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Abstract

Liveness temporal properties state that something “good” eventually happens, e.g.,
every request is eventually granted. In Linear Temporal Logic (LTL), there is no a priori
bound on the “wait time” for an eventuality to be fulfilled. That is, Fθ asserts thatθ
holds eventually, but there is no bound on the time whenθ will hold. This is troubling, as
designers tend to interpret an eventualityFθ as an abstraction of a bounded eventuality
F

≤kθ, for an unknownk, and satisfaction of a liveness property is often not acceptable
unless we can bound its wait time. We introduce herePROMPT-LTL, an extension of LTL
with the prompt-eventuallyoperatorFp. A systemS satisfies aPROMPT-LTL formula
ϕ if there is some boundk on the wait time for all prompt-eventually subformulas ofϕ

in all computations ofS. We study various problems related toPROMPT-LTL, including
realizability, model checking, and assume-guarantee model checking, and show that they
can be solved by techniques that are quite close to the standard techniques for LTL.

1 Introduction

Since the introduction of temporal logic into computer science [Pnu77], temporal logic, in
its many different flavors, has been widely accepted as an appropriate formal framework for
the description of on-going behavior of reactive systems [MP92]. Temporal properties are
traditionally classified intosafetyandlivenessproperties [AS85]. Intuitively, safety proper-
ties assert that nothing bad will ever happen during the execution of the system, and liveness
properties assert that something good will happen eventually. Temporal properties are in-
terpreted with respect to systems that generate infinite computations. In satisfying liveness
properties, there is no bound on the “wait time”, namely the time that may elapse until an
eventuality is fulfilled. For example, the LTL formulaFθ is satisfied at timei if θ holds at
some timej ≥ i, butj − i is not a priori bounded.

In many applications, it is important to bound the wait time.This has given rise to for-
malisms in which the eventually operatorF is replaced by a bounded-eventually operator
F

≤k. The operator is parameterized by somek ≥ 0, and it bounds the wait time tok
[BBG+94, EMSS90]. Since we assume that time is discrete, the operator F

≤k is simply
a syntactic sugar for an expression in which the next operator X is nested. Indeed,F≤kθ is
justθ ∨ X(θ ∨ X(θ∨ k−4. . . ∨Xθ)).

A drawback of the above formalism is that the boundk needs to be known in advance,
which is not the case in many applications. For example, it may depend on the system, which
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may not yet be known, or it may change, if the system changes. In addition, the bound may be
very large, causing the state-based description of the specification (e.g., an automaton for it)
to be very large too. Thus, the common practice is to use liveness properties as an abstraction
of such safety properties: one writesFθ instead ofF≤kθ for an unknown or a too largek.

It is not hard to see that the above abstraction is not sound inthe context of infinite-
state systems. For example, the infinite-state system that consists of all the computations in
∅∗ ·{q}·∅ω satisfies the LTL propertyFq, yet there is no boundk such that the system satisfies
the propertyF≤kq. On the other hand, a finite-state system withk states that satisfiesFq also
satisfies the specificationF≤kq. Indeed, a wait time that is greater than the number of states
indicates that the wait time may also be infinite (by looping in a cycle that ought to be taken
during the wait time).

Is the abstraction always sound in the context of finite-state systems? For some temporal
logics, the abstraction is sound, in the sense that if a system S satisfies a liveness propertyψ,
then there is a boundk, which depends onS, such thatS also satisfies the formula obtained
fromψ by replacing all occurrences ofF in ψ byF

≤k. Note that the formulaF≤kθ is a safety
property, while the formulaFθ is a liveness property. For example, it is shown in [EMSS90]
that in the case of CTL, takingk to be the number of states inS is sufficient. Thus, if a state
s satisfiesAFθ, then it also satisfiesAF

≤kθ, for k = |S|, and similarly forEFθ. Intuitively,
as in the case of the LTL formulaFq discussed above, sinceθ is a state formula, a wait
time that is greater thank indicates that the wait time may also be infinite, and may alsobe
shortened to at mostk.

So the abstraction of safety properties by liveness properties is sound for CTL in the
context of finite-state systems. Is it sound also for the linear temporal logic LTL? Consider
the systemS described in Figure 1 below. While S satisfies the LTL formulaFGq, there is
nok ≥ 0 such thatS satisfiesF≤k

Gq. To see this, note that for eachk ≥ 0, the computation
that first loops in the first state fork times and only then continues to the second state, satisfies
the eventualityGq with wait timek + 1.

S :
q ¬q q

Figure 1:S satisfiesFGq but does not satisfyF≤k
Gq, for all k ≥ 0.

It follows that the abstraction of safety properties by liveness properties is not sound in
the linear-time approach (which is more popular with users,cf. [EF06]). This is troubling,
as designers tend to interpret eventualities as bounded eventualities, and satisfaction of a
liveness property is often not acceptable unless we can bound its wait time.1

In this work we introduce and study an extension of LTL that addresses the above prob-
lem. In addition to the usual temporal operators of LTL, our logic, PROMPT-LTL, has a new
temporal operator that is used for specifying eventualities with a bounded wait time. We term
the operatorprompt eventuallyand denote it byFp. Let us define the semantics ofPROMPT-
LTL formally. For aPROMPT-LTL formulaψ and a boundk ≥ 0, letψk be the LTL formula
obtained fromψ by replacing all occurrences ofFp by F

≤k. Then, a systemS satisfiesψ iff
there isk ≥ 0 such thatS satisfiesψk.

