
Lower Bounds on Witnesses for Nonemptiness of
Universal co-Büchi Automata

Orna Kupferman1 and Nir Piterman2⋆

1 Hebrew University
2 Imperial College London

Abstract. The nonemptiness problem for nondeterministic automata oninfinite
words can be reduced to a sequence of reachability queries. The length of a shortest
witness to the nonemptiness is then polynomial in the automaton. Nonemptiness
algorithms for alternating automata translate them to nondeterministic automata.
The exponential blow-up that the translation involves is justified by lower bounds
for the nonemptiness problem, which is exponentially harder for alternating au-
tomata. The translation to nondeterministic automata alsoentails a blow-up in the
length of the shortest witness. A matching lower bound here is known for cases
where the translation involves a2O(n) blow up, as is the case for finite words or
Büchi automata.
Alternating co-Büchi automata and witnesses to their nonemptiness have applica-
tions in model checking (complementing a nondeterministicBüchi word automa-
ton results in a universal co-Büchi automaton) and synthesis (an LTL specification
can be translated to a universal co-Büchi tree automaton accepting exactly all the
transducers that realize it). Emptiness algorithms for alternating co-Büchi automata
proceed by a translation to nondeterministic Büchi automata. The blow up here is
2O(n log n), and it follows from the fact that, on top of the subset construction, the
nondeterministic automaton maintains ranks to the states of the alternating automa-
ton. It has been conjectured that this super-exponential blow-up need not apply to
the length of the shortest witness. Intuitively, since co-Büchi automata are memo-
ryless, it looks like a shortest witness need not visit a state associated with the same
set of states more than once. A similar conjecture has been made for the width of
a transducer generating a tree accepted by an alternating co-Büchi tree automaton.
We show that, unfortunately, this is not the case, and that the super-exponential
lower bound on the witness applies already for universal co-Büchi word and tree
automata.

1 Introduction

Finite automata on infinite objects were first introduced in the 60’s. Motivated by deci-
sion problems in mathematics and logic, Büchi, McNaughton, and Rabin developed a
framework for reasoning about infinite words and trees [2, 11, 16]. The framework has
proven to be very powerful. Automata, and their tight relation to second-order monadic
logics were the key to the solution of several fundamental decision problems in mathe-
matics and logic [17]. Indeed, for many highly expressive logics, it is possible to translate

⋆ Supported by the UK EPSRC projectComplete and Efficient Checks for Branching-Time Ab-
stractions(EP/E028985/1).

a formula in the logic to an automaton accepting exactly all the models satisfying the for-
mula. The formula is then satisfiable iff the language of the automaton is not empty. Thus,
decidability can be reduced to the emptiness problem.

Today, automata on infinite objects are used for specification and verification of non-
terminating systems [18, 9, 19]. The emptiness problem plays a key role also in these
more modern applications. Two important examples are modelchecking and synthesis.
Model checking a system with respect to a specification is reduced to checking the empti-
ness of the product of the system with an automaton acceptingexactly all models that
violate the specification [19]. Synthesis of a reactive system that satisfies a desired spec-
ification is reduced to checking the emptiness of a tree automaton accepting all possible
strategies that realize the specification [15].

In the case of finite nondeterministic automata on finite words, the emptiness prob-
lem is simple: The automaton accepts some word if there is a path from an initial state
to an accepting state (c.f., [4]). Thus, the automaton is viewed as a graph, its alphabet
is ignored, and emptiness is reduced to reachability in finite graphs. An important and
useful outcome of this simplicity is the fact that when the language of the automaton
is not empty, it is easy to return a witness to the nonemptiness — a wordv that labels
a path from an initial state to a final states. Clearly, reachability may be checked only
along simple paths, thus the length of a witness is bounded bythe number of states of the
automaton.

The case of finite nondeterministic automata on infinite words is similar. Acceptance
in such automata depends on the set of states that a run visitsinfinitely often. For ex-
ample, in the Büchi acceptance condition, some states are designated as accepting, and
in order for a run to be accepting it has to visit at least one ofthese states infinitely of-
ten. Nonemptiness is slightly more complicated, but again,the automaton is viewed as
a graph, its alphabet is ignored, and emptiness is reduced toa sequence of reachability
queries in finite graphs. Now, the witness to the nonemptiness is a word of the formv ·uω,
where the wordv labels a path from an initial state to some accepting state, and the word
u labels a path from this accepting state to itself. Since bothv andu are extracted from
reachability queries on the graph, their lengths are bounded by the number of states of the
automaton.3 For acceptance conditions more complicated than Büchi, the emptiness test
is more involved, but still, as long as we consider nondeterministic automata, emptiness
can be reduced to a sequence of reachability queries on the graph of the automaton, and
a nonempty automaton has a witness of the formv · uω for v andu polynomial in the
number of states of the automaton.

Alternating automata enrich the branching structure of theautomaton by combining
universal and existential branching. In the presence of alternation, we can no longer ig-
nore the alphabet when reasoning about emptiness. Indeed, the different copies of the
automaton have to agree on the letters they read on the same position of the word. The
standard solution is to remove alternation by translating the automaton to an equiva-
lent nondeterministic automaton, and checking the emptiness of the latter. This simple
solution is optimal, as the exponential blow-up that the translation involves is justified
by lower bounds for the nonemptiness problem, which is exponentially harder in the

3 In fact, it can be shown that even the sum of their lengths is bounded by the number of states of
the automaton [6].

alternating setting (c.f., NLOGSPACE vs. PSPACE for nondeterministic vs. alternating
automata on finite words).

The translation to nondeterministic automata also entailsan exponential blow-up in
the length of the shortest witness. Can this blow up be avoided? A negative answer for
this question is known for alternating automata on finite words and alternating Büchi
automata. There, removing alternation from an alternatingautomaton withn states results
in a nondeterministic automaton with2O(n) states [3, 12], and it is not hard to prove a
matching lower bound [1]. Note also that a polynomial witness would have led to the
nonemptiness problem being in NP, whereas it is known to be PSPACE-complete.

