logics, and
to specify nonzero-sum games, we study in this paper a logic that treats strategies
as explicit first-order objects. For example, using explicit strategy quantifiers,
the ATL formula 〈〈1〉〉Ψ becomes (∃x ∈ Σ)(∀y ∈ Γ )Ψ(x, y) —i.e., “there exists
a player-1 strategy x such that for all player-2 strategies y, the unique infinite
path that results from the two players following the strategies x and y, satisfies
the property Ψ .” Strategies are a natural primitive when talking about games
and winning, and besides ATL and its extensions, Nash equilibria are naturally
expressible in strategy logic.

As an example, we define winning secure equilibria [5] in strategy logic. A
winning secure equilibrium is a special kind of Nash equilibrium, which is im-
portant when reasoning about the components of a system, each with its own
specification. At such an equilibrium, both players can collaborate to satisfy the
combined objective Ψ1 ∧ Ψ2. Moreover, whenever player 2 decides to abandon
the collaboration and enforce ¬Ψ1, then player 1 has the ability to retaliate and
enforce ¬Ψ2; that is, player 1 has a winning strategy for the relativized objective
Ψ2 =⇒ Ψ1 ( =⇒ denotes implication). The symmetric condition holds for
player 2; in summary: (∃x ∈ Σ)(∃y ∈ Γ )[(Ψ1 ∧ Ψ2)(x, y) ∧ (∀y′ ∈ Γ )(Ψ2 =⇒
Ψ1)(x, y′) ∧ (∀x′ ∈ Σ)(Ψ1 =⇒ Ψ2)(x′, y)]. Note that the same player-1 strategy
x which is involved in producing the outcome Ψ1 ∧ Ψ2, must be able to win for
Ψ2 =⇒ Ψ1; such a condition is difficult to state without explicit quantification
over strategies.

Our results are twofold. First, we study the expressive power of strategy logic:
we show that the logic is rich enough to express many interesting properties
of zero-sum and nonzero-sum games that we know, including ATL∗, game logic
(and thus module checking), Nash equilibria, and secure equilibria. Indeed, ATL∗

and the equilibria can be expressed in a simple fragment of strategy logic with
no more than one quantifier alternation (note the ∃∀ alternation in the above
formula for defining winning secure equilibria). We also show that the simple
one-alternation fragment can be translated to ATL∗ (the translation in general
is double exponential in the size of the formula) and thereby the equilibria can
be expressed in ATL∗.
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Second, we analyze the computational complexity of strategy logic. We show
that, provided all winning conditions are specified in linear temporal logic (or by
word automata), strategy logic is decidable. The proof goes through automata
theory, using tree automata to specify the computation trees that result from
fixing the strategy of one player. The complexity is nonelementary, with the
number of exponentials depending on the quantifier alternation depth in the
formula. In the case of the simple one-alternation fragment of strategy logic,
which suffices to express ATL∗ and equilibria, we obtain much better bounds:
for example, for infinitary path formulas (path formulas that are independent of
finite prefixes), there is a linear translation of a simple one-alternation fragment
formula to an ATL∗ formula.

In summary, strategy logic provides a decidable language for talking in a
natural and uniform way about all kinds of properties on game graphs, includ-
ing zero-sum, as well as nonzero-sum, objectives. Of course, for more specific
purposes, such as zero-sum reachability games, more restrictive and less expen-
sive logics, such as ATL, are more appropriate; however, the consequences of
such restrictions, and their relationships, is best studied within a clean, general
framework such as the one provided by strategy logic. In other words, strategy
logic can play for reasoning about games the same role that first-order logic with
explicit quantification about time has played for temporal reasoning: the latter
has been used to categorize and compare temporal logics (i.e., logics with implicit
time), leading to a notion of completeness and other results in correspondence
theory [13, 9].

2 Graph Games

A game graph G = ((S, E), (S1, S2)) consists of a directed graph (S, E) with a
finite state space S, a set E of edges and a partition (S1, S2) of the state space
S. The states in S1 are player 1 states where player 1 chooses the successor and
the states in S2 are player 2 states where player 2 chooses the successor. For a
state s we write E(s) to denote the set { t | (s, t) ∈ E } of out-going edges from
s. We assume that every state s ∈ S has at least one out-going edge, i.e., E(s)
is non-empty for all states.
Plays. A game is played by two players: player 1 and player 2, who form an
infinite path in the game graph by moving a token along edges. They start by
placing the token on an initial state and then they take moves indefinitely in the
following way. If the token is on a state in S1, then player 1 moves the token
along one of the edges going out of the state. If the token is on a state in S2,
then player 2 does likewise. The result is an infinite path π = 〈s0, s1, s2, . . .〉 in
the game graph; we refer to such infinite paths as plays. Hence given a game
graph G, a play is an infinite sequence 〈s0, s1, s2, . . .〉 of states such that for all
k ≥ 0, (sk, sk+1) ∈ E. We write π for a play, and Π for the set of all plays.
Strategies. A strategy for a player is a recipe that specifies how to extend plays.
Formally, a strategy σ for player 1 is a function σ : S∗ · S1 → S that given a
finite sequence of states, representing the history of the play so far, that ends
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in a player 1 state, chooses the next state. A strategy must choose only avail-
able successors, i.e., for all w ∈ S∗ and all s ∈ S1 we have σ(w · s) ∈ E(s).
Strategies for player 2 are defined analogously. We denote by Σ and Γ the set
of all strategies for player 1 and player 2, respectively. Given a starting state s,
a strategy σ for player 1 and a strategy τ for player 2, there is a unique play,
denoted as π(s, σ, τ) = 〈s0, s1, s2, . . .〉, that is defined as follows: s = s0, and for
all k ≥ 0, (a) if sk ∈ S1, then σ(s0, s1, . . . , sk) = sk+1 and (b) if sk ∈ S2, then
τ(s0, s1, . . . , sk) = sk+1.

3 Strategy Logic

In this section we present strategy logic. Let AP be a finite set of atomic propo-
sitions. A labeled game graph (G, AP ,L) consists of a game graph G along with
a labeling function L : S → 2AP that maps every state s with the set of atomic
propositions L(s) true in state s. There is a special atomic proposition true
such that true ∈ L(s), for all s ∈ S. We now define the strategy logic that we
consider in this paper. The logic consists of basic path formulas (as in LTL),
basic strategy formulas that are path formulas with strategy variables, and with
basic strategy formulas as atomic propositions we define a first-order logic of
quantified strategy formulas. A state formula is obtained as boolean combina-
tion of closed quantified strategy formulas (i.e., formula with no free variables).
We denote state formulas, basic path formulas, quantified strategy formulas, and
closed quantified strategy formuals by Ω,Ψ,Λ and Φ, respectively. We use vari-
ables x, x1, x2, . . . to range over strategies for player 1 and denote the set of such
variables as X; and use variables y, y1, y2, . . . to range over strategies for player 2
and denote the set of such variables as Y .

