
LTL Generalized Model Checking Revisited

Patrice Godefroid1 and Nir Piterman2?

1 Microsoft Research
2 Imperial College London

Abstract. Given a 3-valued abstraction of a program (possibly generated using
static program analysis and predicate abstraction) and a temporal logic formula,
generalized model checking (GMC) checks whether there exists a concretiza-
tion of that abstraction that satisfies the formula. In this paper, we revisit gen-
eralized model checking for linear time (LTL) properties. First, we show that
LTL GMC is 2EXPTIME-complete in the size of the formula and polynomial in
the model, where the degree of the polynomial depends on the formula, instead
of EXPTIME-complete and quadratic as previously believed. The definition of
GMC depends on a definition of concretization and completeness preorder. The
usual definition of concretization is tailored for branching-time model check-
ing. We then study a simpler linear completeness preorder for relating program
abstractions. We show that LTL GMC with this preorder is only EXPSPACE-
complete in the size of the formula, and can be solved in linear time and logarith-
mic space in the size of the model. Finally, we identify classes of formulas for
which the model complexity of GMC is reduced.

1 Introduction

Generalized model checking [BG00] is a way to improve precision when reasoning
about partially defined systems. Such systems can be modeled as 3-valued Kripke struc-
tures where atomic propositions are either true, f alse or unknown, denoted by the third
value⊥. Three-valued models are a natural representation of program abstractions gen-
erated automatically [GHJ01,GWC06] using static program analysis and predicate ab-
straction [GS97] for software model checking [BR01].

Given a 3-valued model M and a temporal-logic formula φ, the generalized model-
checking problem is to decide whether there exists a complete systemM ′ that is consis-
tent withM and that satisfies the formula φ. From a practical point of view, generalized
model checking (GMC) can sometimes [GH05,GC05] improve verification of program
abstractions. From a theoretical point of view, studying GMC is arguably interesting in
its own right since GMC generalizes both model checking (when all proposition val-
ues in the model are known) and satisfiability checking (when all proposition values
are unknown), probably the two most studied problems related to temporal logic and
verification.

In this paper, we revisit GMC for linear-time temporal-logic (LTL) formulas. First,
we show that LTL GMC is 2EXPTIME-complete in the size of the formula and polyno-
mial in the model, where the degree of the polynomial depends on the formula, instead
? Supported by the UK EPSRC project Complete and Efficient Checks for Branching-Time Ab-

stractions (EP/E028985/1).

of EXPTIME-complete and quadratic as previously stated erroneously in [BG00]. The
definition of GMC depends on the exact notion of abstraction, and is usually tailored
for branching-time model checking [BG00]. We study a simpler linear completeness
preorder for relating program abstractions. We show that LTL GMC with this weaker
preorder is only EXPSPACE-complete in the size of the formula, and can be solved in
linear time and logarithmic space in the size of the model. Finally, we identify classes
of formulas for which the model complexity of GMC is reduced.

Example. Consider the program P :

program P() {
x,y = 1,0;
x,y = 2*f(x),f(y);
x,y = 1,0;

}

where x and y denote int variables, f : int -> int denotes some unknown
function, and the notation “x,y = 1,0” means variables x and y are simultane-
ously assigned values 1 and 0, respectively. Let φ1 denote the LTL formula Fqy ∧
G(qx ∨ ¬qy) with the two predicates qx : “is x odd?” and qy : “is y odd?”, and where
F means “eventually” while G means “always”, and let φ2 denote the LTL formula
Xqy∧G(qx∨¬qy), whereX means“next” (see the next section for formal definitions).

Given such a program and knowing the predicate of interests qx and qy , predicate
abstraction can be used to automatically generate the following 3-valued Kripke struc-
ture M (or “Boolean program” [BR01]) abstracting P [GHJ01]:

initial state s0: qx = true, qy = f alse
next state s1: qx = f alse, qy = ⊥
next state s2: qx = true, qy = f alse
loop forever in s2

As shown in [GJ02] and discussed later, model checking φ1 and φ2 against M returns
the value “unknown,” while generalized model checking can prove that no concretiza-
tion of M can possibly satisfy either φ1 or φ2, i.e., no matter how function f is imple-
mented.

Although φ2 = Xqy∧G(qx∨¬qy) is an LTL safety formula and hence is within the
scope of predicate-abstraction-based software model checkers such as SLAM [BR01]
or BLAST [HJMS02], these tools cannot prove that φ2 does not hold regardless of
the definition of function f: this result can only be obtained through generalized model
checking. Instead, when confronted with such a programP , these tools would attempt to
iteratively refine the abstractionM by analyzing the code of function f if it is available.
This process is in general exponential in the abstraction, since adding a single predicate
in each iteration may double the size of the abstraction. Moreover, this process may not
terminate. For the above abstractionM and formula φ2, the expensive and unpredictable
abstraction-refinement process can thus be avoided thanks to GMC. Although the worst-
case complexity of GMC is expensive in the size of the (usually short) formula (but so is
traditional LTL model checking which is already PSPACE-complete), GMC can always
be done in time polynomial in the size of the model (linear or quadratic in many cases
as shown later), in contrast with abstraction refinement which is typically exponential
in the (usually large) model. ut

2

2 Preliminaries

A partial Kripke structure (PKS for short) [BG99] is M = 〈S,R,L, sin〉 where S is a
nonempty set of states, R ⊆ S × S is a total image-finite transition relation (i.e., every
state has a non-zero finite number of immediate successor states), L : S × AP → 3
is a labeling of states that associates a truth value in 3 = {true,⊥, f alse} to each
atomic proposition in a finite set AP , and sin ∈ S is an initial state. For a state s and
proposition p, we say that p is true in s if L(s, p) = true, it is false in s if L(s, p) =
f alse, and it is unknown ⊥ otherwise. A PKS is complete if the range of L is 2 =
{true, f alse}. We call a complete PKS a Kripke Structure or KS. When we want to
stress that a PKS M is complete, we denote it by M . Given a state s, we denote by
L(s) the function σ : AP → 3 such that σ(p) = L(s, p). We use the notations 3AP =
{σ : AP → 3} and 2AP = {σ : AP → 2}. For s ∈ S, we denote by (M, s) the PKS
〈S,R,L, s〉.

A computation of M is s0, s1, . . . such that s0 = sin and forall j ≥ 0 we have
(si, si+1) ∈ R. A computation π = s0, s1, . . . induces a trace L(π) = L(s0)L(s1) · · · .
The set of computations of M is denoted C(M) and the set of traces of M is denoted
L(M). In general, L(M) ⊆ (3AP)ω . Given a PKS M = 〈S,R,L, sin〉, the unwinding
of M is the PKS M+ = 〈S+, R′, L′, sin〉, where S+ is the set of nonempty sequences
over S, R′ = {(s1 · · · sn, s1 · · · sn · sn+1) ∈ (S+ × S+) | (sn, sn+1) ∈ R}, and
L′(π · s) = L(s). We restrict the set S+ to the set of sequences reachable from sin. If
M is a Kripke structure then so is M+.

To interpret temporal logic formulas on PKSs, we extend Kleene’s strong 3-valued
propositional logic [Kle87]. Conjunction ∧ in this logic is defined as the minimumMin
of its arguments with respect to the truth ordering ≤T where f alse ≤T ⊥ ≤T true.
We extend this function to sets in the obvious way, with Min(∅) = true. Negation
¬ is defined using the function ‘Comp’ that maps true to f alse, f alse to true, and
⊥ to ⊥. Disjunction ∨ is defined as usual using De Morgan’s laws: p ∨ q = ¬(¬p ∧
¬q). Propositional modal logic (PML) is propositional logic extended with the modal
operator AX (which is read “for all immediate successors”). Formulas of PML have
the following abstract syntax: φ ::= p | ¬φ | φ1 ∧ φ2 | AXφ, where p ranges over
AP . The following 3-valued semantics generalizes the traditional 2-valued semantics
for PML.

