
From Liveness to Promptness∗

Orna Kupferman
Hebrew University

Nir Piterman
EPFL

Moshe Y. Vardi
Rice University

Abstract

Liveness temporal properties state that something “good” eventually happens, e.g., every
request is eventually granted. In Linear Temporal Logic (LTL), there is no a priori bound on
the “wait time” for an eventually to be fulfilled. That is,Fθ asserts thatθ holds eventually, but
there is no bound on the time whenθ will hold. This is troubling, as designers tend to interpret
an eventualityFθ as an abstraction of a bounded eventualityF≤kθ, for an unknownk, and
satisfaction of a liveness property is often not acceptableunless we can bound its wait time.
We introduce herePROMPT-LTL, an extension of LTL with theprompt-eventuallyoperator
Fp. A systemS satisfies aPROMPT-LTL formula ϕ if there is some boundk on the wait time
for all prompt-eventually subformulas ofϕ in all computations ofS. We study various prob-
lems related toPROMPT-LTL, including realizability, model checking, and assume-guarantee
model checking, and show that they can be solved by techniques that are quite close to the
standard techniques for LTL.

1 Introduction

Since the introduction of temporal logic into computer science [14], temporal logic, in its many
different flavors, has been widely accepted as an appropriate formal framework for the descrip-
tion of on-going behavior of reactive systems [13]. Temporal properties are traditionally classi-
fied intosafetyand livenessproperties [2]. Intuitively, safety properties assert that nothing bad
will ever happen during the execution of the system, and liveness properties assert that some-
thing good will happen eventually. Temporal properties areinterpreted with respect to systems
that generate infinite computations. In satisfying liveness properties, there is no bound on the
“wait time”, namely the time that may elapse until an eventuality is fulfilled. For example, the
LTL formula Fθ is satisfied at timei if θ holds at some timej ≥ i, but j − i is not a priori
bounded.

In many applications, it is important to bound the wait time.This has given rise to formalisms
in which the eventually operatorF is replaced by a bounded-eventually operatorF≤k. The
operator is parameterized by somek ≥ 0, and it bounds the wait time tok [4, 9]. Since we
assume that time is discrete, the operatorF

≤k is simply a syntactic sugar for an expression in
which the next operatorX is nested. Indeed,F≤kθ is justθ ∨ X(θ ∨ X(θ∨ k. . . ∨Xθ)).

A drawback of the above formalism is that the boundk needs to be known in advance, which
is not the case in many applications. For example, it may depend on the system, which may not
yet be known, or it may change, if the system changes. In addition, the bound may be very large,
causing the state-based description of the specification (e.g., an automaton for it) to be very large
too. Thus, the common practice is to use liveness propertiesas an abstraction of such safety
properties: one writesFθ instead ofF≤kθ for an unknown or a too largek.

For some temporal logics, the abstraction is sound, in the sense that if a systemS satisfies
a liveness propertyψ, then there is a boundk, which depends onS, such thatS also satisfies
the formula obtained fromψ by replacing all occurrences ofF in ψ by F

≤k. For example, it

∗A technical report with more technical details can be found on www.cs.rice.edu/∼vardi/prompt.pdf

1

is shown in [9] that in the case of CTL, takingk to be the number of states inS does it. Thus,
if a states satisfiesAFθ, then it also satisfiesAF

≤kθ, for k = |S|, and similarly forEFθ.
Intuitively, sinceθ is a state formula, a wait time that is greater than|S| indicates that the wait
time may also be infinite (by looping in a cycle that aught to betaken during the wait time), and
may also be shortened to at most|S| (by skipping such cycles).

So the abstraction of safety properties by liveness properties is sound for CTL. Is it sound
also for linear temporal logic? Consider the systemS described in Figure 1 below. While S
satisfies the LTL formulaFGq, there is nok ≥ 0 such thatS satisfiesF≤k

Gq. To see this, note
that for eachk ≥ 0, the computation that first loops in the first state fork times and only then
continues to the second state, satisfies the eventualityGq with wait timek + 1.

S :
q ¬q q

Figure 1:S satisfiesFGq but does not satisfyF≤k
Gq, for all k ≥ 0.

It follows that the abstraction of safety properties by liveness properties is not sound in the
linear-time approach (which is more popular with users, cf.[7]). This is troubling, as designers
tend to interpret eventualities as bounded eventualities,and satisfaction of a liveness property is
often not acceptable unless we can bound its wait time.1

In this work we introduce and study an extension of LTL that addresses the above problem.
In addition to the usual temporal operators of LTL, our logic, PROMPT-LTL, has a new temporal
operator that is used for specifying eventualities with a bounded wait time. We term the operator
prompt eventuallyand denote it byFp. Let us define the semantics ofPROMPT-LTL formally.
For aPROMPT-LTL formula ψ and a boundk ≥ 0, letψk be the LTL formula obtained fromψ
by replacing all occurrences ofFp by F

≤k. Then, a systemS satisfiesψ iff there isk ≥ 0 such
thatS satisfiesψk.

Note that while the syntax ofPROMPT-LTL is very similar to that of LTL, its semantics is
defined with respect to an entire system, and not with respectto computations. For example,
while each computationπ in the systemS from Figure 1 has a boundkπ ≥ 0 such thatGq is
satisfied inπ with wait timekπ, there is nok ≥ 0 that bounds the wait time of all computations.
It follows that, unlike linear temporal logics, we cannot characterize aPROMPT-LTL formulaψ
over a setAP of atomic propositions by a set of computationsLψ ⊆ (2AP)ω such that a systemS
satisfiesψ iff the language ofS is contained inLψ. On the other hand, unlike branching temporal
logics, if two systems agree on their languages, then they agree also on the satisfaction of all
PROMPT-LTL formulas. Thus,PROMPT-LTL intermediates between the linear and branching
approaches: as in the linear approach, the specification refers to the set of computations of the
system rather than its computation tree; as in the branchingapproach, we cannot consider these
computations individually.

We study the basic problems ofPROMPT-LTL. Consider aPROMPT-LTL formula ψ over
AP . The setAP may be partitioned to setsI andO of input and output signals. Consider
also a systemS. We study the following problems:realizability (is there a finite-state strategy
f : (2I)∗ → 2O such that all the computations generated byf satisfyψ?),model checking(does
S satisfyψ?), andassume-guarantee model checking(given an additionalPROMPT-LTL formula
ϕ, is it the case that for all systemsS′, if S‖S′ satisfiesϕ, thenS‖S′ also satisfiesψ?). Since
a system that satisfies aPROMPT-LTL formula may consist of a single regular computation, the

1Note that the reduction of liveness to safety as described in[3] is performed by squaring the state space rather than
trying to bound the wait time of eventualities. Thus, it is not related to the discussion in this paper.