Syntax. The state formulas Ω, basic path formulas Ψ , and quantified strategy
formulas Λ are defined as follows:

Ω ::= p | Φ | Ω ∧Ω | ¬Ω, where p ∈ AP.

Ψ ::= Ω | Ψ ∧ Ψ | ¬Ψ | ©(Ψ) | Ψ U Ψ.

Λ ::= Ψ(x, y) | Λ ∧ Λ | ¬Λ | Qx.Λ | Qy.Λ, where Q ∈ { ∃,∀ }, x ∈ X, y ∈ Y.

A closed formula Φ is a quantified strategy formula where all strategy variables
are quantified. Observe that the closed formulas can be reused as atomic propo-
sitions. We formally define the notion of free variables and closed formulas as
follows.
1. For a path formula Ψ we have Free(Ψ) = ∅.
2. For a quantified strategy formula Λ we inductively define Free(Λ) as follows:

– If Λ = Ψ(x, y), then Free(Λ) = { x, y }.
– If Λ = Λ1 ∧ Λ2, then Free(Λ) = Free(Λ1) ∪ Free(Λ2).
– If Λ = ¬Λ1, then Free(Λ) = Free(Λ1).
– If Λ = Qx.Λ1, then Free(Λ) = Free(Λ1) \ { x }.
– If Λ = Qy.Λ1, then Free(Λ) = Free(Λ1) \ { y }.
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A quantified strategy formula Λ is closed if Free(Λ) = ∅, i.e., all the strategy
variables appearing in the formula are quantified.

Strategy assignments. For a set Z ⊆ X ∪ Y , an assignment AZ assigns: (a) for
every variable x ∈ Z ∩ X, a strategy AZ(x) ∈ Σ; and (b) for every variable
y ∈ Z∩Y , a strategy AZ(y) ∈ Γ . For a set U ⊆ Z we denote by AZ � U to be the
restriction of the assignment AZ to the set U . Given a strategy assignment AZ

and σ ∈ Γ , we denote by A′
Z∪{ x } = AZ∪x← σ the extension of the assignment

AZ defined as follows: for w ∈ Z ∪ { x } we have AZ∪{ x }(w) = AZ(w) if w 6= x
and σ otherwise. The definition for AZ ∪ y ← τ is similar.

Semantics for quantified strategy formulas. The semantics for path for-
mulas Ψ is the usual semantics of LTL. We now describe the satisfaction in state
s of a quantified strategy formula Λ with respect to a strategy assignment AZ

where Free(Λ) ⊆ Z.

Case 1. Λ = Ψ(x, y). (s,AZ) |= Ψ(x, y) iff π(s,AZ(x),AZ(y)) |= Ψ.

Case 2. Λ = Λ1 ∧ Λ2. (s,AZ) |= Λ1 ∧ Λ2 iff (s,AZ � Free(Λ1)) |= Λ1

and (s,AZ � Free(Λ2)) |= Λ2.

Case 3. Λ = ¬Λ1. (s,AZ) |= ¬Λ1 iff (s,AZ) 6|= Λ1.

Case 4. Λ = ∃x.Λ1. (s,AZ) |= Λ iff ∃σ ∈ Σ. (s,AZ ∪ x← σ) |= Λ1.

Case 5. Λ = ∀x.Λ1. (s,AZ) |= Λ iff ∀σ ∈ Σ. (s,AZ ∪ x← σ) |= Λ1.

Case 6. Λ = ∃y.Λ1. (s,AZ) |= Λ iff ∃τ ∈ Γ. (s,AZ ∪ y ← τ) |= Λ1.

Case 7. Λ = ∀y.Λ1. (s,AZ) |= Λ iff ∀τ ∈ Γ. (s,AZ ∪ y ← τ) |= Λ1.

The semantics of a closed formula is as follows: (a) [[Φ]] = { s ∈ S | (s,A∅) |= Φ }
and (b) [[Ψ ]] = { s ∈ S | ∃σ. ∃τ. π(s, σ, τ) |= Ψ }.

We also introduce a simpler fragment of the logic where path formulas do not
allow nesting of temporal operators. In a sense, this fragment has a CTL-like
flavor and, as we show later, results in decision procedure of lower complex-
ity. Formally, in the definition above, path formulas should be restricted to the
following.

Ψ ::= Ω | Ψ ∧ Ψ | ¬Ψ | ©(Ω) | Ω U Ω.

We call this subset the unnested path formula subset.

Examples of strategy logic formulas. We now present some examples of
formulas of strategy logic. In the examples for a path formula Ψ we use the
following notations: 3Ψ = true U Ψ and 2Ψ = ¬(3¬Ψ), i.e., 3Ψ and 2Ψ
denotes eventually and always conditions, respectively. We now show how to
express formulas of the logic ATL and ATL∗ [2]. The alternating time temporal-
logic ATL∗ consists of path formulas along with alternating path operators 〈〈1〉〉,
and 〈〈2〉〉; existential path operator 〈〈1, 2〉〉 and universal path operator 〈〈∅〉〉. The
logic ATL can be obtained as a subclass of ATL∗ where only unnested path
formulas are considered. Some examples of ATL and ATL∗ formulas and the

5



corresponding strategy logic formula is shown below: for a proposition p

〈〈1〉〉(3p) = { s ∈ S | ∃σ. ∀τ. π(s, σ, τ) |= 3p } = [[∃x. ∀y. (3p)(x, y)]];

〈〈2〉〉(23p) = { s ∈ S | ∃τ. ∀σ. π(s, σ, τ) |= 23p } = [[∃y. ∀x. (23p)(x, y)]];

〈〈1, 2〉〉(2p) = { s ∈ S | ∃σ. ∃τ. π(s, σ, τ) |= 2p }. = [[∃x. ∃y. (2p)(x, y)]].

Consider the strategy logic formula: Φ = ∃x. (∃y1. (2p)(x, y1) ∧
∃y2. (2q)(x, y2)). The formula is different from the formula 〈〈1, 2〉〉(2p) ∧
〈〈1, 2〉〉(2q) as the same strategy x must be used. It follows from the results
of [2] that the formula Φ cannot be expressed in ATL∗.

