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Abstract. The nonemptiness problem for nondeterministic automatafmite
words can be reduced to a sequence of reachability quehedefigth of a shortest
witness to the nonemptiness is then polynomial in the automaonemptiness
algorithms for alternating automata translate them to eterchinistic automata.
The exponential blow-up that the translation involves #&ified by lower bounds
for the nonemptiness problem, which is exponentially hafde alternating au-
tomata. The translation to nondeterministic automata exgails a blow-up in the
length of the shortest witness. A matching lower bound hedenbwn for cases
where the translation involves24’™ blow up, as is the case for finite words or
Buchi automata.

Alternating co-Buchi automata and witnesses to their mgtaess have applica-
tions in model checking (complementing a hondeterminiBtichi word automa-
ton results in a universal co-Bichi automaton) and syigh@s LTL specification
can be translated to a universal co-Buichi tree automatoeptiog exactly all the
transducers that realize it). Emptiness algorithms fera#ting co-Biichi automata
proceed by a translation to nondeterministic Buichi autamghe blow up here is
20(nlogn) "and it follows from the fact that, on top of the subset cartton, the
nondeterministic automaton maintains ranks to the stdtbe@lternating automa-
ton. It has been conjectured that this super-exponentis-p need not apply to
the length of the shortest witness. Intuitively, since deeBi automata are memo-
ryless, it looks like a shortest witness need not visit eestasociated with the same
set of states more than once. A similar conjecture has beee foathe width of
a transducer generating a tree accepted by an alternatiBau tree automaton.
We show that, unfortunately, this is not the case, and thetstiper-exponential
lower bound on the witness applies already for universaBigohi word and tree
automata.

1 Introduction

Finite automata on infinite objects were first introducechia 60’s. Motivated by deci-
sion problems in mathematics and logic, Buchi, McNaughtond Rabin developed a
framework for reasoning about infinite words and trees [216). The framework has
proven to be very powerful. Automata, and their tight relatio second-order monadic
logics were the key to the solution of several fundamenteisiten problems in mathe-
matics and logic [17]. Indeed, for many highly expressivgds, it is possible to translate
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a formula in the logic to an automaton accepting exacthhalmhodels satisfying the for-
mula. The formulais then satisfiable iff the language of thi@maton is not empty. Thus,
decidability can be reduced to the emptiness problem.

Today, automata on infinite objects are used for specifieatia verification of non-
terminating systems [18,9, 19]. The emptiness problemsptakey role also in these
more modern applications. Two important examples are mdustking and synthesis.
Model checking a system with respect to a specification isced to checking the empti-
ness of the product of the system with an automaton accepkagtly all models that
violate the specification [19]. Synthesis of a reactiveesysthat satisfies a desired spec-
ification is reduced to checking the emptiness of a tree aatomaccepting all possible
strategies that realize the specification [15].

In the case of finite nondeterministic automata on finite wptde emptiness prob-
lem is simple: The automaton accepts some word if there igtafpam an initial state
to an accepting state (c.f., [4]). Thus, the automaton is/@tkas a graph, its alphabet
is ignored, and emptiness is reduced to reachability inefigiaphs. An important and
useful outcome of this simplicity is the fact that when thedgaage of the automaton
is not empty, it is easy to return a witness to the nonemptiresa wordv that labels
a path from an initial state to a final states. Clearly, rehiiya may be checked only
along simple paths, thus the length of a witness is bounddigeogumber of states of the
automaton.

The case of finite nondeterministic automata on infinite wasdsimilar. Acceptance
in such automata depends on the set of states that a runinfaitisely often. For ex-
ample, in the Bichi acceptance condition, some statesesmigrthted as accepting, and
in order for a run to be accepting it has to visit at least onthe$e states infinitely of-
ten. Nonemptiness is slightly more complicated, but aghi®,automaton is viewed as
a graph, its alphabet is ignored, and emptiness is reducadéguence of reachability
queries in finite graphs. Now, the witness to the nonempiises word of the formy - v,
where the word labels a path from an initial state to some accepting statéttee word
u labels a path from this accepting state to itself. Since bahdw are extracted from
reachability queries on the graph, their lengths are bodibgi¢ghe number of states of the
automator?. For acceptance conditions more complicated than Biichiethptiness test
is more involved, but still, as long as we consider nondeigistic automata, emptiness
can be reduced to a sequence of reachability queries ondpé gf the automaton, and
a nonempty automaton has a witness of the form* for v and« polynomial in the
number of states of the automaton.

Alternating automata enrich the branching structure ofaim®maton by combining
universal and existential branching. In the presence efradition, we can no longer ig-
nore the alphabet when reasoning about emptiness. Indezdjfferent copies of the
automaton have to agree on the letters they read on the sasit@pof the word. The
standard solution is to remove alternation by translathg dutomaton to an equiva-
lent nondeterministic automaton, and checking the emstiné the latter. This simple
solution is optimal, as the exponential blow-up that thegtation involves is justified
by lower bounds for the nonemptiness problem, which is egptally harder in the
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alternating setting (c.f., NLOGSPACE vs. PSPACE for noedeinistic vs. alternating
automata on finite words).

