From Liveness to Promptness

Orna Kupfermah Nir Piterman Moshe Y. Vardi
Hebrew University Imperial College Rice University

Abstract

Liveness temporal properties state that something “gowdhteally happens, e.g.,
every request is eventually granted. In Linear Temporalid.¢grL), there is no a priori
bound on the “wait time” for an eventuality to be fulfilled. &this, F0 asserts thaf
holds eventually, but there is no bound on the time whaeuill hold. This is troubling, as
designers tend to interpret an eventuali§ as an abstraction of a bounded eventuality
F=*9, for an unknownk, and satisfaction of a liveness property is often not actept
unless we can bound its wait time. We introduce treg@MPFLTL, an extension of LTL
with the prompt-eventuallyperatorF,. A systemS satisfies ®?ROMPFLTL formula
 if there is some bound on the wait time for all prompt-eventually subformulasof
in all computations of5. We study various problems relatedfeoMPFLTL, including
realizability, model checking, and assume-guarantee hubdeking, and show that they
can be solved by techniques that are quite close to the sthtetd@hniques for LTL.

1 Introduction

Since the introduction of temporal logic into computer acie [Pnu77], temporal logic, in
its many different flavors, has been widely accepted as aropppte formal framework for
the description of on-going behavior of reactive system®9¢|. Temporal properties are
traditionally classified intsafetyandlivenessproperties [AS85]. Intuitively, safety proper-
ties assert that nothing bad will ever happen during thewdiatof the system, and liveness
properties assert that something good will happen evdptuémporal properties are in-
terpreted with respect to systems that generate infinitepatations. In satisfying liveness
properties, there is no bound on the “wait time”, namely fheetthat may elapse until an
eventuality is fulfilled. For example, the LTL formulgd is satisfied at timeé if 6 holds at
some timej > 4, butj — i is not a priori bounded.

In many applications, it is important to bound the wait tinfdnis has given rise to for-
malisms in which the eventually operatBris replaced by a bounded-eventually operator
F<F. The operator is parameterized by some> 0, and it bounds the wait time té
[BBG194, EMSS90]. Since we assume that time is discrete, the pdfa” is simply
a syntactic sugar for an expression in which the next opedatis nested. Indeed<*9 is
justo v X (0 v X(0V kT vX0)).

A drawback of the above formalism is that the boundeeds to be known in advance,
which is not the case in many applications. For example, it degpend on the system, which

*Support info ...
TSupport info ...
fSupport info ...

may not yet be known, or it may change, if the system changesddition, the bound may be
very large, causing the state-based description of thefgion (e.g., an automaton for it)
to be very large too. Thus, the common practice is to usedigeproperties as an abstraction
of such safety properties: one writBg instead off<*¢ for an unknown or a too largle.

It is not hard to see that the above abstraction is not sourleircontext of infinite-
state systems. For example, the infinite-state system dimsists of all the computations in
0*-{q}-0v satisfies the LTL propertlfq, yet there is no bounksuch that the system satisfies
the propertyf=*¢. On the other hand, a finite-state system vittates that satisfid8g also
satisfies the specificatidi=*q. Indeed, a wait time that is greater than the number of states
indicates that the wait time may also be infinite (by loopingicycle that ought to be taken
during the wait time).

Is the abstraction always sound in the context of finiteessgistems? For some temporal
logics, the abstraction is sound, in the sense that if asySteatisfies a liveness propenty
then there is a bounkl, which depends o8, such thatS also satisfies the formula obtained
from v by replacing all occurrences Bfin ¢ by F<*. Note that the formul& =" is a safety
property, while the formul®'6 is a liveness property. For example, it is shown in [EMSS90]
that in the case of CTL, takingto be the number of states tis sufficient. Thus, if a state
s satisfiesAF, then it also satisfieA F=<*¢, for k = | S|, and similarly forEF4. Intuitively,
as in the case of the LTL formulBq discussed above, sinéeis a state formula, a wait
time that is greater thahk indicates that the wait time may also be infinite, and may b&so
shortened to at mogt

So the abstraction of safety properties by liveness prigseis sound for CTL in the
context of finite-state systems. Is it sound also for theditemporal logic LTL? Consider
the systenms described in Figure 1 below. While S satisfies the LTL formi(@Eg, there is
nok > 0 such thatS satisfiesF<*Gyg. To see this, note that for ea&h> 0, the computation
that first loops in the first state fértimes and only then continues to the second state, satisfies
the eventualityGq with wait time k + 1.

* ()
Figure 1:S satisfiesFG¢ but does not satisfff <*Ggq, for all k > 0.

It follows that the abstraction of safety properties by fiess properties is not sound in
the linear-time approach (which is more popular with usefsjEF06]). This is troubling,
as designers tend to interpret eventualities as boundetaliies, and satisfaction of a
liveness property is often not acceptable unless we canditaiwait time?!

In this work we introduce and study an extension of LTL thadradses the above prob-
lem. In addition to the usual temporal operators of LTL, agit, PROMPFLTL, has a new
temporal operator that is used for specifying eventualitigh a bounded wait time. We term
the operatoprompt eventualland denote it by',. Let us define the semantics ®ROMPT
LTL formally. For aPROMPFLTL formula+ and a bound: > 0, let+* be the LTL formula
obtained fromy by replacing all occurrences &%, by F<*. Then, a systen§ satisfies) iff
there isk > 0 such thatS satisfies)*.

Note that while the syntax cfROMPFLTL is very similar to that of LTL, its semantics
is defined with respect to an entire system, and not with gpecomputations. Indeed,

INote that the reduction of liveness to safety as describgBAS02] is performed by squaring the state space
rather than trying to bound the wait time of eventualitiebus; it is not related to the discussion in this paper.

promptness plays no role in the context of a single comprtatf the computation satisfies
an eventuality, it ought to satisfy it with some bounded viaite, namely the time that has
elapsed until the eventuality has been satisfied. For exgmglile each computation in
the systens from Figure 1 has a bounid;, > 0 such thaiGq is satisfied inr with wait time
kr, there is ndk > 0 that bounds the wait time of all computations. It followstthanlike
linear temporal logics, we cannot characterizereoMPFLTL formula ¢ over a setA P of
atomic propositions by a set of computatiahs C (247)« such that a systerfi satisfies

v iff the language ofS is contained inL,,. On the other hand, unlike branching temporal
logics, if two systems agree on their languages, then thezeaaso on the satisfaction of all
PROMPTELTL formulas. ThuspROMPFLTL intermediates between the linear and branching
approaches: as in the linear approach, the specificatiensr&d the set of computations of
the system rather than its computation tree; as in the biageipproach, we cannot consider
these computations individually. Or — in other words — inesrth conclude that aROMPF
LTL formula holds over a set of computations we cannot evalitaover each computation
separately.

As further motivation to a prompt eventuality operator, sider the formulaz—p Vv Fq
(positive normal form foFp — Fgq). As demonstrated in Figure 2 below, a system may
satisfyG—p v Fq but have no bound on the wait time to the satisfaction of tlenwality.
When a user checkSp V Fyq, it is quite possible that what he has in mindds-p v Fpgq,
but he may not know a bouridsuch thatG—p v X=*¢ should be checked. In the context
of modular verification, it is possible that what the user imamind is "assuméF'p; assert
Fq”, where both eventualities should be satisfied promptly: €@émantics distinguishes these
three different understandingsBp — Fyq.

DS

Figure 2:S satisfiesG—p vV Fq but does not satisf¢z—p — Fpq.

We study the basic problems PROMPFLTL. Consider aPROMPFLTL formula) over
AP. The setAP may be partitioned to setsandO of input and output signals. Consider
also a systent. We study the following problemstealizability (is there a strategy
(21)* — 29 such that all the computations generated fogatisfy ¢/?), model checking
(doesS satisfy?), andassume-guarantee model check{gyven an additionaPROMPF
LTL formula ¢, is it the case that for all systent®, if S||S’ satisfiesp, thenS||.S’ also
satisfieg)?). Satisfiability ofP ROMPFLTL is easily reduced to satisfiability of LTL. Indeed,
consider @ROMPFLTL formula ¢ and the LTL formulay’ obtained fromp by replacing all
occurrences oF, by F. It is well known that if¢’ is satisfiable, it is satisfiable over a single
regular computation (i.e., a prefix and a suffix that repedisitely often), cf. [VW94]. Itis
easy to see that the same computation satigfidsor the other problems, similar reductions
do not work, and we have to develop a new technique in orderit@ shem. Let us describe
our technique briefly.

Consider a prompt-LTL formula over AP. Letp be an atomic proposition not iAP.
Think aboutp as a description of one of two colors, say greehdlds) and redy does not
hold). Each computation of the system can be partitioneddokls such that states of the
same block agree on their color. We show that a sysfesatisfies @ROMPFLTL formula
1 iff there is some bound > 0 such that we can color each computatioof S so that the
induced blocks are of lengtty, and whenever a suffix of has to satisfy an eventuality, the

eventuality is fulfilled within two blocks. Indeed, the laticondition holds iff all eventualities
have wait time at mosik.