One of the nice features of strategy logic is that we can restrict the kind
of strategies that interest us. For example, the following formula describes the
states from which player 1 can ensure the goal Φ1 while playing against any
strategy that ensures Φ2 for player 2.

∃x1.∀y1.((∀x2.Φ2(x2, y1)) =⇒ Φ1(x1, y1))

The mental exercise of “I know that you know that I know that you know ...”
can be played in strategy logic up to any constant level. The analog of the
above formula, where the level of knowledge is nested up to level k is easy to
write. In the full version, we show a game graph on which the knowledge nesting
changes the fact whether player 1 can or cannot win. Formally, the formula above
(“knowledge nesting 1”) is different from the following formula with “knowledge
nesting 2”:

∃x1.∀y1.((∀x2.(∀y2.Φ1(x2, y2)) =⇒ Φ2(x2, y1)) =⇒ Φ1(x1, y1))

As another example, we consider the notion of dominating and dominated
strategies [18]. Given a path formula Ψ , a strategy x1 for player 1 dominates
strategy x2, if forall strategies y for player 2 whenever x2 and y satisfies Ψ , then
x1 and y satisifies Ψ . A strategy x1 is dominating if it dominates every strategy
x2. The following formula expresses that x1 is a dominating strategy

∀x2.∀y. Ψ(x2, y) =⇒ Ψ(x1, y).

Given a path formula Ψ , a strategy x1 is dominated if there is a strategy x2

such that whenever x1 satisfies Ψ , then x2 satisfies Ψ , and in addition, for some
strategy of player 2 the strategy x2 satisfies Ψ , while x1 fails to satisfy Ψ . The
following formula expresses that x1 is a dominated strategy

∃x2.((∀y1. Ψ(x1, y1) =⇒ Ψ(x2, y1)) ∧ (∃y2. Ψ(x2, y2) ∧ ¬Ψ(x1, y2)))

The formulas for dominating and dominated strategies express properties about
strategies and are not closed formulas.

4 Simple One-alternation Fragment of Strategy Logic

We define a subset of the logic. Intuitively, the alternation depth of a formula is
the number of changes between ∃ and ∀ quantifiers (a formal definition is given
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in Section 6). The subset we consider here is a subset of the formulas that allow
only one alternation of quantifiers. We refer to this subset as the simple one-
alternation fragment. We show later how several nonzero-sum game formulations
can be easily captured in this fragment.
Syntax and semantics. We are interested in state formulas that depend on
three path formulas: Ψ1, Ψ2, and Ψ3. We would like to characterize the cases where
there exist player 1 and player 2 strategies that win Ψ1 and Ψ2, respectively, and
at the same time cooperate to achieve Ψ3; or the dual of such cases. We use
boolean combination of formulas of the following types and allow them to be
used as state formulas as well.

∃x1. ∃y1. ∀x2. ∀y2. Ψ1(x1, y2) ∧ Ψ2(x2, y1) ∧ Ψ3(x1, y1)
∀x1. ∀y1. ∃x2. ∃y2. Ψ1(x1, y2) ∧ Ψ2(x2, y1) ∧ Ψ3(x1, y1)

Obviously, both formulas have one quantifier alternation. We introduce the fol-
lowing notation for formulas of this type.

(∃ Ψ1, ∃ Ψ2, Ψ3) | (∀ Ψ1,∀ Ψ2, Ψ3)

Notation. For a path formula Ψ and a state s we define the following: the set
Win1(s, Ψ) = { σ ∈ Σ | ∀τ ∈ Γ. π(s, σ, τ) |= Ψ } denotes the set of player 1
strategies that satisfy the goal Ψ against all player 2 strategies, we also refer to
the strategies in Win1(s, Ψ) as the winning strategies for player 1 for Ψ from s.
Analogously we define Win2(s, Ψ) = { τ ∈ Γ | ∀σ ∈ Σ. π(s, σ, τ) |= Ψ }. Using
the notation of Win1 and Win2 the semantics of these state formulas can be also
written as follows.
1. Let Φ = (∃ Ψ1, ∃ Ψ2, Ψ3), then [[Φ]] = { s | ∃σ ∈ Win1(s, Ψ1). ∃τ ∈

Win2(s, Ψ2). π(s, σ, τ) |= Ψ3 }.
2. Let Φ = (∀ Ψ1, ∀ Ψ2, Ψ3), then [[Φ]] = { s | ∀σ ∈ Win1(s, Ψ1). ∀τ ∈

Win2(s, Ψ2). π(s, σ, τ) |= Ψ3 }.

5 Expressive Power of Strategy Logic

In this section we show that ATL∗, ATL [2], and several formulations of nonzero-
sum games can be expressed in the simple one-alternation fragment. We also
show that game logic, which was introduced in [2] to express the module checking
problem, can be expressed in the one-alternation fragment.
Expressing ATL∗ and ATL. The basic semantics of the formulas of ATL∗ and
how they can be expressed in simple one-alternation fragment is shown below.
For a path formula Ψ we have

〈〈1〉〉(Ψ) = { s ∈ S | ∃σ.∀τ.π(s, σ, τ) |= Ψ } = [[∃x.∀y.Ψ(x, y)]] = [[(∃Ψ,∃true, true)]]

〈〈1, 2〉〉(Ψ) = { s ∈ S | ∃σ.∃τ.π(s, σ, τ) |= Ψ }. = [[∃x.∃y.Ψ(x, y)]] = [[(∃true,∃true, Ψ)]].

The formulas 〈〈2〉〉(Ψ) and 〈〈∅〉〉(Ψ) can be expressed similarly. Hence the logic
ATL∗ can be expressed in the simple one-alternation fragment of strategy logic,
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and ATL can be expressed in the simple-one alternation fragment with unnested
path formulas.
Nash equilibrium in simple one-alternation fragment. In nonzero-sum
games the input is a game graph and two path formulas for the players. We
start with the definition of payoff profile.
Payoff profile. Given a game graph G, path formulas Ψ1 and Ψ2, strategies σ and
τ for the players, and a state s, the payoff for the players are defined as follows:

p1(s, σ, τ, Ψ1) =

{
1 if π(s, σ, τ) |= Ψ1

0 otherwise;
p2(s, σ, τ, Ψ2) =

{
1 if π(s, σ, τ) |= Ψ2

0 otherwise;

A payoff profile consists of payoffs for player 1 and player 2.
We now define Nash equilibrium [11] and show they can be expressed in simple
one-alternation fragment.
Nash equilibrium. Given a game graph G and path formulas Ψ1 and Ψ2, a strategy
profile (σ∗, τ∗) is a Nash equilibrium at a state s iff the following conditions hold:

(1) ∀σ ∈ Σ. p1(s, σ, τ∗, Ψ1) ≤ p1(s, σ∗, τ∗, Ψ1);

(2) ∀τ ∈ Γ. p2(s, σ∗, τ, Ψ2) ≤ p2(s, σ∗, τ∗, Ψ2).