2

satisfiability problem for prompt-LTL can be easily reducedto LTL satisfiability (simply replace
all occurrences ofFp by F). For the other problems, similar reductions do not work, and we
have to develop a new technique in order to solve them. Let us describe our technique briefly.

Consider a prompt-LTL formulaψ overAP . Let p be an atomic proposition not inAP .
Think aboutp as a description of one of two colors, say green (p holds) and red (p does not
hold). Each computation of the system can be partitioned to blocks such that states of the same
block agree on their color. We show that a systemS satisfies aPROMPT-LTL formulaψ iff there
is some boundk ≥ 0 such that we can color each computationπ of S so that the induced blocks
are of lengthk, and whenever a suffix ofπ has to satisfy an eventuality, the eventuality is fulfilled
within two blocks. Indeed, the latter condition holds iff all eventualities have wait time at most
2k.

The key idea behind our technique is that rather than search for a boundk for the prompt
eventualities, which can be quite large, it is enough to makesure that there is a coloring in
which all blocks are of a (not necessarily bounded) finite length, and then use some regularity
argument in order to conclude that the size of the blocks could actually be bounded. Forcing the
blocks to be of a finite length can be done by requiring the colors to alternate infinitely often.
As for regularity, in the case of realizability, regularityfollows from the finite-model property of
tree automata. In the case of model checking and assume-guarantee model checking, regularity
follows from the finiteness of the system.

The complexities that follow from our algorithms are encouraging: reasoning aboutPROMPT-
LTL is not harder than reasoning about LTL: realizability is2EXPTIME-complete, and model
checking and assume-guarantee model checking are PSPACE-complete. For LTL, many heuris-
tics have been studied and applied. Some of them are immediately applicable forPROMPT-
LTL (c.f., optimal translations of formulas to automata), and some should be extended to the
prompt setting (e.g., bad-cycle detection algorithms). Wealso study some theoretical aspects
of PROMPT-LTL, such as the ability to translatePROMPT-LTL formulas to branching-temporal
logics (a translation to theµ-calculus is always possible, but may involve a significant blow up),
and the ability to determine whether aPROMPT-LTL formula has an equivalent LTL formula
(PSPACE-complete).

2 Prompt Linear Temporal Logic

The logicPROMPT-LTL extends LTL [14] by aprompt-eventuallyoperatorFp. The syntax of
PROMPT-LTL formulas (in negation normal form) is given by the grammar below, for a setAP
of atomic propositions:ϕ ::= AP | ¬AP | ϕ ∨ ϕ | ϕ ∧ ϕ | Xϕ | Fpϕ | ϕUϕ | ϕRϕ. The
semantics of aPROMPT-LTL formula is defined with respect to an infinite wordw = w0, w1, . . .
over the alphabet2AP , a positioni ≥ 0 in w, and a boundk ≥ 0. We use(w, k, i) |= ϕ to
indicate thatϕ holds in locationi of w with boundk. The relation|= is defined by induction on
the structure ofϕ as follows.

• For propositions, Boolean connectives, and LTL temporal operators, the definition is inde-
pendent ofk and coincides with the one for LTL.2

• (w, i, k) |= Fpϕ iff there existsj such thati ≤ j ≤ i+ k and(w, j, k) |= ϕ.

We useFθ andGθ to abbreviatetrueUθ andfalseRθ, respectively. Note that the negation of
Fp is not expressible inPROMPT-LTL, thus the logic is not closed under negation. Given a
PROMPT-LTL formula ϕ, let live(ϕ) be the LTL formula obtained fromϕ by replacing every
prompt-eventually operatorFp by a standard eventually operatorF.

2Recall that in LTL we have thatw, i |= θRψ iff for all j ≥ i, if π, j 6|= ψ, then for somek, i ≤ k < j, we have
π, k |= θ.

3

A (labeled) transition systemis S = 〈AP, S, ρ, s0, L〉, whereAP is a finite set of atomic
propositions,S is a finite set of states,ρ ⊆ S × S is a total transition relation,s0 ∈ S0 is an
initial state, andL : S → 2AP maps each states to the set of propositions that hold ins. When
ρ(s, s′), we say thats′ is asuccessorof s, ands is apredecessorof s′. A computationof S is an
infinite sequence of statesπ = s0, s1, . . . ∈ Sω such that for alli ≥ 0, we haveρ(si, si+1). The
computationπ induces thetraceL(π) = L(s0) · L(s1) · · ·.

Given an systemS and aPROMPT-LTL formulaϕ overAP , we say thatS satisfiesϕ, denoted
S |= ϕ, if there exists somek ≥ 0 such that for all tracesw of S, we have(w, 0, k) |= ϕ. We
then say thatS satisfiesϕ with boundk. Note that whenS 6|= ϕ, then for everyk ≥ 0, there
exists an tracew such that(w, 0, k) 6|= ϕ.

In [1], Alur et al. study an extension of LTL in which the temporal operatorsF andG are re-
placed by the operatorsF≤x,F>y,G≤x, andG>y, for variablesx andy (the same variable may
be used in different operators, but, to ensure decidability, the same variable cannot participate in
both a lower and an upper bound). Given a systemS and a formula in their logic, one can ask
whether there is an assignment to the variables for which thesystem satisfies the formula, with
the expected interpretation of the bounded operators.3 Our logic can be viewed as a special case
of the logic studied in [1], in which only eventualities are parameterized, and only with upper
bounds. The algorithms suggested by Alur et al. are rather involved. By giving up the operators
F>y,G≤x, andG>y, whose usefulness is debatable, we get a much simpler model-checking
algorithm, which is also similar to the classical LTL model-checking algorithm. We are also able
to a solve the realizability and the assume-guarantee modelchecking problems.

The Alternating-Color Technique We now describe the key idea of our technique for reason-
ing aboutPROMPT-LTL formulas. Letp be an atomic proposition not inAP . We think aboutp
as a description of one of two colors, say green (p holds) and red (p does not hold). Each compu-
tation of the system can be partitioned to blocks such that states of the same block agree on their
color. Our technique is based on the idea that bounding the wait time of prompt eventualities
can be reduced to forcing all blocks to be of a bounded length,and forcing all eventualities to be
fulfilled within two blocks, We now make this intuition formal.