Things become challenging when the removal of alternation involves a super-exponential
blow up. In particular, emptiness algorithms for alternating co-Büchi automata proceed
by a translation to nondeterministic Büchi automata, and the involved blow up is2O(n log n).
Alternating co-Büchi automata have been proven useful in model checking (complement-
ing a nondeterministic Büchi word automaton results in a universal co-Büchi automaton)
and synthesis (an LTL specification can be translated to a universal co-Büchi tree au-
tomaton accepting exactly all the transducers that realizeit [8, 5]). In the case of model
checking, the witness to the nonemptiness is a computation that violates the property. In
the case of synthesis, the witness is a system that realizes the specification). Thus, we
clearly seek shortest witnesses.

The2O(n log n) blow up follows from the fact that, on top of the subset construction,
the nondeterministic automaton maintains ranks to the states of the alternating automa-
ton. It has been conjectured that this super-exponential blow-up need not apply to the
length of the shortest witness. Intuitively, since co-Büchi automata are memoryless, it
seems as if a shortest witness need not visit a state associated with the same set of states
more than once. This intuition suggests that a shortest witness need not be longer than
2O(n). A similar conjecture has been made for the width of a transducer4 generating a
tree accepted by an alternating co-Büchi tree automaton [8].

In this paper we show that, unfortunately, this is not the case, and the super-exponential
blow-up in the translation of alternating co-Büchi automata to nondeterministic Büchi au-
tomata is carried over to a super-exponential lower bound onthe witness to the nonempti-
ness. In fact, the lower bound applies already for universalco-Büchi automata. We start
with the linear framework. There, we show that for every odd integern ≥ 1, there exists
a universal co-Büchi word automatonAn with n states such that the shortest witness to
the nonemptiness ofAn has a cycle of lengthn+1

2 !.
In the branching framework, the witness to the nonemptinessis a transducer that gen-

erates a tree accepted by the automaton. The linear case trivially induces a lower bound
on the size of such a transducer. In the branching framework,however, it is interesting
to consider also the width of the witness transducer. In particular, the LTL synthesis al-
gorithm in [8], which is based on checking the nonemptiness of a universal co-Büchi
tree automaton, is incremental, and it terminates afterk iterations, withk being an upper
bound on the width of a transducer generating a tree acceptedby the automaton. The
bound used in [8] is super-exponential, and has been recently tightened to2n(n!)2 [14,
10]. It is conjectured in [8] that the bound can be improved to2O(n). As in the word case,
the intuition is convincing: The alternating automaton maysend a set of states to a sub-

4 Essentially, the width of a transducer is the number of different states that the transducer may
be at after reading different input sequences of the same length.

tree of the input tree, in which case the subtree should be accepted by all the states in the
set. The memoryless nature of the co-Büchi condition suggests that if in an accepting run
of the automaton the same set of states is sent to different subtrees, then there is also an
accepting run on a tree in which these subtrees are identical. Thus, we do not need more
than2n different subtrees in a single level of the input tree. We show that, unfortunately,
this intuition fails, and there is a lower bound ofn+1

2 ! on the width of the transducer. For-
mally, we show that for every odd integern ≥ 1, there exists a universal co-Büchi tree
automatonBn with n states such that every tree accepted byBn is such that, all levels
beyond a finite prefix have at leastn+1

2 ! different subtrees. Thus, the minimal width of a
transducer that generate a tree accepted byBn has width at leastn+1

2 !.
Our constructions use a very large alphabet. Indeed, the alphabet of the automataAn

andBn hasn+1
2 ! letters. In the case of words, the word accepted by the automaton is a

cycle consisting of all these letters ordered in some fixed order (say, lexicographically).
The case of trees is similar. We were not able to reduce the size of the alphabet. While
the question of a smaller alphabet is very interesting, it isof less practical importance:
Constructions for removal of alternation introduce an exponential alphabet in an interme-
diate step (where the exponent is quadratic in the number of states). The larger alphabet
is discarded at a later stage but the degree of nondeterminism induced by it remains in
the resulting nondeterministic automaton. Furthermore, the size of the alphabet does not
play a role in these constructions, and obviously does not play a role when checking the
emptiness of a nondeterministic automaton.

2 Universal co-B̈uchi Word Automata

A word automatonis A = 〈Σ, Q, δ, Qin, α〉, whereΣ is the input alphabet,Q is a finite
set of states,δ : Q × Σ → 2Q is a transition function,Qin ⊆ Q is a set of initial states,
andα is an acceptance condition that defines a subset ofQω.

Given an input wordw = σ0 · σ1 · · · in Σω, a run of A onw is a wordr = q0, q1, . . .
in Qω such thatq0 ∈ Qin and for everyi ≥ 0, we haveqi+1 ∈ δ(qi, σi); i.e., the run
starts in the initial state and obeys the transition function. Since the transition function
may specify many possible transitions for each state and letter,A may have several runs
on w. A run is accepting iff it satisfies the acceptance conditionα. We consider here
theBüchi acceptance condition, whereα ⊆ Q is a subset ofQ. For a runr, let inf(r)
denote the set of states thatr visits infinitely often. That is,inf(r) = {q ∈ Q : qi =
q for infinitely manyi ≥ 0}. A run r is accepting iffinf(r) ∩ α 6= ∅. That is,r is
accepting if some state inα is visited infinitely often. Theco-Büchiacceptance condition
dualizes the Büchi condition. Thus, againα is a subset ofQ, but a runr is accepting if
inf(r) ∩ α = ∅. Thus,r visits all the states inα only finitely often.

If the automatonA is nondeterministic, then it accepts an input wordw iff it has an
accepting run onw. If A is universal, then it acceptsw iff all its runs onw are accept-
ing. Thelanguageof A, denotedL(A) is the set of words thatA accepts. Dualizing a
nondeterministic Büchi automaton (NBW, for short) amounts to viewing it as a universal
co-Büchi automaton (UCW, for short). It is easy to see that by dualizingA, we get an
automaton that accepts its complementary language.

In [7], Kupferman and Vardi analyze runs of UCW in terms of a ranking function one
can associate with their runDAG. In the rest of this section, we describe their analysis.

Let A = 〈Σ, Q, Qin, δ, α〉 be a universal co-Büchi automaton withα. Let |Q| = n.
The runs ofA on a wordw = σ0 · σ1 · · · can be arranged in an infiniteDAG (directed
acyclic graph)G = 〈V, E〉, where

– V ⊆ Q× IN is such that〈q, l〉 ∈ V iff some run ofA onw hasql = q. For example,
the first level ofG contains the verticesQin × {0}.