We define the Nash equilibrium profile set of states as follows: for i, j ∈ { 0, 1 }
we define

NE (i, j) = { s ∈ S | exists a Nash equilibrium (σ∗, τ∗) at s such that
p1(s, σ∗, τ∗, Ψ1) = i and p2(s, σ∗, τ∗, Ψ2) = j }

Expressing Nash equilibrium. We now present how the Nash equilibrium states
can be expressed in simple one-alternation fragment. The formulas are as follows:

NE (1, 1) = [[(∃true, ∃true, Ψ1 ∧ Ψ2)]]; NE (0, 0) = [[(∃(¬Ψ2), ∃(¬Ψ1), true)]];
NE (1, 0) = { s ∈ S | ∃σ. (∃τ. π(s, σ, τ) |= Ψ1 ∧ ∀τ ′. π(s, σ, τ ′) |= ¬Ψ2) }

= [[(∃(¬Ψ2), ∃true, Ψ1)]];
NE (0, 1) = [[(∃true, ∃(¬Ψ1), Ψ2)]].

Secure equilibrium in simple one-alternation fragment. A notion of con-
ditional competitiveness in nonzero-sum games was formalized as the notion
of secure equilibrium [5]. We show how secure equilibrium can be expressed in
simple one-alternation fragment. We first define a lexico-graphic payoff profile
ordering and then the notion of secure equilibrium.
Lexico-graphic ordering. We define two lexico-graphic ordering �1 and �2 of
payoff profiles for players 1 and 2, respectively as follows: for payoff profiles
(p1, p2) and (p′1, p

′
2) we have

(p1, p2) �1 (p′1, p
′
2) iff (p1 ≤ p′1) ∨ (p1 = p′1 ∧ p2 ≥ p′2)

(p1, p2) �2 (p′1, p
′
2) iff (p2 ≤ p′2) ∨ (p2 = p′2 ∧ p1 ≥ p′1)
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Secure equilibrium. A secure equilibrium is a Nash equilibrium with respect to
the ordering �1 and �2. Formally, given a game graph G and path formulas
Ψ1 and Ψ2, a strategy profile (σ∗, τ∗) is a secure equilibrium at a state s iff the
following conditions hold:

∀σ ∈ Σ. (p1(s, σ, τ∗, Ψ1), p2(s, σ, τ∗, Ψ2)) �1 (p1(s, σ∗, τ∗, Ψ1), p2(s, σ∗, τ∗, Ψ2));

∀τ ∈ Γ. (p1(s, σ∗, τ, Ψ1), p2(s, σ∗, τ, Ψ2)) �2 (p1(s, σ∗, τ∗, Ψ1), p2(s, σ∗, τ∗, Ψ2)).

We define the secure equilibrium profile set of states as follows: for i, j ∈ { 0, 1 }
we define

SE (i, j) = { s ∈ S | exists a secure equilibrium (σ∗, τ∗) at s such that
p1(s, σ∗, τ∗, Ψ1) = i and p2(s, σ∗, τ∗, Ψ2) = j }

The maximal secure equilibrium set of states are defined as follows: for i, j ∈
{ 0, 1 } we define

MS (i, j) = {s ∈ SE (i, j) | if s ∈ SE (i′, j′), then (i′, j′) �1 (i, j)∧(i′, j′) �2 (i, j)}.

The following characterization of the maximal secure equilibrium states was
established in [5]:

MS (1, 0) = { s ∈ S |Win1(s, Ψ1 ∧ ¬Ψ2) 6= ∅ };
MS (0, 1) = { s ∈ S |Win2(s, Ψ2 ∧ ¬Ψ1) 6= ∅ };
MS (1, 1) = { s ∈ S | ∃σ ∈Win1(s, Ψ2 → Ψ1). ∃τ ∈Win2(s, Ψ1 → Ψ2). π(s, σ, τ) |= Ψ1 ∧ Ψ2 };
MS (0, 0) = S \ (MS (1, 0) ∪MS (0, 1) ∪MS (1, 1)).

Expressing secure equilibrium. From the characterization of maximal secure equi-
librium states, it follows that the maximal secure equilibrium states can be ex-
pressed in simple one-alternation fragment:

MS (1, 0) = [[(∃(Ψ1 ∧ ¬Ψ2), ∃true, true)]];
MS (0, 1) = [[(∃true, ∃(Ψ2 ∧ ¬Ψ1), true)]];
MS (1, 1) = [[(∃(Ψ2 → Ψ1), ∃(Ψ1 → Ψ2), Ψ1 ∧ Ψ2)]];

The set MS (0, 0) can be obtained by complementing the disjunction of the for-
mulas to express MS (1, 1),MS (0, 1), and MS (1, 1).
Game logic and module checking. Game logic was introduced in [2] to
express the module checking problem. The basic syntax is as follows: Game-
logic state formulas are of the following forms: ∃∃{ 1 }.θ or ∃∃{ 2 }.θ, where θ
is a game-logic tree formula. Game-logic tree formulas are obtained as one of
the following: (a) game-logic state formulas, (b) Boolean combination of game-
logic tree formulas, and (c) ∃Ψ or ∀Ψ , where Ψ is a path formula. The informal
semantics is as follows: a formula ∃∃{ 1 }.θ is true if there is a strategy σ for
player 1, such that the game-logic tree formula θ is satisfied in the tree generated
fixing the strategy σ for player 1 (see [2] for details). Game logic can be expressed
in the one-alternation fragment (but not in the simple one-alternation fragment)
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of strategy logic. Thus, the module checking problem can be expressed in the
one-alternation fragment. The following example illustrates how to translate a
game logic formula into a one-alternation strategy logic formula:

[[∃∃{1}.(∃Ψ1 ∧ ∀Ψ2 ∨ ∀Ψ3)]] = [[∃x. (∃y1. Ψ1(x, y1) ∧ ∀y2.Ψ2(x, y2) ∨ ∀y3.Ψ3(x, y3)]].

The following theorem compares the expressiveness of strategy logic and its
fragment with ATL∗, game logic and alternating µ-calculus (proof in Appendix).