The key idea behind our technique is that rather than seaydbr a bound: for the
prompt eventualities, which can be quite large, it is enotggymake sure that there is a
coloring in which all blocks are of a (not necessarily boujd#nite length, and then use
some regularity argument in order to conclude that the sizheoblocks could actually be
bounded. Forcing the blocks to be of a finite length can be dgneequiring the colors
to alternate infinitely often. As for regularity, in the casferealizability, regularity follows
from the finite-model property of tree automata. In the cdseadel checking and assume-
guarantee model checking, regularity follows from the &énéss of the system.

The complexities that follow from our algorithms are en@ming: reasoning aboBROMPF
LTL is not harder than reasoning about LTL: realizability2EXPTIME-complete, and
model checking and assume-guarantee model checking arkCES¢dmplete. For LTL,
many heuristics have been studied and applied. Some of theimanediately applicable
for PROMPELTL (c.f., optimal translations of formulas to automatajd some should be
extended to the prompt setting (e.g., bad-cycle detecligorithms). We also study some
theoretical aspects 6fROMPFLTL, such as a bound on the wait time, when exists (may
be linear in the system and exponential in the prompt-LTInfgla), the ability to translate
PROMPFLTL formulas to branching-temporal logics (a translationthe ;-calculus is al-
ways possible, but may involve a significant blow up), andabidity to determine whether a
PROMPFLTL formula has an equivalent LTL formula (PSPACE-comp)et

In [AETPO1], Alur et al. study an extension of LTL in which ttesnporal operator® and
G may be parameterized by variables that describe lower apdriund on the wait time
(or the satisfaction time, fo&). Our logic can be viewed as a special case of the logic there,
in which only eventualities are parameterized, and onlywijpper bounds. The algorithms
suggested by Alur et al. are impractical. By restrictingiatiion to prompt eventualities (the
practical interest of the other combinations is less cotimag| we get a model-checking
algorithm that is quite similar to the classical LTL modélecking algorithm. We are also
able to a solve the realizability and assume-guarantee lnsbdeking.

2 Prompt Linear Temporal Logic

The logic PROMPTFLTL extends LTL [Pnu77] by grompt-eventualloperatorF,. The
syntax ofPROMPFLTL formulas (in negation normal form) is given by the graembelow,
for a setA P of atomic propositions:

pu=AP|=AP oV |pAp| Xe | Fpp | oUp | pRep.

The semantics of aROMPFLTL formula is defined with respect to an infinite word =

wo, w1, . .. over the alphabe2”, a positioni > 0 in w, and a bound: > 0. We use
(w, k,i7) E ¢ to indicate thatp holds in location: of w with boundk. The relationk= is

defined by induction on the structurepfas follows.

e For propositions, Boolean connectives, and the standdrdefporal operatorX, U,
andR, the definition is independent éfand coincides with the one for LTL [Eme99)].

o (w,i, k) = Fpyiff there existsj such that < j <i+ kand(w, j,k) = ¢.

2Recall that in LTL we have that, i E= ORy iffforall j > 4, if 7,5 & 4, then for somek, ¢ < k < j, we
haver, k |= 6.

We useFd andG# to abbreviatérueU# andfalseR 0, respectively. A prompt version of the
until operator can also be specifiely, 6’ = 6U#’ A F,0'. Note that the negation &, is
not expressible iIPTROMPFLTL, thus the logic is not closed under negation.

Given aPROMPTELTL formula ¢, let live(¢) be the LTL formula obtained fronp by
replacing every prompt-eventually operaky by a standard eventually operaior

A (labeled) transition systeiis S = (AP, S, p, so, L), whereAP is a finite set of atomic
propositions,S is a finite set of stateg; C S x S is a total transition relationsg € Sy is
an initial state, and. : S — 247 maps each stateto the set of propositions that hold in
Whenp(s, '), we say that’ is asuccessoof s, ands is apredecessoof s’. A computation
of S is an infinite sequence of states= s, s1,... € S such that for ali > 0, we have
p(si, 8;+1). The computatiomr induces therace L(w) = L(sq) - L(s1) - - -

Given a systen$ and aPROMPELTL formula ¢ over AP, we say thatS satisfiesy,
denotedS = ¢, if there exists somk > 0 such that for all traces of S, we havgw, 0, k) E
. We then say thaf satisfiesp with boundk. Note that whers [~ ¢, then for every > 0,
there exists a trace such tha{w, 0, k) }~= ¢.

In [AETPO1], Alur et al. study an extension of LTL in which ttesnporal operator® and
G are replaced by the operatdrs, ., G<,, andG.,, for variablesr andy (the same
variable may be used in different operators, but, to ensaoiddbility, the same variable
cannot participate in both a lower and an upper bound). GaveystemS and a formula in
their logic, one can ask whether there is an assignment teetti@bles for which the system
satisfies the formula, with the expected interpretatiorhefiounded operatofsOur logic
is obtained by restricting the logic studied in [AETPO01] tarpmeterized eventualities with
only upper bounds. By a complex pumping argument, Alur etsladw that model checking
of formulas in their logic can be reduced to model checking™f by setting the param-
eters to constant that depend on the direction of the ingywadd the type of operator. In
some cases the constant is 0 and in some cases it is the poddhetnumber of states of
the model and a value that is exponential in the length ofdhmdla. In practice, using such
values makes the formula as complicated as the model andnentdel checking imprac-
tical. By giving up the operatoiB..,, G<,, andG-,, whose usefulness is less obvious, we
get a model-checking algorithm that uses the same techsigmi¢he classical LTL model-
checking algorithm. The same ideas solve also the realigabnd the assume-guarantee
model checking problems.

The Alternating-Color Techniqgue We now describe the key idea of our technique for
reasoning abowwROMPFLTL formulas. Letp be an atomic proposition not idP. We
think aboutp as a description of one of two colors, say greemdlds) and redy does not
hold). Each computation of the system can be partitioneddokls such that states of the
same block agree on their color. Our technique is based oidéaethat bounding the wait
time of prompt eventualities can be reduced to forcing altks to be of a bounded length,
and forcing all eventualities to be fulfilled within two bk& We now make this intuition
formal.

Consider a wordy = g, 01,... € (24F)“. Letp be a proposition not iMP. A p-
coloring of w is a wordw’ = o}, 0%, ... € (24PY{PH)« such thatw’ agrees withw on the
propositions inAP; i.e., for alli > 0, we haver, N AP = o,;. We refer to the assignment to
p as thecolor of location: and say that is green ifp € o} and is red ifp ¢ o;. We say that
p changes at if eitheri = 0 or the colors ofi — 1 and: are different (that isp € o,_, iff

3The work in [AETPO1] studies many more aspects of the logie,the problem of deciding whether the formula
is satisfied withall assignments, the problem of finding an optimal assignmedtpther decidability issues.

p ¢ o). We then call ap-change pointA subwords;, . .., o}, is ap-blockif all positions in

the subword have the same color, d@rahd:’ + 1 arep-change points. We then say thiand

i’ + 1 are adjacenp-change points. Fdt > 0, we say thatv' is k-spaced k-boundegand
k-tight (with respect tg) if w’ has infinitely many blocks, and all the blocks are of length at
leastk, at mostk, and exactlyk, respectively.

Consider the formulalt, = GFp A GF-p. It requires that the propositignalternates
infinitely often. Given aPROMPTFLTL formula ¢, letrel,(¢) denote the formula obtained
from ¢ by (recursively) replacing each subformula of the faFp) by the LTL formula
(p — (PU(=pU))) A (=p — (=pU(pUy))).* Note that the definition is recursive, thus
rely(¢) may be exponentially larger thgn The number of subformulas o€, (¢), however,
is linear in the number of subformulas @f and it is this number that plays a role in the
complexity analysis (equivalently, the size of theG-presentation ofel,(y) is linear in
the size of theDAG presentation ofp). For aPROMPFLTL formula ¢, we definec(y) =
alt, A rel,(p). Thus,c(yp) forces the computation to be partitioned into infinitely man
blocks, and requires each prompt eventuality to be satisfidte current or next block or in
the position immediately after the next block (within twabks, for short),

Lemma 2.1 Consider aPROMPFLTL formulay, a wordw, and a bound: > 0.
1. If (w,0,k) = ¢, then for every-spaced-coloringw’ of w, we havgw’, 0) = ¢(p).
2. Ifw' is ak-bounded-coloring ofw such thatw’, 0) = ¢(p), then(w, 0, 2k) E .