Note that while the syntax ofPROMPT-LTL is very similar to that of LTL, its semantics
is defined with respect to an entire system, and not with respect to computations. Indeed,

1Note that the reduction of liveness to safety as described in[BAS02] is performed by squaring the state space
rather than trying to bound the wait time of eventualities. Thus, it is not related to the discussion in this paper.
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promptness plays no role in the context of a single computation: if the computation satisfies
an eventuality, it ought to satisfy it with some bounded waittime, namely the time that has
elapsed until the eventuality has been satisfied. For example, while each computationπ in
the systemS from Figure 1 has a boundkπ ≥ 0 such thatGq is satisfied inπ with wait time
kπ, there is nok ≥ 0 that bounds the wait time of all computations. It follows that, unlike
linear temporal logics, we cannot characterize aPROMPT-LTL formula ψ over a setAP of
atomic propositions by a set of computationsLψ ⊆ (2AP )ω such that a systemS satisfies
ψ iff the language ofS is contained inLψ. On the other hand, unlike branching temporal
logics, if two systems agree on their languages, then they agree also on the satisfaction of all
PROMPT-LTL formulas. Thus,PROMPT-LTL intermediates between the linear and branching
approaches: as in the linear approach, the specification refers to the set of computations of
the system rather than its computation tree; as in the branching approach, we cannot consider
these computations individually. Or – in other words – in order to conclude that aPROMPT-
LTL formula holds over a set of computations we cannot evaluate it over each computation
separately.

As further motivation to a prompt eventuality operator, consider the formulaG¬p ∨ Fq
(positive normal form forFp → Fq). As demonstrated in Figure 2 below, a system may
satisfyG¬p ∨ Fq but have no bound on the wait time to the satisfaction of the eventuality.
When a user checksGp ∨ Fq, it is quite possible that what he has in mind isG¬p ∨ Fpq,
but he may not know a boundk such thatG¬p ∨ X

≤kq should be checked. In the context
of modular verification, it is possible that what the user hasin mind is ”assumeFp; assert
Fq”, where both eventualities should be satisfied promptly. Our semantics distinguishes these
three different understandings ofFp→ Fq.

{q}S : { }

Figure 2:S satisfiesG¬p ∨ Fq but does not satisfyG¬p → Fpq.

We study the basic problems ofPROMPT-LTL. Consider aPROMPT-LTL formulaψ over
AP . The setAP may be partitioned to setsI andO of input and output signals. Consider
also a systemS. We study the following problems:realizability (is there a strategyf :
(2I)∗ → 2O such that all the computations generated byf satisfyψ?), model checking
(doesS satisfyψ?), andassume-guarantee model checking(given an additionalPROMPT-
LTL formula ϕ, is it the case that for all systemsS′, if S‖S′ satisfiesϕ, thenS‖S′ also
satisfiesψ?). Satisfiability ofPROMPT-LTL is easily reduced to satisfiability of LTL. Indeed,
consider aPROMPT-LTL formulaϕ and the LTL formulaϕ′ obtained fromϕ by replacing all
occurrences ofFp by F. It is well known that ifϕ′ is satisfiable, it is satisfiable over a single
regular computation (i.e., a prefix and a suffix that repeats infinitely often), cf. [VW94]. It is
easy to see that the same computation satisfiesϕ. For the other problems, similar reductions
do not work, and we have to develop a new technique in order to solve them. Let us describe
our technique briefly.

Consider a prompt-LTL formulaψ overAP . Let p be an atomic proposition not inAP .
Think aboutp as a description of one of two colors, say green (p holds) and red (p does not
hold). Each computation of the system can be partitioned to blocks such that states of the
same block agree on their color. We show that a systemS satisfies aPROMPT-LTL formula
ψ iff there is some boundk ≥ 0 such that we can color each computationπ of S so that the
induced blocks are of lengthk, and whenever a suffix ofπ has to satisfy an eventuality, the
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eventuality is fulfilled within two blocks. Indeed, the latter condition holds iff all eventualities
have wait time at most2k.

The key idea behind our technique is that rather than searching for a boundk for the
prompt eventualities, which can be quite large, it is enoughto make sure that there is a
coloring in which all blocks are of a (not necessarily bounded) finite length, and then use
some regularity argument in order to conclude that the size of the blocks could actually be
bounded. Forcing the blocks to be of a finite length can be doneby requiring the colors
to alternate infinitely often. As for regularity, in the caseof realizability, regularity follows
from the finite-model property of tree automata. In the case of model checking and assume-
guarantee model checking, regularity follows from the finiteness of the system.

The complexities that follow from our algorithms are encouraging: reasoning aboutPROMPT-
LTL is not harder than reasoning about LTL: realizability is2EXPTIME-complete, and
model checking and assume-guarantee model checking are PSPACE-complete. For LTL,
many heuristics have been studied and applied. Some of them are immediately applicable
for PROMPT-LTL (c.f., optimal translations of formulas to automata),and some should be
extended to the prompt setting (e.g., bad-cycle detection algorithms). We also study some
theoretical aspects ofPROMPT-LTL, such as a bound on the wait time, when exists (may
be linear in the system and exponential in the prompt-LTL formula), the ability to translate
PROMPT-LTL formulas to branching-temporal logics (a translationto theµ-calculus is al-
ways possible, but may involve a significant blow up), and theability to determine whether a
PROMPT-LTL formula has an equivalent LTL formula (PSPACE-complete).

