From Liveness to Promptness

Orna Kupferman Nir Piterman Moshe Y. Vardi
Hebrew University EPFL Rice University
Abstract

Liveness temporal properties state that something “goedhially happens, e.g., every
request is eventually granted. In Linear Temporal Logicl(},Ehere is no a priori bound on
the “wait time” for an eventually to be fulfilled. That i%;0 asserts that holds eventually, but
there is no bound on the time whémvill hold. This is troubling, as designers tend to interpret
an eventualityF'é as an abstraction of a bounded eventuam%’“e, for an unknownk, and
satisfaction of a liveness property is often not acceptahless we can bound its wait time.
We introduce hereROMPFLTL, an extension of LTL with thggrompt-eventuallypperator
F,. A systemS satisfies ®ROMPFLTL formula ¢ if there is some bound on the wait time
for all prompt-eventually subformulas gf in all computations of5. We study various prob-
lems related teROMPFLTL, including realizability, model checking, and assuggarantee
model checking, and show that they can be solved by techsitius are quite close to the
standard techniques for LTL.

1 Introduction

Since the introduction of temporal logic into computer acie [14], temporal logic, in its many
different flavors, has been widely accepted as an appredoatnal framework for the descrip-
tion of on-going behavior of reactive systems [13]. Temppraperties are traditionally classi-
fied into safetyandlivenessproperties [2]. Intuitively, safety properties asserttthathing bad
will ever happen during the execution of the system, anchigs properties assert that some-
thing good will happen eventually. Temporal propertiesiaterpreted with respect to systems
that generate infinite computations. In satisfying livenpsoperties, there is no bound on the
“wait time”, namely the time that may elapse until an evelity#s fulfilled. For example, the
LTL formula F6 is satisfied at time if 6 holds at some timg > ¢, butj — 7 is not a priori
bounded.

In many applications, it is important to bound the wait tirfigis has given rise to formalisms
in which the eventually operatdf is replaced by a bounded-eventually operair®. The
operator is parameterized by sorhe> 0, and it bounds the wait time tb [4, 9]. Since we
assume that time is discrete, the operdé&f is simply a syntactic sugar for an expression in
which the next operatdX is nested. Indeed <*¢ is justd v X (6 v X (Vv .%. vX0)).

A drawback of the above formalism is that the bounkeds to be known in advance, which
is not the case in many applications. For example, it may niépa the system, which may not
yet be known, or it may change, if the system changes. Iniaddihe bound may be very large,
causing the state-based description of the specificatign @n automaton for it) to be very large
too. Thus, the common practice is to use liveness propeatiean abstraction of such safety
properties: one writeB'¢ instead off <*# for an unknown or a too largke.

For some temporal logics, the abstraction is sound, in thees¢hat if a systeny satisfies
a liveness property, then there is a boun#l, which depends o, such thatS also satisfies
the formula obtained fromy by replacing all occurrences & in ¢ by F<F. For example, it

*A technical report with more technical details can be foundwwvw.cs.rice.edutvardi/prompt.pdf

is shown in [9] that in the case of CTL, takirigto be the number of states #does it. Thus,
if a states satisfiesAF6, then it also satisfiesitF<F¢, for k = |S|, and similarly for EF4.
Intuitively, sincef is a state formula, a wait time that is greater th&hindicates that the wait
time may also be infinite (by looping in a cycle that aught tadden during the wait time), and
may also be shortened to at maSt (by skipping such cycles).

So the abstraction of safety properties by liveness pragseis sound for CTL. Is it sound
also for linear temporal logic? Consider the systSndescribed in Figure 1 below. While S
satisfies the LTL formul&G¢, there is ndk > 0 such thatS satisfiesF<*Gg. To see this, note
that for eachkt > 0, the computation that first loops in the first state faimes and only then
continues to the second state, satisfies the event@@iityith wait timek + 1.

. M ()
Figure 1:S satisfiesFG¢ but does not satisff<*Gyg, for all k > 0.

It follows that the abstraction of safety properties by fiegs properties is not sound in the
linear-time approach (which is more popular with users[@). This is troubling, as designers
tend to interpret eventualities as bounded eventualiied,satisfaction of a liveness property is
often not acceptable unless we can bound its wait fime.

In this work we introduce and study an extension of LTL thadredses the above problem.
In addition to the usual temporal operators of LTL, our lggirOMPFLTL, has a new temporal
operator that is used for specifying eventualities with armed wait time. We term the operator
prompt eventuallyand denote it byF,. Let us define the semantics BROMPFLTL formally.
For aPROMPFLTL formula) and a bound: > 0, let¢* be the LTL formula obtained fromp
by replacing all occurrences @, by F<*. Then, a systen$ satisfies) iff there isk > 0 such
thatS satisfies)*.

Note that while the syntax cfROMPFLTL is very similar to that of LTL, its semantics is
defined with respect to an entire system, and not with regpecomputations. For example,
while each computation in the systenS from Figure 1 has a bounkl, > 0 such thatGgq is
satisfied inr with wait time k., there is nd: > 0 that bounds the wait time of all computations.
It follows that, unlike linear temporal logics, we cannoacacterize @ROMPFLTL formula
over a setd P of atomic propositions by a set of computatidng C (247)« such that a systets
satisfieg) iff the language of is contained irL,,. On the other hand, unlike branching temporal
logics, if two systems agree on their languages, then thegeaglso on the satisfaction of all
PROMPFLTL formulas. Thus,PROMPFLTL intermediates between the linear and branching
approaches: as in the linear approach, the specificatiensr&d the set of computations of the
system rather than its computation tree; as in the brandgpgoach, we cannot consider these
computations individually.