– E ⊆
⋃

l≥0(Q×{l})× (Q×{l + 1}) is such thatE(〈q, l〉, 〈q′, l + 1〉) iff 〈q, l〉 ∈ V
andq′ ∈ δ(q, σl).

Thus,G embodies exactly all the runs ofA onw. We callG therun DAG of A onw. We
say that a vertex〈q, l〉 in G is anα-vertexiff q ∈ α. We say thatG is acceptingif each
pathp in G contains only finitely manyα-vertices. It is easy to see thatA acceptsw iff
G is accepting.

Let [2n] denote the set{0, 1, . . . , 2n}. A ranking for G is a functionf : V → [2n]
that satisfies the following conditions:

1. For all vertices〈q, l〉 ∈ V , if f(〈q, l〉) is odd, thenq 6∈ α.
2. For all edges〈〈q, l〉, 〈q′, l + 1〉〉 ∈ E, we havef(〈q′, l + 1〉) ≤ f(〈q, l〉).

Thus, a ranking associates with each vertex inG a rank in[2n] so that ranks along paths
decrease monotonically, andα-vertices cannot get an odd rank. Note that each path in
G eventually gets trapped in some rank. We say that the rankingf is anodd rankingif
all the paths ofG eventually get trapped in an odd rank. Formally,f is odd iff for all
paths〈q0, 0〉, 〈q1, 1〉, 〈q2, 2〉, . . . in G, there isl ≥ 0 such thatf(〈ql, l〉) is odd, and for
all l′ ≥ l, we havef(〈ql′ , l

′〉) = f(〈ql, l〉). Note that, equivalently,f is odd if every path
of G has infinitely many vertices with odd ranks.

We now analyze the form of accetping run DAGs. The following three lemmata relate
to DAGs induced by words accepted byA. Consider a (possibly finite)DAG G′ ⊆ G. We
say that a vertex〈q, l〉 is finite in G′ iff only finitely many vertices inG′ are reachable
from 〈q, l〉. We say that a vertex〈q, l〉 is α-free in G′ iff all the vertices inG′ that are
reachable from〈q, l〉 are notα-vertices. Note that, in particular,〈q, l〉 is not anα-vertex.

We define an infinite sequence ofDAGsG0 ⊇ G1 ⊇ G2 ⊇ G3 ⊇ . . . as follows.

– G0 = G.
– G2i+1 = G2i \ {〈q, l〉 | 〈q, l〉 is finite inG2i}.
– G2i+2 = G2i+1 \ {〈q, l〉 | 〈q, l〉 is α-free inG2i+1}.

Lemma 1. For everyi ≥ 0, there existsli such that for alll ≥ li, there are at mostn− i
vertices of the form〈q, l〉 in G2i.

Lemma 1 implies thatG2n is finite, andG2n+1 is empty.
Each vertex〈q, l〉 in G has a uniquei ≥ 1 such that〈q, l〉 is either finite inG2i or

α-free inG2i+1. This induces a functionf : V → [2n] defined as follows.

f(〈q, l〉) =

[

2i If 〈q, l〉 is finite inG2i.
2i + 1 If 〈q, l〉 is α-free inG2i+1.

Lemma 2. For every two vertices〈q, l〉 and 〈q′, l′〉 in G, if 〈q′, l′〉 is reachable from
〈q, l〉, thenf(〈q′, l′〉) ≤ f(〈q, l〉).

Lemma 3. For every infinite path inG, there exists and a vertex〈q, l〉 such that all the
vertices〈q′, l′〉 on the path that are reachable from〈q, l〉 havef(〈q′, l′〉) = f(〈q, l〉).

We can now conclude with Theorem 1 below.

Theorem 1. [7] TheDAG G is accepting iff it has an odd ranking.

Proof. Assume first that there is an odd ranking forG. Then, every path inG eventually
gets trapped in some odd rank. Hence, asα-vertices cannot get this rank, the path visits
α only finitely often, and we are done.

For the other direction, note that Lemma 2, together with thefact that a vertex gets
an odd rank only if it isα-free, imply that the functionf described above is a ranking.
Lemma 3 then implies that the ranking is odd. ⊓⊔

3 Lower Bound on Length of Accepted Words

In this section we construct, for every oddn ≥ 1, a UCWAn with n states such that
the shortest words accepted byA have a cycle of lengthn+1

2 !. The alphabetΣn of An

hasn+1
2 ! letters, and there is an ordering≤ of all the letters inΣn such thatAn accepts

exactly all wordsvuω, wherev ∈ Σ∗
n andu ∈ (Σn)

n+1

2
! has all the letters inΣn ordered

according to≤.
Formally, given an oddn ≥ 1, letAn = 〈Σn, Qn, δn, Qn, αn〉, where

– LetΠn be the set of permutations on{1, 3, 5, . . . , n} (the odd members of{1, . . . , n}),
and let≤ be the lexicographic ordering5 on the members ofΠn. Then,Σn ⊆
Πn × Πn is such that〈π, π′〉 ∈ Σn iff π′ is the (cyclic) successor ofπ in the
order≤. Thus, each letter ofΣn is a pair 〈π, π′〉 of permutations, such thatπ′

is the successor ofπ in the lexicographic order ofΠn. Note we refer to the or-
der in a cyclic way, thus〈n . . . 31, 13 . . . n〉 is a letter inΣn. For example,Π5 =
{135, 153, 315, 351, 513, 531}andΣ5 = {〈135, 153〉, 〈153, 315〉, 〈315, 351〉, 〈351, 513〉,
〈513, 531〉, 〈531, 135〉}. Note that each permutation inΠn contributes toΣn one let-
ter, thus|Σn| = |Πn| = n+1

2 !.
– Qn = {1, . . . , n}.
– Consider a permutationπ ∈ Πn. An even-extensionof π is a permutationσ of
{1, 2, 3, . . . , n} obtained fromπ by usingπ for the odd positions and inserting in
each even positione the even numbere. For example, ifπ = 153, thenσ = 12543.
Let π andπ′ be such that〈π, π′〉 ∈ Σn, and letσ = i1 · · · in andσ′ = j1 · · · jn be
the even extensions ofπ andπ′. Then, for every1 ≤ k ≤ n, we define

δn(ik, 〈π, π′〉) =

{

{j1, . . . , jk} if k is odd
{j1, . . . , jk−1} if k is even.