In [AETP01], Alur et al. study an extension of LTL in which thetemporal operatorsF and
G may be parameterized by variables that describe lower and upper bound on the wait time
(or the satisfaction time, forG). Our logic can be viewed as a special case of the logic there,
in which only eventualities are parameterized, and only with upper bounds. The algorithms
suggested by Alur et al. are impractical. By restricting attention to prompt eventualities (the
practical interest of the other combinations is less compelling), we get a model-checking
algorithm that is quite similar to the classical LTL model-checking algorithm. We are also
able to a solve the realizability and assume-guarantee model checking.

2 Prompt Linear Temporal Logic

The logic PROMPT-LTL extends LTL [Pnu77] by aprompt-eventuallyoperatorFp. The
syntax ofPROMPT-LTL formulas (in negation normal form) is given by the grammar below,
for a setAP of atomic propositions:

ϕ ::= AP | ¬AP | ϕ ∨ ϕ | ϕ ∧ ϕ | Xϕ | Fpϕ | ϕUϕ | ϕRϕ.

The semantics of aPROMPT-LTL formula is defined with respect to an infinite wordw =
w0, w1, . . . over the alphabet2AP , a positioni ≥ 0 in w, and a boundk ≥ 0. We use
(w, k, i) |= ϕ to indicate thatϕ holds in locationi of w with boundk. The relation|= is
defined by induction on the structure ofϕ as follows.

• For propositions, Boolean connectives, and the standard LTL temporal operatorsX, U,
andR, the definition is independent ofk and coincides with the one for LTL [Eme90].2

• (w, i, k) |= Fpϕ iff there existsj such thati ≤ j ≤ i+ k and(w, j, k) |= ϕ.

2Recall that in LTL we have thatπ, i |= θRψ iff for all j ≥ i, if π, j 6|= ψ, then for somek, i ≤ k < j, we
haveπ, k |= θ.
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We useFθ andGθ to abbreviatetrueUθ andfalseRθ, respectively. A prompt version of the
until operator can also be specified:θUpθ

′ = θUθ′ ∧ Fpθ
′. Note that the negation ofFp is

not expressible inPROMPT-LTL, thus the logic is not closed under negation.
Given aPROMPT-LTL formula ϕ, let live(ϕ) be the LTL formula obtained fromϕ by

replacing every prompt-eventually operatorFp by a standard eventually operatorF.
A (labeled) transition systemis S = 〈AP, S, ρ, s0, L〉, whereAP is a finite set of atomic

propositions,S is a finite set of states,ρ ⊆ S × S is a total transition relation,s0 ∈ S0 is
an initial state, andL : S → 2AP maps each states to the set of propositions that hold ins.
Whenρ(s, s′), we say thats′ is asuccessorof s, ands is apredecessorof s′. A computation
of S is an infinite sequence of statesπ = s0, s1, . . . ∈ Sω such that for alli ≥ 0, we have
ρ(si, si+1). The computationπ induces thetraceL(π) = L(s0) · L(s1) · · ·.

Given a systemS and aPROMPT-LTL formula ϕ overAP , we say thatS satisfiesϕ,
denotedS |= ϕ, if there exists somek ≥ 0 such that for all tracesw of S, we have(w, 0, k) |=
ϕ. We then say thatS satisfiesϕ with boundk. Note that whenS 6|= ϕ, then for everyk ≥ 0,
there exists a tracew such that(w, 0, k) 6|= ϕ.

In [AETP01], Alur et al. study an extension of LTL in which thetemporal operatorsF and
G are replaced by the operatorsF≤x,F>y,G≤x, andG>y, for variablesx andy (the same
variable may be used in different operators, but, to ensure decidability, the same variable
cannot participate in both a lower and an upper bound). Givena systemS and a formula in
their logic, one can ask whether there is an assignment to thevariables for which the system
satisfies the formula, with the expected interpretation of the bounded operators.3 Our logic
is obtained by restricting the logic studied in [AETP01] to parameterized eventualities with
only upper bounds. By a complex pumping argument, Alur et al.show that model checking
of formulas in their logic can be reduced to model checking ofLTL by setting the param-
eters to constant that depend on the direction of the inequality and the type of operator. In
some cases the constant is 0 and in some cases it is the productof the number of states of
the model and a value that is exponential in the length of the formula. In practice, using such
values makes the formula as complicated as the model and renders model checking imprac-
tical. By giving up the operatorsF>y,G≤x, andG>y, whose usefulness is less obvious, we
get a model-checking algorithm that uses the same techniques as the classical LTL model-
checking algorithm. The same ideas solve also the realizability and the assume-guarantee
model checking problems.

The Alternating-Color Technique We now describe the key idea of our technique for
reasoning aboutPROMPT-LTL formulas. Letp be an atomic proposition not inAP . We
think aboutp as a description of one of two colors, say green (p holds) and red (p does not
hold). Each computation of the system can be partitioned to blocks such that states of the
same block agree on their color. Our technique is based on theidea that bounding the wait
time of prompt eventualities can be reduced to forcing all blocks to be of a bounded length,
and forcing all eventualities to be fulfilled within two blocks, We now make this intuition
formal.