We study the basic problems eROMPFLTL. Consider aPROMPELTL formula) over
AP. The setAP may be partitioned to sets and O of input and output signals. Consider
also a systeny. We study the following problemsealizability (is there a finite-state strategy
f:(27)* — 29 such that all the computations generatedfsatisfy:/?), model checkingdoes
S satisfyi)?), andassume-guarantee model checkigiyen an additiona#ROMPFLTL formula
o, Is it the case that for all systen, if S||.S” satisfiesp, thenS||.S” also satisfieg)?). Since
a system that satisfiesp@OMPFLTL formula may consist of a single regular computatiore th

INote that the reduction of liveness to safety as describg8l]iis performed by squaring the state space rather than
trying to bound the wait time of eventualities. Thus, it ig related to the discussion in this paper.

satisfiability problem for prompt-LTL can be easily reduded.TL satisfiability (simply replace
all occurrences o¥Fy, by F). For the other problems, similar reductions do not workg are
have to develop a new technique in order to solve them. Leeasribe our technique briefly.

Consider a prompt-LTL formula> over AP. Let p be an atomic proposition not id P.
Think aboutp as a description of one of two colors, say gregrhélds) and redy does not
hold). Each computation of the system can be partitionedaoks such that states of the same
block agree on their color. We show that a systgisatisfies @ROMPFLTL formula ¢ iff there
is some bound > 0 such that we can color each computatioaf S so that the induced blocks
are of lengthk, and whenever a suffix af has to satisfy an eventuality, the eventuality is fulfilled
within two blocks. Indeed, the latter condition holds iff alentualities have wait time at most
2k.

The key idea behind our technique is that rather than search boundk for the prompt
eventualities, which can be quite large, it is enough to nalke that there is a coloring in
which all blocks are of a (not necessarily bounded) finitggtenand then use some regularity
argument in order to conclude that the size of the blocksccaatually be bounded. Forcing the
blocks to be of a finite length can be done by requiring the rsaio alternate infinitely often.
As for regularity, in the case of realizability, regularftyllows from the finite-model property of
tree automata. In the case of model checking and assumeargeammodel checking, regularity
follows from the finiteness of the system.

The complexities that follow from our algorithms are enaming: reasoning aboaROMPTF
LTL is not harder than reasoning about LTL: realizability2BEXPTIME-complete, and model
checking and assume-guarantee model checking are PSP&@late. For LTL, many heuris-
tics have been studied and applied. Some of them are immegdipplicable forrROMPT
LTL (c.f., optimal translations of formulas to automatapdasome should be extended to the
prompt setting (e.g., bad-cycle detection algorithms). aM® study some theoretical aspects
of PROMPFLTL, such as the ability to translaEroOMPFLTL formulas to branching-temporal
logics (a translation to the-calculus is always possible, but may involve a significdowup),
and the ability to determine whetherrOMPFLTL formula has an equivalent LTL formula
(PSPACE-complete).

2 Prompt Linear Temporal Logic

The logicPROMPTFLTL extends LTL [14] by aprompt-eventuallpperatorF,. The syntax of
PROMPELTL formulas (in negation normal form) is given by the gramnbelow, for a setd P
of atomic propositionsiy = AP | "AP | oV | e A | Xe | Fpe | oUp | ¢Rp. The
semantics of ®ROMPFLTL formula is defined with respect to an infinite wotd= w, w1, . . .
over the alphabe2”, a positioni > 0 in w, and a bound: > 0. We use(w, k,i) = ¢ to
indicate thatpy holds in locationi of w with boundk. The relation= is defined by induction on
the structure ofp as follows.

e For propositions, Boolean connectives, and LTL temporakafors, the definition is inde-
pendent of and coincides with the one for LT%.

o (w,i, k) = Fpyiff there existsj such that < j <i+ kand(w, j,k) = ¢.

We useFd and G# to abbreviatdrueU# andfalseR6, respectively. Note that the negation of
F,, is not expressible ilrPROMPFLTL, thus the logic is not closed under negation. Given a
PROMPTFLTL formula ¢, let live(y) be the LTL formula obtained fronp by replacing every
prompt-eventually operatd?y, by a standard eventually operai®r

2Recall that in LTL we have thab, i = ORsp iff for all j > 4, if 7, j [~ 1, then for somek, i < k < j, we have
m k= 6.

A (labeled) transition systenis S = (AP, S, p, so, L), where AP is a finite set of atomic
propositions,S is a finite set of stateg; C S x S is a total transition relations, € S is an
initial state, and. : S — 247 maps each stateto the set of propositions that hold in When
p(s,s"), we say that’ is asuccessoof s, ands is apredecessoof s’. A computatiorof S is an
infinite sequence of states= sy, s1,... € S¥ such that for ali > 0, we havep(s;, s;+1). The
computationr induces thdrace L(w) = L(sg) - L(s1) - -

Given an systens and aPROMPFLTL formulay over AP, we say thasS satisfiesp, denoted
S = o, if there exists somé > 0 such that for all traces of S, we have(w, 0, k) = ¢. We
then say thatS satisfiesp with boundk. Note that wherS = ¢, then for everyk > 0, there
exists an tracev such thatw, 0, k) F .

In [1], Alur et al. study an extension of LTL in which the tentpboperator& andG are re-
placed by the operatos<,, F.,, G<,, andG-,, for variablesr andy (the same variable may
be used in different operators, but, to ensure decidajilisysame variable cannot participate in
both a lower and an upper bound). Given a systerand a formula in their logic, one can ask
whether there is an assignment to the variables for whiclsylstem satisfies the formula, with
the expected interpretation of the bounded operat@sr logic can be viewed as a special case
of the logic studied in [1], in which only eventualities ararameterized, and only with upper
bounds. The algorithms suggested by Alur et al. are rattivehiad. By giving up the operators
F.,,G<,, andG.,, whose usefulness is debatable, we get a much simpler nebeeking
algorithm, which is also similar to the classical LTL mod#lecking algorithm. We are also able
to a solve the realizability and the assume-guarantee nobeeking problems.

