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Abstract. Three-valued Markov chains and their PCTL semantics ab-
stract – via probabilistic simulations – labeled Markov chains and their
usual PCTL semantics. This abstraction framework is complete for a
PCTL formula if all labeled Markov chains that satisfy said formula
have a finite-state abstraction that satisfies it in its abstract semantics.
We show that not all PCTL formulae are complete for this abstraction
framework. But PCTL formulae whose path modalities occur in a suit-
able combination of negation polarity and threshold type are proved to
be complete, were abstractions are bounded, 3-valued unfoldings of their
concrete labeled Markov chains. This set of complete PCTL formulae
subsumes widely used PCTL patterns.

1 Introduction

Markov chains are an important modeling formalism for systems that contain
stochastic uncertainty and for which the assumption of the “Markov property”
(that the transition probability at a state depends only on that state and not on
the execution history of the system) is feasible. Markov chains are used in a wide
range of applications, we mention biological sequence analysis, statistical soft-
ware testing, and formal verification of communication protocols or probabilistic
algorithms as examples.

In formal verification, we want to validate a system model (and so hopefully
the system, too) by proving that it satisfies critical properties. In the context of
Markov chains as models, probabilistic computation tree logic [1] has emerged
as the defacto standard for expressing such properties. The semantics of that
probabilistic logic over Markov chains also renders algorithms for automatically
deciding the truth of formulae over finite-state Markov chains, leading to the
now mature and established methodology of probabilistic model checking [2].

But the initial models of systems often have infinite state. For example, a
system state may implicitly encode the value of a continuous-time clock. Since
we ultimately want to validate critical properties on systems and not on models,
this begs the question of whether truth of some property on an infinite-state
system or model can, in principal, be witnessed as truth of that same property
on a suitable finite-state model. Suitability here means that the obtained model



abstracts certain features of the system but still contains sufficient state and
behavior of the system it intends to model.

We therefore study the feasibility of this approach in a formal setting, where
systems are identified with infinite-state Markov chains and abstractions are
finite-state Markov chains with 3-valued atomic observables such that abstrac-
tion is based on probabilistic simulation [3, 4]. In this setting, we show negative
and positive existence results for finite-state witnesses of truth that depend on
the interplay between path modalities (e.g. “true at all reachable states”) and
threshold types (e.g. “true with probability at least .999”). As we will demon-
strate, these results suggest that – from a practical perspective – finite-state
abstractions for probabilistic computation tree logic and Markov chains more
often than not exist. But there may not be an algorithm for computing them.

Related work. In [5], Markov chains and their PCTL semantics are soundly
abstracted into 3-valued models, and a model checking algorithm is given for
their 3-valued abstract semantics of PCTL. This gives a foundation for counter-
example guided abstraction refinement where abstractions have intervals (not
real numbers) as probability transitions.

In [6], game-theoretic foundations for truth of PCTL formulae φ over Markov
chains M are developed. A Hintikka game for φ and M , with Büchi type accep-
tance conditions for infinite plays, is designed so that a “Verifier” player has a
winning strategy if M satisfies φ. Dually, a “Refuter” player has a winning strat-
egy if M doesn’t satisfy φ. In loc. cit. it is also observed that a winning strategy
could be chosen so that it forces always finite plays for certain path modalities.
This insight provides the seed for the results reported here. But proving these
results doesn’t require any appeal to the games and results of loc. cit.

In [7], stochastic 2-player games are used as abstractions of Markov decision
processes (MDPs) and a game simulation is developed and shown to be sound
for PCTL. Interestingly, they also show incompleteness in the sense of our paper
(for finite games) for the PCTL formula [tt U q]>0, which is expressible in our
complete fragment. This contradiction is only apparent since the incompleteness
of that formula results solely from the non-determinism in MDPs whereas our
work considers Markov chains, which are deterministic.

Outline of paper. In Section 2, we provide the background – notably our ab-
straction framework – needed for our technical development. The key concept
of “completeness” for our abstraction framework and our incompleteness results
are presented in Section 3. Completeness results for a fragment of PCTL are
presented in Section 4. In Section 5, we put negative and positive results into
context and conclude the paper. Selected proofs are provided in an appendix.