Theorem 1. 1. The expressiveness of simple one-alternation fragment and
ATL∗ coincide and one-alternation fragment is more expressive that ATL∗.

2. The one-alternation fragment is more expressive than game logic and game
logic is more expressive than the simple-one alternation fragment.

3. Alternating µ-calculus is not as expressive as alternation free fragment of
strategy logic. Strategy logic is not as expressive as alternating µ-calculus.
Monadic Seconder Order (MSO) logic is more expressive than strategy logic.

6 Model Checking Strategy Logic

In this section we solve the model checking problem of strategy logic. We encode
strategies by using strategy trees. We reason about strategy trees using tree
automata, making our solution similar to Rabin’s usage of tree automata for
solving Monadic Second Order satisfiability problem [20]. We give the necessary
definitions and proceed with the algorithm.
Trees and tree automata. Given a finite set Υ of directions, an Υ -tree is a
set T ⊆ Υ ∗ such that if x · υ ∈ T , where υ ∈ Υ and x ∈ Υ ∗, then also x ∈ T .
The elements of T are called nodes, and the empty word ε is the root of T . For
every υ ∈ Υ and x ∈ T , the node x is the parent of x · υ. Each node x 6= ε of T
has a direction in Υ . The direction of the root is the symbol ⊥ (we assume that
⊥ 6∈ Υ ). The direction of a node x · υ is υ. We denote by dir(x) the direction of
node x. An Υ -tree T is a full infinite tree if T = Υ ∗. A path π of a tree T is a
set π ⊆ T such that ε ∈ π and for every x ∈ π there exists a unique υ ∈ Υ such
that x · υ ∈ π.

Given two finite sets Υ and Σ, a Σ-labeled Υ -tree is a pair 〈T, τ〉 where T is
an Υ -tree and τ : T → Σ maps each node of T to a letter in Σ. When Υ and Σ
are not important or clear from the context, we call 〈T, τ〉 a labeled tree. We say
that an ((Υ ∪ {⊥}) × Σ)-labeled Υ -tree 〈T, τ〉 is Υ -exhaustive if for every node
x ∈ T , we have τ(x) ∈ {dir(x)} ×Σ.

Consider a game graph G = ((S, E), (S1, S2)). For α ∈ {1, 2}, a strategy
σ : S∗ · Sα → S can be encoded by an S-labeled S-tree 〈S∗, τ〉 by setting
σ(v) = τ(v) for every v ∈ S∗ · Sα. Notice that σ, may be encoded by many
different trees. Indeed, for a node v = s0 · · · sn such that either sn ∈ S3−α or
there exists some i such that (si, si+1) /∈ E the label τ(v) may be set arbitrarily.
We may encode k different strategies by considering an Sk-labeled S-tree. Given
a letter σ ∈ Sk we denote by σi the projection of σ on its ith coordinate. In
this case, the ith strategy is σi(v) = τ(v)i for every v ∈ S∗ · Sα. Notice that
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the different strategies encoded may belong to different players. We refer to such
trees as strategy trees and from now on may refer to a strategy as a tree 〈S∗, σ〉.
In what follows we encode strategy assignments by strategy trees. We construct
tree automata that accept the strategy assignments that satisfy a given strategy
logic formula.

We use tree automata to reason about strategy trees. As we only use well
known results about such automata we do not give a full formal definition, and
refer the reader to [22]. Here, we use alternating parity tree automata (APT).
The language of an automaton is the set of trees that it accepts. The size of
automata is measured by the number of their states, and their index, which is a
measure of the complexity of the acceptance condition. The important qualities
of automata that are needed for this paper are summarized in Theorem 2 below.

Theorem 2. – Given an LTL formula ϕ we can construct an APT Aϕ with
2O(|ϕ|) states and index 3 such that Aϕ accepts all trees all of whose paths
satisfy ϕ [23].

– Given APTs A1 and A2 with n1 and n2 states and indices k1 and k2 re-
spectively, we can construct APTs for the conjunction and disjunction of A1

and A2 with n1 + n2 states and index max(k1, k2). We can construct an
alternating parity tree automaton for the complement language of A1 with
n1 states and index k1 [17].

– Given an APT A with n states and index k, on alphabet Σ × Σ′, we can
construct an APT A′ that accepts trees over alphabet Σ such that for some
extension (or all extensions) of the labeling with labels from Σ′ is accepted by
A. The number of states of A′ is exponential in n · k and its index is linear
in n · k [17].

– Given an APT A with n states and index k, we can check whether the lan-
guage of A is empty or universal in time exponential in n · k [17, 8].

Model checking algorithm. We present the model-checking algorithm for
the strategy logic. The complexity of the algorithm depends on the number of
quantifier alternations of a formula. We now formally define the alternation depth
of a closed formula.
Alternation depth of variables. The alternation-depth of a variable of a closed
quantified strategy formula is the number of quantifier switches (∃∀ or ∀∃) that
bind the variable (i.e., the variable is quantified). The alternation-depth of a
closed formula is the maximum alternation-depth of a variable occurring in the
formula.

Given a strategy logic formula ϕ, we construct by induction on the structure
of the formula an NPT that accepts the set of strategy assignments that satisfy
the formula. Wlog, assume that the variables in X ∪ Y are not reused. That is,
in a closed formula there is a 1-1 and onto relation between the variables and
the quantifiers.

Theorem 3. Given a strategy logic formula ϕ and a game graph G, we can
compute [[ϕ]] in time proportional to (d + 1)-EXPTIME in the size of ϕ and d-
EXPTIME in the size of G, where d is the alternation depth of ϕ. In case that
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ϕ is in the unnested path formula fragment, the complexity in the size of the
formula reduces to d-EXPTIME.

Proof. The case where closed quantified strategy formula Λ is used as a state
formula in a larger formula Λ′, is solved by first computing the set of states
satisfying Λ, adding this information to the game graph G, and then computing
the set of states satisfying Λ′. In addition, if d is the alternation-depth of ϕ then
ϕ is a Boolean combination of closed quantified strategy formulas of alternation
depth at most d. Thus, it suffices to handle a simple closed quantified strat-
egy logic formula, and reduce the Boolean reasoning to intersection, union, and
complementation of the respective sets.