Definition 1. The value of a formula φ of 3-valued PML in a state s of a PKS M =
〈S,R,L, sin〉, written [(M, s) |= φ], is defined inductively as follows:

[(M, s) |= p] = L(s, p)
[(M, s) |= ¬φ] = Comp([(M, s) |= φ])

[(M, s) |= φ1 ∧ φ2] = Min({[(M, s) |= φ1], [(M, s) |= φ2]})
[(M, s) |= AXφ] = Min({[(M, s′) |= φ] | (s, s′) ∈ R})

This 3-valued logic can be used to define a preorder� on PKSs that reflects their degree
of completeness. Let≤I be the information ordering on truth values where⊥ is the least
element and true and f alse are maximal uncomparable elements: ⊥ ≤I true, f alse.
For two PKS Mi = 〈Si, Ri, Li, sini 〉 with i = 1, 2 the completeness preorder is the
greatest relation � ⊆ S1 × S2 such that s1 � s2 implies all the following:

3

1. For every p ∈ AP , we have L1(s1, p) ≤I L2(s2, p).
2. For every (s1, s′1) ∈ R1, there exists (s2, s′2) ∈ R2 such that s′1 � s′2.
3. For every (s2, s′2) ∈ R2, there exists (s1, s′1) ∈ R1 such that s′1 � s′2.

We say that M2 is more complete than M1, denoted M1 � M2, if sin1 � sin2 . It can be
shown that 3-valued PML logically characterizes the completeness preorder.

Theorem 1. [BG99] LetM1 andM2 be partial Kripke structures, and letΦ be the set of
all formulas of 3-valued PML. Then M1 �M2 iff (∀φ ∈ Φ : [M1 |= φ] ≤I [M2 |= φ]).

In other words, partial Kripke structures that are “more complete” with respect to �
have more definite properties with respect to ≤I , i.e., have more properties that are
either true or f alse. Moreover, any formula φ of 3-valued PML that evaluates to true
or f alse on a partial Kripke structure has the same truth value when evaluated on any
more complete structure.

2.1 Model Checking and Generalized Model Checking

The sets of LTL and CTL formulas are defined as follows.

LTL ϕ ::= p | ϕ ∧ ϕ | ¬ϕ | Xϕ | ϕUϕ

CTL ϕ ::= p | ϕ ∧ ϕ | ¬ϕ | AXϕ | AϕUϕ | EϕUϕ

We assume familiarity with the semantics of LTL and CTL and with their model check-
ing. As usual, we denote f alse Uϕ by Fϕ, ¬F¬ϕ by Gϕ and ¬((¬ψ)U(¬ϕ ∧ ¬ψ))
by ϕRψ. The above grammar includes a complete set of operators and other operators
can be expressed in the usual way. Given a set of propositions AP and an LTL formula
ϕ, the language of ϕ, denoted L(ϕ) is the set of models of ϕ in (2AP)ω . Formally,
L(ϕ) = {w ∈ (2AP)ω | w |= ϕ}. The 3-valued semantics of LTL and CTL path
formulas extend Definition 1 as expected. For instance, given a 3-valued infinite word
w = a0a1a2 · · · ∈ (3AP)ω , [w |= Xϕ] = [w′ |= ϕ] with w′ = a1a2 · · · ∈ (3AP)ω ,
while [w |= ϕ1Uϕ2] = Max({Min({[ai |= ϕ1]|i < k} ∪ {[ak |= ϕ2]})|k ≥ 0}).
For a Kripke structure M and an LTL formula ϕ, we say that M satisfies ϕ, denoted
M |= ϕ if L(M) ⊆ L(ϕ).

In practice, the size of the Kripke structure M can be prohibitively expensive or
even infinite. Instead, a smaller (finite) abstraction M ′ can be used: if M ′ is generated
in such a way that M ′ � M , then all the properties φ that can be proved (true) or dis-
proved (f alse) of M ′ will also hold of M , by Theorem 1. With static program analysis
and predicate abstraction, generating such abstractions with respect to the complete-
ness preorder � can be done at the same computational cost as computing standard
abstractions that merely simulate (over-approximate) the concrete system M [GHJ01].
Moreover, 3-valued model checking can itself be done at the same computational cost
as regular 2-valued model checking [BG00].

In some cases, precisely characterized in [GH05] and also independently studied
in [GC05], all the completions of an abstractionM agree on the satisfaction of a formula
ϕ, yet 3-valued model checking is not accurate enough to identify this and still returns

4

⊥. For instance, this is the case for the formula p ∨ ¬p if p is ⊥. This observation
suggests a more precise version of 3-valued model checking [BG00]: the value of a
formula ϕ in a PKS M should be unknown only if some completions of M satisfy
ϕ and some completions of M falsify ϕ [BG00]. We denote the value of ϕ on M
according to this thorough semantics by [M |= ϕ]t ∈ 3.

Generalized model checking (GMC) can determine the value of [M |= ϕ]t [BG00].
Given a PKS M and a formula ϕ the GMC problem for M and ϕ is to determine
whether there exists a Kripke structure M ′ that completes M and satisfies ϕ. Formally,
we have the following.

M |=� ϕ iff there exists M ′ �M such that M ′ |= ϕ

The value [M |= ϕ]t can be evaluated with two GMC questions. First, we check
whether M |=� ϕ. If the answer is no, then all completions of M do not satisfy ϕ and
[M |= ϕ]t = f alse. If the answer is yes, we next check whether M |=� ¬ϕ. If that
answer is no, then we know that all completions of M satisfy ϕ and [M |= ϕ]t = true.
Otherwise, [M |= ϕ]t = ⊥.

It can be shown that 3-valued model checking is sound with respect to the thorough
semantics.

Theorem 2. [BG00] Let M be a PKS and ϕ an LTL or CTL formula.
1. [M |= ϕ] = true implies [M |= ϕ]t = true.
2. [M |= ϕ] = f alse implies [M |= ϕ]t = f alse.

In this paper we revisit LTL generalized model checking and show that its complex-
ity is greater than what was previously believed. We also consider specifications (both
in LTL and CTL) for which the model complexity of generalized model checking is
simpler than the general case.

2.2 Automata over Infinite Words

We assume familiarity with the basic notions of alternating automata on infinite words,
cf. [GTW02]. We also refer to tree automata, however, we do not define them formally.

Given an alphabet Σ and a set D of directions, a Σ-labeled D-tree is a pair 〈T, τ〉,
where T ⊆ D∗ is a tree over D and τ : T → Σ maps each node of T to a letter in Σ.

An alternating word automaton is A = 〈Σ,Q, qin, δ, α〉, where Σ is the input al-
phabet, Q is a finite set of states, δ : Q × Σ → B+(Q) is a transition function,
qin ∈ Q is an initial state, and α specifies the acceptance condition. A run of A on
w = σ0σ1 · · · is a Q-labeled D-tree, 〈T, τ〉, where τ(ε) = qin and, for every x ∈ T ,
we have {τ(x · γ1), . . . , τ(x · γk)} |= δ(τ(x), σ|x|) where {x · γ1, . . . , x · γk} is the set
of children of x. A run of A is accepting if all its infinite paths satisfy the acceptance
condition. For a path π, we denote the set of automaton states visited infinitely often
along this path by inf(π). We consider the following three acceptance conditions:

– A path π satisfies a Büchi condition α ⊆ Q iff inf(π) ∩ α 6= ∅.
– A path π satisfies a co-Büchi condition α ⊆ Q iff inf(π) ∩ α = ∅.
– A path π satisfies a parity condition α = 〈F0, . . . , Fk〉 where F0, . . . Fk form a

partition of Q iff for some even i we have inf(π) ∩ Fi 6= ∅ and forall i′ < i we
have inf(π) ∩ Fi′ = ∅. We call k the number of priorities of α.

5

For the three conditions, an automaton accepts a word iff there exists a run that accepts
it. We denote by L(A) the set of all Σ-words that A accepts.