2 Background

We define the concrete models of systems considered here.
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Definition 1 (Markov chains). A 3-valued, labeled Markov chain M over a
countable set AP of atomic propositions is a tuple (S,P, L), where

1. S is a countable set of states,
2. P is a stochastic matrix P : S × S −→ [0, 1] such that the countable sum∑

s′∈S P(s, s′) exists and equals 1 for all s ∈ S,
3. and L is a labeling function L : S × AP −→ {tt, ?,ff}.

M is finitely branching if {s′ | P(s, s′) > 0} is finite for all s ∈ S. We write
(M, s0) to denote that M has a designated initial state s0.

Throughout we refer to 3-valued, labeled Markov chains as models. Such
models can be seen as (possibly infinite) labeled graphs where the outgoing
transitions of state s to states s′ are decorated with the positive transition prob-
abilities P(s, s′) of the corresponding distribution P(s, ·), and vertices s ∈ S are
labeled with atomic propositions as follows: label q? marks the states s with
L(s, q) = ?, label q at s indicates L(s, q) = tt, and absence of any q or q? label
at state s implicitly marks L(s, q) = ff. When all labels for M have value tt or
ff, we call model M a Markov chain, concrete or 2-valued. Thus ? abstracts both
tt and ff in the familiar information ordering [9].

A widely used notion of probabilistic (bi-)simulation was defined by Larsen
and Skou in [3] for probabilistic processes with actions. We define probabilistic
simulation for our 3-valued models, based on probabilistic simulation for proba-
bilistic specification systems with propositional labels in [4].

Definition 2 (Probabilistic simulation). Let M = (S,P, L) be a model over
AP. Relation H ⊆ S×S is a probabilistic simulation if whenever (t, s) ∈ H then

1. L(t, q) ≤ L(s, q) for all q ∈ AP.
2. For each s ∈ S there is a weight function ρs: S × S −→ [0, 1] such that

(a)
∑

s′∈S(P(s, s′) · ρs(s′, t′)) = P(t, t′) for all t′ ∈ S;
(b) (t′, s′) ∈ H whenever ρs(s′, t′) > 0 for some s ∈ S.

We often write tHs for (t, s) ∈ H, and say that t simulates s, written t � s,
if there is a probabilistic simulation H such that tHs. Model A simulates model
M , written A � M , if this is true of their respective initial states in the model
A+M that is the disjoint sum of the models A and M .

Definition 3 (PCTL syntax). The syntax of PCTL is as follows:

φ ::= q | ¬φ | φ ∧ φ | φ ∨ φ | [α]./p (state formulae)
α ::= Xφ | φU≤k φ | φW≤k φ (path formulae)

where q ∈ AP, p ∈ [0, 1], ./ ∈ {<,≤,≥, >} and k ∈ N ∪ {∞}. Let PCTL be the
set of state formulae φ generated in this manner. We write tt and ff for any
PCTL formulae [α]≥0 and [α]>1, respectively.
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• π �m Xφ iff s1 ∈ JφKm
M

• π �m φU≤k ψ iff there is an l ∈ N such that l ≤ k, sl ∈ JψKm
M and for all 0 ≤ j < l

we have sj ∈ JφKm
M

• π �m φW≤k ψ iff for all l ∈ N such that 0 ≤ l ≤ k we have either sl ∈ JφKm
M or there

is 0 ≤ j ≤ l with sj ∈ JψKm
M

Fig. 1. Path-formula semantics on paths π = s0s1 . . . in interpretation m ∈ {o, p}

Intuitively, [α]./p specifies the property that the probability of all paths (infi-
nite sequences of states s0s1 . . . with positive transition probabilities P(si, si+1))
that begin at state s and satisfy path formula α is ./ p. The path modalities
X, U, and W stand for Next, Strong Until, and Weak Until (respectively). The
value k = ∞ is used to express unbounded Untils, whereas k ∈ N expresses a
proper step bound on Untils. We write φUφ as a shorthand for φU≤∞ φ, and
φW φ as shorthand for φW≤∞ φ. For example, X q holds in paths whose second
(next) state satisfies q, whereas qU r holds in paths that have a finite prefix of
states satisfying q followed by a state satisfying r, and qW r holds in paths that
either satisfy qU r or where all states satisfy q.