Consider a wordw = σ0, σ1, . . . ∈ (2AP)ω. Let p be a proposition not inAP . A p-coloring
of w is a wordw′ = σ′

0, σ
′
1, . . . ∈ (2AP∪{p})ω such thatw′ agrees withw on the propositions

in AP ; i.e., for all i ≥ 0, we haveσ′
i ∩ AP = σi. We refer to the assignment top as thecolor

of locationi and say thati is green ifp ∈ σ′
i and is red ifp 6∈ σ′

i. We say thatp changes ati
if either i = 0 or the colors ofi − 1 andi are different (that is,p ∈ σ′

i−1 iff p /∈ σ′
i). We then

call i a p-change point. A subwordσ′
i, . . . , σ

′
i′ is ap-block if all positions in the subwords have

the same color, andi andi′ + 1 arep-change points. We then say thati andi′ + 1 are adjacent
p-change points. Fork ≥ 0, we say thatw′ is k-spaced, k-bounded, andk-tight (with respect
to p) if w′ has infinitely many blocks, and all the blocks are of length atleastk, at mostk, and
exactlyk, respectively.

Consider the formulaaltp = GFp ∧GF¬p. It requires that the propositionp alternates for-
ever. Given aPROMPT-LTL formulaϕ, letrelp(ϕ) denote the formula obtained fromϕ by (recur-
sively) replacing each subformula of the formFpψ by the LTL formula(p → (pU(¬pUψ))) ∧
(¬p → (¬pU(pUψ))). Note that the definition is recursive, thusrelp(ϕ) may be exponentially
larger thanϕ. The number of subformulas ofrelp(ϕ), however, is linear in the number of sub-
formulas ofϕ, and it is this number that plays a role in the complexity analysis (equivalently, the
size of theDAG-presentation ofc(ϕ) is linear in the size of theDAG presentation ofϕ). For a
PROMPT-LTL formulaϕ, we definec(ϕ) = altp ∧ relp(ϕ). Thus,c(ϕ) forces the computation

3The work in [1] studies many more aspects of the logic, like the problem of deciding whether the formula is satisfied
with all assignments, the problem of finding an optimal assignment, and other decidability issues.

4

to be partitioned into infinitely many blocks, and requires each prompt eventuality to be satisfied
in the current or next block or in the position immediately after the next block (within two blocks,
for short),

Lemma 2.1 Consider aPROMPT-LTL formulaϕ, a wordw, and a boundk ≥ 0.

1. If (w, 0, k) |= ϕ, then for everyk-spacedp-coloringw′ ofw, we have(w′, 0) |= c(ϕ).

2. If there is ak-boundedp-coloringw′ ofw such that(w′, 0) |= c(ϕ), then(w, 0, 2k) |= ϕ.

Proof: Consider the first claim. Sinceϕ does not use the propositionp, then clearly(w′, 0, k) |=
ϕ. Annotate every location inw′ by the subformulas ofϕ that hold in this location. Every
location annotated byFpψ satisfies eitherpU(¬pUψ) or ¬pU(pUψ). Indeed,w′ is k-spaced,
and(w, i, k) |= Fpψ if there existsj ≤ k such that(w, i+ j, k) |= ψ. Hence,(w′, 0) |= c(ϕ).

Consider the second claim. Letw′ be ak-boundedp-coloring ofw such that(w′, 0) |= c(ϕ),
Annotate every location inw′ by the subformulas ofc(ϕ) that hold in this location. Consider a
locationi annotated bypU(¬pUψ) or ¬pU(pUψ). Sincew′ is k-bounded, it follows that for
somej ≤ i + 2k, the locationj is annotated byψ. Therefore, locationi satisfiesFpψ. Hence,
(w, 0, 2k) |= ϕ.

The alternating-color technique sets the basis to reasoning about aPROMPT-LTL formula
ϕ by reasoning about the LTL formulac(ϕ). The formulac(ϕ), however, does not require the
blocks in the colored computation to be of a bounded length. Indeed, the conjunctaltp only
forces the colors to be finite, and it does not prevent, say, ap-coloring in which each block is
longer than its predecessor block, and which is notk-bounded, for allk ≥ 0. Thus, the challenge
of forcing thep-coloring to bek-bounded for somek remains, and we have to address it in each
of the decision procedures described in the following sections.

3 Realizability

Given an LTL formulaψ over the setsI andO of input and output signals, therealizability
problemfor ψ is to decide whether there is astrategyf : (2I)∗ → 2O such that all the computa-
tions generated byf satisfyψ [16]. Formally, a computationw ∈ (2I∪O)ω is generated byf if
w = (i0 ∪ o0), (i1 ∪ o1), (i2 ∪ o2), . . . and for allj ≥ 0, we haveoj = f(i0 · i1 · · · ij). Thus, the
interaction is initiated by the environment that generatesi0, and the first state in the computation
is labeledi0∪f(i0). Then, the environment generatesi1, and the second state in the computation
is i1∪f(i0 · i1), and so on. It is known that if some strategy that realizesψ exists, then there also
exists aregular strategy(i.e, a strategy generated by a finite-statetransducer) that realizesψ [6].
Formally, a transducer isD = 〈I,O,Q, η, q0, L〉, whereI andO are the sets of input and output
signals,Q is a finite set of states,η : Q× 2I → Q is a deterministic transition function,q0 ∈ Q
is an initial state, andL : Q → 2O maps each state to a set of output signals. The transducer
D generatesf in the sense that for everyτ ∈ (2I)∗, we havef(τ) = L(η(τ)), with the usual
extension ofη to words over2I .

We first show thatPROMPT-LTL realizability of a formulaϕ cannot be simply reduced to the
realizability of live(ϕ). Thus, we describe a formulaϕ such thatlive(ϕ) is realizable, but for
every strategyf that realizesϕ and for every candidate boundk ≥ 0, there is a computationw
generated byf such that(w, 0, k) 6|= ϕ. Let I = {i} andO = {o}. We define

ϕ = o ∧ (G(i→ o)) ∧ ((X¬o)Ri) ∧ (FpGo).

Thus, a computation satisfiesϕ if o holds in the present and wheneveri holds, wheneveri does
not hold in some position, theno does not hold in this position or in an earlier one, and the

5

computation prompt-eventually reaches a position from whicho holds everywhere. It is not hard
to see thatlive(ϕ) is realizable. Indeed, the strategy that setso to true everywhere except in the
first time thati is falserealizeslive(ϕ). On the other hand,ϕ is not realizable. To see this, note
that the position in which the inputi is set tofalsecan be delayed arbitrarily by the environment,
forcing a delay also in the fulfilment of theGo eventuality. Thus, for every candidate bound
k ≥ 0, the input sequence in whichi is falseat the(k + 1)-th position cannot be extended to a
computation that satisfiesFpGo with boundk.

The good news is that while realizability ofϕ cannot be reduced to the realizability oflive(ϕ),
it can be reduced to the realizability ofc(ϕ). Intuitively, it follows from the fact that in a regular
strategy, the fact that all blocks are of a finite length does imply that they are also of a bounded
length. Formally, we have the following.