Consider a wordw = σ0, σ1, . . . ∈ (2AP )ω . Let p be a proposition not inAP . A p-
coloring of w is a wordw′ = σ′

0, σ
′
1, . . . ∈ (2AP∪{p})ω such thatw′ agrees withw on the

propositions inAP ; i.e., for all i ≥ 0, we haveσ′
i ∩AP = σi. We refer to the assignment to

p as thecolor of locationi and say thati is green ifp ∈ σ′
i and is red ifp 6∈ σ′

i. We say that
p changes ati if either i = 0 or the colors ofi − 1 andi are different (that is,p ∈ σ′

i−1 iff

3The work in [AETP01] studies many more aspects of the logic, like the problem of deciding whether the formula
is satisfied withall assignments, the problem of finding an optimal assignment, and other decidability issues.
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p /∈ σ′
i). We then calli ap-change point. A subwordσ′

i, . . . , σ
′
i′ is ap-blockif all positions in

the subword have the same color, andi andi′ +1 arep-change points. We then say thati and
i′ + 1 are adjacentp-change points. Fork ≥ 0, we say thatw′ is k-spaced, k-bounded, and
k-tight (with respect top) if w′ has infinitely many blocks, and all the blocks are of length at
leastk, at mostk, and exactlyk, respectively.

Consider the formulaaltp = GFp ∧ GF¬p. It requires that the propositionp alternates
infinitely often. Given aPROMPT-LTL formula ϕ, let relp(ϕ) denote the formula obtained
from ϕ by (recursively) replacing each subformula of the formFpψ by the LTL formula
(p → (pU(¬pUψ))) ∧ (¬p → (¬pU(pUψ))).4 Note that the definition is recursive, thus
relp(ϕ) may be exponentially larger thanϕ. The number of subformulas ofrelp(ϕ), however,
is linear in the number of subformulas ofϕ, and it is this number that plays a role in the
complexity analysis (equivalently, the size of theDAG-presentation ofrelp(ϕ) is linear in
the size of theDAG presentation ofϕ). For aPROMPT-LTL formula ϕ, we definec(ϕ) =
altp ∧ relp(ϕ). Thus,c(ϕ) forces the computation to be partitioned into infinitely many
blocks, and requires each prompt eventuality to be satisfiedin the current or next block or in
the position immediately after the next block (within two blocks, for short),

Lemma 2.1 Consider aPROMPT-LTL formulaϕ, a wordw, and a boundk ≥ 0.

1. If (w, 0, k) |= ϕ, then for everyk-spacedp-coloringw′ ofw, we have(w′, 0) |= c(ϕ).

2. If w′ is ak-boundedp-coloring ofw such that(w′, 0) |= c(ϕ), then(w, 0, 2k) |= ϕ.

Proof: Consider the first claim. Sinceϕ does not use the propositionp, then clearly(w′, 0, k) |=
ϕ. Annotate every location inw′ by the subformulas ofϕ that hold in this location. Every lo-
cation annotated byFpψ satisfies eitherpU(¬pUψ) or¬pU(pUψ). Indeed,w′ is k-spaced,
and(w, i, k) |= Fpψ if there existsj ≤ k such that(w, i+j, k) |= ψ. Hence,(w′, 0) |= c(ϕ).

Consider the second claim. Letw′ be ak-boundedp-coloring ofw such that(w′, 0) |=
c(ϕ), Annotate every location inw′ by the subformulas ofc(ϕ) that hold in this location.
Consider a locationi annotated bypU(¬pUψ) or ¬pU(pUψ). Sincew′ is k-bounded, it
follows that for somej ≤ i + 2k, the locationj is annotated byψ. Therefore, locationi
satisfiesFpψ. Hence,(w, 0, 2k) |= ϕ.

The alternating-color technique sets the basis to reasoning about aPROMPT-LTL formula
ϕ by reasoning about the LTL formulac(ϕ). The formulac(ϕ), however, does not require
the blocks in the colored computation to be of a bounded length. Indeed, the conjunctaltp
only forces the colors to be finite, and it does not prevent, say, a p-coloring in which each
block is longer than its predecessor block, and which is notk-bounded, for allk ≥ 0. Thus,
the challenge of forcing thep-coloring to bek-bounded for somek remains, and we have to
address it in each of the decision procedures described in the following sections.

It may seem that our technique relies solely on the ability toadd propositions and is im-
plementable in Quantified Propositional Temporal Logic (QPTL) [SVW87]. We note that the
added color propositions are not quantified here. Indeed, quantifying the additional proposi-
tion in c(ϕ) is equivalent to the original formula. The additional proposition is “quantified”
in the proper way by considering the combination of the proposition with the structure and
applying a proper algorithm. Furthermore, as discussed earlier, the satisfaction of aPROMPT-
LTL formula is evaluated with respect to aset of traces and not single traces. A QPTL
formula is satisfied over a set of traces if and only if it is satisfied by each of the traces
separately.

4Note that(p → (pU(¬pUψ))) ∧ (¬p → (¬pU(pUψ))) is equivalent to the slightly shorter formula
(pU(¬pUψ)) ∨ (¬pU(pUψ)).
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3 Realizability

Given an LTL formulaψ over the setsI andO of input and output signals, therealizability
problemfor ψ is to decide whether there is astrategyf : (2I)∗ → 2O such that all the infinite
computations generated byf satisfyψ [PR89]. Formally, a computationw ∈ (2I∪O)ω

is generated byf if w = (i0 ∪ o0), (i1 ∪ o1), (i2 ∪ o2), . . . and for all j ≥ 0, we have
oj = f(i0 · i1 · · · ij). Thus, the interaction is initiated by the environment thatgeneratesi0,
and the first state in the computation is labeledi0 ∪ f(i0). Then, the environment generates
i1, and the second state in the computation isi1 ∪ f(i0 · i1), and so on. It is known that if
some strategy that realizesψ exists, then there also exists aregular strategy(i.e, a strategy
generated by a finite-statetransducer) that realizesψ [BL69]. Formally, a transducer isD =
〈I,O,Q, η, q0, L〉, whereI andO are the finite sets of input and output signals (I andO are
also used as atomic propositions),Q is a finite set of states,η : Q×2I → Q is a deterministic
transition function,q0 ∈ Q is an initial state, andL : Q → 2O maps each state to a set of
output signals. The transducerD generatesf in the sense that for everyτ ∈ (2I)∗, we have
f(τ) = L(η(τ)), with the usual extension ofη to words over2I .