The translation to nondeterministic automata also ensailexponential blow-up in
the length of the shortest witness. Can this blow up be addidenegative answer for
this question is known for alternating automata on finite dgoand alternating Buchi
automata. There, removing alternation from an alternatirigmaton with states results
in a nondeterministic automaton wit’(") states [3,12], and it is not hard to prove a
matching lower bound [1]. Note also that a polynomial withesuld have led to the
nonemptiness problem being in NP, whereas it is known to BARE-complete.

Things become challenging when the removal of alternativolves a super-exponential
blow up. In particular, emptiness algorithms for alterngtco-Buichi automata proceed
by a translation to nondeterministic Biichi automata, &edrivolved blow up i€ (" 1og7)
Alternating co-Biichi automata have been proven usefuladehchecking (complement-
ing a nondeterministic Buichi word automaton results ini@ensal co-Buchi automaton)
and synthesis (an LTL specification can be translated to eetsal co-Biichi tree au-
tomaton accepting exactly all the transducers that reil{8e5]). In the case of model
checking, the witness to the nonemptiness is a computdtairviolates the property. In
the case of synthesis, the witness is a system that reatieespecification). Thus, we
clearly seek shortest witnesses.

The29(nlegn) plow up follows from the fact that, on top of the subset camstion,
the nondeterministic automaton maintains ranks to thestaftthe alternating automa-
ton. It has been conjectured that this super-exponential-olp need not apply to the
length of the shortest witness. Intuitively, since co-Bil@utomata are memoryless, it
seems as if a shortest witness need not visit a state assbaiah the same set of states
more than once. This intuition suggests that a shortesesdtmeed not be longer than
20(n) A similar conjecture has been made for the width of a traoedugenerating a
tree accepted by an alternating co-Blchi tree automafon [8

In this paper we show that, unfortunately, this is not thecasd the super-exponential
blow-up in the translation of alternating co-Biichi autdaia nondeterministic Buichi au-
tomata is carried over to a super-exponential lower bourth@witness to the nonempti-
ness. In fact, the lower bound applies already for universaBiichi automata. We start
with the linear framework. There, we show that for every aadgern > 1, there exists
a universal co-Biichi word automatoty, with n states such that the shortest witness to
the nonemptiness od,, has a cycle of Iengtﬁ“;—l!.

In the branching framework, the witness to the nonemptiisesgransducer that gen-
erates a tree accepted by the automaton. The linear casdiyrimduces a lower bound
on the size of such a transducer. In the branching framewarkever, it is interesting
to consider also the width of the witness transducer. Inqader, the LTL synthesis al-
gorithm in [8], which is based on checking the nonemptindsa oniversal co-Buchi
tree automaton, is incremental, and it terminates afitgrations, withk being an upper
bound on the width of a transducer generating a tree accépteélde automaton. The
bound used in [8] is super-exponential, and has been rgdégtikened t2n (n!)? [14,
10]. Itis conjectured in [8] that the bound can be improve2?6v. As in the word case,
the intuition is convincing: The alternating automaton rsapd a set of states to a sub-

4 Essentially, the width of a transducer is the number of téffé states that the transducer may
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tree of the input tree, in which case the subtree should bepsed by all the states in the
set. The memoryless nature of the co-Biichi condition ssigghat if in an accepting run
of the automaton the same set of states is sent to differbiess, then there is also an
accepting run on a tree in which these subtrees are idenfieat, we do not need more
than2” different subtrees in a single level of the input tree. Wensttat, unfortunately,
this intuition fails, and there is a lower boundféj—l! on the width of the transducer. For-
mally, we show that for every odd integer> 1, there exists a universal co-Buchi tree
automatons,, with n states such that every tree acceptedshyis such that, all levels
beyond a finite prefix have at Iea%g'—ll different subtrees. Thus, the minimal width of a
transducer that generate a tree acceptefl,plas width at Ieasl‘”g—ll.

Our constructions use a very large alphabet. Indeed, tiabégi of the automatd,,
andB,, has"T“! letters. In the case of words, the word accepted by the adtomisa
cycle consisting of all these letters ordered in some fixelio¢say, lexicographically).
The case of trees is similar. We were not able to reduce tleddithe alphabet. While
the question of a smaller alphabet is very interesting, @fikess practical importance:
Constructions for removal of alternation introduce an expuial alphabet in an interme-
diate step (where the exponent is quadratic in the numbedatd#sy. The larger alphabet
is discarded at a later stage but the degree of nondeterminduced by it remains in
the resulting nondeterministic automaton. Furthermdre size of the alphabet does not
play a role in these constructions, and obviously does ragt plrole when checking the
emptiness of a nondeterministic automaton.

2 Universal co-Bichi Word Automata

A word automatons A = (X, Q, 0, Qqn, ), whereX is the input alphabet is a finite
set of statesj : Q x ¥ — 2¢ is a transition function,,, C @ is a set of initial states,
andq is an acceptance condition that defines a subs@t’of

Given an inputwordy = og - o1 - -+ in X¥, arun of A onw is a wordr = qo, q1, . . .
in Q¥ such thatyy € Q;, and for everyi > 0, we haveg;11 € d(¢;,0;); i.e., the run
starts in the initial state and obeys the transition funct®ince the transition function
may specify many possible transitions for each state atet|et may have several runs
onw. A run is accepting iff it satisfies the acceptance conditioWe consider here
the Blichi acceptance condition, wheteC @ is a subset of). For a runr, letinf(r)
denote the set of states thavisits infinitely often. Thatisinf(r) = {¢ € Q : ¢ =
q for infinitely many: > 0}. A run r is accepting iffinf(r) N a # 0. That is,r is
accepting if some state imis visited infinitely often. Theo-Blichiacceptance condition
dualizes the Buchi condition. Thus, agairis a subset of), but a runr is accepting if
inf(r) N a = 0. Thus,r visits all the states in only finitely often.