We define semantics for PCTL formulae based on an optimistic and a pes-
simistic interpretation of labels [10, 11]. Optimistically, we interpret a proposition
as true if it isn’t false, i. e. JqKo

M = {s ∈ S | L(s, q) 6= ff}; pessimistically, q is
true only if the labeling says so, i. e. JqKp

M = {s ∈ S | L(s, q) = tt}.

Definition 4 (PCTL semantics). Let m ∈ {o, p} be two modes of interpreta-
tion, ¬o = p, and ¬p = o. For φ in PCTL, we define JφKm

M :

Jφ ∧ ψKm
M = JφKm

M ∩ JψKm
M Jφ ∨ ψKm

M = JφKM ∪ JψKm
M

J¬φKm
M = S \ JφK¬m

M J[α]./pK
m
M = {s ∈ S | Probm

M (s, α) ./ p}

where Probm
M (s, α) is the probability of the measurable set Pathm(s, α) of paths

π = s0s1 . . . in M that begin in s0 = s and satisfy π �m α, defined in Figure 1.

We often write Ms �m φ for s ∈ JφKm
M and use M �m φ as abbreviation

of Ms0 �m φ for initial state s0. For 2-valued Markov chains �o equals �p and
coincides with the familiar and standard PCTL semantics � over Markov chains.

The interpretation m is sound in that verifications of φ by �p on A (A �p

φ) and refutations of φ by �o on A (A 2o φ) are verifications, respectively
refutations, in any concrete M with A �M . This soundness requires that PCTL
formulae are presented in a particular normalform in which negations occur only
on atomic propositions and where probability thresholds are either ≥ or >:

Definition 5 (Greater-than negation normal form). The following subset
of PCTL constitutes the Greater-than negation normal form (GTNNF):

φ ::= q | ¬q | φ ∧ φ | φ ∨ φ | [α]./p

α ::= Xφ | φU≤k φ | φW≤k φ

where q ∈ AP, p ∈ [0, 1], ./ ∈ {≥, >} and k ∈ N ∪ {∞}.
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Every formula φ of PCTL that is not in GTNNF can be transformed to
a formula in GTNNF, equivalent in the two-valued semantics � over Markov
chains, by (1) replacing each sub-formula of the form [α]<p and [α]≤p by ¬[α]≥1−p

and ¬[α]>1−p respectively, and then (2) pushing negations inwards. The second
step, i. e. pushing negations inwards, is possible without breaking the syntactical
restrictions of PCTL, only because the used definition includes both the Weak
and the Strong Until. With an intermediate step into PCTL* [13] one gets:

¬[Xφ]>p ≡ [¬Xφ]≥1−p ≡ [X¬φ]≥1−p

¬[φU≤k ψ]>p ≡ [¬(φU≤k ψ)]≥1−p ≡ [(¬ψ)W≤k(¬φ ∧ ¬ψ)]≥1−p

¬[φW≤k ψ]>p ≡ [¬(φW≤k ψ)]≥1−p ≡ [(¬ψ)U≤k(¬φ ∧ ¬ψ)]≥1−p

Swapping the roles of ≥ and > in the above equivalences yields the dualities
for the remaining combinations of temporal operators and threshold types. The
negations ¬φ and ¬ψ above are then processed in the same manner, recursively.

We can now secure the desired soundness result:

Lemma 1. Let M and A be models and A � M . Then for all formulae φ in
GTNNF we have the implications A �p φ⇒M �p φ and M �o φ⇒ A �o φ.

This lemma is proved by structural induction on φ, using standard fixed-
point and duality arguments for Weak and Strong Until formulae. As our paper
focuses on completeness not on soundness, we don’t feature this proof here.

3 Completeness for PCTL formulae

The notion of completeness we now define is relative to our class of models, their
abstract PCTL semantics, and its abstraction via probabilistic simulation. We
refer to this triad as “our abstraction framework” subsequently.

Definition 6 (Finitary completeness). Our abstraction framework is com-
plete for a PCTL formula φ iff for all Markov chains M that satisfy φ there is
a finite-state model A such that A �M and A �p φ. Our abstraction framework
is complete for a set of PCTL formulae Γ if it is complete for each φ ∈ Γ .