Below we discuss some special cases of alternating automata. The alternating au-
tomaton A is nondeterministic if for all the formulas that appear in δ are disjunctions
over the states Q. The automaton A is deterministic if all formulas that appear in δ are
states from Q. For a nondeterministic automaton we write δ : Q × Σ → 2Q and for a
deterministic automaton we write δ : Q×Σ → Q.

We denote each of the different types of automata by an acronym in {D,N,A} ×
{B,C, P}×{W,T}, where the first letter describes the branching mode of the automa-
ton (deterministic, nondeterministic, or alternating), the second letter describes the ac-
ceptance condition (Büchi, co-Büchi, or parity), and the third letter describes the object
over which the automaton runs (words or trees). For example, an ABW is an alternating
Büchi word automata and a DPW is a deterministic parity word automata.

We state the following well known results about automata and their relation to LTL.

Theorem 3. For every LTL formula ϕ of length n there exist an NBW Nϕ with 2O(n)

states [VW94] and a DPWDϕ with 22O(n logn)
states and 2O(n) priorities [Saf88,Pit07]

such that L(ϕ) = L(Nϕ) = L(Dϕ).

Theorem 4. [Jur00] Given an APW A over 1-letter alphabet with n states and k prior-
ities, we can decide whether L(A) = ∅ in time proportional to nO(k).

Theorem 5. [SVW87] Given two NBW N1, N2 we can decide whether L(N1) ⊆
L(N2) in space logarithmic in N1 and polynomial in N2.

3 LTL Generalized Model Checking

We show that, contrary to previous beliefs, GMC with respect to linear time logic is
2EXPTIME-complete. Our upper bound combines a DPW for the LTL property with
the PKS to get an APW over 1-letter alphabet. The APW is not empty iff the GMC
problem holds. For the lower bound, we show a reduction from LTL realizability to
generalized model checking. LTL realizability is 2EXPTIME-hard [PR89] establish-
ing 2EXPTIME-hardness of generalized model checking. The two together establish
2EXPTIME-completeness of generalized model checking for LTL.

Theorem 6. LTL generalized model checking M |=� ϕ can be solved in polynomial
time in the size of M and double exponential time in the size of ϕ.

Proof. Consider an LTL formula ϕ. Let |ϕ| = n. According to Theorem 3 there exists
a DPW Dϕ with 22O(n log n)

states and index 2O(n) such that L(ϕ) = L(Dϕ).
Let Dϕ = 〈2AP , T, t0, ρ, α〉 and M = 〈S,R,L, sin〉. Consider the following APW

A over 1-letter alphabet that is obtained from the combination of M and Dϕ. We define
A = 〈{a}, T × S, (t0, sin), η, α′〉 such that

η((t, s), a) =
∨

σ�L(s)

∧
(s,s′)∈R

(ρ(t, σ), s′)

and α′ = 〈F ′0, . . . , F ′k〉 is obtained from α = 〈F0, . . . , Fk〉 by setting F ′j = Fj × S. In
Appendix A we prove the following Lemma.

6

Lemma 1. A accepts aω iff M |=� ϕ.

According to Theorem 4 the emptiness of A can be determined in time proportional
to (22O(n log n)

)2
O(n)

= 22O(n log n)
. ut

Note that, if Dϕ was nondeterministic in the previous proof, it could not precisely track
simultaneously different matching states s such that s � sn in the previous proof, and
therefore M |=� ϕ would not necessarily imply that A accepts aω . This is in essence
the error in the proof of Theorem 25 of [BG00], which led to the overly optimistic
EXPTIME upper-bound.

We now proceed to the lower bound. We start with a definition of LTL realizability.
Consider a set of propositionsAP = I∪O of input and output signals, respectively. Let
L be a language of infinite words over alphabet 2AP . The realizability problem for L is
to decide whether there exists a strategy f : (2I)+→2O such that all the computations
generated by f are in L. A computation π = (i0, o0), (i1, o1), . . . is generated by f if
for all j ≥ 0 we have oj = f(i0i1 · · · ij). The realizability problem for an LTL formula
ϕ is the realizability problem for L(ϕ).

Theorem 7. [PR89] The realizability problem for an LTL formula ϕ is 2EXPTIME-
hard in the size of ϕ.

Theorem 8. LTL Generalized model checkingM |=� ϕ is 2EXPTIME-hard in the size
of ϕ.

Proof. We show how to solve realizability of an LTL formula using the generalized
model checking problem. The idea behind the reduction is that the PKS includes deter-
mined values of the inputs and undetermined values of the outputs. The branching of
the PKS forces all possible assignments to inputs as possible successors of every state.
Thus, every completion of the PKS associates an assignment to the outputs with every
possible assignment to inputs and is in essence a strategy. If the completion satisfies the
LTL formula, then so does the strategy. The PKS has 2I different states, each labeled
by the appropriate assignment to the input variables and with transitions between every
two possible states. We also show how to reduce the PKS to one with a constant number
of states and |O|+ 2 propositions. The full proof is in Appendix B. ut

4 Linear Completeness Preorder

The completeness preorder� used to define generalized model checking |=� is stronger
than necessary for reasoning only about the linear behaviors of partial Kripke structures.
Indeed, the completeness preorder reduces to a bisimulation relation in the case of com-
plete Kripke structures, and Kripke structures that satisfy the same LTL formulas are
not necessarily bisimilar.

In this section, we study a simpler linear completeness preorder�L, first suggested
in [BG00], that relates partial Kripke structures using only their sets of (3-valued) traces.
Then we show that generalized model checking |=�L

defined with respect to this linear
preorder is “only” EXPSPACE-complete.

Given any two infinite 3-valued traces w=L(s0)L(s1) · · · and w′=L(s′0)L(s′1) · · ·
in (3AP)ω , we write w ≤I w′ if ∀i ≥ 0 : ∀p ∈ AP : L(si, p) ≤I L(s′i, p).

7

Definition 2. For two PKS Mi = 〈Si, Ri, Li, sini 〉 with i = 1, 2, the linear complete-
ness preorder�L is the greatest relation�L ⊆ S1×S2 such that (s1, s2) ∈ �L implies
all the following.
1. For every w ∈ L(M1, s1) there exists w′ ∈ L(M2, s2) such that w ≤I w′.
2. For every w′ ∈ L(M2, s2) there exists w ∈ L(M1, s1) such that w ≤I w′.

It is easy to show that 3-valued LTL logically characterizes the linear completeness
preorder.

Theorem 9. For any two PKS M1 and M2, we have M1 �L M2 iff for every LTL
formula ϕ we have [M1 |= ϕ] ≤I [M2 |= ϕ].

Proof. Assume M1 �L M2 and consider any LTL formula ϕ. If [M1 |= ϕ] = ⊥, we
always have [M1 |= ϕ] ≤I [M2 |= ϕ].

If [M1 |= ϕ] = true, then for all w ∈ L(M1), [w |= ϕ] = true. By point 2 of
Definition 2, for every w′ ∈ L(M2) there exists w ∈ L(M1) such that w ≤I w′. But
since ∀w ∈ L(M1) : [w |= ϕ] = true, we have ∀w′ ∈ L(M2) : [w′ |= ϕ] = true, and
hence [M2 |= ϕ] = true.

If [M1 |= ϕ] = f alse, then ∃w ∈ L(M1) : [w |= ϕ] = f alse. By point 1 of
Definition 2, we have ∃w′ ∈ L(M2) : w ≤I w′ and hence [w′ |= ϕ] = f alse. Thus
[M2 |= ϕ] = f alse, and the first direction of the theorem holds.

Conversely, let s1 v s2 denote ∀ϕ ∈ LTL : [(M1, s1) |= ϕ] ≤I [(M2, s2) |= ϕ].
Assume that s1 v s2 but that s1 6�L s2: thus, either point 1 or 2 of Definition 2 is
violated.