The Alternating-Color Techniqgue We now describe the key idea of our technique for reason-
ing aboutrROMPTELTL formulas. Letp be an atomic proposition not iAP. We think aboup
as a description of one of two colors, say greehglds) and redy does not hold). Each compu-
tation of the system can be partitioned to blocks such tla#é¢siof the same block agree on their
color. Our technique is based on the idea that bounding thietiwee of prompt eventualities
can be reduced to forcing all blocks to be of a bounded leragtti forcing all eventualities to be
fulfilled within two blocks, We now make this intuition forrha

Consider a wordv = 0,071, ... € (247)«. Letp be a proposition not inl P. A p-coloring
of wis a wordw' = a}, 0}, ... € (247Y{P})« such that' agrees withw on the propositions
in AP; i.e., foralli > 0, we haves, N AP = o;. We refer to the assignment toas thecolor
of locationi and say that is green ifp € o} and is red ifp ¢ o.. We say thap changes at
if either: = 0 or the colors ofi — 1 and: are different (that isp € o}_, iff p ¢ o}). We then
call i ap-change pointA subwordo?, . . ., o/, is ap-blockif all positions in the subwords have
the same color, andandi’ + 1 arep-change points. We then say thiand:’ + 1 are adjacent
p-change points. Fak > 0, we say thatw' is k-spaced k-bounded andk-tight (with respect
to p) if w’ has infinitely many blocks, and all the blocks are of lengtkeastk, at mostk, and
exactlyk, respectively.

Consider the formulalt, = GFp A GF—p. It requires that the propositignalternates for-
ever. Given @ROMPFLTL formulay, letrel,(¢) denote the formula obtained fropby (recur-
sively) replacing each subformula of the folfg ¢ by the LTL formula(p — (pU(—pUv))) A
(=p — (=pU(pUy))). Note that the definition is recursive, thud, (¢) may be exponentially
larger thany. The number of subformulas ek, (¢), however, is linear in the number of sub-
formulas ofp, and it is this number that plays a role in the complexity gsial(equivalently, the
size of theDAG-presentation of(y) is linear in the size of theAG presentation ofp). For a
PROMPFLTL formula ¢, we definec(¢) = alt, A rel, (). Thus,c(y) forces the computation

3The work in [1] studies many more aspects of the logic, likeghoblem of deciding whether the formula is satisfied
with all assignments, the problem of finding an optimal assignmeudtother decidability issues.

to be partitioned into infinitely many blocks, and requiraske prompt eventuality to be satisfied
in the current or next block or in the position immediatelieathe next block (within two blocks,
for short),

Lemma 2.1 Consider aPROMPFLTL formulay, a wordw, and a bound: > 0.
1. If (w,0,k) = ¢, then for every:-spaced-coloringw’ of w, we have(w’, 0) = ¢(p).
2. If there is ak-boundedp-coloringw’ of w such that(w’, 0) = c(¢), then(w, 0, 2k) | .

Proof: Consider the first claim. Singedoes not use the propositipnthen clearly(w’, 0, k) =
. Annotate every location im’ by the subformulas of that hold in this location. Every
location annotated b,y satisfies eithepU(—pU) or -pU(pUr). Indeedw’ is k-spaced,
and(w, i, k) = Fp if there existsj < k such tha(w, i + 7, k) = . Hence(w’,0) = c(¢).
Consider the second claim. Let be ak-bounded-coloring ofw such tha{w’, 0) E ¢(¢),
Annotate every location in’ by the subformulas af(y) that hold in this location. Consider a
locationi annotated byU(—pUv) or -pU(pUv). Sincew’ is k-bounded, it follows that for
somej < i + 2k, the locationj is annotated byy. Therefore, location satisfiesF,1. Hence,
(w,0,2k) = . O

The alternating-color technique sets the basis to reagaaiout aPROMPFLTL formula
¢ by reasoning about the LTL formuldy). The formulac(¢), however, does not require the
blocks in the colored computation to be of a bounded lengtitle¢d, the conjunetlt, only
forces the colors to be finite, and it does not prevent, saycaloring in which each block is
longer than its predecessor block, and which iskrbbunded, for alk > 0. Thus, the challenge
of forcing thep-coloring to bek-bounded for somé remains, and we have to address it in each
of the decision procedures described in the following secti

3 Realizability

Given an LTL formulay over the setd and O of input and output signals, threalizability
problemfor 1 is to decide whether there isstrategyf : (27)* — 2 such that all the computa-
tions generated by satisfys) [16]. Formally, a computation € (2/Y)« is generated by if

w = (io U 00), (il U01), (ig UOQ)7 ... and for aII] >0, we havajj = f(lo N TRER ZJ) ThUS, the
interaction is initiated by the environment that generateand the first state in the computation
is labeledio U f(io). Then, the environment generatgsand the second state in the computation
isi1 U f(ig-41), and so on. It is known that if some strategy that realizexists, then there also
exists aregular strategy(i.e, a strategy generated by a finite-staéesduce) that realizes) [6].
Formally, a transducer i® = (I, 0, Q,n, qo, L), wherel andO are the sets of input and output
signals,Q is a finite set of states;, : Q x 2/ — @ is a deterministic transition functiony, € Q

is an initial state, and. : Q — 2° maps each state to a set of output signals. The transducer
D generateg in the sense that for every € (27)*, we havef(r) = L(n(7)), with the usual
extension of) to words over!.

We first show thapROMPFLTL realizability of a formulay cannot be simply reduced to the
realizability of live(y). Thus, we describe a formula such thatiive(y) is realizable, but for
every strategyf that realizesp and for every candidate boutd> 0, there is a computatiow
generated by such tha{w, 0, k) |~ ¢. LetI = {i} andO = {o}. We define

p=0 A (G(i—0) N (X-0)Ri) N (FpGo).

Thus, a computation satisfigsif o holds in the present and whenevérolds, whenever does
not hold in some position, thet does not hold in this position or in an earlier one, and the

computation prompt-eventually reaches a position fromcivhiholds everywhere. It is not hard
to see thative(yp) is realizable. Indeed, the strategy that sets true everywhere except in the
first time thati is falserealizeslive(¢). On the other handy is not realizable. To see this, note
that the position in which the inpuis set tofalsecan be delayed arbitrarily by the environment,
forcing a delay also in the fulfilment of th€o eventuality. Thus, for every candidate bound
k > 0, the input sequence in whighis falseat the(k + 1)-th position cannot be extended to a
computation that satisfids, Go with boundk.