If the automatond is nondeterministicthen it accepts an input word iff it has an
accepting run omw. If A is universal then it accepts iff all its runs onw are accept-
ing. Thelanguageof A, denoted((.A) is the set of words tha#l accepts. Dualizing a
nondeterministic Biichi automaton (NBW, for short) amauotviewing it as a universal
co-Bichi automaton (UCW, for short). It is easy to see thatibalizing A, we get an
automaton that accepts its complementary language.

In [7], Kupferman and Vardi analyze runs of UCW in terms of akiag function one
can associate with their rionG. In the rest of this section, we describe their analysis.



Let A = (X, Q, Qin, 6, ) be a universal co-Biichi automaton with Let |Q| = n.
The runs of4 on a wordw = oy - 01 - - - can be arranged in an infinieac (directed
acyclic graph)7 = (V, E), where

— V C @ x Nissuchthatgq,) € V iff some run of A onw hasg; = ¢. For example,
the first level ofG contains the verticeQ;,, x {0}.

— E CU;»0(Qx{1}) x (@ x {l+1})issuchthat((q,1), (¢, + 1)) iff (¢,1) € V
andq’ € 6(q, 0y).

Thus,G embodies exactly all the runs gf onw. We callG therun DAG of A onw. We
say that a vertexq, () in G is ana-vertexiff ¢ € a. We say thats is acceptingf each
pathp in G contains only finitely many-vertices. It is easy to see thdtacceptaw iff
G is accepting.

Let [2n] denote the sef0, 1, ...,2n}. A rankingfor G is a functionf : V — [2n]
that satisfies the following conditions:

1. For all verticesq, ) € V,if f({g,1)) is odd, thery ¢ .
2. For all edges(q,1),{¢',l + 1)) € E, we havef((¢’,1 + 1)) < f({q,1)).

Thus, a ranking associates with each verte&'ia rank in[2n] so that ranks along paths
decrease monotonically, andvertices cannot get an odd rank. Note that each path in
G eventually gets trapped in some rank. We say that the rankisgnodd rankingif
all the paths ofG eventually get trapped in an odd rank. Formallyis odd iff for all
paths{qo, 0}, (g1, 1), (¢2,2), ... in G, there isl > 0 such thatf({g;,)) is odd, and for
alll’ > 1, we havef ((g,1")) = f({q:,1)). Note that, equivalentlyf is odd if every path
of G has infinitely many vertices with odd ranks.

We now analyze the form of accetping run DAGs. The followimge lemmata relate
to DAGs induced by words accepted ldy Consider a (possibly finite)ac G’ C G. We
say that a vertexg, !) is finite in G’ iff only finitely many vertices inG’ are reachable
from (q,1). We say that a vertefg, !) is a-freein G iff all the vertices inG’ that are
reachable fron{g, [) are nota-vertices. Note that, in particulaly, ) is not ana-vertex.

We define an infinite sequencemGs Gy O G; O G2 O G3 D ... as follows.

- Gy =G.
— Gait1 = G2\ {(¢, 1) | {g,1) is finite inGa; }.
= Gaiy2 = Gaip1 \ {{¢,0) | (g, 1) is a-free inGaiy1 }.

Lemma 1. For everyi > 0, there exist$; such that for alll > [;, there are at most — ¢
vertices of the forndg, 1) in G;.

Lemma 1 implies thaf7s,, is finite, andG,,, 1 iS empty.
Each vertex(g, ) in G has a unique > 1 such that(q, ) is either finite inG»; or
a-free inGo;41. This induces a functiof : V' — [2n] defined as follows.

21 If {g,1) is finite in Gy;.

@D =1 25 4 11f (g.1) is a-free inGiai 1.

Lemma 2. For every two verticesq, !) and (¢/,!’) in G, if (¢’,l’) is reachable from

(g, 1), thenf({¢',1')) < f({g,]))-



Lemma 3. For every infinite path inG, there exists and a vertdy, [) such that all the
vertices(¢’,l’) on the path that are reachable frofy, [) havef({¢’,1")) = f({g,1}).

We can now conclude with Theorem 1 below.

Theorem 1. [7] TheDAG G is accepting iff it has an odd ranking.

Proof. Assume first that there is an odd ranking €orThen, every path iG: eventually
gets trapped in some odd rank. Hencegagertices cannot get this rank, the path visits
« only finitely often, and we are done.