Assume point 1 is violated: ∃w ∈ L(M1, s1) : ∀w′ ∈ L(M2, s2) : w 6≤I w′. Let
w = s01s

1
1s

2
1 · · · with s01 = s1. Let S0

2 = {s2} and for k > 0, let Sk2 = {s ∈ S2 | s′ ∈
Sk−1

2 ∧ (s′, s) ∈ R2 ∧ (∀p ∈ AP : L1(sk1 , p) ≤I L2(s, p))}. Since ∀w′ ∈ L(M2, s2) :
w 6≤I w′, then there must exist a value of k such that Sk2 = ∅. In other words, the
corresponding sk1 in M1 denote the first state in M1 reachable from s1 along w whose
label cannot be “matched” (according to the previous formal definition) by any state of
M2 (hence also reachable in k steps from s2). By abusing notation, let Sk2 = {s ∈ S2 |
s′ ∈ Sk−1

2 ∧ (s′, s) ∈ R2} (by construction, we know Sk−1
2 6= ∅ and since every state

has at least one successor state, Sk2 is nonempty as well). Thus, for each state s ∈ Sk2 ,
there exists a proposition p ∈ AP such that L1(sk1 , p) 6≤I L2(s, p). Let ϕ(s) = p
if L1(sk1 , p) = f alse and let ϕ(s) = ¬p otherwise (i.e., when L1(sk1 , p) = true; if
L1(sk1 , p) = ⊥, then trivially L1(sk1 , p) ≤I L2(s, p)). Consider the LTL formula

ψ = (
∧
i<k

(Xi(
∧

L(si
1,p)=true

p ∧
∧

L(si
1,p)=f alse

¬p)))⇒ Xk
∨
s∈Sk

2

ϕ(s)

We have [(M1, s1) |= ψ] = f alse (as we know [w |= ψ] = false) while [(M2, s2) |=
ψ] 6= f alse (since the antecedent of the logical implication is true exactly for finite
paths leading to states in Sk−1

2 and the consequent is either true or ⊥ for all states in
Sk2). A contradiction with s1 v s2.

Assume point 2 is violated: ∃w′ ∈ L(M2, s2) : ∀w ∈ L(M1, s1) : w 6≤I w′. Using
the same line of reasoning as in the previous case, let sk2 denote the first state in M2

reachable from s2 along w′ whose label cannot be matched by any state in Sk1 of M1 as

8

defined above. Thus, for each state s ∈ Sk1 , there exists a proposition p ∈ AP such that
L1(s, p) 6≤I L2(sk2 , p). Let ϕ(s) = p if L1(s, p) = true and let ϕ(s) = ¬p otherwise.
Consider the LTL formula

ψ = (
∧
i<k

(Xi(
∧

L(si
2,p)=true

p∧
∧

L(si
2,p)=f alse

¬p∧
∧

L(si
2,p)=⊥

(p∧¬p))))⇒ Xk
∨
s∈Sk

1

ϕ(s)

We have [(M1, s1) |= ψ] = true (since the antecedent of the logical implication is
either true or⊥ exactly for the finite paths leading to states in Sk−1

1 and the consequent
is true for all states in Sk1) while [(M2, s2) |= ψ] 6= true (since [w′ |= ψ] 6= true). A
contradiction with s1 v s2. ut

Given a PKS M and an LTL formula ϕ, generalized model checking with respect
to the linear completeness preorder �L means checking whether every 3-valued trace
of M can be completed to a 2-valued trace that satisfies ϕ. Formally, we have the fol-
lowing.

M |=�L
ϕ iff ∀w ∈ L(M) : ∃ a complete w′ such that w ≤I w′ and w′ |= ϕ

As observed in [GJ02], computing the value of [M |= ϕ]t for an LTL formula ϕ
can be reduced to one normal (2-valued) model checking problem and one generalized
model checking problem, regardless of which completeness preorder is used. One can
start by checking whether there exists a completion w′ of any trace w in M such that
w′ 6|= ϕ. To do this, one can build a Kripke structure M c that guesses all possible
completions of labelings of states ofM and thus accepts all the possible completions of
traces of M . Then, one checks whether M c |= ϕ using traditional 2-valued LTL model
checking, which is a PSPACE-complete problem. If M c |= ϕ, all possible completions
of M satisfy ϕ, which means [M |= ϕ]t = true and we stop. Otherwise, one needs
to solve a second, more expensive generalized model checking problem to determine
whether there exists some completion M ′ of M whose traces all satisfy ϕ.

If one considers the completeness preorder�, checking for such a completionM ′ �
M such that M ′ |= ϕ, i.e., computing M |=� ϕ, is 2EXPTIME-complete as shown in
the previous section. However, if one considers instead the linear completeness preorder
�L, we now show that computing M |=�L

ϕ is only EXPSPACE-complete.

Theorem 10. LTL generalized model checking M |=�L
ϕ with respect to the linear

completeness preorder �L can be solved in space logarithmic in the size of M and
exponential in the size of ϕ.

Proof. Consider an LTL formula ϕ. According to Theorem 3 there exists an NBW
Nϕ = 〈2AP , Q, q0, ρ, F 〉 where |Q| = 2O(|ϕ|) such that L(Nϕ) = L(ϕ).

We modify the NBW above to an NBW over the alphabet 3AP that accepts partial
traces that have a completion in L(Nϕ). Formally, we have the following.

We denote letters in 2AP by σ and letters in 3AP by τ . Let N ′ be the automa-
ton obtained from Nϕ by guessing a completion of the read letter. Formally, N ′ =
〈3AP , Q, q0, ρ′, F 〉 where

ρ′(s, τ) =
∨
σ�τ

ρ(s, σ)

9

Now, all that we have to check is whether L(M) ⊆ L(N ′). From Theorem 5, we know
that this problem can be solved in space logarithmic in M and polynomial in N ′. As
N ′ is exponential in ϕ, the upper bound follows. ut

We now show that using this definition of GMC we can solve an EXPSPACE-hard
tiling problem [vEB97]. In tiling problems we get a finite set of different types of tiles
and we have to tile a floor of a given dimension. We may use as many tiles as we
want from every given type, however, there are rules that tell us which tiles are allowed
to be next to each other according to vertical and horizontal rules. There are many
different flavors of tiling problems with different complexities. Here we introduce the
EXPSPACE version of the tiling problem. In order to prove the lower bound, we build a
PKSM whose traces are all the possible arrangements of tiles. A trace has a completion
that satisfies our LTL formula ϕ if the arrangement of tiles is not valid, i.e., it violates
one of the tiling rules. That is, M |=�L

ϕ iff all possible arrangements of tiles are not
valid, i.e., the tiling problem does not have a solution.

A tiling problem is 〈T,H, V, s, t, n〉, where T is a finite set of tiles, H,V ⊆ T × T
are horizontal and vertical consistency rules, s, t ∈ T are initial and final tiles, and n
is a number (in unary). The decision problem is whether there exists a number m and
a function f : [2n] × [m] → T such that f(1, 1) = s, f(2n,m) = t, and forall i, j
we have (f(i, j), f(i + 1, j)) ∈ H and (f(i, j), f(i, j + 1)) ∈ V . That is, arrange
the tiles in a 2n times m rectangle such that s is in the bottom left corner, t in the top
right corner, and all neighbors (vertical/horizontal) satisfy the horizontal and vertical
consistency rules. This problem is EXPSPACE-complete [vEB97].

Theorem 11. LTL generalized model checkingM |=�L
with respect to the linear com-

pleteness preorder �L is EXPSPACE-hard in the size of ϕ.

Proof. We start by representing the rectangular arrangement of tiles by a linear se-
quence of tiles. An (infinite) linear sequence of tiles represents a valid tiling if it starts
with s, has t in location m2n for some m, every adjacent locations (except multiples of
2n and their successors) satisfy H , and every two locations whose distance is 2n satisfy
V .