The good news is that while realizability gfcannot be reduced to the realizabilitylafe (),
it can be reduced to the realizability ef). Intuitively, it follows from the fact that in a regular
strategy, the fact that all blocks are of a finite length doegly that they are also of a bounded
length. Formally, we have the following.

Theorem 3.1 APROMPFLTL formulay over input signald and output signal®) is realizable
iff the LTL formulac(y) over input signald and output signal® U {p} is realizable.

Proof: Suppose thap is realizable. Then there exists a stratggy (27)* — 2° and a bound
k > 0 such that all the computations of f satisfy(w,0,k) = ¢. We extendf to a strategy
f':(21)* — 20Y{r} that realizes:(y). Intuitively, we add to the computations pfap-coloring
that is2k-tight. Formally, forr € (27)*, we definef’(7) = f(7) U {p} if |7| mod 2k is between
0andk—1andf’(7) = f(r) if |7| mod 2k is betweerk and2k — 1. Consider a computation
induced byf’. Note thatw is k-tight and it satisfiegp. Therefore, by Lemma 2.1, we conclude
thatw = ¢(yp).

Assume now that(y) is realizable. Leff : 2! — 20Y{»} be a regular strategy that realizes
it. We show that the strategf/ : 2 — 2© obtained fromf by projecting it on/ (that is, for all
T € (20)*, we havef'(t) = f(r) N 1) realizesy. Letn be the number of states in the transducer
that generateg. We show that all the computations generateg byatisfy, with bound2n + 2.
Consider a computatiom of f’. We claim thatw is (n + 1)-bounded. To see this, assume by
way of contradiction thaty has adjacent-change pointg andj such thatj — i > n + 1. Let
D = (27,29,.Q,n, qo, L) be the transducer that generafesand letqy, q1, g2, . . . be the run of
D that corresponds t@. SinceD hasn states, there exists a statend locations’ andj’ such
that: < ¢/ < j° < jandgy = ¢;;. Thus, some state repeats along thelock that starts at
i and ends aj — 1. Then, the runyo, q1,...,q7—-1,(gi,-..,q—1)* is also a run ofD. This
run, however, generates a computatiorf dfiat does not satisfyl¢,,, contradicting the fact that
realizes:(p). So, every computatiom of f” is (n+1)-bounded, and it satisfie$,). Therefore,
by Lemma 2.1, we conclude thab, 0, 2n + 2) = . O

Since LTL realizability is 2EXPTIME-complete and every LTarmula is also @#ROMPTF
LTL formula, we can conclude:

Theorem 3.2 The problem of prompt realizability is 2EXPTIME-completdie size of the for-
mula.

As demonstrated above, the alternating-color technigweng powerful in the case of real-
izability. Indeed, the challenge of forcing tipecoloring to bek-bounded for somé is taken
care of by the regularity of the strategy. We now proceed éontiodel-checking problem, where
a reduction ta:(y) is not sufficiently strong.

4 Model Checking

In this section we describe an algorithm for solving the ntadhecking problem foPROMPT
LTL. An alternative algorithm is described for the richerpaeterized linear temporal logic

in [1]. Our algorithm is much simpler, and it deviates frone tstandard LTL model-checking
algorithm only slightly. In addition, as we show in Sectigrtlte idea behind our algorithm can
be applied also in order to solve assume-guarantee modekicige which is not known to be
the case with the algorithm in [1]. Our algorithm is basedmmautomata-theoretic approach to
LTL model-checking, and we first need some definitions.

A nondeterministic Bchi word automato(NBW for short) isA = (3, S, 4, so,), whereX
is a finite alphabet§ is a finite set of states, : S x ¥ — 2° is a transition functions, € S'is an
initial state, andv C S is aBuichiacceptance condition. Ain of A on awordw = wg-wy - - - iS
an infinite sequence of stateg s1, . . . such thaty is the initial state and for alf > 0, we have
sj+1 € 0(sj,wy). Forarunr = s, s1,.. ., letinf(r) = {s € § | s = s, forinfinitely many:'s}
be the set of all states occurring infinitely often in the rArrun is acceptingf inf(r) N a # 0.
That is, the run visits infinitely many states fram A word w is acceptedoy A if there exists
some accepting run ol overw. Thelanguageof A4, is the set of words accepted by

Theorem 4.1 [20] For every LTL formulap over AP there exists an NB\M,, over the alphabet
24P such thatd,, accepts exactly all words that satisfy The number of states gf,, is at most
exponential in the number of subformulas.of

In order to check whether a syste$rsatisfies an LTL formula, one takes the product &f
with the NBW A, and tests the product for non-emptiness [19]. Indeed, aipdttis product
witnesses a computation of that does not satisfyp. As discussed in Section 1, in the case
of PROMPTFLTL we cannot translate formulas to languages. Moreoveralgo cannot simply
apply the alternating-color technique: even if we checkrtbeemptiness of the product of the
system (an augmentation of it in which the propositiopehaves nondeterministically, thus all
p-colorings are possible) with the automaton &t, A —rel,(y), a path in this product only
implies that for some bounkd > 0, the formulay is not satisfied irS with boundk. For proving
thatS does not satisfyp we have to prove something stronger, namely, thé not satisfied
in § with boundk, for all boundsk > 0. For that, we do take the product of the system with
the automaton fouit, A —rel,(¢), but add a twist to the nonemptiness check: we search for a
path in the product in which eaghblock contains at least one state that repeats. Such a state
indicates that for all bounds > 0, the p-block can be pumped to@block of length greater
thank, implying thaty cannot be satisfied i§ with boundk. We now formalize this intuition.