For the other direction, note that Lemma 2, together withfétoe that a vertex gets
an odd rank only if it isa-free, imply that the functiorf described above is a ranking.
Lemma 3 then implies that the ranking is odd. O

3 Lower Bound on Length of Accepted Words

In this section we construct, for every odd> 1, a UCW A,, with n states such that
the shortest words accepted dyhave a cycle of Iengtw;r—l!. The alphabet’,, of A4,
has"T“! letters, and there is an orderiggof all the letters in¥,, such that4,, accepts

exactly all wordsu®, wherev € X andu € (En)%! has all the letters it,, ordered
according to<.
Formally, given an oda > 1, let A4,, = (X, Qn, 6n, Qn, o), Where

— LetIT,, be the set of permutations ¢, 3, 5, . .., n} (the odd membersdfl, ..., n}),
and let< be the lexicographic orderiigon the members ofl,,. Then, X, C
II,, x II, is such that(m,7’) € X, iff «’ is the (cyclic) successor aof in the
order <. Thus, each letter of’,, is a pair(m, ') of permutations, such that’
is the successor af in the lexicographic order off,,. Note we refer to the or-
der in a cyclic way, thugn...31,13...n) is a letter inX,,. For example[I; =
{135,153,315,351,513,531} andX; = {(135,153), (153, 315), (315, 351), (351, 513),
(513, 531), (531,135)}. Note that each permutation i, contributes ta¥,, one let-
ter, thus| X, | = |II,,| = 2L,

- Qn=A{1,...,n}.

— Consider a permutation € I1,. An even-extensionf « is a permutatiorns of
{1,2,3,...,n} obtained fromr by usingr for the odd positions and inserting in
each even positioathe even number. For example, ifr = 153, theno = 12543.
Let 7 andn’ be such thatr, «’) € X, and letc = iy -- -4, ando’ = j; - - - j,, be
the even extensions @afandr’. Then, for everyi < k < n, we define

_ o [ {rodn)y if kisodd
On (i, (m, 7)) = {{jl, ... jk—1} if kis even.

That is, when a staté € Q,, reads(r, 7'), it checks its location i (this is the
k for which h = 7)) and sends copies to all states in smaller (or equal,isfodd)
locations ino’ (these are the statésfor whichh' = j,. for k¥’ smaller than (or equal
to) k. Note that for all evelk’s, we havey,, (ix, (7, ') = dp (ik—1, (m, 7).

® The proof stays valid with every ordering.



For exampleds (3, (135,153)) = {1,2,5}. Indeed, the location of in 12345 is 3
and the states located in the first three positiong2f43 arel, 2, and5. The other
transitions on the lettel35, 153) are defined similarly:

o 05(1,(135,153)) = d5(2, (135,153)) = {1},

e 05(3,(135,153)) = d5(4, (135,153)) = {1,2,5}, and

e J5(5,(135,153)) ={1,2,3,4,5}.

— an, = {i | iis ever}. Thus, every infinite run of4,, has to visit only finitely many

even states.

Note that for every word € X, the runbAG of A,, onv has all the states i@),,
appearing in every level of ttmnc. This follows from the set of initial states gf,, being
Q. and the fact that for every letter= (7, ') € X, there exists one statein Q,, (¢
is last number inr) for which the transition frong on a contains all the states i@, .

Let © be the word in(En)"T“’ that contains all the letters ix’,, ordered lexi-
cographically. For example, when = 5, we have that = (135,153) (153,315)
(315,351)(351,513) (513,531)(531, 135). We prove that4,, accepts the word. It
follows that.A,, acceptau® for every wordv € X*.

1O
(135, 153)
1 C
(153, 315)
30 2 1 4 D)
(315, 351)
30
(351, 513)
5 C
(513,531)
5 C

(531, 135)

1O 2 @ 30 1@
o . o .
o o o .
o o o .

Fig. 1. The accepting run aofls onu®.



Lemma4. u € L(A,).

Proof. Consider the rumAG G of A, onu®. In Figure 1, we describe the accepting
run bAG of A5 onwu®. As argued above, each levebf G consists of all the vertices in
Qn x {l}. We arrange the vertices 6f in columns numbered to n. In the level that
reads{w, 7'), we arrange the vertices according to the position of the smmponent of
each vertex in the even extensiemf 7. For example, when we redd35, 153) in level

0, we consult the even extensi®2345 of 135 and put the vertext, 0) in Column 1 (the
leftmost), put(2, 0) in Column 2, and so on. Sineecontains all the letters i%,, ordered
lexicographically, the letter to be read in the next leve{s§ '), and the vertices are
arranged in columns in this level according#b By the definition ofé,,, the above
implies that the edges i@ go from columns to smaller or equal columns. Accordingly,
all a-vertices appear in even columns and all other verticesaapp@dd columns.

We prove thatz has an odd ranking. For that, we prove, by induction ahat the
vertices in Column, for 1 < ¢ < n, get ranki (independent of their level).

By definition, the set of successors of a vertex in Column 1sggleton containing
the next vertex in Column 1. As all vertices in this column aot a-vertices, they are
all a-free and they get rank. The set of successors of vertices in Column 2 is again
a singleton containing only the next vertex in Column 1. 8inertices in Column 2
are a-vertices, they do not get rank 1. In tbaG G5, however, these vertices have no
successors. Thus, they are finite, and get tank

The induction step is similar: theac G; contains only vertices in Columrigo n.
Wheni is odd, the vertices in Columihare a-free, and get rank Wheni is even, the
vertices in Columri are finite, and get ranktoo. O

Consider two lettergm, 7} ) and(m, 74) in X,,. We say thatm, 7]) and(ma, 75)
aregluableif 7] = m,. Otherwise (m, 7}) and (w2, 75) arenon-gluable We say that
locationi € N is anerror in w if lettersi andi + 1 in w are non-gluable. A word is bad
if w has infinitely many errors. The definition of non-gluablexseaded to finite words
in the obvious way. Consider a wotde Y. We denote byfirst(v) the permutation
7 € II,, such that the first letter af is (, 7'), for the (lexicographic) successot of .
Similarly, we denote byast(v) the permutation’ such that the last letter afis (7, 7)
for the predecessor of 7. Given an even-extensien= i, - - - i, of @ permutation, we
say that the statg, is thek-th state appearing in.