We construct a simple system that produces all possible sequences of tiles. The
partial propositions are going to number every tile in the sequence with a number in
[0..(2n − 1)]. The LTL formula checks two things. First, that the truth assignments to
partial propositional variables behave like a counter (it is always possible to complete
the values of these propositions in this way). Second, that every possible sequence of
tiles contains one of the following problems: either (a) it does not start in s, or (b) all
locations that are multiples of 2n are not t, or (c) the horizontal rule is violated before
t appears in a 2n-multiple location, or (d) the vertical rule is violated before t appears
in a 2n-multiple location. If one of these problems occurs, then the tiling is not valid.
If all possible arrangements of tiles are not valid, then the tiling problem does not have
a solution. As before, we show also how to reduce the structure to one with a constant
number of states. The full proof is given in Appendix C. ut

The next theorem states that � is a stronger relation than �L, which in turn helps
explain why checking |=� is more expensive than checking |=�L

.

10

Theorem 12. For any partial Kripke structures M,M ′ and LTL formula ϕ, M � M ′

implies M �L M ′, and therefore M |=� ϕ implies M |=�L
ϕ.

Proof. Immediate from the definitions of � and �L. ut

Note that � is strictly stronger than �L, as the converse of the theorem does not hold.
To illustrate this, consider the LTL formula ϕ = (p ∧Xp) ∨ (¬p ∧X¬p) and the par-
tial Kripke structureM = 〈{s0, s1, s2}, {(s0, s1), (s0, s2), (s1, s1), (s2, s2)}, L, s0〉 la-
beled with a single atomic proposition p such that L(s0, p) = ⊥, L(s1, p) = true and
L(s2, p) = f alse. It is easy to see that [(M, s0) |= ϕ] = ⊥. Moreover, we have
(M, s0) |=�L

ϕ, as every 3-valued trace generated from (M, s0) can be completed by
some 2-valued trace that satisfies ϕ. However, (M, s0) 6|=� ϕ as there does not exist a
completion M ′ such that M � M ′ and M ′ |= ϕ, as state s0 where p = ⊥ cannot be
completed to a single state s such that every trace from s satisfies ϕ: if L(s, p) = true,
then the trace ssω2 violates ϕ, and if L(s, p) = f alse, then the trace ssω1 violates ϕ.

5 Model Complexity

We have seen that generalized model checking is polynomial in the size of the model.
The degree of the polynomial, however, is unbounded, and depends on the deterministic
automaton created for the formula. Here we show that for interesting classes of prop-
erties, the model complexity can be restricted to linear or quadratic. The resemblance
pointed out between generalized model checking and realizability in the proof of Theo-
rem 8 continues here. Indeed, the same classes of formulas are used to suggest tractable
fractions of LTL for realizability (cf. [RW89,AMPS98,PPS06]).

We start with a few additional definitions and known results regarding automata.
Let A = 〈Σ,Q, qin, δ, α〉 be a Büchi automaton. We say that A is weak if there is a
preorder ≤ on the state set Q such that the following two conditions hold:
1. For every q ∈ Q and σ ∈ Σ, if q′ appears in δ(q, σ) then q ≤ q′.
2. For every q ∈ Q, if q ∈ α then forall q′ such that q ≤ q′ and q′ ≤ q we have q′ ∈ α.

We extend the acronyms of types of automata to include weak automata. For instance,
an AWT is an alternating weak tree automaton and an DWW is a deterministic weak
word automaton.
We specialize Theorem 4 to our needs as follows.

Theorem 13. Given an APW A over 1-letter alphabet, we can decide whether L(A) =
∅ in linear time if A is AWW [KVW00] and in quadratic time if A is an ABW, ACW, or
an APW with three priorities [VW86,Jur00].

Consider an LTL formula ϕ. We say that ϕ is a safety property if for every word
w /∈ L(ϕ) there exists a prefix u such that forall v′ we have uv′ /∈ L(ϕ). Let p
and q be Boolean combinations of propositional formulas. Formulas of the form GFp
or G(q → Fp) are called response properties, and formulas of the form FGp are
called persistence properties [MP92]. If ϕ is of the form (ϕas ∧ ϕar) → (ϕgs ∧ ϕgr)
where ϕas and ϕgs are conjunctions of safety properties and ϕar and ϕgr are conjunctions
of response properties is called generalized reactivity[1] [KPP03]. Alternatively, we
classify LTL properties according to the type of deterministic automaton that accepts

11

the same language. We say that ϕ is a weak property if there exists a DWW that accepts
the language of ϕ. We say that ϕ is a DBW property if there exists a DBW that accepts
the language of ϕ. Similarly, we say that ϕ is a DCW property if there exists a DCW
that accepts the language of ϕ. The following theorem links the different types of LTL
properties to the deterministic automata that accept them.

Theorem 14. 1. For every safety or obligation property ϕ, there exists a DWW D
such that L(D) = L(ϕ).

2. For every response property ϕ, there exists a DBW D such that L(D) = L(ϕ).
3. For every persistence property ϕ, there exists a DCW D such that L(D) = L(ϕ).
4. For every generalized reactivity[1] property ϕ, there exists a DPW D with three

priorities such that L(D) = L(ϕ).

The following is a consequence of Theorems 13 and 14 and the proof of Theorem 6.

Theorem 15. LTL generalized model checking M |=� ϕ is linear in M for weak and
safety properties, and quadratic in M for response, persistence, and generalized reac-
tivity[1] properties.

Proof. From the proof of Theorem 6 it follows that we combine a deterministic au-
tomaton for the property with the model to get an APW over 1-letter alphabet. From
Theorem 14 it follows that if the LTL property is a safety or obligation property the
DPW, and the resulting APW, are weak. If the LTL property is a response property, the
DPW is in fact a DBW. If the LTL property is a persistence property, the DPW is in fact
a DCW. If the LTL property is a generalized reactivity[1] property, the DPW has three
priorities. Recall that the APW is the product of the DPW and the model. Thus, the
APW is linear in the size of the model. The desired upper bound now follows directly
from Theorem 13. ut

Note that LTL GMC for persistence properties can be solved in quadratic time in the
size of the model, instead of in linear time as incorrectly stated in Theorem 5 of [GJ02].
The root cause of this error is the same as the one for Theorem 25 of [BG00], as the
proofs of both theorems rely on the same product construction, now corrected in Theo-
rem 6 of this paper.

Finally, we clarify a subtle misconception regarding generalized model checking
of CTL properties. Given a CTL property, we can construct directly an NBT that is
at most exponential in the size of the property that accepts all trees that satisfy the
property [KVW00]. Generalized model checking can then be solved by combining this
NBT with the model to obtain an ABW over 1-letter alphabet [BG00]. According to
Theorem 13 the emptiness of this ABW can be established in quadratic time. Thus, the
complexity of GMC with respect to CTL properties is exponential in the formula and
quadratic in the model, which is optimal [BG00]. As with LTL the quadratic complexity
in the model follows from the type of acceptance condition used by the automaton
for the formula. We are interested in classes of properties for which automata require
simpler acceptance conditions. If the CTL property can be recognized by an NWT, the
complexity in the size of the model reduces to linear. Similar to the above, all safety
and obligation properties can be recognized by a NWT. In the proof of Theorem 7 of

12

[GJ02] it is assumed that if a CTL property can be recognized by an NCT then it can
also be recognized by an NWT. However, it is currently unknown whether this is the
case (cf. Section 6) and the proof of that theorem is therefore incomplete.

6 Conclusions

We study generalized model checking for linear time properties. We show that the clas-
sical definitions of GMC is 2EXPTIME-complete in the size of the formula and poly-
nomial in the structure. We study a linear version of the completeness preorder and
show that this preorder induces a GMC problem that is EXPSPACE-complete in the
size of the formula. We then proceed to show that for interesting classes of properties
the model complexity can be restricted to a low order polynomial.

We have presented our work in the framework of partial Kripke structures. Other
equally expressive 3-valued models [GJ03] include Modal Transition Systems [LT88]
and Kripke Modal Transition Systems [HJS01]. The complexity bounds given in this
paper carry over to those closely related modeling formalisms.