Completeness for φ thus means that all Markov chains that satisfy φ (M � φ)
have a finite-state abstraction that also satisfies φ in the �p semantics. We chose
�p for this definition since it, unlike �o, is sound for verifications.

Example 1. The infinite-state Markov chain M depicted in Figure 2(a) satisfies
ϕ = [qU r]>0.7. It is simulated by the finite-state model Ms0

3,3 in Figure 2(b) and
Ms0

3,3 �p ϕ. In Section 4, we will see that ϕ is complete.
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Fig. 2. A model M satisfying [qU r]≥1 and [qW r]≥1, and its unfolding Ms0
3,3

Incompleteness of PCTL. We show that full PCTL is incomplete by giving sev-
eral counterexamples which consist of a concrete Markov chain M and a PCTL
formula ϕ such that no finite-state model A can exist, which simulates M and
for which A �p ϕ. These examples are strongly inspired by Dams and Namjoshi’s
work on completeness for Kripke structures and the modal mu-calculus [12].

Lemma 2. Not all formulae of form [φUψ]≥p and [φWψ]≥p are complete.

Proof. We consider [qU r]≥1 and [qW r]≥1. Let M be the Markov chain illus-
trated in Figure 2(a): The initial state s0 is labeled q and is infinitely branching
with P(s0, si,1) > 0 for all i ≥ 1; its i-th successor si,1 has probability 1/2i, all
other transition probabilities are 1; the i-th path s0si,1 . . . si,i consists of i − 1
states labeled q and ends in an absorbing state si,i labeled r. The Markov chain
M obviously satisfies any ϕ ∈ {[qU r]≥1, [qW r]≥1}.

Now assume there is a finite-state model A with n > 0 states and initial
state a0, such that A �p ϕ and A � M . Since A is finite-state there exists a
state a1 in A (a successor of a0) which simulates infinitely many successors sij ,1

(j > 0) of s0 in M . Of these states sij ,1 there must be a state sn0,1 which is
starting point of a path sn0,1 . . . sn0,n0 with n0 > n + 1 states labeled q before
reaching its absorbing r state. By the definition of simulation this path must
be matched by a path a1 . . . an0 in A such that aj � sn0,j for all 1 ≤ j ≤ n0.
Since A is of finite size n there must be a state aj′ re-occurring along this path,
and thus there is a loop in A. As the states sn0,1 . . . sn0,n0−1 are labeled q, all
states of the path a1 . . . an0 , and on the loop in this path, must be labeled q or
q?. Similarly, as the states sn0,1 . . . sn0,n0−1 are not labeled r, for all states aj of
the loop we get L(ai, r) = ff or L(ai, r) = ?. Now, since A �p ϕ by assumption,
the states aj must actually be labeled with q. Otherwise, let α ∈ {qU r, qW r}.
If one state ai0 in the loop were labeled q?, and so Aai0 6�p q, there would be a
finite prefix a0a1 . . . ai0 , and thus a measurable cylinder path set with positive
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probability for which no path pessimistically satisfies α. Thus Probp
M (a0, α) < 1,

contradicting A |=p ϕ.
But now we have an overall contradiction: no model that contains a loop of

states labeled q can simulate M because this would imply that M contains an
infinite path of states labeled q, which the given M clearly does not. Hence there
cannot be a finite-state model A such that A �p ϕ and A �M . ut

We can use the same concrete Markov chainM from Figure 2(a) and a similar
proof structure to show the incompleteness of [Xφ]≥p.

Lemma 3. Not all formulae of form [X φ]≥p are complete.

Proof. We consider ϕ = [X [qU r]>0]≥1 and the Markov chain M from Fig-
ure 2(a) which satisfies ϕ. Again, assume there is a finite-state model A with n
states and initial state a0, such that A �p ϕ and A �M .

Since A is finite-state there exists a state a1 in A (a successor of a0) which
simulates infinitely many successors si,1 of s0 in M . Since A � ϕ the state a1

needs to satisfy [qU r]>0. Hence there must be a path π = a1 . . . ak where the
states a1, . . . , ak−1 are labeled q and ak is labeled r. If this path were loop-free,
then every of the infinitely many states si,1 would be starting point of a path
which reaches an r state after at most k steps. This is a contradiction to the
definition of M . Thus π must contain a loop of states labeled q. But this would
force M to contain an infinite path si,1 . . . where all states are labeled q. Again
we have a contradiction because M does not contain such a path. ut

Sub-formula [qU r]>0 in and of itself does not imply incompleteness. In Sec-
tion 4, we will actually show that formulae of this form are complete.