Proof: Consider the first claim. Singedoes not use the propositipnthen clearly(w’, 0, k) |=
. Annotate every location in’ by the subformulas of that hold in this location. Every lo-
cation annotated bl ¢ satisfies eithepU(-pUy) or -pU(pUy). Indeedw’ is k-spaced,
and(w, i, k) |= Fpy ifthere existg < k suchthafw,i+7, k) = . Hence(w',0) = c(p).
Consider the second claim. Let be ak-boundedy-coloring ofw such thatw’,0) =
¢(p), Annotate every location i’ by the subformulas of(¢) that hold in this location.
Consider a location annotated by U (—pUv) or -pU(pUv). Sincew’ is k-bounded, it
follows that for somej < ¢ + 2k, the locationj is annotated by). Therefore, location
satisfiesF 1. Hence(w, 0, 2k) = ¢. U

The alternating-color technique sets the basis to reag@tiout s ROMPELTL formula
¢ by reasoning about the LTL formuldy). The formulac(y), however, does not require
the blocks in the colored computation to be of a bounded fenligideed, the conjunetlt,
only forces the colors to be finite, and it does not prevemt, @a-coloring in which each
block is longer than its predecessor block, and which issAebunded, for alk > 0. Thus,
the challenge of forcing thg-coloring to bek-bounded for somé remains, and we have to
address it in each of the decision procedures describee ifotlowing sections.

It may seem that our technique relies solely on the abilitgdd propositions and is im-
plementable in Quantified Propositional Temporal Logic [RQASVW87]. We note that the
added color propositions are not quantified here. Indeeahtifying the additional proposi-
tion in ¢(¢p) is equivalent to the original formula. The additional prejion is “quantified”
in the proper way by considering the combination of the psitgmn with the structure and
applying a proper algorithm. Furthermore, as discussdikedhe satisfaction of RROMPF
LTL formula is evaluated with respect toset of traces and not single traces. A QPTL
formula is satisfied over a set of traces if and only if it isifad by each of the traces
separately.

“Note that(p — (pU(-pU¥))) A (-p — (—pU(pUx))) is equivalent to the slightly shorter formula
(pU(=pUy)) V (-pU(pUY)).

3 Realizability

Given an LTL formulay over the setd andO of input and output signals, thealizability
problemfor ¢ is to decide whether there isstrategyf : (2/)* — 2 such that all the infinite
computations generated by satisfy ¢ [PR89]. Formally, a computatiow € (2/V9)«

is generated by if w = (ig U 0g), (i1 U 01), (ia U 02),... and for allj > 0, we have
0j = f(io - 41 ---1;). Thus, the interaction is initiated by the environment dpeterates,,
and the first state in the computation is labeled f(ig). Then, the environment generates
i1, and the second state in the computatiofy is f(io - 1), and so on. It is known that if
some strategy that realizegsexists, then there also existgegular strategy(i.e, a strategy
generated by a finite-stat@nsducey that realizes) [BL69]. Formally, a transducer iB =
(I,0,Q,n,q, L), wherel andO are the finite sets of input and output signdla0dO are
also used as atomic propositiong)is a finite set of states, : @ x 2/ — Q is a deterministic
transition functiong, € @ is an initial state, and, : Q — 2° maps each state to a set of
output signals. The transducBrgenerateg in the sense that for everyc (27)*, we have
f(7) = L(n(7)), with the usual extension afto words over?’.

We first show thaPROMPFLTL realizability of a formulay cannot be simply reduced
to the realizability oflive(y). Thus, we describe a formujasuch thative(p) is realizable,
but for every strategyf that realizesp and for every candidate bourid > 0, there is a
computationv generated by such tha{w, 0, k) = ¢. LetI = {i} andO = {o}. We define

=0 A (G(i—0) N ((X-0)Ri) N (FpGo).

Thus, a computation satisfiesif o holds in the present and whenevdrolds, whenever
does not hold in some position, thermloes not hold in this position or in an earlier one, and
the computation prompt-eventually reaches a position fndrith o holds everywhere. It is
not hard to see thdive(yp) is realizable. Indeed, the strategy that sets true everywhere
except in the first time thatis falserealizeslive(p). On the other hand; is not realizable.
To see this, note that the position in which the inpistset tofalsecan be delayed arbitrarily
by the environment, forcing a delay also in the fulfilmentloé Go eventuality. Thus, for
every candidate bounid> 0, the input sequence in whiahs falseat the(k + 1)-th position
cannot be extended to a computation that satiffig&o with boundk.

The good news is that while realizability gf cannot be reduced to the realizability of
live(ip), it can be reduced to the realizability @fp). Intuitively, it follows from the fact that
in a regular strategy, the fact that all blocks are of a firgtegth does imply that they are also
of a bounded length. Formally, we have the following.

Theorem 3.1 A PROMPFLTL formulap over input signald and output signal) is real-
izable iff the LTL formula:(¢) over input signald and output signal® U {p} is realizable.

Proof: Suppose thap is realizable. Then there exists a stratefgy (27)* — 2° and a
boundk > 0 such that all the computations of f satisfy(w,0,k) = . We extendf to
a strategyf’ : (27)* — 20Y{r} that realizes:(¢). Intuitively, we add to the computations
of f ap-coloring that is2k-tight. Formally, forr € (21)*, we definef’(r) = f(7) U {p} if
|7| mod 2k is betweer) andk — 1 andf’'(7) = f(7) if |7| mod 2k is betweerk and2k — 1.
Consider a computatiom induced byf’. Note thatw is k-tight and it satisfies. Therefore,
by Lemma 2.1, we conclude that = c(y).

Assume now that(y) is realizable. Letf : (27)* — 20Y{r} be a regular strategy that
realizes it. We show that the stratedy: (2/)* — 2 obtained fromf by projecting it on
O (that is, for allT € (27)*, we havef’(r) = f(7) N O) realizesp. Letn be the number

of states in the transducer that genergtesie show that all the computations generated
by f’ satisfy o with bound2n + 2. Consider a computatiom of f. We claim thatw is

(n + 1)-bounded. To see this, assume by way of contradictionuthiaas adjacent-change
pointsi andj such thatj — i > n + 1. LetD = (27,29 Q,n,q, L) be the transducer
that generateg, and letqg, q1, g2, . . . be the run ofD that corresponds t@. SinceD has

n states, there exists a statend locations’ andj’ such that < +/ < 3/ < j — 1 and
gy = g;j-. Thus, some state repeats alonggHglock that starts atand ends af — 1. Then,
the rungo, g1, ..., qi—1, (g, ..., gy—1)* is also a run ofD. This run, however, generates a
computation off that does not satisfylt,, contradicting the fact thaf realizesc(y). So,
every computatiow of f’is (n+1)-bounded, and it satisfie$yp). Therefore, by Lemma 2.1,
we conclude thatw, 0, 2n + 2) = ¢. O

Since LTL realizability is 2EXPTIME-complete and every LTdrmulais also #ROMPF
LTL formula, we can conclude:

Theorem 3.2 The problem of prompt realizability is 2EXPTIME-completdthie size of the
formula.

As demonstrated above, the alternating-color techniqwerg powerful in the case of
realizability. Indeed, the challenge of forcing thecoloring to bek-bounded for somé
is taken care of by the regularity of the strategy. We now eealcto the model-checking
problem, where a reduction tdy) is not sufficient.

Recently, Chatterjee and Henzinger introduced games wittarfy winning conditions
[CHO6, Hor07]. In such games the distance between a “bad’eaed a “good event” should
be bounded. For example, in a finitary Blichi game, the digtdretween visits to accepting
states should be bounded, and in a finitary parity game, gtardie between a visit to an
odd priority to a lower even priority should be bounded. Ehgames are not directly related
to synthesis ofPROMPTFLTL. The main difference is that in finitary games the bousd i
required to hold on every play independently. Unlike in oefting, there is no requirement
that there be a uniform bound on all the plays resulting froendame winning strategy. The
setting of finitary games with a uniform bound on all playsj &s relation torROMPFLTL
realizability, seems an interesting problem that is ouhefgcope of this paper.

4 Model Checking

In this section we describe an algorithm for solving the ntathecking problem forROMPF
LTL. An alternative algorithm is described for the richergaeterized linear temporal logic
in [AETPO1]. Our algorithm is much simpler, and it deviates the standard LTL model-
checking algorithm only slightly. In addition, as we showSaction 6, the idea behind our
algorithm can be applied also in order to solve assume-gteganodel checking, which is
not known to be the case with the algorithm in [AETPO1]. Owgoaithm is based on the
automata-theoretic approach to LTL model-checking, anfinseneed some definitions.