The proof of Theorem 8 reduces realizability of LTL to GMC. The similarity ac-
tually goes in both directions. A GMC problem can be translated to a 2-person game
where the specification (in LTL or in branching-time logic) can be translated to the
winning condition. In a 2-person game players verifier and refuter alternate in moving a
token along the edges of a graph. If the infinite path made by the token satisfies an LTL
formula, verifier wins and otherwise she loses. If the winning condition is expressed
in terms of branching-time logic, instead of considering a path in the graph, we con-
sider the infinite unwinding of the game graph and prune the unwinding so that nodes
that correspond to decisions of verifier have exactly one successor. The translation of
the GMC problem to such a game is as follows. The game graph itself is similar to the
model, where decisions of refuter correspond to the branching of the original model and
decisions of verifier correspond to the values given to undetermined propositions. The
formula to be checked on the model is translated to the winning condition in the game.
Much like the proofs of the lower bounds above, this straightforward translation may
result in a game graph that is exponential in the number of propositions whose value is
unknown. We can further reduce the number of nodes in the game graph to a product of
the number of propositions whose value is unknown and the size of the model using the
techniques in the proofs of Theorems 8 and 10. It may be possible to reduce the number
of nodes in the game graph to a constant times the number of states of the model.

We have seen that for interesting classes of LTL and CTL properties the complexity
in term of the model can be restricted to linear or quadratic. We classify the proper-
ties according to deterministic word automata and nondeterministic tree automata that
match these formulas. While most popular types of properties are covered above, char-
acterization of the exact classes of formulas that can be translated to these types of
automata is an interesting problem. That is, what are the exact subsets of LTL that can
be translated to DWW and to DBW? Is there a simple syntactic way to express these
subsets? The same problem for CTL (and other branching-time logics) involves tree
automata. For every CTL property there exist an NBT and an AWT recognizing the
same set of trees [KVW00]. What CTL properties can be translated to NWT? Is there a

13

syntactic way to express these subsets? We know that if a word language can be recog-
nized by an DBW and by a DCW, then it can be recognized by a DWW [KMM04]. This
suggests the following natural question: Given a tree language that is accepted by an
NCT and by an NBT, can it be recognized by an NWT? From a practical point of view,
it could be interesting to study the specific case of CTL properties that are recognized
by NCT.

Acknowledgements. We thank Michael Huth for comments on an earlier version
and Orna Kupferman for a discussion of the relative expressive power of NBT and NCT.

References

[AMPS98] E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Controller synthesis for timed au-
tomata. In IFAC Symposium on System Structure and Control, pages 469–474. Else-
vier, 1998.

[BG99] G. Bruns and P. Godefroid. Model checking partial state spaces with 3-valued tempo-
ral logics. In 11th Computer Aided Verification, pages 274–287, 1999.

[BG00] G. Bruns and P. Godefroid. Generalized model checking: Reasoning about partial
state spaces. In 11th Conference on Concurrency Theory, volume 1877 of Lecture
Notes in Computer Science, pages 168–182, 2000.

[BR01] T. Ball and S. Rajamani. The SLAM Toolkit. In 13th Conference on Computer Aided
Verification, volume 2102 of Lecture Notes in Computer Science, pages 260–264,
Paris, July 2001. Springer-Verlag.

[GC05] A. Gurfinkel and M. Chechik. How Thorough is Thorough Enough? In 13th Correct
Hardware Design and Verification Methods, 2005.

[GH05] P. Godefroid and M. Huth. Model Checking Vs. Generalized Model Checking: Se-
mantic Minimizations for Temporal Logics. In 20th IEEE Symposium on Logic in
Computer Science, pages 158–167, Chicago, June 2005.

[GHJ01] P. Godefroid, M. Huth, and R. Jagadeesan. Abstraction-based Model Checking using
Modal Transition Systems. In 12th International Conference on Concurrency Theory,
volume 2154 of Lecture Notes in Computer Science, pages 426–440, Aalborg, August
2001. Springer-Verlag.

[GJ02] P. Godefroid and R. Jagadeesan. Automatic Abstraction Using Generalized Model
Checking. In 14th Conference on Computer Aided Verification, volume 2404 of Lec-
ture Notes in Computer Science, pages 137–150. Springer-Verlag, 2002.

[GJ03] P. Godefroid and R. Jagadeesan. On the Expressiveness of 3-Valued Models. In
Proceedings of VMCAI’2003 (4th Conference on Verification, Model Checking and
Abstract Interpretation), volume 2575 of Lecture Notes in Computer Science, pages
206–222, New York, January 2003. Springer-Verlag.

[GS97] S. Graf and H. Saidi. Construction of Abstract State Graphs with PVS. In 9th Con-
ference on Computer Aided Verification, volume 1254 of Lecture Notes in Computer
Science, pages 72–83, Haifa, June 1997. Springer-Verlag.

[GTW02] E. Grädel, W. Thomas, and T. Wilke. Automata, Logics, and Infinite Games. Lecture
Notes in Computer Science 2500. Springer-Verlag, 2002.

[GWC06] A. Gurfinkel, O. Wei, and M. Chechik. Systematic Construction of Abstractions for
Model-Checking. In 7th Conference on Verification, Model Checking, and Abstract
Interpretation, volume 3855 of Lecture Notes in Computer Science, pages 381–397.
Springer-Verlag, January 2006.

[HJMS02] T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy Abstraction. In 29th Sym-
posium on Principles of Programming Languages, pages 58–70, 2002.

14

[HJS01] M. Huth, R. Jagadeesan, and D. Schmidt. Modal Transition Systems: a Foundation
for Three-Valued Program Analysis. In 10th European Symposium on Programming,
volume 2028 of Lecture Notes in Computer Science. Springer-Verlag, 2001.

[Jur00] M. Jurdziński. Small progress measures for solving parity games. In 17th Sympo-
sium on Theoretical Aspects of Computer Science, volume 1770 of Lecture Notes in
Computer Science, pages 290–301. Springer-Verlag, 2000.

[Kle87] S. C. Kleene. Introduction to Metamathematics. North Holland, 1987.
[KMM04] O. Kupferman, G. Morgenstern, and A. Murano. Typeness for ω-regular automata.

In 2nd Symposium on Automated Technology for Verification and Analysis, volume
3299 of Lecture Notes in Computer Science, pages 324–338. Springer-Verlag, 2004.

[KPP03] Y. Kesten, N. Piterman, and A. Pnueli. Bridging the gap between fair simulation
and trace containment. In 15th Computer Aided Verification, volume 2725 of Lecture
Notes in Computer Science, pages 381–393. Springer-Verlag, 2003.

[KVW00] O. Kupferman, M.Y. Vardi, and P. Wolper. An automata-theoretic approach to
branching-time model checking. Journal of the ACM, 47(2):312–360, 2000.

[LT88] K. G. Larsen and B. Thomsen. A Modal Process Logic. In 3rd IEEE Symposium on
Logic in Computer Science, pages 203–210, 1988.

[MP92] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer-Verlag, Berlin, January 1992.

[Pit07] N. Piterman. From nondeterministic Büchi and Streett automata to deterministic par-
ity automata. Logical Methods in Computer Science, 3(3):5, 2007.

[PPS06] N. Piterman, A. Pnueli, and Y. Saar. Synthesis of reactive(1) designs. In 7th Confer-
ence on Verification, Model Checking, and Abstract Interpretation, volume 3855 of
Lecture Notes in Computer Science, pages 364–380. Springer-Verlag, 2006.

[PR89] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In 16th ACM Symp.
on Principles of Programming Languages, pages 179–190, 1989.

[RW89] P.J.G. Ramadge and W.M. Wonham. The control of discrete event systems. IEEE
Transactions on Control Theory, 77:81–98, 1989.

[Saf88] S. Safra. On the complexity of ω-automata. In 29th IEEE Symp. on Foundations of
Computer Science, pages 319–327, White Plains, October 1988.