Incompleteness of formulae of form [X [φUψ]>p]≥p′ requires infinite branch-
ing, as in the Markov chain in Figure 2(a). For finitely branching Markov chains
this form is complete, as then only a finite number of successor states needs to be
considered, on each of which sub-formula [φUψ]>p can be finitely verified (as we
show in the next section). Forms [φUψ]≥1 and [φWψ]≥1 are also incomplete for
finitely branching models (for slightly different Until formulae). We summarize:

Corollary 1. Full PCTL is incomplete.

Our incompleteness proofs above work for any simulation notion � satisfying

1. L(t, q) ≤ L(s, q) for all q ∈ AP
2. P(s, s′) > 0 implies P(t, t′) > 0 for some t′ with t′ � s′

3. P(t, t′) > 0 implies P(s, s′) > 0 for some s′ with t′ � s′

whenever t � s. In their bi-directionality, these three conditions are reminis-
cent of Larsen and Skou’s probabilistic 2/3-bisimulation [3] and of Dams and
Namjoshi’s notion of (mixed) reverse simulation for labeled transition systems
[12]: conditions (1) and (2) together constrain the abstract model in terms of
the concrete model (and are necessary but not sufficient for sound abstraction
à la Lemma 1); conditions (1) and (3) constrain the concrete model in terms of
the abstract one (and are necessary for securing our incompleteness results).
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4 Complete fragment of PCTL

We now present a complete fragment of PCTL: those PCTL formulae whose path
modalities occur in a suitable combination of negation polarity and threshold
type. The technical details of this definition, and its alternative characterization
via a normal form will be formalized below. In fact, we will show that for this
fragment the desired finite abstractions can be obtained by unfolding the infinite
model up to a bounded height and width. We first formalize full unfoldings.

Definition 7 (Unfolding). Let M = (S,P, L) be a model. The full unfolding of
M at s0 is the model Ms0

full = (Sfull,P′, L′) where Sfull is the set of nonempty se-
quences π over S, transition probability P′(s1 . . . sn, s1 . . . snsn+1) is P(sn, sn+1),
and L′(π · s) = L(s). We restrict the set Sfull to the set of sequences reachable
from s0 with positive probability.

If M is a concrete Markov chain, so is Ms0
full. Also, M and Ms0

full simulate each
other, and so are equivalent. We now formalize finite unfoldings.

Definition 8 (Finite Unfolding).

1. For i ∈ N and s0 ∈ S, the finite unfolding Ms0
i = (Si,Pi, Li) is the

model where Si is the set of nonempty sequences over S of length at most
i, plus a designated sink state tsink. As above Pi(s1 . . . sn, s1 . . . snsn+1) =
P(sn, sn+1), Pi(s0 . . . si−1, tsink) = 1 for each sequence of length i, and
Pi(tsink, tsink) = 1. Again, Li(π ·s) = L(s), and L(tsink, q) = ? for all q ∈ AP.
We restrict Si to sequences reachable from s0 with positive probability.

2. For j ∈ N, this model is further restricted to maximal branching degree j
as follows. Let Ms0

i,j = (Si,j ,Pi,j , Li,j), where the components of Ms0
i,j are

as follows. For each s ∈ Si, let t1, t2, . . . be an enumeration of {tk ∈ Si |
Pi(s, tk) > 0} such that Pi(s, tk) ≥ Pi(s, tk+1) for all k ∈ N. We then
define Pi,j by setting Pi,j(s, tk) = Pi(s, tk) for k ≤ j and Pi,j(s, tsink) =
1 − Σj

k=1Pi(s, tk). We set Li,j = Li and again restrict Si,j to sequences
reachable from s0 with positive Pi,j transition probabilities.

The unfolding Ms0
3,3 for the labeled Markov chain M of Figure 2(a) is depicted

in Figure 2(b). Finite unfoldings give rise to simulations:

Lemma 4. For all models M with initial state s0 and i, j ∈ N, the finite un-
folding Ms0

i,j simulates M .