Theorem 3.1 A PROMPT-LTL formulaϕ over input signalsI and output signalsO is realizable
iff the LTL formulac(ϕ) over input signalsI and output signalsO ∪ {p} is realizable.

Proof: Suppose thatϕ is realizable. Then there exists a strategyf : (2I)∗ → 2O and a bound
k ≥ 0 such that all the computationsw of f satisfy(w, 0, k) |= ϕ. We extendf to a strategy
f ′ : (2I)∗ → 2O∪{p} that realizesc(ϕ). Intuitively, we add to the computations off ap-coloring
that is2k-tight. Formally, forτ ∈ (2I)∗, we definef ′(τ) = f(τ)∪{p} if |τ | mod 2k is between
0 andk− 1 andf ′(τ) = f(τ) if |τ | mod 2k is betweenk and2k− 1. Consider a computationw
induced byf ′. Note thatw is k-tight and it satisfiesϕ. Therefore, by Lemma 2.1, we conclude
thatw |= c(ϕ).

Assume now thatc(ϕ) is realizable. Letf : 2I → 2O∪{p} be a regular strategy that realizes
it. We show that the strategyf ′ : 2I → 2O obtained fromf by projecting it onI (that is, for all
τ ∈ (2I)∗, we havef ′(τ) = f(τ)∩ I) realizesϕ. Letn be the number of states in the transducer
that generatesf . We show that all the computations generated byf ′ satisfyϕ with bound2n+2.
Consider a computationw of f ′. We claim thatw is (n + 1)-bounded. To see this, assume by
way of contradiction thatw has adjacentp-change pointsi andj such thatj − i > n + 1. Let
D = 〈2I , 2O, Q, η, q0, L〉 be the transducer that generatesf , and letq0, q1, q2, . . . be the run of
D that corresponds tow. SinceD hasn states, there exists a stateq and locationsi′ andj′ such
that i ≤ i′ < j′ ≤ j andqi′ = qj′ . Thus, some state repeats along thep-block that starts at
i and ends atj − 1. Then, the runq0, q1, . . . , qi′−1, (qi′ , . . . , qj′−1)

ω is also a run ofD. This
run, however, generates a computation off that does not satisfyaltp, contradicting the fact thatf
realizesc(ϕ). So, every computationw of f ′ is (n+1)-bounded, and it satisfiesc(ϕ). Therefore,
by Lemma 2.1, we conclude that(w, 0, 2n+ 2) |= ϕ.

Since LTL realizability is 2EXPTIME-complete and every LTLformula is also aPROMPT-
LTL formula, we can conclude:

Theorem 3.2 The problem of prompt realizability is 2EXPTIME-complete in the size of the for-
mula.

As demonstrated above, the alternating-color technique isvery powerful in the case of real-
izability. Indeed, the challenge of forcing thep-coloring to bek-bounded for somek is taken
care of by the regularity of the strategy. We now proceed to the model-checking problem, where
a reduction toc(ϕ) is not sufficiently strong.

4 Model Checking

In this section we describe an algorithm for solving the model-checking problem forPROMPT-
LTL. An alternative algorithm is described for the richer parameterized linear temporal logic

6

in [1]. Our algorithm is much simpler, and it deviates from the standard LTL model-checking
algorithm only slightly. In addition, as we show in Section 6, the idea behind our algorithm can
be applied also in order to solve assume-guarantee model checking, which is not known to be
the case with the algorithm in [1]. Our algorithm is based on the automata-theoretic approach to
LTL model-checking, and we first need some definitions.

A nondeterministic B̈uchi word automaton(NBW for short) isA = 〈Σ, S, δ, s0, α〉, whereΣ
is a finite alphabet,S is a finite set of states,δ : S×Σ → 2S is a transition function,s0 ∈ S is an
initial state, andα ⊆ S is aBüchiacceptance condition. Arun of A on a wordw = w0 ·w1 · · · is
an infinite sequence of statess0, s1, . . . such thats0 is the initial state and for allj ≥ 0, we have
sj+1 ∈ δ(sj , wj). For a runr = s0, s1, . . ., let inf(r) = {s ∈ S | s = si for infinitely manyi’s}
be the set of all states occurring infinitely often in the run.A run is acceptingif inf(r) ∩ α 6= ∅.
That is, the run visits infinitely many states fromα. A wordw is acceptedby A if there exists
some accepting run ofA overw. Thelanguageof A, is the set of words accepted byA.

Theorem 4.1 [20] For every LTL formulaϕ overAP there exists an NBWAϕ over the alphabet
2AP such thatAϕ accepts exactly all words that satisfyϕ. The number of states ofAϕ is at most
exponential in the number of subformulas ofϕ.

In order to check whether a systemS satisfies an LTL formulaϕ, one takes the product ofS
with the NBWA¬ϕ and tests the product for non-emptiness [19]. Indeed, a pathin this product
witnesses a computation ofS that does not satisfyϕ. As discussed in Section 1, in the case
of PROMPT-LTL we cannot translate formulas to languages. Moreover, we also cannot simply
apply the alternating-color technique: even if we check thenonemptiness of the product of the
system (an augmentation of it in which the propositionp behaves nondeterministically, thus all
p-colorings are possible) with the automaton foraltp ∧ ¬relp(ϕ), a path in this product only
implies that for some boundk ≥ 0, the formulaϕ is not satisfied inS with boundk. For proving
thatS does not satisfyϕ we have to prove something stronger, namely, thatϕ is not satisfied
in S with boundk, for all boundsk ≥ 0. For that, we do take the product of the system with
the automaton foraltp ∧ ¬relp(ϕ), but add a twist to the nonemptiness check: we search for a
path in the product in which eachp-block contains at least one state that repeats. Such a state
indicates that for all boundsk ≥ 0, thep-block can be pumped to ap-block of length greater
thank, implying thatϕ cannot be satisfied inS with boundk. We now formalize this intuition.

A colored B̈uchi graphis a tupleG = 〈{p}, V, E, v0, L, α〉, wherep is a proposition,V is a
set of vertices,E ⊆ V × V is a set of edges,v0 ∈ V is an initial vertex,L : V → 2{p} describes
the color of each vertex, andα ⊆ V is a set of accepting states. A pathπ = v0, v1, v2, . . . of G
is pumpableif all its p-blocks have at least one state that repeats. Formally, for all i ≥ 0, if i and
i′ are adjacentp-change points, then there are positionsj andj′ such thati ≤ j < j′ < i′ and
vj = vj′ . Also,π is fair if it visits α infinitely often. Thepumpable nonemptinessproblem is to
decide, givenG, whether is has a pumpable fair path.