Consider a fragment of a run that starts in permutati@md ends in permutatiar.
That s, the fragment reads the wardhe permutatiom is first(v), and the permutation
7' is last(v). We arrange the states @, according to their order in the even extensions
o andg’ of w and«’. In the following lemma, we show that if is the k-th state ino,
q' is thek’-th state ino’, andk’ < k, thenq’ is reachable frong in this run fragment.
Furthermore, ift’ < k thenq’ is reachable fromy along a run that visita:.

Lemma 5. Consider an infinite wordyo, - - - and a runbDAG G of A,, onit. Letl be a
level of G, let!’ > 0 be an integer, and let = o; - - - 04+ be the subword of lengtth
read at the level. Let k and &’ be such thak is odd andl < ¥ < k < n. Letq be
the k-th state in the even extension fofst(v), and letq’ be thek’-th state in the even
extension ofast(v). Then, the vertexy’, I + I’) is reachable from the vertgy, [) of G.
Moreover, ifl’ > 1 andk’ < k, then(¢’, 1 + I’} is reachable fromg, [) along a path that
visits av.



Proof. We start with the first part of the lemma and prove it by indoieton!’ (that is, the
length ofv). Forl’ = 1, the lemma follows from the definition of the transition ftioo.

For the induction step, consider a ward= wa. Let first(w) = w1, last(w) = w2 and
a = (73, 74). L€tiy -+~ in, j1 - jn. C1 - Cn, @NAd; - - - d,, be the even extensions of,

o, T3, andmy, respectively.

Consider the rumAG G of A,, on the input word. By the induction hypotheses, which
holds forw, we know that for every oddé and for allt’ < k, the vertex(j., [ + |w|) is
reachable from the verteXy, [). We consider now the edges Gfreading the last letter
a. We distinguish between two casesrif = 73, the lemma follows from the definition
of the transition function. Ifr; # 73, consider the stat@, appearing in thé-th position
in even extension of3. Let m be such thay,, = ¢,. We again distinguish between
two cases. lin < k, the lemma follows from the definition of the transition faioa. If
m > k, then there existn’ < k andm’ > k such thatc,,,» = j,,,. By the induction
hypothesis(j,,/, ! + |w|) is reachable fronfix, {). AS j,,y = cp, the transition ot
reading(rs, m4) implies that for every:’” < m’ (and in particular for every’ < k) the
vertex(dy,l + |w| + 1) is reachable frongi, [).

We now prove the second part of the lemma. By the first paryehtex(ji._1,l +1' — 1)
is reachable fronfiy, (). As k is odd,k — 1 is even, thus, by the definition of an even-
extensiong,_1 = k — 1, thus{ci_1,l + I’ — 1) is ana-vertex. By the definition of the
transition function, for every’ < k — 1, there is an edge fronr,_,,l+1' —1) to
(di, L+ 1'). It follows that there is a path that visitsfrom (i, 1) to (dy/, 1 + I'). O

We use this result to show that bad words cannot be accepted, bindeed, when-
ever there is a mismatch between the permutations, we firatatsiat reduces its posi-
tion in the permutations. This state, gives rise to a fragrteat visitsa. If this happens
infinitely often, we get a run that visits infinitely often.

Lemma 6. Every bad word: is rejected byA,,.

Proof. We start with the case that= vw*“. Assume thafw| > 1. Otherwise, we replace
w by w - w. By the definition of bad words, the wotd” contains two successive letters
(m1, 7)) and(mq, m5) such thatr] # . Letl be a level in the rumAG of A,, onvw®
such that > |v| is such thatfr, 7}) is being read in level — 1 and(m2, 75) is being
read in level. Note that(r, 7} ) is then being read again at level |w| — 1.

We show that there exists a vert@x! + |w|) reachable fronig, I) such that the path
from (g, 1) to (g, 1 + |w|) visits ana-vertex. Since4,, is universal, the block dfw| levels
of G that starts in level repeats forever, thus it follows that has a path with infinitely
manya-vertices.

Let w’ be the word read between levéland! + |w|. Note thatw’ is w shifted so
that first(w') = mo, andlast(w') = . Leto = iy,...,i, ando’ = j1,...,j, be the
even-extensions of, andr/, respectively. Since, # 7}, there exists some oddand
k' such thatiy, = ji» andk’ < k. Let q be the staté, = ji/. The state; satisfies the
conditions of Lemma 5 with respect to leveind length’ = |w|: it is the k-th state in
first(w") for an oddk, and it is also thé’-th state inlast(w’). Hence, sincéw’| > 1 and
k' < k, we have thatq, | + |w|) is reachable fron{q, [) along a path that visits.

Consider some bad worde X such that: does not have a cycle. It follows that
can be partitioned to infinitely many finite subwords thatrama-gluable. Consider two



such subwords); andw,. Asw; andw- are non-gluable there exists solandk’ such
thatk’ < k and thek-th state inlast (w1 ) is thek’-th state infirst(w). There are infinitely
many subwords, we use Ramsey’s Theorem to find infinitely npenigts that have the
samek andk’. This defines a new partition to finite subwords. By using LenBrwe
can show that the run o contains a path with infinitely many visits ta O

Corollary 1. The language ofd,, is {vu® | v € X*}.