A nondeterministic Bchi word automator{NBW for short) is A = (2,5, sg, a),
whereY. is a finite alphabetS is a finite set of statesj : S x ¥ — 2% is a transition
function, sp € S is an initial state, and. C S is aBiichi acceptance condition. Aun of
A onawordw = wq - wq - - - iS an infinite sequence of stateg si, ... such thatsg is the
initial state and for allj > 0, we haves; 1 € d(s;,w;). Forarunr = sg,s1,..., let
inf(r) = {s € S| s = s, forinfinitely manyi’s} be the set of all states occurring infinitely
often in the run. A run imicceptingf inf(r) N« # 0. That is, the run visits infinitely many

states fromn. A word w is accepteddy A if there exists some accepting run.dfoverw.
Thelanguageof A4, is the set of words accepted By

Theorem 4.1 [VW94] For every LTL formulap over AP there exists an NBW,, over the
alphabe2” such thatd,, accepts exactly all words that satisfy The number of states of
A, is at most exponential in the number of subformulag.of

In order to check whether a syste$nsatisfies an LTL formula, one takes the product
of S with the NBW A, and tests the product for non-emptiness [VW86]. Indeedflaipa
this product witnesses a computation®that does not satisfy. As discussed in Section 1,
in the case oPROMPFLTL we cannot translate formulas to languages. Moreoveraigo
cannot simply apply the alternating-color technique: eveme check the nonemptiness of
the product of the system (an augmentation of it in which tteppsitionp behaves nonde-
terministically, thus alp-colorings are possible) with the automaton &b, A —rel, (), a
path in this product only implies that for some boung 0, the formulay is not satisfied in
S with boundk. For proving thatS does not satisfyp we have to prove something stronger,
namely, thaty is not satisfied inS with boundk, for all boundsk > 0. For that, we do
take the product of the system with the automatorufoy A —rel, (), but add a twist to the
nonemptiness check: we search for a path in the product inhndachp-block contains at
least one state that repeats. Such a state indicates ttedt fmundsk > 0, thep-block can
be pumped to a-block of length greater thaky implying thaty cannot be satisfied ifi with
boundk. We now formalize this intuition.

A colored Bichi graphis a tupleG = ({p},V, E, vy, L, o), wherep is a proposition}/
is a set of verticesf C V x V is a set of edgesy, € V is an initial vertex,L. : V —
2{r} describes the color of each vertex, andC V is a set of accepting states. A path
T = v, V1,02, ... Of G is pumpabléef all its p-blocks have at least one state that repeats.
Formally, if i andi’ are adjacenp-change points, then there are positigrend;’ such that
i < j<j < i andv; = vy. Also,n is fair if it visits « infinitely often. Thepumpable
nonemptinesgroblem is to decide, gived, whether is has a pumpable fair path.

Let¢(p) = alt, A —rely(p). Thatis, we relativize the satisfaction Bf, to the new
propositiorp, negate the resulting formula, and require the proposittoralternate infinitely
often. LetAz(,) = (24P} Q, 6, g0, o) be the NBW fore(y) per Theorem 4.1. Consider
asystemS = (AP, S, p, so, L). We now define the product af with Az, by means of
a colored Buchi graph. Note th& does not refer to the propositign and we duplicate
its state space in order to have in the product all posgiulelorings of computations i§.
Thus, the product i = ({p}, S x {{p}, 0} x Q, M, (so, {p},q0), L, S x {{p}, 0} x),
whereM ({(s, ¢, q), (s', ¢, ¢')) iff p(s,s") andq’ € §(q, L(s) Uc), andL((s, ¢, q)) = c.

It is not hard to see that a path= (sg, co, q0), (s1,¢1,¢q1), {S2, 2, q2), ... In P corre-
sponds to a computation, s1, s2, . . . of S, ap-coloring L(sg)Ucq, L(s1)Uc1, L(s2)Uca, . . .
of the trace that the computation induces, and agpuiny, g2, - - - of Az(,,) on thisp-coloring.

Theorem 4.2 The systend does not satisfy iff the product ofS and Az, is pumpable
nonempty.

Proof: Assume first thalS [~ ¢. Then, for every bound > 0, there exists a computation
m of S such that(ry, 0,2k) = ¢. Letk be larger thansS| - |Q| and letr;, be as above.
Since(m, 0, 2k) (= ¢, then, by Lemma 2.1, for akl-boundedp-coloring), of 7, we have
(7}, 0) = c(gp). Consider the:-tight p-coloring ;. of 7, that starts with a green block. By
the above(r,,0) = c(p). Also, clearly,(r7,,0) = alt,. Thus,(m,,0) = €(p). In addition,

sincek > |S]| - |Q|, every path in the produ@® that corresponds to ftight p-coloring of
7 IS pumpable. Hence, the productrdf with an accepting run oflz(,.) is a pumpable fair
pathinP.

Assume now thaP contains a pumpable fair path= (s, co, q0), (s1, 1, q1), ($2, €2, q2),
.... We claim that for every: > 0, we can pump the computatieg, s1, se,... of S to a
computation that does not satisfywith boundk. To see this, note that for eaéghwe can
pump the pathr to a fair pathr, such that the-coloring of the trace that correspondsitp
is k-spaced and satisfies-el,(¢). Hence, by Lemma 2.1, it does not satigfyith bound
k. [

In Section 5, we study the problem of deciding whether a eal@tichi graph is pumpable-
nonempty, and prove that it is in NLOGSPACE and can also beeddh linear time. This,
together with Theorems 4.1 and 4.2, imply the upper bountiérfdéllowing theorem. The
lower bound follows from the known lower bound for LTL.

Theorem 4.3 The model-checking problem feROMPFLTL is PSPACE-complete and can
be solved in time exponential in the length of the formulalarehr in the size of the system.

Note that while the pumpable nonemptiness problem to whrikRbMPFLTL model-
checking is reduced is a variant of the nonemptiness protdemhich LTL model checking
is reduced, the construction of the product is almost theesalm particular, the extensive
work on optimal compilation of LTL formulas to NBW (see supia [Var07]), is applicable
to our solution too.

Remark 4.4 The model-checking algorithm of the parametric linear teraplogic of [AETPO01]
is based on the observation that iPROMPFLTL formula ¢ is satisfied in a systeid, then
it is satisfied with bound:, for somek that is exponential ip and polynomial inS. One
cannot hope to improve this bound. Indeed, for every 1, we can define @ ROMPFLTL
formulay,, of size linear inn such that a systems satisfigs iff in all its computations, the
atomic propositiory corresponds to an-bit counter, and the value of the counter promptly
eventually reache®™ — 1. Clearly,,, is promptly satisfied, but the minimal boug&dwith
which1,, is satisfied with bound (in some system) is exponentialsin

The algorithm in [AETPO01] can also be used in order to find themal bound. It is an
open question whether the minimal bound can be found usingimplified algorithm. [

5 Algorithms for Colored B tichi Graphs

In Section 4 we reduced model-checking farOMPELTL to the pumpable nonemptiness
problem for colored Biichi graphs. In this section we sohis problems, and provide space
and time bounds.

Theorem 5.1 The pumpable nonemptiness problem for colorediBgraphs is NLOGSPACE-
complete and can be solved in linear time.

Proof: LetG = ({p},V, E, vy, L,). We start with an algorithm in NLOGSPACE. It is
not hard to see that it is enough to search for pumpable félirspaf the formuw® where
u,w € VT. In addition, we can assume tHat is ap-change point, that is, the color of the
last vertex inu is different from the color of the first vertex in, and in addition that the first
p-block inw visits a.

10

It is well known that we can check whether a verteis reachable from a vertex in
NLOGSPACE. We guess a successbtrof v, if v” = v’ the answer is yes, otherwise we
check whether’ is reachable from”. The algorithm requires logarithmic space in order to
store the vertices, v' andv”.

In order to find a pumpable fair path we have to iterate theckeaf paths described
abové. We say that a vertex’ is block-reachabldrom v if there exists a path from to v’
such that all vertices on the path agree on their color. Blaeichability can be established
by an algorithm similar to the above where the search isicéstito vertices that agree with
v andv’ on their color. We say that vertex is pump-block-reachabliEom v if v’ is block-
reachable fromvy and in addition some vertex repeats on the path ftoto v'. We can
establish that’ is pump-block-reachable fromby an algorithm similar to the above. We
guess a vertex” that agrees withv andv’ on their color, ensure that’ is block-reachable
from v, thatv” is block-reachable from itself, and that is block-reachable from”. A
simple modification of the above can check thias pump-block-reachable fromby a path
that visitsa.

Using the pump-block-reachable check described above wieedollowing. We guess a
vertexwv; that is the first vertex im. We check that; is reachable fromry with a sequence
of pump-block-reachable steps. That is, to make one step fredev we guess a node
that does not agree withon its color. We guess a predecessb6of v’ that does agree with
on its color and check that’ is pump-block-reachable from Then we continue the search
from v’. Once we have established thatis reachable fromy,, we guess a vertex, make
sure that some predecessérof v, is pump-block-reachable from with a path that visits
«. Finally, we check that; is reachable froms by a sequence of pump-block-reachable
steps (as before).

Since the reachability problem in directed graphs is in NISRACE, our algorithm can
be implemented in NLOGSPACE.