That is, when a stateh ∈ Qn reads〈π, π′〉, it checks its location inσ (this is the
k for which h = ik) and sends copies to all states in smaller (or equal, ifk is odd)
locations inσ′ (these are the statesh′ for whichh′ = jk′ for k′ smaller than (or equal
to) k. Note that for all evenk’s, we haveδn(ik, 〈π, π′〉) = δn(ik−1, 〈π, π′〉).

5 The proof stays valid with every ordering.

For example,δ5(3, 〈135, 153〉) = {1, 2, 5}. Indeed, the location of3 in 12345 is 3
and the states located in the first three positions in12543 are1, 2, and5. The other
transitions on the letter〈135, 153〉 are defined similarly:
• δ5(1, 〈135, 153〉) = δ5(2, 〈135, 153〉) = {1},
• δ5(3, 〈135, 153〉) = δ5(4, 〈135, 153〉) = {1, 2, 5}, and
• δ5(5, 〈135, 153〉) = {1, 2, 3, 4, 5}.

– αn = {i | i is even}. Thus, every infinite run ofAn has to visit only finitely many
even states.

Note that for every wordv ∈ Σω, the runDAG of An on v has all the states inQn

appearing in every level of theDAG. This follows from the set of initial states ofAn being
Qn and the fact that for every lettera = 〈π, π′〉 ∈ Σn, there exists one stateq in Qn (q
is last number inπ) for which the transition fromq ona contains all the states inQn.

Let u be the word in(Σn)
n+1

2
! that contains all the letters inΣn ordered lexi-

cographically. For example, whenn = 5, we have thatu = 〈135, 153〉 〈153, 315〉
〈315, 351〉〈351, 513〉 〈513, 531〉〈531, 135〉. We prove thatAn accepts the worduω. It
follows thatAn acceptsvuω for every wordv ∈ Σ∗.

1 2 3 4 5

1 2 5 4 3

3 2 1 4 5

3 2 5 4 1

5 2 1 4 3

5 2 3 4 1

1 2 3 4 5

〈135, 153〉

〈153, 315〉

〈315, 351〉

〈351, 513〉

〈513, 531〉

〈531, 135〉

Fig. 1.The accepting run ofA5 onu
ω.

Lemma 4. uω ∈ L(An).

Proof. Consider the runDAG G of An on uω. In Figure 1, we describe the accepting
run DAG of A5 on uω. As argued above, each levell of G consists of all the vertices in
Qn × {l}. We arrange the vertices ofG in columns numbered1 to n. In the level that
reads〈π, π′〉, we arrange the vertices according to the position of the state component of
each vertex in the even extensionσ of π. For example, when we read〈135, 153〉 in level
0, we consult the even extension12345 of 135 and put the vertex〈1, 0〉 in Column 1 (the
leftmost), put〈2, 0〉 in Column 2, and so on. Sinceu contains all the letters inΣn ordered
lexicographically, the letter to be read in the next level is〈π′, π′′〉, and the vertices are
arranged in columns in this level according toπ′. By the definition ofδn, the above
implies that the edges inG go from columns to smaller or equal columns. Accordingly,
all α-vertices appear in even columns and all other vertices appear in odd columns.

We prove thatG has an odd ranking. For that, we prove, by induction oni, that the
vertices in Columni, for 1 ≤ i ≤ n, get ranki (independent of their level).

By definition, the set of successors of a vertex in Column 1 is asingleton containing
the next vertex in Column 1. As all vertices in this column arenot α-vertices, they are
all α-free and they get rank1. The set of successors of vertices in Column 2 is again
a singleton containing only the next vertex in Column 1. Since vertices in Column 2
areα-vertices, they do not get rank 1. In theDAG G2, however, these vertices have no
successors. Thus, they are finite, and get rank2.

The induction step is similar: theDAG Gi contains only vertices in Columnsi to n.
Wheni is odd, the vertices in Columni areα-free, and get ranki. Wheni is even, the
vertices in Columni are finite, and get ranki too. ⊓⊔

Consider two letters〈π1, π
′
1〉 and〈π2, π

′
2〉 in Σn. We say that〈π1, π

′
1〉 and〈π2, π

′
2〉

aregluableif π′
1 = π2. Otherwise,〈π1, π

′
1〉 and〈π2, π

′
2〉 arenon-gluable. We say that

locationi ∈ IN is anerror in w if lettersi andi+1 in w are non-gluable. A wordw is bad
if w has infinitely many errors. The definition of non-gluable is extended to finite words
in the obvious way. Consider a wordv ∈ Σ∗

n. We denote byfirst(v) the permutation
π ∈ Πn such that the first letter ofv is 〈π, π′〉, for the (lexicographic) successorπ′ of π.
Similarly, we denote bylast(v) the permutationπ′ such that the last letter ofv is 〈π, π′〉
for the predecessorπ of π′. Given an even-extensionσ = i1 · · · in of a permutation, we
say that the stateik is thek-th state appearing inσ.

Consider a fragment of a run that starts in permutationπ and ends in permutationπ′.
That is, the fragment reads the wordv, the permutationπ is first(v), and the permutation
π′ is last(v). We arrange the states inQn according to their order in the even extensions
σ andσ′ of π andπ′. In the following lemma, we show that ifq is thek-th state inσ,
q′ is thek′-th state inσ′, andk′ ≤ k, thenq′ is reachable fromq in this run fragment.
Furthermore, ifk′ < k thenq′ is reachable fromq along a run that visitsα.

Lemma 5. Consider an infinite wordσ0σ1 · · · and a runDAG G of An on it. Letl be a
level ofG, let l′ > 0 be an integer, and letv = σl · · ·σl+l′ be the subword of lengthl′

read at the levell. Let k andk′ be such thatk is odd and1 ≤ k′ ≤ k ≤ n. Let q be
thek-th state in the even extension offirst(v), and letq′ be thek′-th state in the even
extension oflast(v). Then, the vertex〈q′, l + l′〉 is reachable from the vertex〈q, l〉 of G.
Moreover, ifl′ > 1 andk′ < k, then〈q′, l + l′〉 is reachable from〈q, l〉 along a path that
visitsα.