[SVW87] A.P. Sistla, M.Y. Vardi, and P. Wolper. The complementation problem for Büchi au-
tomata with applications to temporal logic. Theoretical Computer Science, 49:217–
237, 1987.

[vEB97] P. van Emde Boas. The convenience of tilings. In Complexity, Logic and Recursion
Theory, volume 187 of Lecture Notes in Pure and Applied Mathetaics, pages 331–363,
1997.

[VW86] M.Y. Vardi and P. Wolper. Automata-theoretic techniques for modal logics of pro-
grams. Journal of Computer and System Science, 32(2):182–221, April 1986.

[VW94] M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Information and
Computation, 115(1):1–37, November 1994.

15

A Proof of Lemma 1

Lemma 1. A accepts aω iff M |=� ϕ.

Proof. Suppose that A accepts aω . Let 〈T, τ〉 be an accepting run of A on aω . Consider
the following Kripke structure 〈T,R′, L〉 where R′(x, xa) for every x, xa ∈ T and
L : T → 2AP is defined as follows. Consider a node x where τ(x) = (t, s) and
{xa1, . . . , xak} is the set of children of x. We define L(x) as the function σ : AP →
{true, f alse} such that {τ(xa1), . . . , τ(xak)} |=

∧
(s,s′)∈R(ρ(t, σ), s′). By definition

of a run of A such a function exists. It is easy to see that 〈T,R′, L〉 is a Kripke structure
that is more complete than M . Moreover, for any path π in 〈T,R′, L〉, the projection
of τ on the states of Dϕ for this path defines an accepting run of Dϕ and implies that
L(π) |= ϕ.

Conversely, suppose that there exists a Kripke structure K = 〈S,R,L, s0〉 such
that M � K and K |= ϕ. Consider the unwinding K+ = 〈S+, R′, L′, s0〉 of K. We
construct a labeling τ : S+ → T × S such that for every node x = s0s1 · · · sn we
have τ(x) associates x to a state s of M such that s � sn and to a state d of Dϕ such
that d = ρ(d0, L(s0 · · · sn−1)). Note that d is unique for a given sequence s0 · · · sn−1

as the automaton Dϕ is deterministic. Initially, τ(s0) = (t0, sin). Obviously, sin � s0.
Consider a node x = s0s1 · · · sn such that τ(x) = (t, s). Let xsn+1 be a child of x.
Then τ(xsn+1) = (t′, s′) where t′ = ρ(t, L(sn)) and as s � sn there exists a successor
s′ of s such that s′ � sn+1. It is easy to see that 〈S+, τ〉 is a run tree of A on aω . By
assumption every trace of K is accepted by Dϕ. It follows that every infinite path in
〈S+, τ〉 is labeled by an accepting run of Dϕ and that 〈S+, τ〉 is accepting.

B Proof of Theorem 8

Theorem 8. LTL Generalized model checkingM |=� ϕ is 2EXPTIME-hard in the size
of ϕ.

Proof. Consider the PKS M = 〈S,R,L, sin〉 with S = 2I , R = S × S, and sin ∈ S
is chosen arbitrarily. For every proposition i ∈ I we have L(s, i) = true if i ∈ s
and L(s, i) = f alse otherwise. For every proposition o ∈ O we have L(s, o) = ⊥.
Consider the problem of generalized model checking of Xϕ on M .

Suppose that M |=� Xϕ. There exists M ′ = 〈S′, R′, L′, s′0〉 such that M � M ′

and M ′ |= Xϕ. For every state t ∈ S′ and every assignment σ : I → {true, f alse}
there exists a state t′ ∈ S′ such that (s′, s′′) ∈ R′ and L(t′) agrees with σ on all the
propositions in I . For σ ∈ 2I let σ(t) denote this state t′. It follows that every sequence
σ1 · · ·σk ∈ (2I)+ induces a sequence s′1, . . . , s

′
k such that s′1 = σ1(s′0) and s′i+1 =

σi+1(s′i). Denote s′1, . . . , s
′
k by σ1 · · ·σk(s′0) and let O(s′1, . . . , s

′
k) denote the projec-

tion of L′(s′k) on the propositions in O. Consider the strategy f : (2I)+→2O where
for w ∈ (2I)+ we set f(w) = O(w(s′0)). Consider a computation π = (i1, o1), . . .
generated by f . By construction (i0, o0), (i1, o1), . . . is a computation of M where
(i0, o0) = L′(s′0). As M ′ |= Xϕ we conclude that π |= ϕ.

Suppose that ϕ is realizable. There exists a strategy f : (2I)+ → 2O such that every
computation induced by f satisfies ϕ. Consider the tree 〈(2I)∗, L′〉 where L′(w · i) =

16

i ∪ f(w) and L′(ε) agrees with L(sin) on the propositions in I . It is simple to see that
〈(2I)∗, L′〉 completes M and satisfies Xϕ.

We show how to replace the exponential structure above with a structure that has
two states. The structure uses the propositions {p, z} ∪ O. Let n = |I|. A state s in
the structure above is represented by a sequence s1 . . . sn of n states. The assignment
to ij is the assignment to p in state sj and the assignment to O is the assignment to
O in state sn. Specifically, M = 〈S,R,L, sp〉 where S = {sp, sp}, R = S × S, and
L(sp, p) = true, L(sp, p) = f alse, and L(s, q) = ⊥ for s ∈ S and q ∈ O ∪ {z}. The
proposition z is going to mark the beginning of a sequence of n states.

We now rewrite the LTL formula ϕ into a new LTL formula that relativizes the oc-
currence of an input ij in ϕ to the new location representing the value of ij (by replacing
ij byXj−1p), relativizes the occurrence of an output o in ϕ to the new locationXn−1o,
and relativizes the truth values of all other operators to the locations where z is true.
Formally, we define g : LTL→ LTL as follows.
1. g(ij) = Xj−1p for ij ∈ I
2. g(o) = Xn−1o for o ∈ O
3. g(ϕ ∧ ψ) = g(ϕ) ∧ g(ψ)
4. g(¬ϕ) = ¬g(ϕ)
5. g(Xϕ) = Xng(ϕ)
6. g(ϕUψ) = ((z → g(ϕ))U(z ∧ g(ψ)))

Finally, let ϕz = (¬z ∧Xz)∧G(z → (X(¬z ∧X(¬z ∧ . . . ∧X(¬z ∧X︸ ︷︷ ︸
n next operators

z)))))). We

set ϕ′ = ϕz ∧Xg(ϕ). We note that the length of g(ϕ) is linear in |I| · |ϕ| and the length
of ϕz is linear in |I|.

We define a transformation on words that takes a word over 2{p,z}∪O and produces
a word over 2I∪O that matches the transformation g for LTL formulas. Consider a word
w = σ0σ1 · · · ∈ 2{p,z}∪O. Let g(w) denote the word w′ = σ′1 · · · ∈ 2I∪O such that
σ′m(ij) = σ(m−1)n+j(p) and σ′m(o) = σmn(o). Suppose that w |= ϕz . For every LTL
formula ϕ and every location n we can show by induction on the structure of ϕ that
g(w), n |= ϕ iff w, (m− 1)n+ 1 |= g(ϕ). 3

Suppose that ϕ is realizable by strategy f . We translate f to a labeling of the {0, 1}∗
tree in the obvious way. Every node x0 is labeled by ¬p and every node x1 is labeled
by p. Every node x such that |x| is a multiple of n plus 1 is labeled by z and all others
are labeled by ¬z. Every node x such that |x| is a multiple of n is labeled by the
appropriate assignment to the propositions inO. For every other node x, the assignment
to propositions in O is arbitrary. Consider a path in the resulting tree. It is simple to see
that the path satisfies ϕz . As the original path satisfies ϕ we can show that the result
satisfies Xg(ϕ) as well.