We now move to the time complexity. For standard Biichi nopigmess, one looks for
a reachable nontrivial strongly connected component titatsectsy. In the colored case,
we should further check that eagfblock in the path can be pumped. We do this by making
sure that every greemblock contains at least one vertex that belongs to a naalktstrongly
connected component in the graph of the green vertices,ianildy for the redp-blocks.

Consider the grapler, = (V,, E,;) obtained fromG by restricting attention to green
vertices. ThusV, = {v € V | L(v) = {p}} andE, = E N (V, x V). The graph
G, = (V,, E,.) is defined similarly. We can find the maximal strongly conedatomponents
(MSCC) of G4 andG,. in linear time [Tar72] (note we are interested also in MSQtd are
not reachable fromy in G, andG,). Let S, C V; andS, C V, denote the union of all
non-trivial MSCCs inG, andG,., respectively.

Letback,;(S,) be the vertices that can reach some verteX;irand lete-bacl (S,) be the
edges between these vertices. We tag the vertidesak (S,) \ S, by the tags. Formally, we
defineback (S,) = Sy, andbacK’, ,(Sy) = {v € V, | 3" € back}(S,) and(v,v’) € E},
for1 <i < n. Then,

back; (Sy) = Sy U ((back, (Sy)) \ Sy) x {B}).

For a vertexu € back,(S,), let ver(u) be the vertex it/ that induces;; that is, the vertex
obtained fromu by ignoring its tag, if exists. Then,

e-back(Sy) ={ (u,w): E(ver(u),ver(uv')) andu, v’ € back,(S,) }.

5This is similar to the proof that emptiness of Biichi graphsdlvable in NLOGSPACE. We guess a vertex
v € «, show that it is reachable fromy and that it is reachable from itself.

11

We note that the only cycles bmack; (S,) are inS,. Indeed, such a cycle is part of an MSCC
of green vertices and belongs . In a similar way, we definéorward, (S,) to be the set

of vertices that are reachable from some verte&jr{with vertices not inS, tagged withr)

and definee—forwardg(Sg) to be the edges between these vertices. Thebsats, e-back,
forward,., ande-forward. are defined similarly. Another type of edges we need are edges
betweerp-blocks. Let

Eyr = {{u,u) : E(ver(u), ver(u')),u € forward,(S,), andu’ € back.(S)}
be the set of edges along which the color changes from greedt@and let
E.— g = {{u,v) : E(ver(u), ver(u)),u € forward (S,), andu’ € back,(S,)}

be the set of edges along which the color changes from redeengr
Consider now the grapty’ = (V', £'), whereV’ = back,(S,) U forward, (S;) U
back.(.S,) U forward,.(S,), and

E' = e-forward, (S,) U e-forward.(S,) U e-back (S,) U e-back(S,) U E, ., U E,_,.

Note that the vertices i, and S, appear inG’ with no tag. Other vertices (these W
that can reach an MSCC 8, along green vertices and can also be reached from a different
MSCC inS, along green vertices, and similarly f&f) may appear iz’ with both tags, thus
the number of vertices i’ is at most twice the number of verticesGh

Intuitively, the graphG’ contains exactly all the pumpable computation§'ofA pumpable
fair path inG is a sequence of green and red segments. Each segment intiagectation of
at most three paths: a (possibly empty) prefix that leads tdl&@€C, a cycle in an MSCC,
and a (possibly empty) suffix that exits the MSCC. In ordergmognize such segments we
construct the grapti’. We start by adding ta’ all the MSCCs in the green and red sub-
graphs £, andS,, respectively). In addition, we have to allow going fromegmeMSCCs to
red MSCCs and vice versa. For that, we add the vertices thaiankward reachable from
green MSCCsHack, (S,)) and the edges between theml{ack (S,)) and forward reach-
able from green MSCCddrward, (.S,) ande-forward, (S,)), and similarly for red vertices.
Finally, we add edges from the forward of one color to the baaki of the other color.

Example 5.2 Consider the graplt in Figure 3. Red vertices are depicted in bold. Since
vg IS the uniquex vertex, it is easy to see that the graph does not contain gpiainpable
path. The graphG’ on the right shows the resulting graph after the transfolioragbove.
Vertexv, is duplicated ta(vy, F'), which is forward reachable fromy, and to(vy, B), which

is backward reachable froms. The graphG’ does not contain a path fromy to vs. Note
that the following simpler solution is not sound. Try justiad) the backward and forward
reachable vertices without duplicating them. Then, in ttapd G, vertexv, is both backward
and forward reachable from green MSCCs. However, includiiath the edge froms to vy
and the edge from, to vg falsely recognizes the patlvovavg as fair pumpable.

Claim 5.3 The graphG is pumpable nonempty i’ has some non-trivial MSCC that is
reachable fromy, (possibly tagged witls) and contains a vertex from.

Proof: Suppose that there is some non-trivial MSCCGhwith a vertexv from a. Let
T = vg,v1,..., be a path fromy that visitsv infinitely often. We show that we can find a
pumpable path’ from v, that visitsv infinitely often. (Note that”” C VU(V x{B, F}), thus

12

\

G:

@ : 4 -0
O &

Figure 3: A colored Buchi grapi and the grapld’ resulting from the transformation.

we abuse here notation and move to talk about the projectioron V). Consider the path.
Every edge inr is in one of the six sets of edges that comp#igePartitionr to thep-blocks
that comprise itro, 71, . . ., wherer; = vj,, vj,41,...,vj,,,-1. We construct by induction a
pathz’ in which every block is pumpable. Consider the bloeksandr;. Suppose that,
is green andr, is red (the dual case is similar). It follows that;, —1,v,,) € E,_., and that
v;,—1 € forward, (S,). Hence, there has to be a patiGy betweeny, andv;, _; that passes
through some MSCC it¥,. Let} be the path that goes from to v;, —; through this MSCC
and passes at least some vertex in this MSCC twice. Congideblocksm;_1,m;, mi41.
Assume thatr;_; is green,n; is red, andr;, is green. Ther(v;,_1,v;,) € E4—, and
(Vjis1-1,05,4,) € Er_y. It follows thatv;, € back.(S,) andv;,,,—, € forward,(S,).
Thenm; visits some vertex in S,., and we setr; to be a path betweery, andv;,,, _; that
visits v twice. The case where the pathhas only finitely many-blocks can be handled
similarly.

Consider a pumpable fair path= vg, v1, ... in G. We can tag some of the vertexby
B or F according to its location in its block (tag withvertices not inS, that appear before
the repeating state and tag witlvertices not inS, that appear after the repeating state). It is
easy to see that all the edges in the tagged versiaraoé present i’ It follows that inG’
there is some reachable MSCC that visits [

We analyze the time it takes to constrd¢t and to check whether it has a non-trivial
MSCC that intersecta. Clearly, the MSCC decomposition 6f, andG,. can be done in
linear time. The search ftrack, andforward, is done by backward and forward propagation
from S,. During the search, the edgeserbacl ande-forward, can be marked. The case
of back. andforward., is similar. This stage can be completed in linear time as.\iAtally,
the MSCC decomposition @ is completed again in linear time. Since the siz&bfis at
most twice the size aff, the overall running time is linear. O

We note than our algorithm is based on MSCC-decompositibis dn open question
whether a linear-time algorithm based on nested depthds@atch can be found (see discus-
sion of these types of algorithms in [Var07]).

In Section 6 we reduce assume-guarantee model-checkirgémpPFLTL to a pumpable
nonemptiness problem for colored Biichi graphs with twe seétolors. We now turn to con-
sider such graphs.

A colored Bichi graph of degree twis a tupleG = ({p, q},V, E, vy, L, c). Itis similar
to a colored Buchi graph, only that now there are two set®lufrs, described by andq (p,
—p, q, and—gq). Accordingly,L : V — 2{r-a} Also, « is a generalized Biichi condition of
index 2, thusy = {«, a2}, whereay, as C V. A pathm = vg, v1, v9, ... Of G is pumpable
if we can pump all itg-blocks without pumping itg-blocks. Formally, ifi and:’ are adjacent
g-change points, then there are positigng’, and;” such that < j < j' < j" < ¢,

13

v; = vj» andp € L(v;) iff p ¢ L(vy). Also, x is fair if it visits both oy anday infinitely
often. Thepumpable nonemptinepsoblem is to decide, gived, whether it has a pumpable
fair path.

Theorem 5.4 The pumpable nonemptiness problem for color&dHiB graphs of degree two
is NLOGSPACE-complete and can be solved in linear time.

Proof: As before, we are searching for a pumpable fair path of tha far” whereu, w €
V+ and thatu| is ap-change point.