Now we show that Next and Strong Until with > p bounds have ‘finite’
unfoldings of the model as witnesses.

Lemma 5. Let M be a model, q, r ∈ AP be propositions, and M �p [α]>p for
α ∈ {X q, qU r}. There are i0, j0 with Ms0

i,j �p [α]>p for all i ≥ i0 and j ≥ j0.
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φpos ::= q | ¬q | φpos ∧ φpos | φpos ∨ φpos | ¬φneg | [αpos]>p | [αneg]<p

φneg ::= q | ¬q | φneg ∧ φneg | φneg ∨ φneg | ¬φpos | [αneg]≥p | [αpos]≤p

αpos ::= Xφpos | φpos U≤k φpos αneg ::= Xφneg | φneg W≤k φneg

Fig. 3. PCTL>, our complete fragment of PCTL, defined as all φpos above where
q ∈ AP, k ∈ N ∪ {∞} and p ∈ [0, 1]

Proof. Let α be X q. By assumption M �p [X q]>p. If s0 has finitely many suc-
cessors, the claim is obviously true. Otherwise, let t1, t2, . . . be the successors
of s0 ordered so that P(s0, tl) ≥ P(s0, tl+1) for every l ≥ 1. Let tm1 , tm2 , . . .
be the sub-sequence of those states ti with M ti �p q. Then M �p [X q]>p im-
plies Σ∞l=1P(s0, tml

) > p. Thus there is some l0 with Σl0
l=1P(s0, tml

) > p. Let
j0 = ml0 . For every i ≥ 1 and j ≥ j0 it is then easily seen that Ms0

i,j �p [X q]>p.
Now let α be qU r. Consider first the case that M is finitely branching. It is

simple to see that for all i ≥ 0 we have Probp

M
s0
i

(s0, qU r) ≤ Probp

M
s0
i+1

(s0, qU r)

and that limi→∞ Probp
Mi

(s0, qU r) = Probp
M (s0, qU r). Hence, for some i0 we

have that Probp

M
s0
i0

(s0, qU r) > p and for every i ≥ i0 we have Ms0
i �p [qU r]>p.

In the case that M has infinite branching the proof is similar. As before, there
is some i0 such that Ms0

i0
�p [qU r]>p. We notice that for every j ∈ N we have

Probp

M
s0
i0,j

(s0, qU r) ≤ Probp

M
s0
i0,j+1

(s0, qU r) and that limj→∞ Probp

M
s0
i0,j

(s0, qU r)

equals Probp

M
s0
i0

(s0, qU r). Hence, for some j0 we have Probp

M
s0
i0,j0

(s0, qU r) > p

and the lemma follows. ut

Weak Until and Next with ≥ p bounds have finite counter-examples.

Corollary 2. Let M 2o [α]≥p for α ∈ {X q, qW r} and a model M . Then there
exist i0 and j0 such that for all i ≥ i0 and j ≥ j0 we have Ms0

i,j 2o [α]≥p.

Proof. For α being X q this follows from [Xϕ]>p ≡ ¬[X¬ϕ]≥1−p over two-valued
models and from the duality of the optimistic and pessimistic semantics in three-
valued models. For α being qW r, we similarly exploit that [ϕ1 Wϕ2]≥p is equiv-
alent to ¬[¬ϕ2 U(¬ϕ1 ∧ ¬ϕ2)]>1−p over two-valued models. ut

We state and prove our main result, the completeness of PCTL>, which is
defined in Figure 3. GTNNF normalforms of PCTL> allow only [U]>p and [X]>p

type operators. That is, they disallow Weak Until and the comparison ≥ p.
Although any finite-state abstraction would be sufficient for completeness we

show a stronger result: the abstraction can be chosen as finite unfolding.

Theorem 1 (Completeness of PCTL>). Let M be a Markov chain with ini-
tial state s0, φ a formula in PCTL>, and M � φ. Then there exist i, j such that
the finite unfolding Ms0

i,j of M pessimistically satisfies φ, i.e. Ms0
i,j �p φ.
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Proof. We strengthen the claim with a dual claim for formulae in the negative
part of PCTL> and for the optimistic semantics: “For φ in the negative part
φneg of PCTL>, if Ms 2 φ then there exist i, j such that Ms

i,j 2o φ.” We show
this extended claim by structural induction on φ, simultaneously for all states s.