Proof. We start with the first part of the lemma and prove it by induction onl′ (that is, the
length ofv). For l′ = 1, the lemma follows from the definition of the transition function.
For the induction step, consider a wordv = wa. Let first(w) = π1, last(w) = π2 and
a = 〈π3, π4〉. Let i1 · · · in, j1 · · · jn, c1 · · · cn, andd1 · · · dn be the even extensions ofπ1,
π2, π3, andπ4, respectively.

Consider the runDAG G ofAn on the input word. By the induction hypotheses, which
holds forw, we know that for every oddk and for allk′ ≤ k, the vertex〈jk′ , l + |w|〉 is
reachable from the vertex〈ik, l〉. We consider now the edges ofG reading the last letter
a. We distinguish between two cases. Ifπ2 = π3, the lemma follows from the definition
of the transition function. Ifπ2 6= π3, consider the stateck appearing in thek-th position
in even extension ofπ3. Let m be such thatjm = ck. We again distinguish between
two cases. Ifm ≤ k, the lemma follows from the definition of the transition function. If
m > k, then there existm′ ≤ k andm′′ > k such thatcm′′ = jm′ . By the induction
hypothesis,〈jm′ , l + |w|〉 is reachable from〈ik, l〉. As jm′ = cm′′ , the transition ofcm′′

reading〈π3, π4〉 implies that for everyk′ < m′′ (and in particular for everyk′ < k) the
vertex〈dk′ , l + |w| + 1〉 is reachable from〈ik, l〉.

We now prove the second part of the lemma. By the first part, thevertex〈jk−1, l + l′ − 1〉
is reachable from〈ik, l〉. As k is odd,k − 1 is even, thus, by the definition of an even-
extension,ck−1 = k − 1, thus〈ck−1, l + l′ − 1〉 is anα-vertex. By the definition of the
transition function, for everyk′ < k − 1, there is an edge from〈ck−1, l + l′ − 1〉 to
〈dk′ , l + l′〉. It follows that there is a path that visitsα from 〈ik, l〉 to 〈dk′ , l + l′〉. ⊓⊔

We use this result to show that bad words cannot be accepted byAn. Indeed, when-
ever there is a mismatch between the permutations, we find a state that reduces its posi-
tion in the permutations. This state, gives rise to a fragment that visitsα. If this happens
infinitely often, we get a run that visitsα infinitely often.

Lemma 6. Every bad wordu is rejected byAn.

Proof. We start with the case thatu = vwω . Assume that|w| > 1. Otherwise, we replace
w by w · w. By the definition of bad words, the wordwω contains two successive letters
〈π1, π

′
1〉 and〈π2, π

′
2〉 such thatπ′

1 6= π2. Let l be a level in the runDAG of An on vwω

such thatl > |v| is such that〈π1, π
′
1〉 is being read in levell − 1 and〈π2, π

′
2〉 is being

read in levell. Note that〈π1, π
′
1〉 is then being read again at levell + |w| − 1.

We show that there exists a vertex〈q, l + |w|〉 reachable from〈q, l〉 such that the path
from 〈q, l〉 to 〈q, l + |w|〉 visits anα-vertex. SinceAn is universal, the block of|w| levels
of G that starts in levell repeats forever, thus it follows thatG has a path with infinitely
manyα-vertices.

Let w′ be the word read between levelsl andl + |w|. Note thatw′ is w shifted so
thatfirst(w′) = π2, andlast(w′) = π′

1. Let σ = i1, . . . , in andσ′ = j1, . . . , jn be the
even-extensions ofπ2 andπ′

1, respectively. Sinceπ2 6= π′
1, there exists some oddk and

k′ such thatik = jk′ andk′ < k. Let q be the stateik = jk′ . The stateq satisfies the
conditions of Lemma 5 with respect to levell and lengthl′ = |w|: it is thek-th state in
first(w′) for an oddk, and it is also thek′-th state inlast(w′). Hence, since|w′| > 1 and
k′ < k, we have that〈q, l + |w|〉 is reachable from〈q, l〉 along a path that visitsα.

Consider some bad wordu ∈ Σω such thatu does not have a cycle. It follows thatu
can be partitioned to infinitely many finite subwords that arenon-gluable. Consider two

such subwordsw1 andw2. Asw1 andw2 are non-gluable there exists somek andk′ such
thatk′ < k and thek-th state inlast(w1) is thek′-th state infirst(w). There are infinitely
many subwords, we use Ramsey’s Theorem to find infinitely manypoints that have the
samek andk′. This defines a new partition to finite subwords. By using Lemma 5 we
can show that the run onw contains a path with infinitely many visits toα. ⊓⊔

Corollary 1. The language ofAn is {vuω | v ∈ Σ∗
n}.

In Figure 2, we describe a rejecting run ofAn on vω wherev is obtained from
u by switching the order of the letters〈315, 351〉 and 〈351, 513〉. The pair〈153, 315〉
and〈351, 513〉 is non-gluable. In the runDAG G, the state1 satisfies the conditions of
Lemma 5 withl = 2 andl′ = 6. To see this, note that the subword ofvω of length6 that is
read at level2 is w = 〈351, 513〉〈315, 351〉 〈513, 531〉 〈531, 135〉 〈135, 153〉〈153, 315〉,
with first(w) = 351 and last(w) = 315. The state 1 is the5-th state in the even ex-
tension32541 of first(w), thusk = 5, and is the3-rd state in the even extension32145
of last(w), thusk′ = 3. As promised in the lemma, the vertex〈1, 8〉 is reachable from
the vertex〈1, 2〉 via a path that visits theα-vertex 〈2, 3〉 — the rejecting path that is
highlighted in bold in the figure.

We can now conclude with the statement of the lower bound for the linear case.

Theorem 2. There is an+1
2 ! lower bound on the length of a witness accepted by a UCW

with n states.