The search for g-block that connects to v* and contains a pumpable section is parti-
tioned as follows. We guesg’ that agrees withy on the assignment tg and search for a
path fromv to v” while maintaining the samgassignment. Then we search for a path from
v” to itself. This path has to maintain the same assignmemqthowever, has to change the
assignment t@ at least twice (as the path leads frefto itself the number of changes is
even). Finally, we search for a path frafito v’ that maintains the same assignmenj.to

Using this basic reachability algorithm we do the followir/e guess a vertex, that
is the first vertex inv. We make sure that, is reachable fromy, with a sequence of such
moves. We make sure that is reachable from itself with a sequence of such moves tisit vi
botha; andas. The entire algorithm can be implemented in NLOGSPACE.

We now describe a linear-time algorithm for solving the peol. Assume that, has
no incoming edges. Consider the gra@h = (V,, E,) whereV, is the subset of vertices
labeled byg, i.e. V, = {v € V |¢q € L(v)} andE, = En (V, x V,). The graph
Gz = (V, E5) is defined similarly for vertices not labeled byWe can analyze the maximal
strongly connected components (MSCCYhfandGy in linear time [Tar72]. We restrict our
attention to MSCCs that contain both vertices labeleg byd vertices not labeled by Let
Sy C V, denote the union of all non-trivial MSCQ¥ in G, such that there exist v' € M
such thap € L(v) andp ¢ L(v'). DefineSz C V5 similarly.

For 8 € {q,7}, the setshacks;(Ss), e-back(Ss), forward,(Ss), e-forward;(Ss) are
defined as in the proof of Theorem 5.1. As there, the vertitéacks(S3) \ Ss are tagged
with B and the vertices iforward,(Ss) \ Sp are tagged withr.

Consider now the grapt’ = ({p},V’, E', v, L,) of G whereV’ = back,(S,) U
forward, (S,) U back;(Sz) U forward;(S;) andE" is as follows.

E' = E, .3 U Eg_,Ue-forward,(S,) U e-forward,(S7) U e-back (S,) U e-back(Sg),
whereE,_; andFE5_,, are defined as follows.

Ey—q = {(u,u’) : E(ver(u),ver(u')),u € forward,(S,), andu’ € back(S7)},
Eqq = {(u,) : E(ver(u), ver(u')),u € forward_(Sz), andu’ € back,(S,)}.

Claim 5.5 The graphG is pumpable nonempty i#’ has some non-trivial MSCC that is
reachable fromy, (possibly tagged wits) and contains vertices from; and fromas.

Proof: Suppose that there is some non-trivial MSCQ3hwith a verticess; andss from
a1 andas, respectively. Letr = vg, v1, .. ., be a path fromyy that visitss; ands, infinitely
often. We show that we can find a pumpable pétfrom vy that visitsa; andas infinitely
often. Consider the path Every edge inr is in one of the six sets of edges that compfi¥e
Partition to theg-blocks that comprise itg, 71, ..., wherer; = v;,,vj,41,...,v5,, 1.
We build by induction a patlx’ in which every block is pumpable. Consider the blocks
mo and ;. Suppose that is labeled byg and 7; is not labeled by;. It follows that

14

(vj,-1,vj,) € Eq—q and thatv;, ; € forward, (S,). Hence, there has to be a pathGf
betweenu, andwv;, _; that visits some vertex in S,. By definition of S,, the vertexv
belongs to an MSCQ/ that contains vertices labeled Ipyand vertices not labeled by
Let 7} be the path that goes from to v;, _1, visitsv twice, and between the two visits to
passes vertices labeled pynd vertices not labeled by Consider the blocks; 1, 7;, m;+1.
Assume thatr;_; is labeled byg, ; is not labeled by, andr;,; is labeled byg. Then
(vj,—1,v5,) € Eq_q and(vj,,—1,vj5,,,) € Ez_4. Itfollows thatv;, € back/(Sz) and
vj,,—1 € forward_(Sz). Thenm; visits some vertex in Sz, and we setr; to be a path
betweeny;, andv;, ., _; that visitsv twice, and in addition between the two visitsitpasses
vertices labeled by and vertices not labeled ky We do not remove visits ta; andas,
hence, ifr visits «; andas infinitely often so does’. The case where the pathhas only
finitely manyg-blocks can be handled similarly.

Consider a pumpable fair pathin G. It is easy to see that all the edgesmare present
also inG. It follows that inG there is some reachable MSCC that visits betlanda,. [

As before, all parts of the algorithm can be executed in litieze.]

Remark 5.6 The algorithms described above are explicit. A symbpkoMPFLTL model
checking algorithm follows from the translation®ROMPFLTL to the y-calculus described
later in Theorem 7.3. The translation, however, involvegyaiicant blow up. A symbolic
algorithm that performs well on the colored Biichi graphkefs open. For standard Biichi
graphs, algorithms can be classified as ones that are basauksted fixed point computation
that calculates the set of states that can reaicfinitely often [EL86], and ones that calculate
symbolically the MSCC of the graph [BGS00]. We believe tHgbathms of the second type
can be extended to colored graphs.]

6 Assume-Guarantee Model Checking

For two systemsS = (AP, S, p, so, L) andS" = (AP, S’, 0/, s;, L"), the parallel composi-
tion of S with ', denotedS||S’, is the system that contains all the joint behaviors aind
S'. Formally,S||S§" = (AP, S",p", s, L"), whereS” C S x S’ contains exactly all pairs
that agree on their label, that {s, s’) € S” iff L(s) = L'(s’). Then,s{ = (so,s,) and
P ((s,8"), (t, 1) iff p(s,t)andp’(s',t"). Finally, L" ({s,s")) = L(s).

An assume-guarantee specificatifam a systemsS is a pair of two specificationg; and
2. The systens satisfies the specification, denot@el)S(p2), if it is the case that for all
systemsS’, if S||S’ satisfiesp, thenS||S’ also satisfies, [Pnu85]. In the context of LTL it
is not hard to see thai,)S{p2) iff S = 1 — pa. Intuitively, since the| operator amounts
to taking the intersection of the languagessfind S, it is sound to restrict attention to
systemsS’ that correspond to single computationsSofin the case oPROMPFLTL, we can
also restrict attention to single computations, but we havake the bounds into an account.
Formally, we have the following.

Lemma 6.1 Consider a syster§ andPROMPFLTL formulasyp; andp,. The specification
(p1)S{p2) does not hold iff there is a bourid > 0 such that for every bounkh, > 0, there
is a tracew of S such that{w, 0, k1) = ¢1 but(w, 0, k2) & ¢a.

Since refuting assume-guarantee specifications refamptbaunds, we extend the alternating-
color technique to refer to two sets of colors. The atomigpegitionp partitions the com-
putation to blocks that bound;, and a new atomic proposition does the same foks,.

15

According to Lemmas 2.1 and 6.1, refutifig;)S(¢2) amounts to finding a bountd, > 0
such that for all boundk, > 0, there is a computatiom of S such thatv has ak;-bounded
p-coloring that satisfieslt, A rel,(¢1), butw also has &;,-spaced;-coloring that satisfies
alty AN—rely(v2). Indeed, such a computation satisfigswith boundk;, and does not satisfy
©2 with boundks.

The intuition above led us to the definition of colored Bigtdphs of degree two and the
corresponding definition of pumpable nonemptiness. Asreefbe pumpable nonemptiness
technique can be used for solving the assume-guaranted-ctoatking problem.

Lete(p1) = altyArel,(p1) ande(ps) = alt A—rely(p2), and letd) = 2479 Q1,61, ¢f, o),
and Az (,,) = (2479 Qs, 62, g3, o) be the corresponding NBWs (per Theorem 4.1). We
define the product of with A.,,) and Az, as the following colored Biichi graph of
degree two:

P = {paq}vs X 2{p,q} X Ql X Q27M7 <80a {pv Q},QéaQ(%>aL7
{8 x 2Pa} x ay x Q, S x 2P0} x Q; x as}

whereM ((s,c,q1, q2), (s', ', qi,d5)) iff p(s,s"), ¢4 € d1(q1, L(s) U (e {p})), andg} €
02(q2, L(s) U (¢ N {q})). Finally, L({s, ¢, q1, q2)) = c.

Theorem 6.2 The specificatioqy;)S(p2) does not hold iff the product & with 4
andAz(,,) is pumpable nonempty.

(1)

Proof: Assume thafy;)S{p2) does not hold. Then, by Lemma 6.1, there is a boung 0
such that for every bounkb, > 0, there is a tracey, x, of S such that(wy, ,,0,%k1) = ¢1
but (wi, k,,0,2k2) = @2. Letks be larger thar2 - |S| - |Q1] - |Q2] - k1 and letry, &, be as
above. Sincény, «,,0,k1) = ¢1, then, by Lemma 2.1, for aﬂl—space(;b—coloringsW;ﬁ7,€2
of 7y, k. We have(m, , ,0) = c(p1). SInCe(mk, k,,0,2k2) [~ @2, then, by Lemma 2.1,
for all ko-bounded;-coloringsry, ., of m, k,, we have(wy ,.,0) ~ c(p2). Consider the
k1-tight p-coloring andk.-tight ¢-coloring w;h,m of m, , that starts wittp andg. By the
above,(my,, 1,,0) ¥ c(p2). Also, clearly,(m, ;.,,0) = alty. Thus,(m ;.,0) F €(p2). In
addition, sincéiy > 2 -|S| - |Q1] - |Q2] - k1, every path in the produ@® is (p, ¢)-pumpable.
Hence, the productof, , with accepting runsafl.,,) and ofAz,) is a(p, g)-pumpable
fair path inP.