Let c(ϕ) = altp ∧ ¬relp(ϕ). That is, we relativize the satisfaction ofFp to the new propo-
sition p, negate the resulting formula, and require the propositionp to alternate forever. Let
Ac(ϕ) = 〈2AP∪{p}, Q, δ, q0, α〉 be the NBW forc(ϕ) per Theorem 4.1. Consider a system
S = 〈AP, S, ρ, s0, L〉. We now define the product ofS with Ac(ϕ) by means of a colored Büchi
graph. Note thatS does not refer to the propositionp, and we duplicate its state space in order
to have in the product all possiblep-colorings of computations inS. Thus, the product isP =
〈{p}, S × {{p}, ∅} ×Q,M, 〈s0, {p}, q0〉, L, S × {{p}, ∅} × α〉, whereM(〈s, c, q〉, 〈s′, c′, q′〉)
iff ρ(s, s′) andq′ ∈ δ(q, L(s) ∪ c), andL(〈s, c, q〉) = c.

It is not hard to see that a pathπ = 〈s0, c0, q0〉, 〈s1, c1, q1〉, 〈s2, c2, q2〉, . . . in P corresponds
to a computations0, s1, s2, . . . of S, ap-coloringL(s0) ∪ c0, L(s1) ∪ c1, L(s2) ∪ c2, . . . of the
trace that the computation induces, and a runq0, q1, q2, . . . of Ac(ϕ) on thisp-coloring.

7

Theorem 4.2 The systemS does not satisfyϕ iff the product ofS and Ac(ϕ) is pumpable
nonempty.

Proof: Assume first thatS 6|= ϕ. Then, for every boundk ≥ 0, there exists a computation
πk of S such that(πk, 0, 2k) 6|= ϕ. Let k be larger than|S| · |Q| and letπk be as above.
Since(πk, 0, 2k) 6|= ϕ, then, by Lemma 2.1, for allk-boundedp-coloringπ′

k of πk, we have
(π′
k, 0) 6|= c(ϕ). Consider thek-tight p-coloringπ′

k of πk that starts with a green block. By
the above,(π′

k, 0) 6|= c(ϕ). Also, clearly,(π′
k, 0) |= altp. Thus,(π′

k, 0) |= c(ϕ). In addition,
sincek > |S| · |Q|, every path in the productP that corresponds to ak-tight p-coloring ofπk is
pumpable. Hence, the product ofπ′

k with an accepting run ofAc(ϕ) is a pumpable fair path inP .
Assume now thatP contains a pumpable fair pathπ = 〈s0, c0, q0〉, 〈s1, c1, q1〉, 〈s2, c2, q2〉,

. . .. We claim that for everyk ≥ 0, we can pump the computations0, s1, s2, . . . of S to a
computation that does not satisfyϕ with boundk. To see this, note that for eachk, we can pump
the pathπ to a fair pathπk such that thep-coloring of the trace that corresponds toπk is k-spaced
and satisfies¬relp(ϕ). Hence, by Lemma 2.1, it does not satisfyϕ with boundk.

In Section 5, we study the problem of deciding whether a colored Büchi graph is pumpable-
nonempty, and prove that it is in NLOGSPACE and can also be solved in linear time. This,
together with Theorems 4.1 and 4.2, imply the upper bound in the following theorem. The lower
bound follows from the known lower bound for LTL.

Theorem 4.3 The model-checking problem forPROMPT-LTL is PSPACE-complete and can be
solve in time exponential in the length of the formula and linear in the size of the system.

Note that while the pumpable nonemptiness problem to whichPROMPT-LTL model-checking
is reduced is a variant of the nonemptiness problem to which LTL model checking is reduced,
the construction of the product is almost the same. In particular, the extensive work on optimal
compilation of LTL formulas to NBW (see survey in [18]), is applicable to our solution too.

Remark 4.4 The model-checking algorithm of the parametric linear temporal logic of [1] is
based on the observation that if aPROMPT-LTL formula ϕ is satisfied in a systemS, then it is
satisfied with boundk, for somek that is exponential inϕ and polynomial inS. One cannot
hope to improve this bound. Indeed, for everyn ≥ 1, we can define aPROMPT-LTL formula
ψn of size linear inn such that a systems satisfiesψn iff in all its computations, the atomic
propositionq corresponds to ann-bit counter, and the value of the counter promptly eventually
reaches2n − 1. Clearly,ψn is promptly satisfied, but the minimal boundk with which ψn is
satisfied with boundk (in some system) is exponential inn.

5 Algorithms for Colored Büchi Graphs

In Section 4 we reduced model-checking forPROMPT-LTL to a pumpable nonemptiness prob-
lems for colored Büchi graphs. In this section we solve thisproblems, and provide space and
time bounds.

Theorem 5.1 The pumpable nonemptiness problem for colored Büchi graphs is NLOGSPACE-
complete and can be solved in linear time.

Proof: LetG = 〈{p}, V, E, v0, L, α〉. We start with the space complexity. Essentially, as with
standard Büchi nonemptiness, the pumpable nonemptiness problem can be solved by a sequence
of reachability tests. In addition to reaching a a vertexv in α that is reachable from itself, the

8

algorithm should make sure that the paths fromv0 to v and fromv to itself are pumpable. Thus,
in eachp-block, the algorithm should guess a repeated vertex (and check that it indeed repeats).
Also, an easy reduction from reachability shows hardness inNLOGSPACE.

We now move to the time complexity. For standard Büchi nonemptiness, one looks for
a reachable nontrivial strongly connected component that intersectsα. In the colored case, we
should further check that eachp-block in the path can be pumped. We do this by making sure that
every greenp-block contains at least one vertex that belongs to a nontrivial strongly connected
component in the graph of the green vertices, and similarly for the redp-blocks.

Consider the graphGg = 〈Vg, Eg〉 obtained fromG by restricting attention to green vertices.
Thus,Vg = {v ∈ V | L(v) = {p}} andEg = E ∩ (Vg × Vg). The graphGr = 〈Vr, Er〉 is
defined similarly. We can find the maximal strongly connectedcomponents (MSCC) ofGg and
Gr in linear time [17] (note we are interested also in MSCCs thatare not reachable fromv0 in
Gg andGr). Let Sg ⊆ Vg andSr ⊆ Vr denote the union of all non-trivial MSCCs inGg and
Gr, respectively.