In Figure 2, we describe a rejecting run df, on v* wherev is obtained from
u by switching the order of the lettex815,351) and (351,513). The pair(153,315)
and(351,513) is non-gluable. In the rubAG G, the statel satisfies the conditions of
Lemma 5 withl = 2 andl’ = 6. To see this, note that the subwordefof lengthé6 that is
read at leveR isw = (351, 513)(315,351) (513,531) (531, 135) (135,153)(153, 315),
with first(w) = 351 andlast(w) = 315. The state 1 is thé-th state in the even ex-
tension32541 of first(w), thusk = 5, and is the3-rd state in the even extensiéf145
of last(w), thusk’ = 3. As promised in the lemma, the verték 8) is reachable from
the vertex(1, 2) via a path that visits the-vertex (2,3) — the rejecting path that is
highlighted in bold in the figure.

We can now conclude with the statement of the lower boundi®tibear case.

Theorem 2. There is a"T“! lower bound on the length of a witness accepted by a UCW
with n states.

Proof. Consider the sequence of UCWS, As, ... defined above. By the above, the
language of4,, is {vu® | v € X%}, whereu is the word in(X,) "= that contains all the
letters inX,, ordered lexicographically. Thus, the length of withesseg Ieast”zi1 . O

4 Universal co-Bichi Tree Automata

Given an alphabel’ and a setD of directions, aX-labeled D-tree is a pair (T, 7),
whereT C D* is a tree overD and7t : T — X maps each node df to a letter
in X. A transduceris a labeled finite graph with a designated start node, whHee t
edges are labeled by and the nodes are labeled By A X-labeledD-tree isregular
if it is the unwinding of some transducer. More formally, artsducer is a tupld@ =
(D, X, S, sin,n, L), whereD is a finite set of directionsY' is a finite alphabetS is a
finite set of statess;,, € S is an initial statey : S x D — S is a deterministic transition
function, andL : S — X is a labeling function. We defing: D* — S in the standard
way:n(e) = sin, and forr € D* andd € D, we have)(z-d) = n(n(z), d). Intuitively, a
XY-labeledD-tree(D*, ) is regular if there exists a transduc&r= (D, X, S, si,n, L)
such that for every € D*, we haver(z) = L(n(z)). We denote byZ; the transducer
(D, X, S,s,n, L), i.e., the transducef with s as initial state. Given a transducgr let
reacho(T) = {sin} and letreachi11(7) = U eacn, (1) Uaepin(s: d)}. Thewidth
of 7 is the minimalj such thaireach;(7)| = j for infinitely many:. That is, starting
from someig, we have thatreach;(7)| > j for all ¢ > iy. Note that while the width
of an infinite tree generated by a transducer is unboundedyitith of a transducer is
always bounded by its number of states.



10O 2 3 4 levels0, 6,12, ...
(135, 153) %%)
1O levels1,7,13,...
(153, 315)
30 levels2,8, 14, ...
(351, 513)
5 C levels3, 9,15, ...
(315, 351)
3C levels4, 10, 16, . ..
(513, 531)
5 O% levelss, 11,17, ...
(531, 135)
levels6, 12,18, ...

Fig. 2. The rejecting run ofds on ({135, 153) (153, 315) (351, 513) (315, 351) (513, 531)(531, 135))“.

A universal co-Buchi tree automaton (UCT, for short) ispléud = (X', D, Q, Qin, 6, @),
whereX, Q, Q;», anda are as in UCWD is a set of directions, anfl: Q x X — 2(Px@)
is a transition function. When the language.4fis not empty, it accepts a regulai-
labeledD-tree [16, 13]. It is convenient to consider runs4bn transducers.

Consider a transducér = (D, X, S, s;n, 1, L). Arun of A on7 can be arranged in
an infinitepaGc G = (V, E), where

- VCSx@xN.
— ECUjso(SxQx{l})x(8xQx{l+1})issuchthai((s,q,l),(s',¢, 1 + 1))
iff there isd € D such thatd, ¢’) € 6(q, L(s)) andn(s,d) = s'.

The runbAG G is accepting iff every path in it has only finitely many veeticin
S x a x IN. A transducer is accepted b¥ if its run DAG is accepting. In the sequel we
restrict attention to binary trees, i.&,= {0,1} andT = {0, 1}*. All our ideas apply to
larger branching degrees as well.



5 Lower Bound on Width of Accepted Transducers

In [8], it is shown that if a UCT with states is not empty, then it accepts a transducer of
width bounded by2n!)n?"3"(n+ 1) /n!. Animproved upper bound for determinization
shows that the width reduces2ae(n!)? [14, 10]. It is conjectured in [8] that this bound
can be tightened t2°(™). Intuitively, it is conjectured there that if a UCT is not etpp
then different states of a transducer it accepts that aitediby the same set of states of
the UCT can be merged.