Assume now thaP contains dp, q)-pumpable fair pathr = (sq, co, @3, ¢3), (s1,¢1, 41, 43,
(s2,¢2,q5,43), - ... Letk; denote the size of the maximadblock in 7 (as explained in Sec-
tion 5, if P is (p, q)-pumpable nonempty, then it has a regujarg)-pumpable path, thus the
maximum is well defined). We claim that for evely > 0, we can pump the computation
S0, S1, S2, . . . Of S to a computation that satisfigg with bound2k; but does not satisfy,
with boundk,. Note that if we pumpr, we get a pathr’ such that the-coloring of the trace
that corresponds t@’ is k;-bounded and satisfiegy;). In addition, for eactk,, we can
pump that pathr to a fair pathm,, such that the-coloring of the trace that corresponds to
T, 1S 2ko-spaced and satisfiesel,(p2). Hence, by Lemma 2.1, it satisfigs with bound
2k1, and does not satisfy, with boundks,. Ol

Theorems 4.1, 5.4, and 6.2 imply the upper bound in the fatigeheorem. The lower
bound follows from the known lower bound for LTL.

Theorem 6.3 The assume-guarantee model-checking problerr#ampPFLTL is PSPACE-
complete and can be solved in time exponential in the lengtiedormulas and linear in the
size of the system.

16

Remark 6.4 For LTL, fairness constraints about the system can be spddifithe formula.
Thus, checking thap, holds in all computations that satisfy the fairness coirsttka; can

be reduced to model checking — 2. A fairness assumption can also be specified in
PROMPTELTL. Here, however, one has to allow the fairness assumgind the specifica-
tion to be satisfied with different bounds. Thus, fairnessusth be reduced to checking

(p1)S(p2). 0

For two formulasy; andyo, we say that; impliesy; iff for every systents, if S satisfies
©1, then it also satisfiegs. In the case of LTLyp; implies s iff the formulay; — @9 is
valid. In the case o0PROMPFLTL, ¢ impliesyps iff (p1)U(p2), whereld is the universal
system (a clique over? that contains all traces ovetP). Indeed, since for every system
S we have thatS||if = S, then(p)U{p2) does not hold iff there is a systegsuch that
if S satisfiesp; butS = ps. Sinceld is exponential inAP, and the PSPACE complexity
of assume-guarantee model checking originates from amitigothat is polynomial in the
formulas and only logarithmic in the system, we have thefeihg (the lower bound follows
from the PSPACE hardness of LTL implication).

Theorem 6.5 The implication problem forROMPFLTL is PSPACE-complete.

7 Expressiveness

In this section we study expressiveness aspeckRoMPFLTL. We show that 2ROMPF

LTL formula ¢ has an equivalent LTL formula ifp and live(p) are equivalent, thus the
problem of deciding whethep can be translated to LTL is PSPACE-complete. Since the
semantics oPROMPTFLTL is defined with respect to a system, a natural questiavhisther

we can translateROMPFLTL formulas to branching temporal logics. We show thatdad,

all PROMPTFLTL formulas can be translated to thecalculus.

All our results refer to finite-state systems. Thus, we say tvo formulasp andy’ are
equivalent iff for all finite systems, we have thatS = ¢ iff S | ¢’. In fact, we later
show that the finiteness of the systems is crucial, and thétsesre different for infinite-state
systems.

7.1 FromPROMPFLTL toLTL

SomePROMPELTL formulasy are equivalent to the LTL formulidve (). For example, it is
not hard to see th&dyr is equivalent tdr, for an atomic proposition. On the other hand,
as demonstrated in Section 1, theoMPFLTL formula F, Gr is not equivalent to the LTL
formulaFGr. Is F, Gg equivalent to another LTL formula? A negative answer foddvom
Lemma 7.1 below.

Lemma 7.1 Consider aPROMPFLTL formulay. There is an LTL formula equivalent o
iff ¢ is equivalent tdive ().

Proof: Assume thap has an equivalent LTL formula. Then, there is.amnegular language
L, C (27)“ such that a systeid satisfiesy iff all the traces ofS are contained irL,,. We
prove that then, for every systef we have thatS = live(p) iff S = ¢. The direction
from right to left holds always. For the other direction,@s® by way of contradiction that
S = live(p), butS = ¢. Thus, the traces af are not contained il ,. SinceS is finite
state and_, is w-regular, but there is an- regular tracev of S that does not belong tb,.

17

Let k be such thatv satisfieslive(¢) with boundk (sincew is a single trace of a finite state
system, such a bouridmust exist). Theny satisfies alsg, and it therefore belongs tb,.
O

Theorem 7.2 Deciding whether @ROMPFLTL formula has an equivalent LTL formula is
PSPACE-complete.

Proof: By Lemma 7.1, the problem of deciding whetherrrOMPFLTL formula ¢ has an
equivalent LTL formula can be reduced to checking the edeinee ofy andlive(y). Since
¢ — live(yp) is valid for all p, one should only check the implicatidive(¢) — ¢, which,
according to Theorem 6.5, can be done in PSPACE.

We prove hardness in PSPACE by a reduction from the satilifyapioblem of LTL.
Consider an LTL formulg, and a proposition not used inp. It is not hard to prove that the
PROMPELTL formula¢ A F, Gr has an equivalent LTL formula ifp is unsatisfiable. [

7.2 FromPROMPFLTL to the p-calculus

Itis not hard to prove that ttreROMPELTL formulaF,Ggq is equivalent to the CTL formula
AFAGq. Indeed, a system satisfies both formulas iff there is a baurd0 such that all
the computations may visit a state in whighdoes not hold only in the first positions.
One may wonder whether this argument can be generalizetinteto a simple translation
of PROMPELTL formulas to CTL* formulas: given @ROMPFLTL formula ¢, translate it
to a CTL* formulay’ by (recursively) replacing all subformulas of the folfp6 by FA6
(and adding an externl). To see that the reduction does not hold in general, contide
PROMPELTL formula ¢ = Fp(Gg Vv Xr). While the systend’ obtained from the system
S in Figure 1 by adding to the initial state satisfieg (with bound 2), the syster§’ does
not satisfy the CTEt formulay’ = AFA(Ggq Vv Xr). The question whetherROMPFLTL
can be expressed in CTlis open. On the other hand, the two-color technique can keinse
order to translate BROMPFLTL formula overP to an alternating parity tree automaton over
the alphabe2”{P}, and then to a-calculus formula ove”. The proof of the following
theorem assumes familiarity wigitcalculus and alternating parity tree automata.

Theorem 7.3 EveryPROMPFLTL formula has an equivalent-calculus formula.

Proof: Given aPROMPFLTL formula ¢ over P, let Ay, be an alternating parity tree
automaton that accepts exactly all trees all of whose paitisfysc(y); in fact, Ay, can
be taken to be a universal co-Buichi automaton [KVO5]. Nb&tty. . is over the alphabet
2Pu{r} thus it refers also to the atomic propositipnLet > be au-calculus formula equiv-
alenttoAy.(,) [JW95]. We prove that over finite systemsjs equivalent tadp.:). Assume
first that a systen$ satisfiesp with boundk. Then, the unwinding of augmented with a
p-coloring that i2k-tight satisfies), and thus, by Lemma 2.8, satisfiesIp.1). Assume now
thatS satisfiesdp.1p. Then, by [Rab69], there also exists a regular labeling @uwinding

of § by p such that the unwinding & augmented with this regular labeling satisfiesLet

n be the product of the number of statesSrand the transducer that generates the regular
labeling byp. Then, thep-labeling of computations in the unwinding §fmust be(n + 1)-
bounded. Indeed, as detailed in the proof of Theorem 3.&raike we can generate a path
of S with thep-labeling that does not satiséyt,. Hence, by Lemma 2.15 satisfiesy with
bound2n + 2.

18

It is left to prove thatip.¢), and hence alsg, is equivalent to somg-calculus formula.
By [JW96], every monadic second-order logic sentence thptéserved under bisimulation
is equivalent to au-calculus formulas. Thus, is it enough to show that) can be expressed
in monadic second order logic and is preserved under bisitionl. The first claim follows
from the fact that the-calculus can be expressed in monadic second order logees@t¢ond
follows from the fact thaPROMPFLTL cannot distinguish between systems with the same
language, thus is preserved under bisimulation.]