A colored Bichi graphis a tupleG = ({p},V, E, vy, L,), wherep is a proposition} is a
set of verticesF C V x V is a set of edgesy € V is an initial vertex,L : V — 2{P} describes
the color of each vertex, and C V' is a set of accepting states. A path= vg, vy, v9,... 0f G
is pumpabldf all its p-blocks have at least one state that repeats. Formally|lforao0, if ¢ and
i/ are adjacenp-change points, then there are positigrendj’ such that < j < 5/ < ' and
v; = vj. Also,w is fair if it visits « infinitely often. Thepumpable nonemptinepsoblem is to
decide, giverG, whether is has a pumpable fair path.

Lete(p) = alt, A —rel,(p). Thatis, we relativize the satisfaction Bf, to the new propo-
sition p, negate the resulting formula, and require the propositido alternate forever. Let
Azpy = (24791} Q. 6, g0,) be the NBW forz(y) per Theorem 4.1. Consider a system
S = (AP, S, p, 50, L). We now define the product ¢ with Az, by means of a colored Biichi
graph. Note that does not refer to the proposition and we duplicate its state space in order
to have in the product all possibtecolorings of computations i§. Thus, the product i® =
({p}, S x {{p} Q} X Q, M, (so,{p}: q0), L, S x {{p}, (Z)} x), where M ((s, c,q), (s',¢',q'))
iff p(s,s’)andq’ € §(q, L(s) Uc),andL({s,c,q)) = c.

Itis not hard to see that a path= (so, co, qo), (51,1, 1), (S2,C2,q2), ... In P corresponds
to a computation, s1, se, ... of S, ap-coloring L(sp) U co, L(s1) U ¢1, L(s2) U cq, ... of the
trace that the computation induces, and aqgy1, g2, - - . 0f Az(,) on thisp-coloring.

Theorem 4.2 The systen® does not satisfy iff the product ofS and Az, is pumpable
nonempty.

Proof: Assume first thatS [~ ¢. Then, for every bound& > 0, there exists a computation
7 of S such that(my,0,2k) £ ¢. Let k be larger thanS| - |Q| and letr, be as above.
Since(m, 0,2k) ~ ¢, then, by Lemma 2.1, for alt-boundedp-coloring 7). of 7, we have
(m}.,0) = c(p). Consider the-tight p-coloring 7). of 7, that starts with a green block. By
the above(n},0) (= c(p). Also, clearly,(r},,0) = alt,. Thus,(7},,0) = ¢(¢). In addition,
sincek > |S| - |Q|, every path in the produ@ that corresponds to fatight p-coloring of 7y, is
pumpable. Hence, the productdf with an accepting run afl;,, is a pumpable fair path i®.

Assume now thaP contains a pumpable fair path= (sg, co, qo), {51, ¢1,41), (S2, 2, g2),

. We claim that for everyt > 0, we can pump the computatiof, s1, s2,... of S to a
computation that does not satigfywith boundk. To see this, note that for eaghwe can pump
the pathr to a fair pathr, such that the-coloring of the trace that correspondstpis k-spaced
and satisfiesrel, (¢). Hence, by Lemma 2.1, it does not satigfyvith boundk. U

In Section 5, we study the problem of deciding whether a eald@iichi graph is pumpable-
nonempty, and prove that it is in NLOGSPACE and can also beedoin linear time. This,
together with Theorems 4.1 and 4.2, imply the upper bounkarfdllowing theorem. The lower
bound follows from the known lower bound for LTL.

Theorem 4.3 The model-checking problem ferRoMPTFLTL is PSPACE-complete and can be
solve in time exponential in the length of the formula anddinin the size of the system.

Note that while the pumpable nonemptiness problem to winikchvpPFLTL model-checking
is reduced is a variant of the nonemptiness problem to whidhrodel checking is reduced,
the construction of the product is almost the same. In pddicthe extensive work on optimal
compilation of LTL formulas to NBW (see survey in [18]), is@jzable to our solution too.

Remark 4.4 The model-checking algorithm of the parametric linear temaplogic of [1] is
based on the observation that iPRoMPTFLTL formula ¢ is satisfied in a systeri, then it is
satisfied with bound:, for somek that is exponential inp and polynomial inS. One cannot
hope to improve this bound. Indeed, for every> 1, we can define ®ROMPFLTL formula
1, of size linear inn such that a systems satisfigg iff in all its computations, the atomic
propositiong corresponds to an-bit counter, and the value of the counter promptly evemjyual
reache®™ — 1. Clearly, v, is promptly satisfied, but the minimal boudwith which ,, is
satisfied with bound (in some system) is exponentialin]

5 Algorithms for Colored B lichi Graphs

In Section 4 we reduced model-checking f;rOMPFLTL to a pumpable nonemptiness prob-
lems for colored Biichi graphs. In this section we solve prigblems, and provide space and
time bounds.

Theorem 5.1 The pumpable nonemptiness problem for colorédts graphs is NLOGSPACE-
complete and can be solved in linear time.

Proof: LetG = ({p},V, E, v, L, a). We start with the space complexity. Essentially, as with
standard Biichi nonemptiness, the pumpable honemptineskem can be solved by a sequence
of reachability tests. In addition to reaching a a ventexr « that is reachable from itself, the

algorithm should make sure that the paths franto v and fromwo to itself are pumpable. Thus,
in eachp-block, the algorithm should guess a repeated vertex (aadkcthat it indeed repeats).
Also, an easy reduction from reachability shows hardnesd @GSPACE.

We now move to the time complexity. For standard Bichi nopgmess, one looks for
a reachable nontrivial strongly connected component titatsectsy. In the colored case, we
should further check that eagkblock in the path can be pumped. We do this by making sure that
every greerp-block contains at least one vertex that belongs to a naatistrongly connected
componentin the graph of the green vertices, and similarytfe redp-blocks.

Consider the grapty, = (V,, E,;) obtained fromG by restricting attention to green vertices.
Thus,V, = {v € V| L(v) = {p}} andE;, = EN (V, x V). The graphG, = (V;., E,) is
defined similarly. We can find the maximal strongly conneceahponents (MSCC) af, and
G, in linear time [17] (note we are interested also in MSCCs #ratnot reachable fromy in
Gy andG,). LetS, C V, andS, C V, denote the union of all non-trivial MSCCs @, and
G, respectively.