In this section we construct, for every odd> 1, a UCT B,, with n states such that
the language oB,, is not empty and yet the width of a transducer accepte8,bis at
least2tll,

We2extend the ideas in Section 3 to a tree automaton. The iokesids to create a
mismatch between the permutation the automaton has to eghd teft successor of a
node and the permutation the automaton has to send to thestigbessor. Doing so, we
force the input tree to display all possible permutationsrie level. Thus, the minimal
width of a transducer generating such a treégé!.

Recall the alphabeY),, defined in Section 3. We reuse this alphabet in the context of
a tree. Whenever we refer to a letter, #’) € X,, we assume that’ is the successor
of = according to the lexicographic order. Consider a lefterr’) € X, and a node
z labeled by(r, 7’). Intuitively, when the automatoB,, reads the node, it “sends”
the permutationr’ to the left successor of and it “sends” the permutation (i.e., the
same permutation) to the right successor.o€onsider a¥,,-labeled binary treé7’, 7).
Consider a node and its two successors: 0 andx - 1. Let 7(x) be (7, 7)), 7(x - 0)
be (m40, 7). andr(z - 1) be (w1, 7,,). We say that the node is goodif 7,0 = =,
andw,; = m,. Thatis, the left successor ofis labeled by the successor permutation
7. (paired with its successor permutation) and the right sssmeofz is labeled by the
same permutation, (paired with its successor permutation). A t{@e 7) is goodif all
verticesx € T are good. Given a permutatienthere is a unique good tree whose root
is labeled by(r, 7'). We denote this tree b{T", 7).

Lemma 7. For every permutationr, the width of a transducer that generat@s 7,.) is
ntly
=1

Proof. We can construct a transducer generatfiigr,) with 2411 states. Indeed, the
states of such a transducer are the letterE nfThe0-successor of a state, 7') is the
unique statér’, "), for the successor” of 7/, and itsl-successor igr, 7).

Let 7, ... TSy be an enumeration of all permutations according to the ¢exic
graphic order. For simplicity we assume that 7. We can see thatr, m1) appears
in every level in(T, 7). By induction,(r;, m;+1) appears for the first time i, 7.} in
leveli — 1. It follows that(r;, m;+1) appears T, ;) in all levels above — 1. In partic-
ular, in all levels aftert-1!, all permutations appear. It follows thatach;(7)| > 2L
for all transducerd” that generatéT’, 7) and; > 2EL1. O

Corollary 2. Every transducef/ that generates a tree that has a subtigé ), for
some permutation, has width at Ieasf"g—l!.

We now defing3,, as a UCT variant of the UCVM,, constructed in Section 3. Essen-
tially, every transducer accepted By generates a tree that contaifis 7. ) as a subtree,
for some permutation of all the letters in¥’,,.



LetB, = (X,,{0,1},Qn, 0n, Qn, o), whereQ,, = {1,...,n},a, = {i| i is ever},
ands : Q, x X, — 2{01}x@n is as follows. Let(w, 7') € ¥,, and lets = i; - - -4,, and
o' = j1---j, be the even extensions sfandx’. Then, for everyi < k < n, we define

5, (i () = 4 20305, (0,5), (L), oo (L)} if kis odd
n(lg, (T, 7)) = {(0,51), -+, (0, k1), (1,41),...,(1,ip_1)} if k is even

When going left,3,, treats the paifx, ') like the UCW A,, treats it. When going
right, 5,, mimics the same concept, this time, without changing thenp&ation. From
stateq € @),,, our automaton checks the locationgh o and sends copies to all states
in smaller (or equal, it is odd) locations i’ in direction0 and all states in smaller (or
equal) locations i in direction1.

Consider a transducér = (D, X,,, S, sin,n, L) accepted by3,,. Given a permu-
tation 7, we say thatt’ is the 0-successor of for the successor’ of = according to
the lexicographic order (i.e., the uniqué such that{(z, 7’) € X)) and we say that
is the 1-successor of. Consider a pathh = s, a0, s1,a1,... € (S x D)%, where
siv1 = n(si,a;). We say thap is goodif for all « > 0 we haveL(s;+1) is thea;-
successor of.(s;). We say thap is bad otherwisé. If p is bad, every location € N
such thatZ(s;) is not thea;_1-successor of.(s;_1) is called arerror in p.

Consider atransduc@r = (D, X,,, S, sin, 1, L) and an infinite patp = so, ag, s1, a1, . ..
€ (SxD)¥,wheres; 1 = n(s;,a;). Consider asub-path= s;, a;,...,sr—1,ar—1, Sy
We denote byfirst(v) the permutatiomr € II,, such thatw, 7') = L(s;). We denote by
last(v) the permutation” € II,, such thatl(s;_1) = (m,n’) andn” = if ay_1 =1
andrn” = 7’ if a;y_1; = 0. That s, the last permutation reacirs determined by the last
directionp takes in.

Let G be theDAG run of B, on 7T, p = sg, ag, $1, a1, ... an infinite path inZ", and
v = s;,a...,8-1,ar_1, S asub-path op. Consider the part off consisting of all
nodes in levels to I’ that read the states, .. ., s;. Letw befirst(v) andn’ belast(v).
We arrange the states {p according to their order in the even extensiersnds’ of 7
and~’. The following lemma is the tree variant of Lemma 5. It sholat if ¢ is thek-th
state ino andq’ is thek’-th state ino’, thenk’ < k implies thaty’ is reachable frong in
this part of the run. Furthermore,if < k thenq’ is reachable frong along a run that
visits a. The proofis identical to that of Lemma 5.