The proof of Theorem 7.3 explains why we conjecture HrdMPELTL is incomparable
to CTL*. By [HT87], CTL* formulas can be translated to monadic SnS formulas in which
all set quantifiers are over paths. The expressivenesgttrenPROMPFLTL is its ability
to relate different paths (they all have to satisfy the prbeyentualities in the formula with
the same bound). In our proof, the labeling of the quantifiegpsitionp refers to the whole
tree and it does not seem replaceable by set quantifiers attes.p

Recall that our results refer to finite-state systems. We stoow that they do not stay
valid in the context of infinite-state systems.

Theorem 7.4 In the context of infinite-state systems, roalculus formula is equivalent to
thePROMPELTL formulaGFpgq.

Proof: Assume by way of contradiction that there ig&alculus formula) equivalent to
GFpq. Then, by [EJ91, MS95], there is a finite-state nondetestimparity tree automaton
Ay that accepts exactly all trees that sati€l¥,q. Letif,, be the restriction of4,;, to trees
of branching degree. Thus,l{,;, is a word automaton accepting all words that satsly,q.
The automatom,, accepts the infinite family of computatioép} - (#*)«, for all &k > 1.
Indeed, a computatiof{p} - #*)« in the family satisfiesaF ¢ with boundk. We claim that
then,l4,, also accepts a computation= {p} - 0 - {p} - 0?2 - {p} - 0% - - - with i1 > i; for
all j > 1. The computatiom, however, does not satisf¢F, ¢, and should not be accepted
by Uw.

We construct the computationas follows. Letn be the number of states ;. Recall
thatl4,, accepts the infinite family of computationg} - 0%)«, for all £ > 1. In particular,
it acceptsw’ = ({p} - 0"*1)~. In the accepting run’ of U4, onw’, at least one state repeats
in the run on each sub-computation of the foffn!. We can pumpy’ and+’ and obtain
the required computation along with a run- of ¢, on it. Thus, we obtaim’ by pumping
the sub-computation between a repeated state ifyjthel)-th block of()'s sufficiently many
times to get a block that is longer than tji¢h block. We then obtaim’ by pumping the
behavior ofr along the pumped sub-computation. It is easy to see thategstzelongs
to inf(r) iff there are infinitely many indiceg > 1 such thay is visited byr at least once
between reading theth and thgj +1)-th {p}, and similarly forr’. Henceinf(r) = inf(r’).
Sincer’ is accepting, so is, and thusi{,, accepts.]

It follows from Theorem 7.4 that Theorem 7.3 does not holdhancontext of infinite state
systems.

8 Acknowledgments

We thank the anonymous referees for their suggestions.

19

References

[AETPO1]
[AS85]

[BAS02]

[BBG*94]

[BGS00]

[BL69]

[CHO6]

[EF06]
[EJ91]

[EL86]

[Eme90]

R. Alur, K. Etessami, S. La Torre, and D. Peled. Raatic temporal logic for model
measuring ACM Transactions on Computational Log(3):388—407, 2001.

B. Alpern and F.B. Schneider. Defining livenessformation processing letter21:181—
185, 1985.

A. Biere, C. Artho, and V. Schuppan. Liveness chegkis safety checking. IRroc. 7th
International Workshop on Formal Methods for Industrialit@al Systemsvolume 66:2
of Electronic Notes in Theoretical Computuer Sciegr@02.

I. Beer, S. Ben-David, D. Geist, R. Gewirtzman, and M.Il¥ddethodology and system for
practical formal verification of reactive hardware. Pnoc. 6th Conference on Computer
Aided Verification volume 818 ofLecture Notes in Computer Scienqeges 182-193,
Stanford, June 1994.

R. Bloem, H.N. Gabow, and F. Somenzi. An algorithmdiwongly connected component
analysis inn log n symbolic steps. Ifrormal Methods in Computer Aided Desjgolume
1954 ofLecture Notes in Computer Scienpages 37-54. Springer-Verlag, 2000.

J.R. Buichi and L.HG. Landweber. Solving sequentahditions by finite-state strategies.
Trans. AM$138:295-311, 1969.

K. Chatterjee and T.A. Henzinger. Finitary winningd-regular games. IfProc. 12th
International Conference on Tools and Algorithms for then§teuction and Analysis of
Systemsvolume 3920 ofLecture Notes in Computer Sciengages 257-271. Springer-
Verlag, 2006.

C. Eisner and D. Fismar Practical Introduction to PSLSpringer, 2006.

E.A. Emerson and C. Jutla. Tree automataalculus and determinacy. Rroc. 32nd IEEE
Symp. on Foundations of Computer Sciempages 368—-377, San Juan, October 1991.

E.A. Emerson and C.-L. Lei. Efficient model checkimgfiagments of the propositional
p-calculus. InProc. 1st Symp. on Logic in Computer Sciergages 267—-278, Cambridge,
June 1986.

E.A. Emerson. Temporal and modal logic. In J. Vanuvesn, editorHandbook of The-
oretical Computer Scienceolume B, chapter 16, pages 997-1072. Elsevier, MIT Press,
1990.

[EMSS90] E.A. Emerson, A.K. Mok, A.P. Sistla, and J. Srisiga. Quantitative temporal reasoning.

[Hor07]

[HT87]

[JW95]

[JW96]

In Proc. 2nd Conference on Computer Aided Verificatiariume 531 ofLecture Notes in
Computer Sciencg@ages 136-145. Springer-Verlag, 1990.

F. Horn. Faster algorithms for finitary games. Rroc. 13th International Conference
on Tools and Algorithms for the Construction and AnalysiSgétemsvolume 4424 of
Lecture Notes in Computer Scienpages 472-484. Springer-Verlag, 2007.

T. Hafer and W. Thomas. Computation tree logic CEnd path quantifiers in the monadic
theory of the binary tree. IfProc. 14th International Coll. on Automata, Languages,
and Programmingvolume 267 ofLecture Notes in Computer Scienqeages 269-279.
Springer-Verlag, 1987.

D. Janin and |. Walukiewicz. Automata for the mogatalculus and related results. In
Proc. 20th International Symp. on Mathematical Foundagiaf Computer Sciencéec-
ture Notes in Computer Science, pages 552-562. Springéagyd 995.

D. Janin and |. Walukiewicz. On the expressive congpless of the propositional-
calculus with respect to the monadic second order logic.Proc. 7th Conference on
Concurrency Theorywolume 1119 ot ecture Notes in Computer Scienpages 263-277.
Springer-Verlag, 1996.

20

[KVO5]

IMP92]

[MS95]

[Pnu77]

[Pnu85]

[PR8Y]

[Rab69]

[SVW87]

[Tar72]

[Var07]

[VW86]

[VW94]

O. Kupferman and M.Y. Vardi. Safraless decision pdares. InProc. 46th IEEE Symp.
on Foundations of Computer Scienpages 531-540, Pittsburgh, October 2005.

Z. Manna and A. PnueliThe Temporal Logic of Reactive and Concurrent Systems:i-Spec
fication Springer-Verlag, Berlin, January 1992.

D.E. Muller and P.E. Schupp. Simulating alternattree automata by nondeterministic
automata: New results and new proofs of theorems of Rabilladghton and Safra.
Theoretical Computer Scienc®41:69—-107, 1995.

A. Pnueli. The temporal logic of programs. Rroc. 18th IEEE Symp. on Foundation of
Computer Scienc@ages 46-57, 1977.

A. Pnueli. In transition from global to modular teongl reasoning about programs. In
K. Apt, editor,Logics and Models of Concurrent Systersume F-13 oNATO Advanced
Summer Institutepages 123-144. Springer-Verlag, 1985.

A. Pnueli and R. Rosner. On the synthesis of a reastdule. InProc. 16th ACM Symp.
on Principles of Programming Languaggsges 179-190, Austin, January 1989.

M.O. Rabin. Decidability of second order theoriad automata on infinite tree§irans-
action of the AMS141:1-35, 1969.

A.P. Sistla, M.Y. Vardi, and P. Wolper. The complertation problem for Buichi automata
with applications to temporal logicTheoretical Computer Scienc49:217-237, 1987.

R.E. Tarjan. Depth first search and linear graphritlyms. SIAM Journal of Computing
1(2):146-160, 1972.

M.Y. Vardi. Automata-theoretic model checking igted. In8th International Confer-
ence on Verification, Model Checking, and Abstract Intesgtien, volume 4349 of ecture
Notes in Computer Sciengeages 137-150. Springer-Verlag, 2007.

M.Y. Vardi and P. Wolper. An automata-theoretic apgach to automatic program verifica-
tion. InProc. 1st Symp. on Logic in Computer Sciemages 332—344, Cambridge, June
1986.

M.Y. Vardi and P. Wolper. Reasoning about infinite qmuations. Information and Com-
putation 115(1):1-37, November 1994.

21