– Let φ be q. If Ms � q then for every i ≥ 0 and j ≥ 0 we have Ms
i,j �p q.

Dually, if Ms 2 q then for every i ≥ 0 and j ≥ 0 we have Ms
i,j 2o q.

– For the Boolean connectives φ1 ∧ φ2 and φ1 ∨ φ2 and a state s, we take as
bounds the maximum of the bounds ik and jk for sub-formulae φk obtained
by induction for state s. These bounds work for the dual case as well.

– For a negation ϕ = ¬ψneg and a state s, if Ms � ¬ψneg, then Ms 2 ψneg. By
induction, there are i and j with Ms

i,j 2o ψneg. Thus Ms
i,j �p ¬ψneg.

Dually, for a negation ϕ = ¬ψpos and a state s, if Ms 2 ¬ψpos, then Ms �
ψpos. By induction, there are i and j with Ms

i,j �p ψpos, so Ms
i,j 2o ¬ψpos.

– We now consider the path modalities X, U, and W.

• For formula ϕ = [Xψpos]>p and a state s such that Ms � ϕ, we treat ψpos

as a proposition that labels the states of M . By (the proof of) Lemma 5,
there is some j′0 such that for every i ≥ 1 and j ≥ j′0 we have Ms

i,j �p ϕ.
Let t1, . . . , tj0 be the first j′0 successors of s. For tk there exists ik0 and jk

0

such that if M tk � ψpos we have M tk

ik
0 ,jk

0
�p ψpos. Let i0 = 1 + maxk(ik0)

and j0 = max(j′0,maxk(jk
0 )). It follows that Ms

i0,j0
�p ϕ.

• Let ϕ = [Xψneg]≥p with Ms 2 ϕ. The proof is similar to the one in the
previous item and uses Corollary 2.

• For ϕ = [ψ1 Uψ2]>p, with ψ1 and ψ2 in the positive fragment φpos,
and a state s with Ms � [ψ1 Uψ2]>p, we initially treat ψ1 and ψ2 as
propositions that label the states of M . By Lemma 5 there are i′0 and j′0
such that for every i ≥ i′0 and j ≥ j′0 we haveMs

i,j �p [ψ1 Uψ2]>p. Now we
no longer treat the ψi as atoms: Let t1, . . . , tm be all the states appearing
in Mi′0,j′0

. For α ∈ {1, 2} and every tk there exists ik,α
0 and jk,α

0 such that
if M tk � ψα we have M tk

ik,α
0 ,jk,1

0
�p ψα. Let i0 = i′0 + maxk,α(ik,α

0 ) and

j0 = max(j′0,maxk,α(jk,α
0 )) (see Figure 4). It follows that Ms

i0,j0
�p ϕ.

• The proof for ϕ = [ψ1 Wψ2]≥p, with ψ1 and ψ2 in the fragment φneg,
and a state s such that Ms 2 [ψ1 Uψ2]≥p is similar to the one in the
previous item and uses Corollary 2.

• Formula [αneg]<p is equivalent to ¬[αneg]≥1−p of form ¬ϕpos. Formula
[αpos]≤p is equivalent to ¬[αpos]>1−p of form ¬ϕneg. Thus this case
follows by induction. For example, for state s, we have e.g. Ms

i0,j0
�p

[αneg]<p iff Ms
i0,j0

�p ¬[αneg]≥1−p iff Ms
i0,j0

6�o [αneg]≥1−p. ut

We now show that the results in Section 3 imply that PCTL fragments that
allow combinations of the operators we disallow cannot be complete. To that
end, we first prove an additional incompleteness result.

Lemma 6. Not all formulae of form [[φUψ]>p W ρ]>p′ are complete.
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Height required to satisfy subformula.

Height following Lemma 5.