Proof. Consider the sequence of UCWsA1,A3, . . . defined above. By the above, the
language ofAn is {vuω | v ∈ Σ∗

n}, whereu is the word in(Σn)
n+1

2
! that contains all the

letters inΣn ordered lexicographically. Thus, the length of witnesses is at leastn+1
2 !. ⊓⊔

4 Universal co-B̈uchi Tree Automata

Given an alphabetΣ and a setD of directions, aΣ-labeledD-tree is a pair〈T, τ〉,
whereT ⊆ D∗ is a tree overD and τ : T → Σ maps each node ofT to a letter
in Σ. A transduceris a labeled finite graph with a designated start node, where the
edges are labeled byD and the nodes are labeled byΣ. A Σ-labeledD-tree isregular
if it is the unwinding of some transducer. More formally, a transducer is a tupleT =
〈D, Σ, S, sin, η, L〉, whereD is a finite set of directions,Σ is a finite alphabet,S is a
finite set of states,sin ∈ S is an initial state,η : S × D → S is a deterministic transition
function, andL : S → Σ is a labeling function. We defineη : D∗ → S in the standard
way:η(ε) = sin, and forx ∈ D∗ andd ∈ D, we haveη(x·d) = η(η(x), d). Intuitively, a
Σ-labeledD-tree〈D∗, τ〉 is regular if there exists a transducerT = 〈D, Σ, S, sin, η, L〉
such that for everyx ∈ D∗, we haveτ(x) = L(η(x)). We denote byTs the transducer
〈D, Σ, S, s, η, L〉, i.e., the transducerT with s as initial state. Given a transducerT , let
reach0(T) = {sin} and letreachi+1(T) =

⋃

s∈reachi(T)

⋃

d∈D{η(s, d)}. Thewidth
of T is the minimalj such that|reachi(T)| = j for infinitely manyi. That is, starting
from somei0, we have that|reachi(T)| ≥ j for all i ≥ i0. Note that while the width
of an infinite tree generated by a transducer is unbounded, the width of a transducer is
always bounded by its number of states.

1 2 3 4 5 levels0, 6, 12, . . .

1 2 5 4 3 levels1, 7, 13, . . .

3 2 1 4 5 levels2, 8, 14, . . .

5 2 1 4 3 levels3, 9, 15, . . .

3 2 5 4 1 levels4, 10, 16, . . .

5 2 3 4 1 levels5, 11, 17, . . .

1 2 3 4 5 levels6, 12, 18, . . .

〈135, 153〉

〈153, 315〉

〈351, 513〉

〈315, 351〉

〈513, 531〉

〈531, 135〉

Fig. 2.The rejecting run ofA5 on(〈135, 153〉〈153, 315〉〈351, 513〉〈315, 351〉〈513, 531〉〈531, 135〉)ω.

A universal co-Büchi tree automaton (UCT, for short) is a tupleA = 〈Σ, D, Q, Qin, δ, α〉,
whereΣ, Q, Qin, andα are as in UCW,D is a set of directions, andδ : Q×Σ → 2(D×Q)

is a transition function. When the language ofA is not empty, it accepts a regularΣ-
labeledD-tree [16, 13]. It is convenient to consider runs ofA on transducers.

Consider a transducerT = 〈D, Σ, S, sin, η, L〉. A run ofA onT can be arranged in
an infiniteDAG G = 〈V, E〉, where

– V ⊆ S × Q × IN.
– E ⊆

⋃

l≥0(S ×Q×{l})× (S×Q×{l+1}) is such thatE(〈s, q, l〉, 〈s′, q′, l + 1〉)
iff there isd ∈ D such that(d, q′) ∈ δ(q, L(s)) andη(s, d) = s′.

The runDAG G is accepting iff every path in it has only finitely many vertices in
S × α × IN. A transducer is accepted byA if its run DAG is accepting. In the sequel we
restrict attention to binary trees, i.e.,D = {0, 1} andT = {0, 1}∗. All our ideas apply to
larger branching degrees as well.

5 Lower Bound on Width of Accepted Transducers

In [8], it is shown that if a UCT withn states is not empty, then it accepts a transducer of
width bounded by(2n!)n2n3n(n+1)/n!. An improved upper bound for determinization
shows that the width reduces to2n(n!)2 [14, 10]. It is conjectured in [8] that this bound
can be tightened to2O(n). Intuitively, it is conjectured there that if a UCT is not empty,
then different states of a transducer it accepts that are visited by the same set of states of
the UCT can be merged.

In this section we construct, for every oddn ≥ 1, a UCTBn with n states such that
the language ofBn is not empty and yet the width of a transducer accepted byBn is at
leastn+1

2 !.
We extend the ideas in Section 3 to a tree automaton. The basicidea is to create a

mismatch between the permutation the automaton has to send to the left successor of a
node and the permutation the automaton has to send to the right successor. Doing so, we
force the input tree to display all possible permutations inone level. Thus, the minimal
width of a transducer generating such a tree isn+1

2 !.
Recall the alphabetΣn defined in Section 3. We reuse this alphabet in the context of

a tree. Whenever we refer to a letter〈π, π′〉 ∈ Σn we assume thatπ′ is the successor
of π according to the lexicographic order. Consider a letter〈π, π′〉 ∈ Σn and a node
x labeled by〈π, π′〉. Intuitively, when the automatonBn reads the nodex, it “sends”
the permutationπ′ to the left successor ofx and it “sends” the permutationπ (i.e., the
same permutation) to the right successor ofx. Consider aΣn-labeled binary tree〈T, τ〉.
Consider a nodex and its two successorsx · 0 andx · 1. Let τ(x) be〈πx, π′

x〉, τ(x · 0)
be 〈πx0, π

′
x0〉, andτ(x · 1) be 〈πx1, π

′
x1〉. We say that the nodex is good if πx0 = π′

x

andπx1 = πx. That is, the left successor ofx is labeled by the successor permutation
π′

x (paired with its successor permutation) and the right successor ofx is labeled by the
same permutationπx (paired with its successor permutation). A tree〈T, τ〉 is goodif all
verticesx ∈ T are good. Given a permutationπ there is a unique good tree whose root
is labeled by〈π, π′〉. We denote this tree by〈T, τπ〉.

Lemma 7. For every permutationπ, the width of a transducer that generates〈T, τπ〉 is
n+1

2 !.

Proof. We can construct a transducer generating〈T, τπ〉 with n+1
2 ! states. Indeed, the

states of such a transducer are the letters ofΣn. The0-successor of a state〈π, π′〉 is the
unique state〈π′, π′′〉, for the successorπ′′ of π′, and its1-successor is〈π, π′〉.