Let back,(S,) be the vertices that can reach some vertexSinand lete-back (S,) be
the edges that are used to reach these vertices. Formallgefiee back(S,) = S, and
back, ,(S,) = {v e Vy |3 € back](S,) and(v,v") € E,}. Thenback (S,) = J,~, back (S,)
ande-back (S;) = (EgN(SyxSy))UU;~0{(v,v") € E4|v € back (S,) andv’ € back. , (S,)}.

In a similar way, we definéorward, (S,) to be the set of vertices that are reachable from some
vertex inS, and definee-forward, (S,) to be the edges that are used to reach these vertices. The
setsback., e-back, forward,, ande-forward. are defined similarly. Another type of edges we
need are edges betwegiblocks. LetE, ., = E N (forward,(S,) x back.(S.)) be the set of
edges along which the color changes from green to red, arfgl.lef = E N (forward,.(S,) x
back;(S,)) be the set of edges along which the color changes from receengr

Consider now the subgraghf = (V', £’) of G, whereV’" = back;(S,) U forward, (S,) U
back.(.S,) U forward,.(S,), and

E' =E, ., UE,_,Ue-forward,(S,) U e-forward.(S,) U e-back (S,) U e-back(S;).

Intuitively, the graphG’ contains exactly all the pumpable computation&oindeed, along
eachp-block, there must exists a vertex that belongs to an MSC@eftaph of the correspond-
ing color. In the full version, we prove thét is pumpable nonempty iff!’ has some non-trivial
MSCC that contains a vertex from

We analyze the time it takes to constra£tand to check whether it has a non-trivial MSCC
that intersectsv. Clearly, the MSCC decomposition ¢f, andG,. can be done in linear time.
The search foback, andforward, is done by a DFS of7, and its inverse. During the search,
the edges ire-back ande-forward, can be marked. The caselmick. andforward, is similar.
This stage can be completed in linear time as well. Findllg, MSCC decomposition @¥’ is
completed again in linear time, thus the overall runninggtislinear.]

We note than our algorithm is based in MSCC-decompositibis &n open question whether
a linear-time algorithm based on nested depth-first-sezanlbe found (see discussion of these
types of algorithms in [18]).

Remark 5.2 The algorithm described above are explicit. A symbarROMPFELTL model
checking algorithm follows from the translation BROMPFLTL to the p-calculus described
later in Theorem 7.3. The translation, however, involvegyaificant blow up. A symbolic al-
gorithm that performs well on the colored Biichi graphs fsd@en. For standard Biichi graphs,
algorithms can be classified as ones that are based on a figetegoint that calculates the set

of states that can reachinfinitely often [8], and ones that calculate symbolicalgtMSCC of
the graph [5]. We believe that algorithms of the second tygrele extended to colored graphs.
O

6 Assume-Guarantee Model Checking

For two systemsS = (AP, S, p, so, L) andS’ = (AP, S, p', s, L'), the parallel composition of
S with &, denotedS||S’, is the system that contains all the joint behavior§ @hdS’. Formally,
S|8" = (AP, 5", p", sy, L"), whereS” C § x S’ contains exactly all pairs that agree on their
label, that is(s, s') € S" iff L(s) = L'(s’). Then,s; = (so, s) andp” ({s, s'), (t,t')) iff p(s,t)
andp’(s',t"). Finally, L” ({(s, s')) = L(s).

An assume-guarantee specificatifor a systems is a pair of two specificationg; and
2. The systemS satisfies the specification, denotgd,)S{y2), if it is the case that for all
systemsS’, if §||S’ satisfiesp;, thenS||S’ also satisfies) [15]. In the context of LTL it is
not hard to see thatp;)S{yp2) iff S |E ¢1 — w2. Intuitively, since thd| operator amounts to
taking the intersection of the languagesSodindS’, it is sound to restrict attention to systetys
that correspond to single computations$f In the case oPROMPELTL, we can also restrict
attention to single computations, but we have to take thetd®into an account. Formally, we
have the following.

Lemma 6.1 Consider a systen$ and PROMPFLTL formulasy; and ¢». The specification
(p1)S{p2) does not hold iff there is a bourid > 0 such that for every bouni, > 0, there is a
tracew of S such that(w, 0, k1) = o1 but(w, 0, k2) = ¢a.

Since refuting assume-guarantee specifications referddbunds, we extend the alternating-
colortechnique to refer to two sets of colors. The atomigpsitionp partitions the computation
to blocks that bound,, and a new atomic propositigrdoes the same faé,. According to Lem-
mas 2.1 and 6.1, refutin@)S(p2) amounts to finding a bourfd > 0 such that for all bounds
ko > 0, there is a computatiow of S such thatw has ak;-boundedp-coloring that satisfies
rel, (1), butw also has &;-spaced;-coloring that satisfieslt, A —rel,(p2). Indeed, such a
computation satisfieg; with boundk;, and does not satisfy, with boundks.

We now show that the pumpable nonemptiness technique gmaklo Section 4 for solving
the model-checking problem can be used also for solvingskaerae-guarantee model-checking
problem, only that now the corresponding colored Biuchipbsaare colored with two sets of
colors, one fokp; and one forps. Also, the definition of when a path in the graph is pumpable
corresponds to the intuition above.

A colored Bichi graph of degree twés a tupleG = ({p,q},V, E,vo, L,). It is similar
to a colored Buchi graph, only that now there are two setsobbrs, described by andgq.
Accordingly, L : V — 2.4} Also, a is a generalized Biichi condition of index 2, thus=
{a1,a2}. A pathm = vg,v1,v2,... of G is pumpablef we can pump all its-blocks without
pumping itsp-blocks. Formally, for alk > 0, if s andi’ are adjaceng-change points, then there
are positiong, j/, and;” suchthai < j < j' < j” <i',v; = vj» andp € L(v;) iff p ¢ L(v;).
Also, 7 is fair if it visits both a; andas infinitely often. Thepumpable nonemptinepsoblem
is to decide, givetts, whether it has a pumpable fair path.