Let backg(Sg) be the vertices that can reach some vertex inSg and let e-backg(Sg) be
the edges that are used to reach these vertices. Formally, wedefinebackg0(Sg) = Sg and
backgi+1(Sg) = {v ∈ Vg | ∃v′ ∈ backgi (Sg) and(v, v′) ∈ Eg}. Then,backg(Sg) =

⋃
i≥0 backgi (Sg)

ande-backg(Sg) = (Eg∩(Sg×Sg))∪
⋃
i≥0{(v, v

′) ∈ Eg | v ∈ backgi (Sg) andv′ ∈ backgi+1(Sg)}.
In a similar way, we defineforwardg(Sg) to be the set of vertices that are reachable from some
vertex inSg and definee-forwardg(Sg) to be the edges that are used to reach these vertices. The
setsbackr, e-backr, forwardr, ande-forwardr are defined similarly. Another type of edges we
need are edges betweenp-blocks. LetEg→r = E ∩ (forwardg(Sg) × backr(Sr)) be the set of
edges along which the color changes from green to red, and letEr→g = E ∩ (forwardr(Sr) ×
backg(Sg)) be the set of edges along which the color changes from red to green.

Consider now the subgraphG′ = 〈V ′, E′〉 of G, whereV ′ = backg(Sg) ∪ forwardg(Sg) ∪
backr(Sr) ∪ forwardr(Sr), and

E′ = Eg→r ∪ Er→g ∪ e-forwardg(Sg) ∪ e-forwardr(Sr) ∪ e-backg(Sg) ∪ e-backr(Sr).

Intuitively, the graphG′ contains exactly all the pumpable computations ofG. Indeed, along
eachp-block, there must exists a vertex that belongs to an MSCC of the graph of the correspond-
ing color. In the full version, we prove thatG is pumpable nonempty iffG′ has some non-trivial
MSCC that contains a vertex fromα.

We analyze the time it takes to constructG′ and to check whether it has a non-trivial MSCC
that intersectsα. Clearly, the MSCC decomposition ofGg andGr can be done in linear time.
The search forbackg andforwardg is done by a DFS onGg and its inverse. During the search,
the edges ine-backg ande-forwardg can be marked. The case ofbackr andforwardr is similar.
This stage can be completed in linear time as well. Finally, the MSCC decomposition ofG′ is
completed again in linear time, thus the overall running time is linear.

We note than our algorithm is based in MSCC-decomposition. It is an open question whether
a linear-time algorithm based on nested depth-first-searchcan be found (see discussion of these
types of algorithms in [18]).

Remark 5.2 The algorithm described above are explicit. A symbolicPROMPT-LTL model
checking algorithm follows from the translation ofPROMPT-LTL to the µ-calculus described
later in Theorem 7.3. The translation, however, involves a significant blow up. A symbolic al-
gorithm that performs well on the colored Büchi graphs is left open. For standard Büchi graphs,
algorithms can be classified as ones that are based on a nestedfixed point that calculates the set

9

of states that can reachα infinitely often [8], and ones that calculate symbolically the MSCC of
the graph [5]. We believe that algorithms of the second type can be extended to colored graphs.

6 Assume-Guarantee Model Checking

For two systemsS = 〈AP, S, ρ, s0, L〉 andS′ = 〈AP, S′, ρ′, s′0, L
′〉, the parallel composition of

S with S′, denotedS‖S′, is the system that contains all the joint behaviors ofS andS ′. Formally,
S‖S′ = 〈AP, S′′, ρ′′, s′′0 , L

′′〉, whereS′′ ⊆ S × S′ contains exactly all pairs that agree on their
label, that is〈s, s′〉 ∈ S′′ iff L(s) = L′(s′). Then,s′′0 = 〈s0, s′0〉 andρ′′(〈s, s′〉, 〈t, t′〉) iff ρ(s, t)
andρ′(s′, t′). Finally,L′′(〈s, s′〉) = L(s).

An assume-guarantee specificationfor a systemS is a pair of two specificationsϕ1 and
ϕ2. The systemS satisfies the specification, denoted〈ϕ1〉S〈ϕ2〉, if it is the case that for all
systemsS′, if S‖S′ satisfiesϕ1, thenS‖S′ also satisfiesψ [15]. In the context of LTL it is
not hard to see that〈ϕ1〉S〈ϕ2〉 iff S |= ϕ1 → ϕ2. Intuitively, since the‖ operator amounts to
taking the intersection of the languages ofS andS′, it is sound to restrict attention to systemsS′

that correspond to single computations ofS. In the case ofPROMPT-LTL, we can also restrict
attention to single computations, but we have to take the bounds into an account. Formally, we
have the following.

Lemma 6.1 Consider a systemS and PROMPT-LTL formulasϕ1 andϕ2. The specification
〈ϕ1〉S〈ϕ2〉 does not hold iff there is a boundk1 ≥ 0 such that for every boundk2 ≥ 0, there is a
tracew of S such that(w, 0, k1) |= ϕ1 but (w, 0, k2) 6|= ϕ2.

Since refuting assume-guarantee specifications refer to two bounds, we extend the alternating-
color technique to refer to two sets of colors. The atomic propositionp partitions the computation
to blocks that boundk1, and a new atomic propositionq does the same fork2. According to Lem-
mas 2.1 and 6.1, refuting〈ϕ1〉S〈ϕ2〉 amounts to finding a boundk1 ≥ 0 such that for all bounds
k2 ≥ 0, there is a computationw of S such thatw has ak1-boundedp-coloring that satisfies
relp(ϕ1), butw also has ak2-spacedq-coloring that satisfiesaltq ∧ ¬relq(ϕ2). Indeed, such a
computation satisfiesϕ1 with boundk1, and does not satisfyϕ2 with boundk2.

We now show that the pumpable nonemptiness technique developed in Section 4 for solving
the model-checking problem can be used also for solving the assume-guarantee model-checking
problem, only that now the corresponding colored Büchi graphs are colored with two sets of
colors, one forϕ1 and one forϕ2. Also, the definition of when a path in the graph is pumpable
corresponds to the intuition above.

A colored B̈uchi graph of degree twois a tupleG = 〈{p, q}, V, E, v0, L, α〉. It is similar
to a colored Büchi graph, only that now there are two sets of colors, described byp and q.
Accordingly,L : V → 2{p,q}. Also, α is a generalized Büchi condition of index 2, thusα =
{α1, α2}. A pathπ = v0, v1, v2, . . . of G is pumpableif we can pump all itsq-blocks without
pumping itsp-blocks. Formally, for alli ≥ 0, if i andi′ are adjacentq-change points, then there
are positionsj, j′, andj′′ such thati ≤ j < j′ < j′′ < i′, vj = vj′′ andp ∈ L(vj) iff p /∈ L(vj′).
Also, π is fair if it visits bothα1 andα2 infinitely often. Thepumpable nonemptinessproblem
is to decide, givenG, whether it has a pumpable fair path.