Let π0, . . . , πn+1

2
! be an enumeration of all permutations according to the lexico-

graphic order. For simplicity we assume thatπ = π0. We can see that〈π0, π1〉 appears
in every level in〈T, τπ〉. By induction,〈πi, πi+1〉 appears for the first time in〈T, τπ〉 in
leveli−1. It follows that〈πi, πi+1〉 appears in〈T, τπ〉 in all levels abovei−1. In partic-
ular, in all levels aftern+1

2 !, all permutations appear. It follows that|reachj(T)| ≥ n+1
2 !

for all transducersT that generate〈T, τπ〉 andj ≥ n+1
2 !. ⊓⊔

Corollary 2. Every transducerT that generates a tree that has a subtree〈T, τπ〉, for
some permutationπ, has width at leastn+1

2 !.

We now defineBn as a UCT variant of the UCWAn constructed in Section 3. Essen-
tially, every transducer accepted byBn generates a tree that contains〈T, τπ〉 as a subtree,
for some permutationπ of all the letters inΣn.

LetBn = 〈Σn, {0, 1}, Qn, δn, Qn, αn〉, whereQn = {1, . . . , n},αn = {i | i is even},
andδ : Qn × Σn → 2{0,1}×Qn is as follows. Let〈π, π′〉 ∈ Σn and letσ = i1 · · · in and
σ′ = j1 · · · jn be the even extensions ofπ andπ′. Then, for every1 ≤ k ≤ n, we define

δn(ik, 〈π, π′〉) =

{

{(0, j1), . . . , (0, jk), (1, i1), . . . , (1, ik)} if k is odd
{(0, j1), . . . , (0, jk−1), (1, i1), . . . , (1, ik−1)} if k is even

When going left,Bn treats the pair〈π, π′〉 like the UCWAn treats it. When going
right, Bn mimics the same concept, this time, without changing the permutation. From
stateq ∈ Qn, our automaton checks the location ofq in σ and sends copies to all states
in smaller (or equal, ifk is odd) locations inσ′ in direction0 and all states in smaller (or
equal) locations inσ in direction1.

Consider a transducerT = 〈D, Σn, S, sin, η, L〉 accepted byBn. Given a permu-
tation π, we say thatπ′ is the 0-successor ofπ for the successorπ′ of π according to
the lexicographic order (i.e., the uniqueπ′ such that〈π, π′〉 ∈ Σn) and we say thatπ
is the 1-successor ofπ. Consider a pathp = s0, a0, s1, a1, . . . ∈ (S × D)ω , where
si+1 = η(si, ai). We say thatp is good if for all i ≥ 0 we haveL(si+1) is theai-
successor ofL(si). We say thatp is badotherwise6. If p is bad, every locationi ∈ IN
such thatL(si) is not theai−1-successor ofL(si−1) is called anerror in p.

Consider a transducerT = 〈D, Σn, S, sin, η, L〉 and an infinite pathp = s0, a0, s1, a1, . . .
∈ (S×D)ω , wheresi+1 = η(si, ai). Consider a sub-pathv = sl, al, . . . , sl′−1, al′−1, sl′ .
We denote byfirst(v) the permutationπ ∈ Πn such that〈π, π′〉 = L(sl). We denote by
last(v) the permutationπ′′ ∈ Πn such thatL(sl′−1) = 〈π, π′〉 andπ′′ = π if al′−1 = 1
andπ′′ = π′ if al′−1 = 0. That is, the last permutation read inv is determined by the last
directionp takes inv.

Let G be theDAG run ofBn on T , p = s0, a0, s1, a1, . . . an infinite path inT , and
v = sl, al, . . . , sl′−1, al′−1, sl′ a sub-path ofp. Consider the part ofG consisting of all
nodes in levelsl to l′ that read the statessl, . . . , sl′ . Let π befirst(v) andπ′ be last(v).
We arrange the states inQ according to their order in the even extensionsσ andσ′ of π
andπ′. The following lemma is the tree variant of Lemma 5. It shows that if q is thek-th
state inσ andq′ is thek′-th state inσ′, thenk′ ≤ k implies thatq′ is reachable fromq in
this part of the run. Furthermore, ifk′ < k thenq′ is reachable fromq along a run that
visitsα. The proof is identical to that of Lemma 5.

Lemma 8. Consider a transducerT = 〈D, Σn, S, sin, η, L〉 and theDAG run G of Bn

on it. Letp = s0, a0, s1, a1, . . . be a path inT and letv = sl, al . . . , sl′−1, al′−1, sl′ be
a sub-path ofp. Let q be thek-th state in the even extension offirst(v) for an oddk,
and letq′ be thek′-th state in the even extension oflast(v), for k′ ≤ k. Then, the vertex
〈sl′ , q

′, l′〉 in G is reachable from the vertex〈sl, q, l〉. Moreover, ifl′ − l > 1 andk′ < k,
then a path connecting〈sl, q, l〉 to 〈sl′ , q

′, l′〉 visitsα.

The following Lemma resembles Lemma 6. It shows that in a transducer accepted by
Bn, every path has only finitely many errors.

Lemma 9. For every pathp in a transducerT ∈ L(Bn), the pathp contains finitely
many errors.

6 Notice that the definition of bad here is slightly different from the definition of bad in Section 3.

Proof. Let G be an accepting run ofBn on T = 〈D, Σn, S, sin, η, L〉. Assume that
p = s0, a0, s1, a1, . . ., wheresi+1 = η(si, ai), is a path inT with infinitely many errors.
Let sl0 , sl1 , . . . denote the error locations inp. By definition, for everym ≥ 0 we have
L(slm) is not thealm−1-successor ofL(slm−1). With every indexlm we associate a
triplet 〈πm, π′

m, dm〉 such thatL(slm−1) = 〈π, π′〉 andπm is thealm−1-successor of
π (i.e., π′ if alm−1 = 0 and π otherwise),L(slm) = 〈π′

m, π′′′〉, anddm = alm−1.
That is, we record the permutationπ′

m labelingslm , the unmatchingπm, which is the
alm−1-successor of the label ofslm−1, and the direction that takes fromslm−1 to slm .
There are infinitely many errors and finitely many triplets. There is a triplet〈π, π′, d〉
associated with infinitely many indices. We abuse notationsand denote bysl0 , sl1 , . . . the
sub-sequence of locations associated with〈π, π′, d〉. Without loss of generality, assume
that for allm ≥ 0 we havelm+1 − lm > 1.