We first show thatPROMPT-LTL realizability of a formulaϕ cannot be simply reduced
to the realizability oflive(ϕ). Thus, we describe a formulaϕ such thatlive(ϕ) is realizable,
but for every strategyf that realizesϕ and for every candidate boundk ≥ 0, there is a
computationw generated byf such that(w, 0, k) 6|= ϕ. LetI = {i} andO = {o}. We define

ϕ = o ∧ (G(i→ o)) ∧ ((X¬o)Ri) ∧ (FpGo).

Thus, a computation satisfiesϕ if o holds in the present and wheneveri holds, wheneveri
does not hold in some position, theno does not hold in this position or in an earlier one, and
the computation prompt-eventually reaches a position fromwhich o holds everywhere. It is
not hard to see thatlive(ϕ) is realizable. Indeed, the strategy that setso to true everywhere
except in the first time thati is falserealizeslive(ϕ). On the other hand,ϕ is not realizable.
To see this, note that the position in which the inputi is set tofalsecan be delayed arbitrarily
by the environment, forcing a delay also in the fulfillment oftheGo eventuality. Thus, for
every candidate boundk ≥ 0, the input sequence in whichi is falseat the(k+1)-th position
cannot be extended to a computation that satisfiesFpGo with boundk.

The good news is that while realizability ofϕ cannot be reduced to the realizability of
live(ϕ), it can be reduced to the realizability ofc(ϕ). Intuitively, it follows from the fact that
in a regular strategy, the fact that all blocks are of a finite length does imply that they are also
of a bounded length. Formally, we have the following.

Theorem 3.1 A PROMPT-LTL formulaϕ over input signalsI and output signalsO is real-
izable iff the LTL formulac(ϕ) over input signalsI and output signalsO ∪ {p} is realizable.

Proof: Suppose thatϕ is realizable. Then there exists a strategyf : (2I)∗ → 2O and a
boundk ≥ 0 such that all the computationsw of f satisfy(w, 0, k) |= ϕ. We extendf to
a strategyf ′ : (2I)∗ → 2O∪{p} that realizesc(ϕ). Intuitively, we add to the computations
of f a p-coloring that is2k-tight. Formally, forτ ∈ (2I)∗, we definef ′(τ) = f(τ) ∪ {p} if
|τ | mod 2k is between0 andk− 1 andf ′(τ) = f(τ) if |τ | mod 2k is betweenk and2k− 1.
Consider a computationw induced byf ′. Note thatw is k-tight and it satisfiesϕ. Therefore,
by Lemma 2.1, we conclude thatw |= c(ϕ).

Assume now thatc(ϕ) is realizable. Letf : (2I)∗ → 2O∪{p} be a regular strategy that
realizes it. We show that the strategyf ′ : (2I)∗ → 2O obtained fromf by projecting it on
O (that is, for allτ ∈ (2I)∗, we havef ′(τ) = f(τ) ∩ O) realizesϕ. Let n be the number
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of states in the transducer that generatesf . We show that all the computations generated
by f ′ satisfyϕ with bound2n + 2. Consider a computationw of f . We claim thatw is
(n+ 1)-bounded. To see this, assume by way of contradiction thatw has adjacentp-change
points i andj such thatj − i > n + 1. Let D = 〈2I , 2O, Q, η, q0, L〉 be the transducer
that generatesf , and letq0, q1, q2, . . . be the run ofD that corresponds tow. SinceD has
n states, there exists a stateq and locationsi′ andj′ such thati ≤ i′ < j′ ≤ j − 1 and
qi′ = qj′ . Thus, some state repeats along thep-block that starts ati and ends atj − 1. Then,
the runq0, q1, . . . , qi′−1, (qi′ , . . . , qj′−1)

ω is also a run ofD. This run, however, generates a
computation off that does not satisfyaltp, contradicting the fact thatf realizesc(ϕ). So,
every computationw of f ′ is (n+1)-bounded, and it satisfiesc(ϕ). Therefore, by Lemma 2.1,
we conclude that(w, 0, 2n+ 2) |= ϕ.

Since LTL realizability is 2EXPTIME-complete and every LTLformula is also aPROMPT-
LTL formula, we can conclude:

Theorem 3.2 The problem of prompt realizability is 2EXPTIME-complete in the size of the
formula.

As demonstrated above, the alternating-color technique isvery powerful in the case of
realizability. Indeed, the challenge of forcing thep-coloring to bek-bounded for somek
is taken care of by the regularity of the strategy. We now proceed to the model-checking
problem, where a reduction toc(ϕ) is not sufficient.

Recently, Chatterjee and Henzinger introduced games with finitary winning conditions
[CH06, Hor07]. In such games the distance between a “bad event” and a “good event” should
be bounded. For example, in a finitary Büchi game, the distance between visits to accepting
states should be bounded, and in a finitary parity game, the distance between a visit to an
odd priority to a lower even priority should be bounded. These games are not directly related
to synthesis ofPROMPT-LTL. The main difference is that in finitary games the bound is
required to hold on every play independently. Unlike in our setting, there is no requirement
that there be a uniform bound on all the plays resulting from the same winning strategy. The
setting of finitary games with a uniform bound on all plays, and its relation toPROMPT-LTL
realizability, seems an interesting problem that is out of the scope of this paper.