Let c(ϕ1) = altp∧relp(ϕ1) andc(ϕ2) = altq∧¬relq(ϕ2), and letAc(ϕ1) = 〈2AP∪{p}, Q1, δ1, q
1
0 , α1〉,

andAc(ϕ2) = 〈2AP∪{q}, Q2, δ2, q
2
0 , α2〉 be the corresponding NBWs (per Theorem 4.1). We

define the product ofS with Ac(ϕ1) andAc(ϕ2) as the colored Büchi graph of degree two.
P = 〈{p, q}, S×2{p,q}×Q1×Q2,M, 〈s0, {p, q}, q10, q

2
0〉, L, {S×2{p,q}×α1×Q2, S×2{p,q}×

Q1 ×α2}〉, whereM(〈s, c, q1, q2〉, 〈s′, c′, q′1, q
′
2〉) iff ρ(s, s′), q′1 ∈ δ1(q1, L(s)∪ (c∩{p})), and

q′2 ∈ δ2(q2, L(s) ∪ (c ∩ {q})). Finally,L(〈s, c, q1, q2〉) = c.

10

Theorem 6.2 The specification〈ϕ1〉S〈ϕ2〉 does not hold iff the product ofS with Ac(ϕ1) and
Ac(ϕ2) is pumpable nonempty,

Proof: Assume that〈ϕ1〉S〈ϕ2〉 does not hold. Then, by Lemma 6.1, there is a boundk1 ≥ 0
such that for every boundk2 ≥ 0, there is a tracewk1,k2 of S such that(wk1,k2 , 0, k1) |= ϕ1

but (wk1,k2 , 0, 2k2) 6|= ϕ2. Let k2 be larger than2 · |S| · |Q1| · |Q2| · k1 and letπk1,k2 be as
above. Since(πk1,k2 , 0, k1) |= ϕ1, then, by Lemma 2.1, for allk1-spacedp-coloring π′

k1,k2

of πk1,k2 , we have(π′
k1,k2

, 0) |= c(ϕ1). Since(πk1,k2 , 0, 2k2) 6|= ϕ2, then, by Lemma 2.1,
for all k2-boundedq-coloringπ′′

k1,k2
of πk1,k2 , we have(π′′

k1,k2
, 0) 6|= c(ϕ2). Consider thek1-

tight p-coloring andk2-tight q-coloringπ′
k1,k2

of πk1,k2 that starts withp andq. By the above,
(π′
k1,k2

, 0) 6|= c(ϕ2). Also, clearly,(π′
k1,k2

, 0) |= altq. Thus,(π′
k1,k2

, 0) |= c(ϕ2). In addition,
sincek2 > 2 · |S| · |Q1| · |Q2| · k1, every path in the productP is (p, q)-pumpable. Hence, the
product ofπ′

k1,k2
with accepting runs ofAc(ϕ1) and ofAc(ϕ2) is a(p, q)-pumpable fair path in

P .
Assume now thatP contains a(p, q)-pumpable fair pathπ = 〈s0, c0, q10 , q

2
0〉, 〈s1, c1, q

1
1 , q

2
1〉,

〈s2, c2, q12 , q
2
2〉, Letk1 denote the size of the maximalp-block inπ (as explained in Section 5,

if P is (p, q)-pumpable nonempty, then it has a regular(p, q)-pumpable path, thus the maximum
is well defined). We claim that for everyk2 ≥ 0, we can pump the computations0, s1, s2, . . .
of S to a computation that satisfiesϕ1 with bound2k1 but does not satisfyϕ2 with boundk2.
Note that if we pumpπ, we get a pathπ′ such that thep-coloring of the trace that corresponds to
π′ is k1-bounded and satisfiesc(ϕ1). In addition, for eachk2, we can pump that pathπ to a fair
pathπk2 such that theq-coloring of the trace that corresponds toπk2 is 2k2-spaced and satisfies
¬relq(ϕ2). Hence, by Lemma 2.1, it satisfiesϕ1 with bound2k1, and does not satisfyϕ2 with
boundk2.

As detailed in the full version, solving the nonemptiness ofcolored Büchi graphs of de-
gree two requires a slight modification of the algorithms in Section 5; we have to add the re-
quirement that everyq-block includes more than onep-block. The complexities stay the same,
NLOGSPACE-complete and in linear time. This, together withTheorems 4.1 and 6.2, imply the
upper bound in the following theorem. The lower bound follows from the known lower bound
for LTL.

Theorem 6.3 The assume-guarantee model-checking problem forPROMPT-LTL is PSPACE-
complete and can be solve in time exponential in the length ofthe formulas and linear in the
size of the system.

For two formulasϕ1 andϕ2, we say thatϕ1 impliesϕ2 iff for every systemS, if S satisfies
ϕ1, then it also satisfiesϕ2. In the case of LTL,ϕ1 impliesϕ2 iff the formulaϕ1 → ϕ2 is valid.
In the case ofPROMPT-LTL, ϕ1 impliesϕ2 iff 〈ϕ1〉U〈ϕ2〉, whereU is the universal system (a
clique over2AP that contains all traces overAP). Indeed, since for every systemS we have that
S‖U = S, then〈ϕ1〉U〈ϕ2〉 does not hold iff there is a systemS such that ifS satisfiesϕ1 but
S 6|= ϕ2. SinceU is exponential inAP , and the PSPACE complexity of assume-guarantee model
checking originates from an algorithm that is polynomial inthe formulas and only logarithmic in
the system, we have the following (the lower bound follows from the PSPACE hardness of LTL
implication).

Theorem 6.4 The implication problem forPROMPT-LTL is PSPACE-complete.

7 Expressiveness

In this section we study expressiveness aspects ofPROMPT-LTL. We show that aPROMPT-LTL
formulaϕ has an equivalent LTL formula iffϕ and live(ϕ) are equivalent, thus the problem

11

of deciding whetherϕ can be translated to LTL is PSPACE-complete. Since the semantics of
PROMPT-LTL is defined with respect to a system, a natural question iswhether we can translate
PROMPT-LTL formulas to branching temporal logics. We show that indeed, allPROMPT-LTL
formulas can be translated to theµ-calculus.

All our results refer to finite-state systems. Thus, we say that two formulasϕ andϕ′ are
equivalent iff for all finite systemsS, we have thatS |= ϕ iff S |= ϕ′.

7.1 From PROMPT-LTL to LTL

SomePROMPT-LTL formulasϕ are equivalent to the LTL formulalive(ϕ). For example, it is
not hard to see thatFpr is equivalent toFr, for an atomic propositionr. On the other hand,
as demonstrated in Section 1, thePROMPT-LTL formula FpGr is not equivalent to the LTL
formulaFGr. Is FpGq equivalent to another LTL formula? A negative answer follows from
Lemma 7.1 below.