Consider a quantified strategy formula Λ. Let Z = {x1, . . . , xn, y1, . . . , ym}
be the set of variables used in Λ. Consider the alphabet Sn+m and an Sn+m-
labeled S-tree σ. For a variable v ∈ X ∪ Y , we denote by σv the strategy that
stands in the location of variable v and for a set Z ′ ⊆ Z we denote by σZ′ the
set of strategies for the variables in Z ′. We now describe how to construct an
APT that accepts the set of strategy assignments that satisfy Λ. We build the
APT by induction on the structure of the formula. For a subformula Λ′.
Case 1. Λ′ = Ψ(x, y) – by Theorem 2 we can construct an APT A that accepts

trees all of whose paths satisfy Ψ . According to Theorem 2, A has 2O(|Ψ |)

states.
Case 2. Λ′ = Λ1 ∧ Λ2 – given APTs A1 and A2 that accept the set of strategy

assignments that satisfy Λ1 and Λ2, respectively; we construct an APT A for
the conjunction of A1 and A2. According to Theorem 2, |A| = |A1| + |A2|
and the index of A is the maximum of the indices of A1 and A2.

Case 3. Λ′ = ¬Λ1 – given an APT A1 that accepts the set of strategy assign-
ments that satisfy Λ1 we construct an APT A for the complement of A1.
According to Theorem 2, A has the same number of states and same index
as A1.

Case 4. Λ′ = ∃x.Λ1 – given an APT A1 that accepts the set of strategy assign-
ments that satisfy Λ1 we do the following. According to Theorem 2, we can
construct an APT A′ that accepts a tree iff there exists a way to extend
the labeling of the tree with a labeling for the strategy for x such that the
extended tree is accepted by A1. The number of states of A′ is exponential in
n ·k and its index is linear in n ·k. The cases where Λ′ = ∃y.Λ1, Λ′ = ∀x.Λ1,
and Λ′ = ∃y.Λ1 are handled similarly.

We note that for a closed Λ, the resulting automaton reads S∅-labeled S-trees.
Thus, the input alphabet of the automaton has a single input letter and it only
reads the structure of the S-tree.

The above construction starts with an automaton that is exponential in the
size of a given LTL formula and incurs an additional exponent for every quan-
tifier. In order to pay an exponent ‘only’ for every quantifier alternation, we
have to use nondeterministic and universal automata, and maintain them in this
form as long as possible. Nondeterministic automata are good for existential
quantification, which comes to them for free, and universal automata are good
for universal quantification. By careful analysis of the quantifier alternation hi-
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erarchy, we can choose to create automata of the right kind (nondeterministic
or universal), and maintain them in this form under disjunctions and conjunc-
tions. Then, the complexity is d + 1 exponents in the size of the formula and d
exponents in the size of the game.

Consider the case where only unnested path formulas are used. Then, given
a path formula Ψ(x, y), we construct an APT A that accepts trees all of whose
paths satisfy Ψ . As Ψ(x, y) does not use nesting of temporal operators, we can
construct A with a linear number of states in the size of Ψ .1 It follows that the
total complexity is d exponents in the size of the formula and d exponents in
the size of the game. We note that in the case of unnested path formulas one
exponent can be removed. The exact details are omitted due to lack of space.

One-alternation fragment. Since ATL∗ can be expressed in one-alternation
fragment, it follows that model checking simple one-alternation fragment is
2EXPTIME-hard. Also since game logic can be expressed in one-alternation
fragment, it follows that one-alternation fragment with unnested path formulas
is EXPTIME-hard. These lower bounds along with Theorem 3 yield the following
result.

Theorem 4. Given a game graph G and an one-alternation strategy logic for-
mula Φ, the following assertions hold.
1. The computation of [[Φ]] is 2EXPTIME-complete, and if Φ consists only of

unnested path formulas, then the computation of [[Φ]] is EXPTIME-complete.
2. The program complexity (complexity of model checking formulas of bounded

length) of one-alternation fragment of strategy logic is EXPTIME.

Model checking simple one-alternation fragment. We now present a model
checking algorithm for the simple one-alternation fragment, with better complex-
ity than the general algorithm. We first present a few notations.

Notations. For a game graph G and a set U ⊆ S of states we denote by G � U
the game graph restricted to the set U and require that for all states u ∈ U we
have E(u) ∩ U 6= ∅, i.e., all states in U have an edge in U . A path formula Ψ is
infinitary if the set of paths that satisfy Ψ is independent of all finite-prefixes.
The classical Büchi, coBüchi, parity, Rabin, Streett and Müller conditions are all
infinitary conditions. All LTL objectives can be equivalently reduced to infinitary
conditions like parity or Müller conditions. We now present the basic model
checking result for infinitary path formulas.

Lemma 1. Let G be a game graph and Φ = (∃ Ψ1, ∃ Ψ2, Ψ3) be a state formula
with path formulas Ψ1, Ψ2 and Ψ3 such that Ψ1 and Ψ2 are infinitary. Let W1 =
〈〈1〉〉(Ψ1) and W2 = 〈〈2〉〉(Ψ2). Then we have [[Φ]] = 〈〈1, 2〉〉(Ψ1 ∧ Ψ2 ∧ Ψ3) in G �
W1 ∩W2.

1 For a single temporal operator the number of states is constant, Boolean combina-
tions between two automata may lead to an automaton whose size is the product of
the sizes of the two automata. The number of multiplications is at most logarithmic
in the size of the formula leading to a total linear number of states.
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Lemma 2. Let G be a game graph and Φ = (∃ Ψ1, ∃ Ψ2, Ψ3) be a state formula
with unnested path formulas Ψ1 = Φ1

1UΦ2
1, Ψ2 = Φ1

2UΦ2
2 and Ψ3. Let W1 =

〈〈1〉〉(Ψ1) and W2 = 〈〈2〉〉(Ψ2). Then we have [[Φ]] = 〈〈1, 2〉〉(Ψ1∧Ψ2∧Ψ3)∩W1∩W2.

Theorem 5. Let G be a game graph with n states and Φ = (∃ Ψ1, ∃ Ψ2, Ψ3) be
a state formula with path formulas Ψ1, Ψ2 and Ψ3. Then the following assertions
hold.
– There is a ATL∗ formula Φ′ such that [[Φ]] = [[Φ′]].
– If Ψ1, Ψ2 and Ψ3 are unnested path formulas, then there is a ATL∗ formula

Φ′ with unnested path formulas such that |Φ′| = O(|Ψ1| + |Ψ2| + |Ψ3|) and
[[Φ]] = [[Φ′]].