4 Model Checking

In this section we describe an algorithm for solving the model-checkingproblem forPROMPT-
LTL. An alternative algorithm is described for the richer parameterized linear temporal logic
in [AETP01]. Our algorithm is much simpler, and it deviates from the standard LTL model-
checking algorithm only slightly. In addition, as we show inSection 6, the idea behind our
algorithm can be applied also in order to solve assume-guarantee model checking, which is
not known to be the case with the algorithm in [AETP01]. Our algorithm is based on the
automata-theoretic approach to LTL model-checking, and wefirst need some definitions.

A nondeterministic B̈uchi word automaton(NBW for short) isA = 〈Σ, S, δ, s0, α〉,
whereΣ is a finite alphabet,S is a finite set of states,δ : S × Σ → 2S is a transition
function,s0 ∈ S is an initial state, andα ⊆ S is a Büchi acceptance condition. Arun of
A on a wordw = w0 · w1 · · · is an infinite sequence of statess0, s1, . . . such thats0 is the
initial state and for allj ≥ 0, we havesj+1 ∈ δ(sj , wj). For a runr = s0, s1, . . ., let
inf(r) = {s ∈ S | s = si for infinitely manyi’s} be the set of all states occurring infinitely
often in the run. A run isacceptingif inf(r) ∩ α 6= ∅. That is, the run visits infinitely many
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states fromα. A wordw is acceptedby A if there exists some accepting run ofA overw.
The languageof A, is the set of words accepted byA.

Theorem 4.1 [VW94] For every LTL formulaϕ overAP there exists an NBWAϕ over the
alphabet2AP such thatAϕ accepts exactly all words that satisfyϕ. The number of states of
Aϕ is at most exponential in the number of subformulas ofϕ.

In order to check whether a systemS satisfies an LTL formulaϕ, one takes the product
of S with the NBWA¬ϕ and tests the product for non-emptiness [VW86]. Indeed, a path in
this product witnesses a computation ofS that does not satisfyϕ. As discussed in Section 1,
in the case ofPROMPT-LTL we cannot translate formulas to languages. Moreover, we also
cannot simply apply the alternating-color technique: evenif we check the nonemptiness of
the product of the system (an augmentation of it in which the propositionp behaves nonde-
terministically, thus allp-colorings are possible) with the automaton foraltp ∧ ¬relp(ϕ), a
path in this product only implies that for some boundk ≥ 0, the formulaϕ is not satisfied in
S with boundk. For proving thatS does not satisfyϕ we have to prove something stronger,
namely, thatϕ is not satisfied inS with boundk, for all boundsk ≥ 0. For that, we do
take the product of the system with the automaton foraltp ∧ ¬relp(ϕ), but add a twist to the
nonemptiness check: we search for a path in the product in which eachp-block contains at
least one state that repeats. Such a state indicates that forall boundsk ≥ 0, thep-block can
be pumped to ap-block of length greater thank, implying thatϕ cannot be satisfied inS with
boundk. We now formalize this intuition.

A colored B̈uchi graphis a tupleG = 〈{p}, V, E, v0, L, α〉, wherep is a proposition,V
is a set of vertices,E ⊆ V × V is a set of edges,v0 ∈ V is an initial vertex,L : V →
2{p} describes the color of each vertex, andα ⊆ V is a set of accepting states. A path
π = v0, v1, v2, . . . of G is pumpableif all its p-blocks have at least one state that repeats.
Formally, if i andi′ are adjacentp-change points, then there are positionsj andj′ such that
i ≤ j < j′ < i′ andvj = vj′ . Also, π is fair if it visits α infinitely often. Thepumpable
nonemptinessproblem is to decide, givenG, whether is has a pumpable fair path.

Let c(ϕ) = altp ∧ ¬relp(ϕ). That is, we relativize the satisfaction ofFp to the new
propositionp, negate the resulting formula, and require the propositionp to alternate infinitely
often. LetAc(ϕ) = 〈2AP∪{p}, Q, δ, q0, α〉 be the NBW forc(ϕ) per Theorem 4.1. Consider
a systemS = 〈AP, S, ρ, s0, L〉. We now define the product ofS with Ac(ϕ) by means of
a colored Büchi graph. Note thatS does not refer to the propositionp, and we duplicate
its state space in order to have in the product all possiblep-colorings of computations inS.
Thus, the product isP = 〈{p}, S × {{p}, ∅} ×Q,M, 〈s0, {p}, q0〉, L, S × {{p}, ∅} × α〉,
whereM(〈s, c, q〉, 〈s′, c′, q′〉) iff ρ(s, s′) andq′ ∈ δ(q, L(s) ∪ c), andL(〈s, c, q〉) = c.

It is not hard to see that a pathπ = 〈s0, c0, q0〉, 〈s1, c1, q1〉, 〈s2, c2, q2〉, . . . in P corre-
sponds to a computations0, s1, s2, . . . of S, ap-coloringL(s0)∪c0, L(s1)∪c1, L(s2)∪c2, . . .
of the trace that the computation induces, and a runq0, q1, q2, . . . of Ac(ϕ) on thisp-coloring.

Theorem 4.2 The systemS does not satisfyϕ iff the product ofS andAc(ϕ) is pumpable
nonempty.