Fig. 4. Intuitively an unfolding for a sub-formula can be attached to every inner state
of the unfolding of the formula. The resulting maximal height is still finite

r
s1,1 s1 s2,2

q r q
s2,1

q r
s2 si,i si,i−1 si,1 si

q q q

Fig. 5. Concrete Markov chain M that satisfies [[qU r]>0 W ff]>0

Proof. Let ϕ be [[qU r]>0 W ff]>0 and M be as in Figure 5. It is simple to see
that M � ϕ. Suppose there is a finite-state model A such that A � M and
A �p ϕ. Let a be the initial state of A such that a � s0. As A �p ϕ, there is a
bottom strongly connected component (SCC) in A such that every state in this
SCC satisfies pessimistically [qU r]>0. By a pigeon-hole principle, we can find
a state a′ in this SCC that is labeled by r and simulates states si for infinitely
many i. Consider a cycle from a′ to itself. This cycle has some fixed length n. As
for every i > 0 the distance from si to si+1 is i+ 1, this is a contradiction. ut

We can now prove that static extensions of PCTL> are incomplete.

Theorem 2. Consider a PCTL fragment κ that contains one of the following
combinations of PCTL operators: (i) [φWψ]≥p, (ii) [φUψ]≥p, (iii) [Xφ]≥p and
[φUψ]>p, or (iv) [φWψ]>p and [φUψ]>p. Then κ is incomplete.

Proof. The first three items follow from Lemmas 2 and 3 in Section 3. The last
item follows from Lemma 6 above. ut

5 Discussion and Conclusions

From a practical perspective, our completeness results mean that finite-state,
3-valued Markov chains are complete as abstractions for all of PCTL as long
as Strong Untils occur under positive polarity and Weak Untils under negative
polarity: Given such a formula, we can determine all its occurrences of path
modalities whose negation polarity and threshold type do not match. Then we
can change all such threshold types and adjust their probability with a small
perturbation in situ. For example, a Weak Until under negative polarity with

11



> .99 threshold could be made complete by making it a Weak Until with ≥
.99+10−12 threshold without compromising the original intent of that property.

Let us conclude. We investigated whether the truth of formulae in probabilis-
tic computation tree logic over infinite-state Markov chains can, in principle, be
witnessed by finite-state Markov chains that simulate such infinite-state mod-
els of formulae and allow for 3-valued interpretations of atomic propositions.
Negative results were presented for certain combinations of path modalities and
probability threshold type, e.g. for Weak Until with strict threshold type. Pos-
itive results were proved for a sizeable fragment of PCTL formulae whose path
modalities all occur in a statically determined combination of negation polarity
and threshold type. Finally, we showed that static extensions of that complete
fragment of PCTL are incomplete.
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A Ancillary Material

Proof (of Lemma 4). We show that the relation

H = {(s, π · s) | s ∈ S, π ∈ S∗} ∪ {(s, tsink) | s ∈ S}

is a simulation relation.
First, for all π ∈ S∗, s ∈ S and q ∈ AP we have L(s, q) = L(π · s, q). Since

L(tsink, q) = ? for all q ∈ AP we clearly have L(tsink, q) ≤ L(s, q) for all s ∈ S.
We now define the weight function ρs: S × S −→ [0, 1]:

– ρs(s′, tsink) = 1 if there is no path π such that π · s′ is in Ms0
i,j (which

equivalently means |s0 . . . s′| > i for every such path in M or s′ = tk′ with
k′ > j for the ordering tk of the successor states of a state inMs0

i as described
in Definition 8).

– ρs(s′, tsink) = 0 for all other s′ ∈ S.
– ρs(s′, π) = 1 if π = π′ · s · s′.
– ρs(s′, π) = 0 for all other paths.

Then the condition
∑

s′∈S(P(s, s′) · ρs(s′, π′)) = P(π, π′) for all π′ ∈ Ms0
i,j col-

lapses to P(s, s′) = P(π, π′) for π = π′′ ·s and π′ = π′′ ·s·s′ and
∑

s′∈S P(s, s′) =
1 = P(π, tsink) for all other states. Both equations are obviously true by the con-
struction of Ms0

i,j .
Finally, we need to check the co-inductive condition for simulation: Whenever

ρs(s′, tsink) > 0 we have (s′, tsink) ∈ H; whenever ρs(s′, π′) > 0, then π′ = π′′ ·s·s′
and hence (s′, π′) = (s′, π′′ · s · s′) ∈ H. ut
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