Letc(p1) = altyArel, (1) ande(pz) = alt,A—rely(v2), andletd,) = <2APU{”}, Q1,061,435 01),
and Az(,,) = (2471 Q,, 65,43, a2) be the corresponding NBWs (per Theorem 4.1). We
define the product of with A.,,) and Az,,) as the colored Bichi graph of degree two.
P = {p,q}, Sx 28 x Q x Qo, M, (s0,{p,q},qb, @3), L, {Sx 2178} x 0y x Qq, S x 21P:a} x
Q1 X az}), whereM ((s,c, q1,q2),(s', ¢, ¢}, d%)) iff p(s,s), ¢} € 61(q1, L(s)U(cn{p})), and
g5 € 82(qe, L(s) U (cN{q})). Finally, L({s, ¢, q1,42)) = c.

10

Theorem 6.2 The specificatiorfy;)S{y2) does not hold iff the product & with A.,,) and
Az(y,) IS pumpable nonempty,

Proof: Assume thaty;)S(p2) does not hold. Then, by Lemma 6.1, there is a bokng 0
such that for every bounk, > 0, there is a tracevy, r, of S such that(ws, x,,0,k1) = ¢1
but (wg, k,,0,2k2) = @o. Letks be larger thar - |S] - |Q1] - |Q2| - k1 and letmy, , be as
above. Sinc€ny, k,,0,k1) = 1, then, by Lemma 2.1, for alt;-spacedp-coloring 7r;€17k2
of 7k, k,, we have(r; . ,0) &= c(p1). Since(my, k,,0,2k2) = 2, then, by Lemma 2.1,
for all ko-boundeds-coloringry, ., of mx, x,, we have(ry ,.,0) ~ c(p2). Consider thek; -
tight p-coloring andk,-tight g-coloring; , ~of 7y, x, that starts wittp andg. By the above,
(Thy ks0 0) & cip2). Also, clearly,(my, +.,,0) E alty. Thus,(m, ;,,0) = ¢(p2). In addition,
sinceks > 2-|S| - |@Q1] - |Q2| - k1, every path in the produ@® is (p, ¢)-pumpable. Hence, the
product ofr; . with accepting runs ofd.(,,,) and of Az(,,) is a(p, ¢)-pumpable fair path in
P.

Assume now thaP contains &p, ¢)-pumpable fair pathr = (sg, co, ¢3, ¢2), (s1,¢1, 43, ¢3),
(s2,¢2,q5,43), Letk; denote the size of the maximablock inr (as explained in Section 5,
if P is (p, ¢)-pumpable nonempty, then it has a regylarg)-pumpable path, thus the maximum
is well defined). We claim that for every, > 0, we can pump the computatiep, s1, sz, . . .
of S to a computation that satisfies with bound2k; but does not satisfy, with boundks.
Note that if we pumpr, we get a pathr’ such that the-coloring of the trace that corresponds to
7" is k1-bounded and satisfie$y). In addition, for eactk,, we can pump that pathto a fair
pathm, such that the-coloring of the trace that correspondstg, is 2k2-spaced and satisfies
—relqy(p2). Hence, by Lemma 2.1, it satisfies with bound2k;, and does not satisfy, with
boundk,. Ol

As detailed in the full version, solving the nonemptinessolored Biichi graphs of de-
gree two requires a slight modification of the algorithms gt®n 5; we have to add the re-
quirement that every-block includes more than oneblock. The complexities stay the same,
NLOGSPACE-complete and in linear time. This, together Witleorems 4.1 and 6.2, imply the
upper bound in the following theorem. The lower bound folkofrom the known lower bound
for LTL.

Theorem 6.3 The assume-guarantee model-checking problenmPfapmMPFLTL is PSPACE-
complete and can be solve in time exponential in the lengtheoformulas and linear in the
size of the system.

For two formulasp; andys, we say thatp; impliesy- iff for every systems, if S satisfies
1, then it also satisfiegs. In the case of LTLy; implies s, iff the formulay; — 5 is valid.
In the case oPROMPFLTL, o1 impliesys iff (1)U {p2), wherel{ is the universal system (a
clique over24” that contains all traces ove¥P). Indeed, since for every systefrwe have that
S||U = S, then{p1)U(p2) does not hold iff there is a systegisuch that ifS satisfiesy; but
S £ 2. Sinceld is exponential ild P, and the PSPACE complexity of assume-guarantee model
checking originates from an algorithm that is polynomiathie formulas and only logarithmic in
the system, we have the following (the lower bound followsrirthe PSPACE hardness of LTL
implication).

Theorem 6.4 The implication problem forROMPFLTL is PSPACE-complete.

7 Expressiveness

In this section we study expressiveness aspectRoiMPFLTL. We show that ®?ROMPFLTL
formula ¢ has an equivalent LTL formula ifp and live(p) are equivalent, thus the problem

11

of deciding whethery can be translated to LTL is PSPACE-complete. Since the sérsaof
PROMPELTL is defined with respect to a system, a natural questiavhisther we can translate
PROMPFLTL formulas to branching temporal logics. We show thateéad, allPROMPFLTL
formulas can be translated to thecalculus.

All our results refer to finite-state systems. Thus, we say ttvo formulasy and ¢’ are
equivalent iff for all finite systems, we have thaSS = ¢ iff S = ¢'.

7.1 FromPROMPFLTL to LTL

SomePROMPELTL formulas ¢ are equivalent to the LTL formul&ve(y). For example, it is
not hard to see thdf',r is equivalent taF'r, for an atomic propositiom. On the other hand,
as demonstrated in Section 1, theoMPFLTL formula F,Gr is not equivalent to the LTL
formulaFGr. Is FpGg equivalent to another LTL formula? A negative answer foloirom
Lemma 7.1 below.

Lemma 7.1 Consider aPROMPFLTL formulap. There is an LTL formula equivalent {oiff ¢
is equivalent tdive ().