Proof: Assume first thatS 6|= ϕ. Then, for every boundk ≥ 0, there exists a computation
πk of S such that(πk, 0, 2k) 6|= ϕ. Let k be larger than|S| · |Q| and letπk be as above.
Since(πk, 0, 2k) 6|= ϕ, then, by Lemma 2.1, for allk-boundedp-coloringπ′

k of πk, we have
(π′
k, 0) 6|= c(ϕ). Consider thek-tight p-coloringπ′

k of πk that starts with a green block. By
the above,(π′

k, 0) 6|= c(ϕ). Also, clearly,(π′
k, 0) |= altp. Thus,(π′

k, 0) |= c(ϕ). In addition,
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sincek > |S| · |Q|, every path in the productP that corresponds to ak-tight p-coloring of
πk is pumpable. Hence, the product ofπ′

k with an accepting run ofAc(ϕ) is a pumpable fair
path inP .

Assume now thatP contains a pumpable fair pathπ = 〈s0, c0, q0〉, 〈s1, c1, q1〉, 〈s2, c2, q2〉,
. . .. We claim that for everyk ≥ 0, we can pump the computations0, s1, s2, . . . of S to a
computation that does not satisfyϕ with boundk. To see this, note that for eachk, we can
pump the pathπ to a fair pathπk such that thep-coloring of the trace that corresponds toπk
is k-spaced and satisfies¬relp(ϕ). Hence, by Lemma 2.1, it does not satisfyϕ with bound
k.

In Section 5, we study the problem of deciding whether a colored Büchi graph is pumpable-
nonempty, and prove that it is in NLOGSPACE and can also be solved in linear time. This,
together with Theorems 4.1 and 4.2, imply the upper bound in the following theorem. The
lower bound follows from the known lower bound for LTL.

Theorem 4.3 The model-checking problem forPROMPT-LTL is PSPACE-complete and can
be solved in time exponential in the length of the formula andlinear in the size of the system.

Note that while the pumpable nonemptiness problem to whichPROMPT-LTL model-
checking is reduced is a variant of the nonemptiness problemto which LTL model checking
is reduced, the construction of the product is almost the same. In particular, the extensive
work on optimal compilation of LTL formulas to NBW (see survey in [Var07]), is applicable
to our solution too.

Remark 4.4 The model-checking algorithm of the parametric linear temporal logic of [AETP01]
is based on the observation that if aPROMPT-LTL formulaϕ is satisfied in a systemS, then
it is satisfied with boundk, for somek that is exponential inϕ and polynomial inS. One
cannot hope to improve this bound. Indeed, for everyn ≥ 1, we can define aPROMPT-LTL
formulaψn of size linear inn such that a systems satisfiesψn iff in all its computations, the
atomic propositionq corresponds to ann-bit counter, and the value of the counter promptly
eventually reaches2n − 1. Clearly,ψn is promptly satisfied, but the minimal boundk with
whichψn is satisfied with boundk (in some system) is exponential inn.

The algorithm in [AETP01] can also be used in order to find the minimal bound. It is an
open question whether the minimal bound can be found using our simplified algorithm.

5 Algorithms for Colored Büchi Graphs

In Section 4 we reduced model-checking forPROMPT-LTL to the pumpable nonemptiness
problem for colored Büchi graphs. In this section we solve this problems, and provide space
and time bounds.

Theorem 5.1 The pumpable nonemptiness problem for colored Büchi graphs is NLOGSPACE-
complete and can be solved in linear time.

Proof: Let G = 〈{p}, V, E, v0, L, α〉. We start with an algorithm in NLOGSPACE. It is
not hard to see that it is enough to search for pumpable fair paths of the formuwω where
u,w ∈ V +. In addition, we can assume that|u| is ap-change point, that is, the color of the
last vertex inu is different from the color of the first vertex inw, and in addition that the first
p-block inw visitsα.
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It is well known that we can check whether a vertexv is reachable from a vertexv′ in
NLOGSPACE. We guess a successorv′′ of v, if v′′ = v′ the answer is yes, otherwise we
check whetherv′ is reachable fromv′′. The algorithm requires logarithmic space in order to
store the verticesv, v′ andv′′.

In order to find a pumpable fair path we have to iterate the search of paths described
above5. We say that a vertexv′ is block-reachablefrom v if there exists a path fromv to v′

such that all vertices on the path agree on their color. Block-reachability can be established
by an algorithm similar to the above where the search is restricted to vertices that agree with
v andv′ on their color. We say that vertexv′ is pump-block-reachablefrom v if v′ is block-
reachable fromv and in addition some vertex repeats on the path fromv to v′. We can
establish thatv′ is pump-block-reachable fromv by an algorithm similar to the above. We
guess a vertexv′′ that agrees withv andv′ on their color, ensure thatv′′ is block-reachable
from v, that v′′ is block-reachable from itself, and thatv′ is block-reachable fromv′′. A
simple modification of the above can check thatv′ is pump-block-reachable fromv by a path
that visitsα.

Using the pump-block-reachable check described above we dothe following. We guess a
vertexv1 that is the first vertex inw. We check thatv1 is reachable fromv0 with a sequence
of pump-block-reachable steps. That is, to make one step from nodev we guess a nodev′

that does not agree withv on its color. We guess a predecessorv′′ of v′ that does agree withv
on its color and check thatv′′ is pump-block-reachable fromv. Then we continue the search
from v′. Once we have established thatv1 is reachable fromv0, we guess a vertexv2, make
sure that some predecessorv′1 of v2 is pump-block-reachable fromv1 with a path that visits
α. Finally, we check thatv1 is reachable fromv2 by a sequence of pump-block-reachable
steps (as before).