– If Ψ1, Ψ2 and Ψ3 are LTL path formulas, then given a state s deciding
whether s ∈ [[Φ]] is 2EXPTIME-complete, and [[Φ]] can be computed in
n2O(|Φ|) · 22O(|Φ|·log |Φ|)

time.
– If Ψ1, Ψ2 and Ψ3 are unnested path formulas, then [[Φ]] can be computed in

polynomial time.
– The program complexity of simple one-alternation fragment of strategy logic

is polynomial time.

Theorem 5 follows from Lemmas 1 and 2. We present details for part (3): given
Ψ1, Ψ2 and Ψ3 are parity conditions, from Lemma 1 it follows that [[(∃Ψ1, ∃Ψ2, Ψ3)]]
can be computed by first solving two parity games, and then model checking a
graph with conjunction of parity conditions (Streett conditions). Since a LTL
formula Ψ can be converted to an equivalent deterministic parity automaton
with 22O(|Ψ|·log |Ψ|)

states and 2O(|Ψ |) parities (by converting Ψ to a nondetermin-
istic Büchi automata and then determinizing it), applying algorithms for parity
games [12] and polynomial time algorithm to model check Streett conditions we
obtain the desired result. Observe that the model checking complexity of simple
one-alternation fragment with unnested formulas, and the program complexity of
simple one-alternation fragment is exponentially better than the one-alternation
fragment.
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7 Appendix

We first present the proof of Theorem 1.

Proof. (Theorem 1.) We prove all the cases below.
1. We first show that ATL∗ can be expressed in simple one-alternation fragment.

For a path formula Ψ we have

〈〈1〉〉(Ψ) = { s ∈ S | ∃σ.∀τ.π(s, σ, τ) |= Ψ } = [[∃x.∀y.Ψ(x, y)]] = [[(∃Ψ,∃true, true)]]

〈〈2〉〉(Ψ) = { s ∈ S | ∃τ.∀σ.π(s, σ, τ) |= Ψ } = [[∃y.∀x.Ψ(x, y)]] = [[(∃true,∃Ψ, true)]];

〈〈1, 2〉〉(Ψ) = { s ∈ S | ∃σ.∃τ.π(s, σ, τ) |= Ψ }. = [[∃x.∃y.Ψ(x, y)]] = [[(∃true,∃true, Ψ)]];

〈〈∅〉〉(Ψ) = { s ∈ S | ∀σ.∀τ.π(s, σ, τ) |= Ψ }. = [[∀x.∀y.Ψ(x, y)]] = [[(∀true,∀true, Ψ)]].

Since the simple one-alternation fragment allows closed formulas to be
treated as atomic propositions, it follows that the logic ATL∗ can be ex-
pressed in the simple one-alternation fragment of strategy logic, and ATL
can be expressed in the simple-one alternation fragment with unnested path
formulas. It follows from Theorem 5 (part 1) that the expressiveness of ATL∗

and simple one-alternation fragment coincide. Since game logic is more ex-
pressive than ATL∗ [2] and game logic can be expressed in the one-alternation
fragment it follows that one-alternation fragment is more expressive than
ATL∗.

2. The game logic can be expressed in ∃∀ fragment of the strategy logic. By
part (1) it follows that the expressive power of simple one-alternation frag-
ment coincides with ATL∗, and the result of [2] shows that game logic is more
expressive that ATL∗. It follows that game logic is more expressive than the
simple one-alternation fragment.

3. It follows from the results of [2] that the following formula

∃x. (∃y1. (2p)(x, y1) ∧ ∃y2. (2q)(x, y2))

cannot be expressed in alternating µ-calculus. The above formula is an al-
ternation free strategy logic formula. We now present alternating µ-calculus
formulas that are not expressible in strategy logic. Consider one-player struc-
tures (i.e., S2 = ∅). The following formula

νx. [p ∧AX(AX(x))]

specifies the set of states s such that in all paths from s every even position is
labeled by the proposition p. Such counting properties cannot be expressed in
strategy logic. Also consider the following formula over one-player structures:

µx.(q ∨ (p ∧ EX(x)) ∨ (¬p ∧AX(x)))

The formula says that the proposition p turns the one-player game into a two
player game such that the p player has a strategy to reach q. This is also not
expressible by strategy logic on one-player structures. We now argue that
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MSO is more expressive than strategy logic: encoding strategies as trees, a
strategy logic formula can be translated to a MSO formula. Hence MSO is
as expressive as strategy logic. Since MSO contains alternating µ-calculus
and strategy logic is not as expressive as alternating µ-calculus, it follows
that MSO is more expressive than strategy logic.

We will now present proofs of Lemmas 1 and 2. We start with a notation.

Notations. For a game graph G and a set U ⊆ S of states we denote by G � U
the game graph restricted to the set U and require that for all states in u ∈ U
we have E(u) ∩ U 6= ∅, i.e., all states in U have an edge in U . For a set U ⊆ S
of states we denote by Safe(U) = { π = 〈s1, s2, . . .〉 | ∀k ≥ 1. sk ∈ U } the set of
paths that always visits states in U .

Proof. (of Lemma 1.) We first observe that [[Φ]] ⊆W1 ∩W2 as follows:

[[Φ]] = { s ∈ S | ∃σ ∈Win1(s, Ψ1). ∃τ ∈Win2(s, Ψ2). π(s, σ, τ) |= Ψ3 }
⊆ { s ∈ S |Win1(s, Ψ1) 6= ∅ } ∩ { s ∈ S |Win2(s, Ψ2) 6= ∅ }
= W1 ∩W2.

We now show that G � W1 ∩W2 is a game graph. Since Ψ1 is infinitary, for a
player 1 state s ∈ S1 ∩W1, we have E(s) ∩W1 6= ∅ and for a player 2 state
s ∈ S2 ∩W1, we have E(s) ⊆W1. Similarly, for a player 1 state s ∈ S1 ∩W2, we
have E(s) ⊆W2 and for a for a player 2 state s ∈ S2∩W2, we have E(s)∩W2 6= ∅.
It follows that G � W1∩W2 is a game graph. For any winning strategy pair (σ, τ)
for all states s ∈ W1 ∩W2 we have π(s, σ, τ) ∈ Safe(W1 ∩W2). Let U = [[Φ]] and
we prove that U = 〈〈1, 2〉〉(Ψ1 ∧ Ψ2 ∧ Ψ3) in G � (W1 ∩W2) by proving inclusion
in both directions.