For m, m′ ≥ 0 such thatm 6= m′, let vm,m′ denote the sub-path ofp that starts in
slm and ends insl

m′
. Thenπ′ = first(vm,m′) andπ = last(vm,m′). By assumptionπ′

is not thed-successor ofπ. Let σ = i1, . . . , in be the even extension of thed-successor
of π and letσ′ = j1, . . . , jn be the even extension ofπ′. Then there exists some oddk
andk′ such thatjk = ik′ andk′ < k. Let q be the statejk = ik′ . The stateq satisfies
the condition of Lemma 8 with respect tovm,m′ : it is thek-th state infirst(vm,m′) for
an oddk, and it is also thek′-th state inlast(vm,m′). Hence, sincelm′ − lm > 1 and
k′ < k, the node〈sl

m′
, q, lm′〉 in G is reachable from the node〈slm , q, lm〉 along a path

that visitsα.
For every two different integersm and m′ we identify one such stateqm,m′ . By

Ramsey’s Theorem, there exist a stateq and a sequencel′0, l
′
1, . . . such that for every

m ≥ 0 the sub-pathvl′
m

,l′
m+1

connects stateq to itself with a path that visitsα. We have
found a path inG that visitsα infinitely often. ⊓⊔

We now show that every tree generated byT contains〈T, τπ〉 for someπ as a subtree.

Lemma 10. For everyT ∈ L(Bn), there exists a permutationπ and a states reachable
from sin such that the transducerTs generates〈T, τπ〉.

Proof. We add an annotation to the edges inT . Every edges′ = η(s, a) such thats′ is
an error in a path that containss ands′ is annotated by1. Every other edge is annotated
by 0. According to Lemma 9, every path inT is annotated by finitely many 1’s.

We say that a states is 1-free inT iff all the edges inT that are reachable froms
are not labeled by 1. It is enough to find one such states. Assume by contradiction that
no such states exists. We construct by induction a path that is labeled by infinitely many
1’s.7

By assumption,sin is not 1-free. Hence there is some states1 reachable fromsin and
a directiona1 such that the edge froms1 to η(s1, a1) is annotated by 1. By induction the
path fromsin to η(si, ai) has at leasti edges annotated by 1. By assumptionη(si, ai) is
not 1-free. There exists a nodesi+1 reachable fromη(si, ai) and a directionai+1 such
that the edge fromsi+1 to η(si+1, ai+1) is annotated by 1. It follows that the path from
sin to η(si+1, ai+1) has at leasti + 1 edges annotated by 1. In the limit, we get a path in
T that has infinitely many edges labeled 1. In contradiction toLemma 9.

7 Notice the resemblance to the definition ofα-free in Section 2. Indeed, the proof of the existence
of a 1-free state follows closely the similar proof in [7].

It follows that there exists a states in T such thats is 1-safe. Ass is 1-safe, the subtree
generated byTs contains no errors. Letπ be the permutation such thatL(s) = 〈π, π′〉.
ThenTs generates〈T, τπ〉. ⊓⊔

We can now conclude with the statement of the lower bound for the branching case.

Theorem 3. There is an+1
2 ! lower bound on the width of a transducer accepted by a

UCT withn states.

Proof. Consider the sequence of UCTsB1,B3, . . . defined above. For every permutation
π, the transducer that generates〈T, τπ〉 is accepted byBn. By Lemma 10 and Corollary 2,
every transducer accepted byBn is of width at leastn+1

2 !. ⊓⊔

References

1. J.A. Brzozowski and E. Leiss. Finite automata and sequential networks.TCS, 10:19–35, 1980.
2. J.R. Büchi. On a decision method in restricted second order arithmetic. InProc. Int. Congress

on Logic, Method, and Philosophy of Science. 1960, pages 1–12. Stanford Univ. Press, 1962.
3. A.K. Chandra, D.C. Kozen, and L.J. Stockmeyer. Alternation. JACM, 28(1):114–133, 1981.
4. J.E. Hopcroft, R. Motwani, and J.D. Ullman.Introduction to Automata Theory, Languages,

and Computation (2nd Edition). Addison-Wesley, 2000.
5. O. Kupferman, N. Piterman, and M.Y. Vardi. Safraless compositional synthesis. InProc 18th

CAV, LNCS 4144, pages 31–44, 2006.
6. O. Kupferman and S. Sheinvald-Faragy. Finding shortest witnesses to the nonemptiness of

automata on infinite words. In17th CONCUR, LNCS 4137, pages 492–508, 2006.
7. O. Kupferman and M.Y. Vardi. Weak alternating automata are not that weak.ACM ToCL,

2(2):408–429, 2001.
8. O. Kupferman and M.Y. Vardi. Safraless decision procedures. InProc. 46th FOCS, pages

531–540, 2005.
9. R.P. Kurshan.Computer Aided Verification of Coordinating Processes. Princeton Univ. Press,

1994.
10. W. Liu. A tighter analysis of piterman determinization construction.

http://nlp.nudt.edu.cn/ lww/pubs.htm, 2007.
11. R. McNaughton. Testing and generating infinite sequences by a finite automaton.I&C , 9:521–

530, 1966.
12. S. Miyano and T. Hayashi. Alternating finite automata onω-words.TCS, 32:321–330, 1984.
13. D.E. Muller and P.E. Schupp. Simulating alternating tree automata by nondeterministic au-

tomata: New results and new proofs of theorems of Rabin, McNaughton and Safra.TCS,
141:69–107, 1995.

14. N. Piterman. From nondeterministic Büchi and Streett automata to deterministic parity au-
tomata.LMCS, 3(3):5, 2007.

15. A. Pnueli and R. Rosner. On the synthesis of a reactive module. InProc. 16th POPL, pages
179–190, 1989.

16. M.O. Rabin. Decidability of second order theories and automata on infinite trees.Transaction
of the AMS, 141:1–35, 1969.

17. W. Thomas. Automata on infinite objects.Handbook of Theoretical Computer Science, pages
133–191, 1990.

18. M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program verification.
In Proc. 1st LICS, pages 332–344, 1986.

19. M.Y. Vardi and P. Wolper. Reasoning about infinite computations. I&C , 115(1):1–37, 1994.