Proof: Assume thatp has an equivalent LTL formula. Then, there isvaegular language
L, C (27)* such that a systei satisfiesy iff all the traces ofS are contained itL,,. We prove
that for every systens, we have thatS = live(p) iff S |= ¢. The direction from right to left
holds always. For the other direction, assume by way of ealttion thatS |= live(y), but the
traces ofS are not contained ih.,. SinceS is finite state and.,, is w-regular, but there is an
w- regular tracew of S that does not belong tb,,. Letk be such thatv satisfieslive(y) with
boundk (sincew is a single trace of a finite state system, such a bdumist exist). Themw
satisfies alsg, and it therefore belongs tb,,. U

Theorem 7.2 Deciding whether aROMPFLTL formula has an equivalent LTL formula is
PSPACE-complete.

Proof: By Lemma 7.1, the problem of deciding whetherROMPFLTL formula ¢ has an
equivalent LTL formula can be reduced to checking the edenee ofp and live(p). Since
v — live(y) is valid for all ¢, one should only check the implicatidive(¢) — ¢, which,
according to Theorem 6.4, can be done in PSPACE.

We prove hardness in PSPACE by a reduction from the satifiapioblem of LTL. Con-
sider an LTL formulay, and a proposition not used inp. It is not hard to prove that the
PROMPFLTL formula ¢ A F, Gp has an equivalent LTL formula ifp is unsatisfiable. U

7.2 FrompPROMPELTL to the p-calculus

It is not hard to prove that theROMPFLTL formula FGgq is equivalent to the CTL formula
AFAGq. Indeed, a system satisfies both formulas iff there is a b@aurd0 such that all the
computations may visit a state in whighdoes not hold only in the first positions. One may
wonder whether this argument can be generalized, leadiagsimple translation oPROMPF
LTL formulas to CTL* formulas: given aPROMPFLTL formula ¢, translate it to a CTE
formula ¢’ by (recursively) replacing all subformulas of the fod,6 by FA6 (and adding
an externalA). To see that the reduction does not hold in general, con#iégeeROMPFLTL
formulay = Fp(Xq VvV Gg). While the systenS from Figure 1 satisfieg (with bound 3),
the systemS does not satisfy the CTLformulay’ = AFA(Xq V Gq). The question whether
PROMPELTL can be expressed in CTFLis open. On the other hand, we now show that every
PROMPFLTL formula has an equivalent-calculus formula.

12

Theorem 7.3 EveryPROMPFLTL formula has an equivalent-calculus formula.

Proof: Given aPROMPFLTL formulay over P, let Ay.(,) be a alternating parity tree automa-
ton that accepts exactly all trees all of whose paths satigfy; in fact, Ay.(,) can be taken to
be a universal co-Buchi automaton [12]. Note th&t. () is over the alphabex”1?} | thus it
refers also to the atomic propositipnLet) be au-calculus formula equivalent tdy.,) [10].
As in Theorem 3.1, it can be shown that over finite systenis equivalent tadp.w). Hence, by
[11], ¢ is equivalent to somg-calculus formula.]

References

[1] R. Alur, K. Etessami, S. La Torre, and D. Peled. Pararod@imporal logic for model measuring.
ACM ToCL, 2(3):388-407, 2001.

[2] B. Alpern and F.B. Schneider. Defining livene$BL, 21:181-185, 1985.

[3] A. Biere, C. Artho, and V. Schuppan. Liveness checkingafety checking. IfProc. 7th FMICS
ENTCS 66:2, 2002.

[4] I. Beer, S. Ben-David, D. Geist, R. Gewirtzman, and M. No®lethodology and system for practical
formal verification of reactive hardware. Rroc. 6th CAYLNCS 818, 182-193, 1994.

[5] R. Bloem, H.N. Gabow, and F. Somenzi. An algorithm foostyly connected component analysis in
nlogn symbolic steps. IfProc. FMCAD LNCS 1954, 37-54, 2000.

[6] J.R. Buchi and L.HG. Landweber. Solving sequentialditans by finite-state strategieslrans.
AMS 138:295-311, 1969.

[7] C. Eisner and D. FismarA Practical Introduction to PSLSpringer, 2006.

[8] E.A. Emerson and C.-L. Lei. Efficient model checking iagments of the propositionalcalculus.
In Proc. 1st LICS267-278, 1986.

[9] E.A. Emerson, A.K. Mok, A.P. Sistla, and J. Srinivasanua@titative temporal reasoning. Rroc.
2nd CAV LNCS 531, 136-145, 1990.

[10] D. Janin and I. Walukiewicz, Automata for the modatalculus and related results”, Rroc. 20th
MFCS LNCS 969, 552-562, 1995.

[11] D. Janin and I. Walukiewicz. On the expressive compiess of the propositional-calculus with
respect to the monadic second order logicPhoc. 7th CONCURLNCS 1119, 263-277, 1996.

[12] O. Kupferman and M.Y. Vardi Safraless Decision ProceduInProc. 46th FOC$S531-540, 2005.

[13] Z. Manna and A. Pnueli.The Temporal Logic of Reactive and Concurrent Systems: ifi&jadion.
Springer, Berlin, January 1992.

[14] A. Pnueli. The temporal logic of programBroc. 18th FOC$S46-57, 1977.

[15] A. Pnueli. In transition from global to modular tempbraasoning about programsLogics and
Models of Concurrent System@lume F-13 oNATO Advanced Summer Instityté23—-144, 1985.

[16] A.Pnueliand R. Rosner. On the synthesis of a reactivéuieo InProc. 16th POP|.179-190, 1989.

[17] R.E. Tarjan. Depth first search and linear graph algang. SIAM Journal of Computingl(2):146—
160, 1972.

[18] M.Y. Vardi. Automata-theoretic model checking rewsi. InProc. 7th VMCAJ LNCS 4349, 137—-
150, 2007.

[19] M.Y. Vardi and P. Wolper. An automata-theoretic apmtodo automatic program verification. In
Proc. 1st LIC$332-344, 1986.

[20] M.Y. Vardi and P. Wolper. Reasoning about infinite congions. |&C, 115(1):1-37, 1994.

13