Lemma 7.1 Consider aPROMPT-LTL formulaϕ. There is an LTL formula equivalent toϕ iff ϕ
is equivalent tolive(ϕ).

Proof: Assume thatϕ has an equivalent LTL formula. Then, there is aω-regular language
Lϕ ⊆ (2P)ω such that a systemS satisfiesϕ iff all the traces ofS are contained inLϕ. We prove
that for every systemS, we have thatS |= live(ϕ) iff S |= ϕ. The direction from right to left
holds always. For the other direction, assume by way of contradiction thatS |= live(ϕ), but the
traces ofS are not contained inLϕ. SinceS is finite state andLϕ is ω-regular, but there is an
ω- regular tracew of S that does not belong toLϕ. Let k be such thatw satisfieslive(ϕ) with
boundk (sincew is a single trace of a finite state system, such a boundk must exist). Then,w
satisfies alsoϕ, and it therefore belongs toLϕ.

Theorem 7.2 Deciding whether aPROMPT-LTL formula has an equivalent LTL formula is
PSPACE-complete.

Proof: By Lemma 7.1, the problem of deciding whether aPROMPT-LTL formula ϕ has an
equivalent LTL formula can be reduced to checking the equivalence ofϕ and live(ϕ). Since
ϕ → live(ϕ) is valid for all ϕ, one should only check the implicationlive(ϕ) → ϕ, which,
according to Theorem 6.4, can be done in PSPACE.

We prove hardness in PSPACE by a reduction from the satisfiability problem of LTL. Con-
sider an LTL formulaϕ, and a propositionr not used inϕ. It is not hard to prove that the
PROMPT-LTL formulaϕ ∧FbGp has an equivalent LTL formula iffϕ is unsatisfiable.

7.2 From PROMPT-LTL to the µ-calculus

It is not hard to prove that thePROMPT-LTL formula FpGq is equivalent to the CTL formula
AFAGq. Indeed, a system satisfies both formulas iff there is a boundk ≥ 0 such that all the
computations may visit a state in whichq does not hold only in the firstk positions. One may
wonder whether this argument can be generalized, leading toa simple translation ofPROMPT-
LTL formulas to CTL ⋆ formulas: given aPROMPT-LTL formula ϕ, translate it to a CTL⋆

formulaϕ′ by (recursively) replacing all subformulas of the formFpθ by FAθ (and adding
an externalA). To see that the reduction does not hold in general, consider the PROMPT-LTL
formulaϕ = Fp(Xq ∨ Gq). While the systemS from Figure 1 satisfiesϕ (with bound 3),
the systemS does not satisfy the CTL⋆ formulaϕ′ = AFA(Xq ∨ Gq). The question whether
PROMPT-LTL can be expressed in CTL⋆ is open. On the other hand, we now show that every
PROMPT-LTL formula has an equivalentµ-calculus formula.

12

Theorem 7.3 EveryPROMPT-LTL formula has an equivalentµ-calculus formula.

Proof: Given aPROMPT-LTL formulaϕ overP , letA∀c(ϕ) be a alternating parity tree automa-
ton that accepts exactly all trees all of whose paths satisfyc(ϕ); in fact,A∀c(ϕ) can be taken to
be a universal co-Büchi automaton [12]. Note thatA∀c(ϕ) is over the alphabet2P∪{p}, thus it
refers also to the atomic propositionp. Letψ be aµ-calculus formula equivalent toA∀c(ϕ) [10].
As in Theorem 3.1, it can be shown that over finite systemsϕ is equivalent to∃p.ψ. Hence, by
[11], ϕ is equivalent to someµ-calculus formula.

References
[1] R. Alur, K. Etessami, S. La Torre, and D. Peled. Parametric temporal logic for model measuring.

ACM ToCL, 2(3):388–407, 2001.

[2] B. Alpern and F.B. Schneider. Defining liveness.IPL, 21:181–185, 1985.

[3] A. Biere, C. Artho, and V. Schuppan. Liveness checking assafety checking. InProc. 7th FMICS,
ENTCS 66:2, 2002.

[4] I. Beer, S. Ben-David, D. Geist, R. Gewirtzman, and M. Yoeli. Methodology and system for practical
formal verification of reactive hardware. InProc. 6th CAV, LNCS 818, 182–193, 1994.

[5] R. Bloem, H.N. Gabow, and F. Somenzi. An algorithm for strongly connected component analysis in
n log n symbolic steps. InProc. FMCAD, LNCS 1954, 37–54, 2000.

[6] J.R. Büchi and L.HG. Landweber. Solving sequential conditions by finite-state strategies.Trans.
AMS, 138:295–311, 1969.

[7] C. Eisner and D. Fisman.A Practical Introduction to PSL. Springer, 2006.

[8] E.A. Emerson and C.-L. Lei. Efficient model checking in fragments of the propositionalµ-calculus.
In Proc. 1st LICS, 267–278, 1986.

[9] E.A. Emerson, A.K. Mok, A.P. Sistla, and J. Srinivasan. Quantitative temporal reasoning. InProc.
2nd CAV, LNCS 531, 136–145, 1990.

[10] D. Janin and I. Walukiewicz, Automata for the modalµ-calculus and related results”, InProc. 20th
MFCS, LNCS 969, 552–562, 1995.

[11] D. Janin and I. Walukiewicz. On the expressive completeness of the propositionalµ-calculus with
respect to the monadic second order logic. InProc. 7th CONCUR, LNCS 1119, 263–277, 1996.

[12] O. Kupferman and M.Y. Vardi Safraless Decision Procedures. InProc. 46th FOCS, 531–540, 2005.

[13] Z. Manna and A. Pnueli.The Temporal Logic of Reactive and Concurrent Systems: Specification.
Springer, Berlin, January 1992.

[14] A. Pnueli. The temporal logic of programs.Proc. 18th FOCS, 46–57, 1977.

[15] A. Pnueli. In transition from global to modular temporal reasoning about programs.Logics and
Models of Concurrent Systems, volume F-13 ofNATO Advanced Summer Institutes, 123–144, 1985.

[16] A. Pnueli and R. Rosner. On the synthesis of a reactive module. InProc. 16th POPL, 179–190, 1989.

[17] R.E. Tarjan. Depth first search and linear graph algorithms. SIAM Journal of Computing, 1(2):146–
160, 1972.

[18] M.Y. Vardi. Automata-theoretic model checking revisited. InProc. 7th VMCAI, LNCS 4349, 137–
150, 2007.

[19] M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program verification. In
Proc. 1st LICS, 332–344, 1986.

[20] M.Y. Vardi and P. Wolper. Reasoning about infinite computations.I&C , 115(1):1–37, 1994.

13