1. We already showed that U ⊆W1 ∩W2. We first argue that U ⊆ 〈〈1, 2〉〉(Ψ1 ∧
Ψ2∧Ψ3) in G � (W1∩W2). For a state s in U , fix a witness strategy pair (σ, τ)
such that σ ∈ Win1(s, Ψ1), τ ∈ Win2(s, Ψ2) and π(s, σ, τ) |= Ψ3. We have
π(s, σ, τ) ∈ Safe(W1 ∩W2), and since σ ∈ Win1(s, Ψ1) and τ ∈ Win2(s, Ψ2)
we have π(s, σ, τ) |= Ψ1 ∧ Ψ2 ∧ Ψ3. Hence (σ, τ) is a witness to show that

s ∈ { s1 ∈ S ∩ (W1 ∩W2) | ∃σ. ∃τ. π(s1, σ, τ) |= Ψ1 ∧ Ψ2 ∧ Ψ3 },

i.e., s ∈ 〈〈1, 2〉〉(Ψ1 ∧ Ψ2 ∧ Ψ3) in G � (W1 ∩W2).
2. We now prove the other inclusion to complete the proof. Let s ∈ 〈〈1, 2〉〉(Ψ1∧

Ψ2∧Ψ3) in G � (W1∩W2). Fix a witness strategy pair (σ1, τ1) in G � (W1∩W2)
such that π(s, σ1, τ1) |= Ψ1∧Ψ2∧Ψ3. We construct witness strategies to show
that s ∈ U as follows:
– Player 1 strategy σ∗. Player 1 plays the strategy σ1 as long as player 2

follows τ1; if player 2 deviates at state s1, then player 1 switches to a
strategy σ̂ ∈Win1(s1, Ψ1). Observe that any player 2 deviation still keeps
the game in W1 since for all states in s1 ∈W1 ∩S2 we have E(s1) ⊆W1

and hence the construction is valid.
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– Player 2 strategy τ∗. Player 2 plays the strategy τ1 as long as player 1
follows σ1; if player 1 deviates at state s1, then player 2 switches to a
strategy τ̂ ∈Win1(s1, Ψ2). Observe that any player 1 deviation still keeps
the game in W2 since for all states in s1 ∈W2 ∩S1 we have E(s1) ⊆W2

and hence the construction is valid.
Since π(s, σ1, τ1) |= Ψ1 ∧ Ψ2 ∧ Ψ3 (hence also π(s, σ1, τ1) |= Ψ1 ∧ Ψ2), and the
players switch to a respective winning strategy if the other player deviates,
it follows that σ∗ ∈ Win1(s, Ψ1) and τ∗ ∈ Win2(s, Ψ2). Moreover, we have
π(s, σ1, τ1) = π(s, σ∗, τ∗) |= Ψ1 ∧ Ψ2 ∧ Ψ3. Hence we have s ∈ U .

The result follows and it also follows that [[Φ]] = 〈〈1, 2〉〉(Ψ1 ∧ Ψ2 ∧ Ψ3 ∧
Safe(〈〈1〉〉(Ψ1) ∧ 〈〈2〉〉(Ψ2))).

Proof. (of Lemma 2.) Similar to the proof for Lemma 1 we have [[Φ]] ⊆W1∩W2.
Let U = [[Φ]] and we prove that U = 〈〈1, 2〉〉(Ψ1 ∧ Ψ2 ∧ Ψ3) ∩W1 ∩W2 by proving
inclusion in both directions.

1. We already argued that U ⊆W1 ∩W2. We first argue that U ⊆ 〈〈1, 2〉〉(Ψ1 ∧
Ψ2 ∧ Ψ3) ∩W1 ∩W2. For a state s in U , fix a witness strategy pair (σ, τ)
such that σ ∈ Win1(s, Ψ1), τ ∈ Win2(s, Ψ2) and π(s, σ, τ) |= Ψ3. Since σ ∈
Win1(s, Ψ1) and τ ∈ Win2(s, Ψ2) we have π(s, σ, τ) |= Ψ1 ∧ Ψ2 ∧ Ψ3. Hence
(σ, τ) is a witness to show that

s ∈ { s1 ∈ S ∩ (W1 ∩W2) | ∃σ. ∃τ. π(s1, σ, τ) |= Ψ1 ∧ Ψ2 ∧ Ψ3 },

i.e., s ∈ 〈〈1, 2〉〉(Ψ1 ∧ Ψ2 ∧ Ψ3) ∩W1 ∩W2.
2. We now prove the other inclusion to complete the proof. Let s ∈ 〈〈1, 2〉〉(Ψ1∧

Ψ2 ∧ Ψ3) ∩W1 ∩W2. Fix a witness strategy pair (σ1, τ1) in G � (W1 ∩W2)
such that π(s, σ1, τ1) |= Ψ1∧Ψ2∧Ψ3. We construct witness strategies to show
that s ∈ U as follows:
– Player 1 strategy σ∗. We first observe that for all s ∈ S2 ∩ (W1 \ [[Φ2

1]]) we
have E(s) ⊆W1. Player 1 plays the strategy σ1 as long as player 2 follows
τ1; if player 2 deviates at state s1, then either s1 ∈ [[Φ2

1]] (in which case
Ψ1 is satisfied) or else player 1 switches to a strategy σ̂ ∈ Win1(s1, Ψ1).
Observe that any player 2 deviation from states other than [[Φ2

1]] still keeps
the game in W1, and hence the construction is valid.

– Player 2 strategy τ∗. We again observe that for all s ∈ S1∩(W2 \ [[Φ2
2]]) we

have E(s) ⊆W2. Player 2 plays the strategy τ1 as long as player 1 follows
σ1; if player 1 deviates at state s1, then either s1 ∈ [[Φ2

2]] (in which case
Ψ2 is satisfied) or else player 1 switches to a strategy τ̂ ∈ Win2(s1, Ψ2).
Observe that any player 1 deviation from states other than [[Φ2

2]] still keeps
the game in W2, and hence the construction is valid.

Since π(s, σ1, τ1) |= Ψ1 ∧ Ψ2 ∧ Ψ3 (hence also π(s, σ1, τ1) |= Ψ1 ∧ Ψ2), and the
players switch to a respective winning strategy if the other player deviates,
it follows that σ∗ ∈ Win1(s, Ψ1) and τ∗ ∈ Win2(s, Ψ2). Moreover, we have
π(s, σ1, τ1) = π(s, σ∗, τ∗) |= Ψ1 ∧ Ψ2 ∧ Ψ3. Hence we have s ∈ U .

The result follows and it also follows that [[Φ]] = 〈〈1, 2〉〉(Ψ1 ∧Ψ2 ∧Ψ3)∧ 〈〈1〉〉(Ψ1)∧
〈〈2〉〉(Ψ2).
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