Lemma 8. Consider a transducef = (D, X, S, Sin, 7, L) and theDAG run G of B,
onit. Letp = sg,ag, s1,a1,... beapathin"and letv = s;,a;...,s_1,ar_1, 8 be
a sub-path ofp. Let ¢ be thek-th state in the even extension fofst(v) for an oddk,
and letq’ be thek’-th state in the even extensionieft(v), for k¥’ < k. Then, the vertex
(sir,¢', 1) in G is reachable from the vertgx;, ¢, ). Moreover, ifl’ — 1 > 1 andk’ < k,
then a path connecting;, ¢, 1) to (s;/, ¢’,1’) visits .

The following Lemma resembles Lemma 6. It shows that in estlaner accepted by
B,,, every path has only finitely many errors.

Lemma 9. For every pathp in a transducer? < L(B,,), the pathp contains finitely
many errors.

% Notice that the definition of bad here is slightly differerdrh the definition of bad in Section 3.



Proof. Let G be an accepting run d8,, on7 = (D, X,, S, sin,n, L). Assume that
p = So,ao, S1,4a1,. .., Wheres,;1 = n(s;, a;), is a path inZ” with infinitely many errors.
Let s, 814, - - . denote the error locations jn By definition, for everym > 0 we have
L(sy,,) is not thea;,, _1-successor of.(s;, —1). With every index/,, we associate a
triplet (., 7., dm) such thatL(s;,, 1) = (r,#') andn,, is thea;, _;-successor of
7 (i.e., n" if a;,,_1 = 0 andn otherwise),L(s;,) = (n,,,#"), andd,, = a;,,_1.
That is, we record the permutatiari, labelings;, , the unmatchingr,,, which is the
a,,—1-successor of the label 6f,, _;, and the direction that takes frogp _; to s;
There are infinitely many errors and finitely many tripletbefe is a triplet(r, 7', d)
associated with infinitely many indices. We abuse notatiomsdenote by, s, , . . . the
sub-sequence of locations associated Withr’, d). Without loss of generality, assume
that for allm > 0 we havel,, 1 — ,,, > 1.

Form,m’ > 0 such thain # m/, letv,, ,,, denote the sub-path gfthat starts in
51, and ends ins; ,. Thenn’ = first(vy, m) andr = last(vm,m: ). By assumptionr’
is not thed-successor of. Leto = i4,..., 14, be the even extension of tlilesuccessor
of r and lete’ = ji,...,j, be the even extension af. Then there exists some odd
andk’ such thatj, = iy andk’ < k. Let g be the statg, = i;,. The state; satisfies
the condition of Lemma 8 with respect tg, ,,,-: it is the k-th state infirst(vy,,»,/) for
an oddk, and it is also thé’-th state inlast(v,,,m/). Hence, sincé,,, — 1, > 1 and
k' < k, the node(s; ,,q,l. ) in G is reachable from the nods;,, , ¢, ) along a path
that visitsa.

For every two different integers: andm’ we identify one such statg,, ,,,». By
Ramsey’s Theorem, there exist a statand a sequench, !/, ... such that for every
m > 0 the sub-path;l;wl;n+1 connects state to itself with a path that visita.. We have
found a path inG that visitsa infinitely often. O

m "

We now show that every tree generatedlbgontains/7T’, 7.) for somer as a subtree.

Lemma 10. For everyT € L(B,), there exists a permutatianand a states reachable
from s;,, such that the transducéf; generatesT, 7).

Proof. We add an annotation to the edge¥inEvery edges’ = 7(s,a) such thats’ is
an error in a path that containsands’ is annotated byt. Every other edge is annotated
by 0. According to Lemma 9, every path if is annotated by finitely many 1’s.

We say that a stateis 1-free in7 iff all the edges in7 that are reachable from
are not labeled by 1. It is enough to find one such stafessume by contradiction that
no such state exists. We construct by induction a path that is labeled bgitely many
1's.’

By assumptions;,, is not 1-free. Hence there is some stateeachable fromns;,, and
a directiona; such that the edge from to 7(s1, a1) is annotated by 1. By induction the
path froms;,, to 7(s;, a;) has at least edges annotated by 1. By assumptigs;, a;) is
not 1-free. There exists a node.; reachable from(s;, a;) and a directioru;;;, such
that the edge from, 1 to n(s;+1, a;+1) is annotated by 1. It follows that the path from
sin tom(sit+1,a:+1) has atleast+ 1 edges annotated by 1. In the limit, we get a path in
7 that has infinitely many edges labeled 1. In contradictiolbemma 9.

7 Notice the resemblance to the definitiorafree in Section 2. Indeed, the proof of the existence
of a 1-free state follows closely the similar proof in [7].



It follows that there exists a statén 7 such thak is 1-safe. As is 1-safe, the subtree
generated by7; contains no errors. Let be the permutation such tha{s) = (m, 7).
Then7; generatesT’, 7). O

We can now conclude with the statement of the lower boundh®btanching case.

Theorem 3. There is a"T“! lower bound on the width of a transducer accepted by a
UCT withn states.

Proof. Consider the sequence of UCBs, Bs, . . . defined above. For every permutation
7, the transducer that generatés ;) is accepted bys,,. By Lemma 10 and Corollary 2,
every transducer accepted By is of width at Ieast"QLl!. O
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