Suppose that there is a structure K that completes M such that K |= ϕ′. Consider
the unwinding K+ of K. As K is complete, so is K+. Let K+ = 〈T,R′, L′, sin〉.
We abuse notation and denote by K+ a pruning of K+ that includes for every state
t ∈ T exactly one state t′ such that (t, t′) ∈ R′ and p ∈ L′(t′) and exactly one state t′′

such that (t, t′′) ∈ R′ and p /∈ L′(t′′). In addition, we identify a sequence π ∈ {0, 1}∗

3 Note that w starts from location 0 and t(w) from location 1.

17

with the state t ∈ T such that ε is identified with sin and π1 is identified with the
successor t′ of π such that p ∈ L′(t′) and π0 is identified with the successor t′′ of π
such that p /∈ L′(t′′). Consider a letter σ ∈ 2I , we identify σ with the sequence in
α1 · · ·αn ∈ {0, 1}n such that αj = 1 iff ij ∈ σ. Finally, we use the same notation for
sequences in (2I)∗. We are now ready to define the strategy f : (2I)∗ → 2O. For a
sequence π ∈ (2I)∗ we set f(π) = L′O(π). It is simple to see that every computation
induced by f satisfies ϕ.

We note that it is possible also to reduce the number of propositions used in M to
three by doing a similar encoding for the outputs using a single proposition q. The cycle
induced by z has to grow to size |I ∪O| and in addition the formula has to be modified
to notice just the path labeled by p in the positions (|I|+ 1), . . . , (|I|+ |O|). ut

C Proof of Theorem 11

Theorem 11. LTL generalized model checkingM |=�L
with respect to the linear com-

pleteness preorder �L is EXPSPACE-hard in the size of ϕ.

Proof. Suppose that |T | = I = 2k, then the system is the I-clique. We have k proposi-
tions {p1, . . . , pk} and every state encodes one possible tile. The initial state is the state
that corresponds to s. We have n propositions {q1, . . . , qn} that encode the location of
the tile modulo 2n. Finally, we have two more propositions {a, b} that are used to iden-
tify the location of a violation of the vertical rule. In all states of the system the value of
{a, b, q1, . . . , qn} is unknown. Formally, let M = 〈S,R,L, s〉 where S = 2{p1,...,pk},
R = S × S, L(t, pi) = true iff pi ∈ t, L(t, q) = ⊥ for q ∈ {a, b, q1, . . . , qn}, and by
abuse of notation s is the state that corresponds to the initial tile s.
The LTL formula is ϕ = ϕ1 ∧ ϕ2, where ϕ1 and ϕ2 are defined below.
1. Counter consistency – ϕ1 is conjunction of the following formulas.

(a) The counter starts at 0:
n∧
j=1

¬qj

(b) The counter respects normal counting:

G (q1 ↔ X¬q1) ∧

G

 n∧
j=2

((∧
j′<j

qj′
)
→ (qj ↔ X¬qj)

) ∧
G

 n∧
j=2

((∨
j′<j

¬qj′
)
→ (qj ↔ Xqj)

)
2. The formula ϕ2 describes the possible problems in the sequence of tiles. Let φe

stand for (
n∧
j=1

qj), i.e., the counter is 2n− 1 and let let φt stand for (φe → ¬t), i.e.,

if the counter is 2n − 1 the tile is not t. The formula ϕ2 is the disjunction of the
following formulas.

18

(a) The sequence does not start with tile s: ¬s.
(b) Every 2n multiple is not marked with tile t: Gφt.
(c) The horizontal rule is violated somewhere that is not the end of a configuration

and before the appearance of t at the end of a configuration:

(¬φe ∧ (
∧

(p,p′)∈H

¬p ∨X¬p′))Rφt

(d) The propositions a and b are used to find a violation of the vertical rules. The
disjunct of ϕ2 that expresses a violation of the vertical rule is the conjunction
of the following:

i. The proposition a is assigned true exactly once, and b is assigned true
after it: F (a ∧XG¬a ∧XFb).

ii. The proposition b is assigned true exactly once: F (b ∧XG¬b).
iii. The location where b is assigned true occurs before a location where t

marks a location that is a multiple of 2n − 1: bRφt.
iv. The locations where a and b are true agree on the counter valuation:G(a→

n∧
j=1

(qj ↔ F (b ∧ qj))).

v. There is exactly one occurrence of 2n − 1 between the locations where a
and b are assigned true: G(a→ ¬φeU(φe ∧X(¬φeUb)))

vi. The locations marked by a and b violate the vertical consistency:∧
(p,p′)∈V

(F (a ∧ p)→ G(b→ ¬p′))

Lemma 2. We have M |=�L
ϕ iff T does not have a solution.

Proof. Suppose that M |=�L
ϕ. It follows that for every possible sequence of tiles,

we can find a truth assignment to the propositions in {a, b, q1, . . . , qn} such that this
extension satisfies ϕ. It follows that the behavior of the propositions {q1, . . . , qn} is
completely deterministic and simulates a 2n-counter. Now, one of the disjuncts of ϕ2

does not hold. It follows that there is some problem with the arrangement of tiles. Thus,
all possible sequences of tiles are not valid and the tiling problem T does not have a
solution.

In the other direction, suppose that the tiling problem T does not have a solution.
Then, for every possible sequence or tiles there exists a problem with one of the tiling
rules. We add the assignment of the propositions {a, b, q1, . . . , qn} according to this
problem. ut

The number of states of M above is linear in the number of tiles of T and it uses n
propositions. We show how to replace M with a system M ′ of a constant size that uses
a constant number of propositions. The modifications to the LTL formula ϕ resemble
those outlined above in the proof of Theorem 6. We are going to use the following
propositions.
1. z – partial info – marks the location of the beginning of every tile.
2. p – full info – used to encode the name of the tile.

19

3. q – partial info – used to encodes the number of a tile module 2n.
4. a, b – partial info – mark the locations where a vertical rule is violated (as above).

The system M ′ is the 2-state clique. One state is labeled p and the other ¬p. The state
labeled p is initial. Formally,M ′ = 〈S′, R′, L′, sp〉, where S′ = {sp, sp},R′ = S′×S′,
andL(sp, p) = true,L(sp, p) = f alse, andL(s, r) = ⊥ for s ∈ S and r ∈ {q, a, b, z}.
Wlog, we assume that n > i. Then, a sequence of n states of this system encodes one
tile and its number. Thus, a sequence of n states of M ′ corresponds to one state of M .
The value of the proposition p in the states i + 1, . . . , n is not used and thus there are
many traces of M ′ that correspond to the same tiling. The case where n ≤ i is simple
to construct using the same ideas.

We change the LTL formula ϕ into a new LTL formula that replaces the name of a
tile with reference to a sequence of k truth values to proposition p, relativizes the value
of the proposition qi to the location representing the value of qi (by replacing qi by
Xi−1q, and relativizes the truth values of all other operators to the locations where z is
true. Formally, the function g : LTL→ LTL is very similar to the function defined in
the proof of Theorem 8 and is defined as follows.
1. Let p1, . . . , pk denote the binary encoding of the tile t. Let Pi beXi−1p if pi is true

and Xi−1¬p if pi is false. Let g(t) =
k∧
i=1

Pi (note that g(t) can be written with k

next operators and not k2 as above).
2. g(qi) be Xi−1q for qi ∈ {q1, . . . , qn}
3. g(r) = r for r ∈ {a, b}
4. g(ϕ ∧ ψ) = g(ϕ) ∧ g(ψ)
5. g(¬ϕ) = ¬g(ϕ)
6. g(Xϕ) = Xng(ϕ)
7. g(ϕUψ) = ((z → g(ϕ))U(z ∧ g(ψ)))

Finally, let ϕz = (¬z∧Xz)∧G(z → (X¬z ∧X(¬z ∧ . . . ∧X(¬z ∧X︸ ︷︷ ︸
n next operators

z)))). We set

ϕ′ = ϕz ∧Xg(ϕ). We note that the length of ϕ′ is linear in n|ϕ|.
The proof thatM ′ |=�L

ϕ′ iff the tiling problem has no solution combines the proof
of Lemma 2 with the techniques in the proof of Theorem 8. ut

20