Since the reachability problem in directed graphs is in NLOGSPACE, our algorithm can
be implemented in NLOGSPACE.

We now move to the time complexity. For standard Büchi nonemptiness, one looks for
a reachable nontrivial strongly connected component that intersectsα. In the colored case,
we should further check that eachp-block in the path can be pumped. We do this by making
sure that every greenp-block contains at least one vertex that belongs to a nontrivial strongly
connected component in the graph of the green vertices, and similarly for the redp-blocks.

Consider the graphGg = 〈Vg, Eg〉 obtained fromG by restricting attention to green
vertices. Thus,Vg = {v ∈ V | L(v) = {p}} andEg = E ∩ (Vg × Vg). The graph
Gr = 〈Vr , Er〉 is defined similarly. We can find the maximal strongly connected components
(MSCC) ofGg andGr in linear time [Tar72] (note we are interested also in MSCCs that are
not reachable fromv0 in Gg andGr). Let Sg ⊆ Vg andSr ⊆ Vr denote the union of all
non-trivial MSCCs inGg andGr, respectively.

Let backg(Sg) be the vertices that can reach some vertex inSg, and lete-backg(Sg) be the
edges between these vertices. We tag the vertices inbackg(Sg)\Sg by the tagB. Formally, we
definebackg0(Sg) = Sg, andbackgi+1(Sg) = {v ∈ Vg | ∃v′ ∈ backgi (Sg) and(v, v′) ∈ E},
for 1 ≤ i < n. Then,

backg(Sg) = Sg ∪ ((backgn(Sg)) \ Sg) × {B}).

For a vertexu ∈ backg(Sg), let ver(u) be the vertex inV that inducesu; that is, the vertex
obtained fromu by ignoring its tag, if exists. Then,

e-backg(Sg) = { 〈u, u′〉 : E(ver(u), ver (u′)) andu, u′ ∈ backg(Sg) }.

5This is similar to the proof that emptiness of Büchi graphs is solvable in NLOGSPACE. We guess a vertex
v ∈ α, show that it is reachable fromv0 and that it is reachable from itself.
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We note that the only cycles inbackg(Sg) are inSg. Indeed, such a cycle is part of an MSCC
of green vertices and belongs inSg. In a similar way, we defineforwardg(Sg) to be the set
of vertices that are reachable from some vertex inSg (with vertices not inSg tagged withF)
and definee-forwardg(Sg) to be the edges between these vertices. The setsbackr, e-backr,
forwardr, ande-forwardr are defined similarly. Another type of edges we need are edges
betweenp-blocks. Let

Eg→r = {〈u, u′〉 : E(ver(u), ver (u′)), u ∈ forwardg(Sg), andu′ ∈ backr(Sr)}

be the set of edges along which the color changes from green tored, and let

Er→g = {〈u, u′〉 : E(ver(u), ver (u′)), u ∈ forwardr(Sr), andu′ ∈ backg(Sg)}

be the set of edges along which the color changes from red to green.
Consider now the graphG′ = 〈V ′, E′〉, whereV ′ = backg(Sg) ∪ forwardg(Sg) ∪

backr(Sr) ∪ forwardr(Sr), and

E′ = e-forwardg(Sg) ∪ e-forwardr(Sr) ∪ e-backg(Sg) ∪ e-backr(Sr) ∪ Eg→r ∪ Er→g.

Note that the vertices inSg andSr appear inG′ with no tag. Other vertices (these inVg
that can reach an MSCC inSg along green vertices and can also be reached from a different
MSCC inSg along green vertices, and similarly forVr) may appear inG′ with both tags, thus
the number of vertices inG′ is at most twice the number of vertices inG.

Intuitively, the graphG′ contains exactly all the pumpable computations ofG. A pumpable
fair path inG is a sequence of green and red segments. Each segment is the concatenation of
at most three paths: a (possibly empty) prefix that leads to anMSCC, a cycle in an MSCC,
and a (possibly empty) suffix that exits the MSCC. In order to recognize such segments we
construct the graphG′. We start by adding toG′ all the MSCCs in the green and red sub-
graphs (Sg andSr, respectively). In addition, we have to allow going from green MSCCs to
red MSCCs and vice versa. For that, we add the vertices that are backward reachable from
green MSCCs (backg(Sg)) and the edges between them (e-backg(Sg)) and forward reach-
able from green MSCCs (forwardg(Sg) ande-forwardg(Sg)), and similarly for red vertices.
Finally, we add edges from the forward of one color to the backward of the other color.

Example 5.2 Consider the graphG in Figure 3. Red vertices are depicted in bold. Since
v6 is the uniqueα vertex, it is easy to see that the graph does not contain a fairpumpable
path. The graphG′ on the right shows the resulting graph after the transformation above.
Vertexv4 is duplicated to(v4, F ), which is forward reachable fromv3, and to(v4, B), which
is backward reachable fromv5. The graphG′ does not contain a path fromv0 to v6. Note
that the following simpler solution is not sound. Try just adding the backward and forward
reachable vertices without duplicating them. Then, in the graphG, vertexv4 is both backward
and forward reachable from green MSCCs. However, includingboth the edge fromv2 to v4
and the edge fromv4 to v6 falsely recognizes the pathv0v2v4v6 as fair pumpable.

Claim 5.3 The graphG is pumpable nonempty iffG′ has some non-trivial MSCC that is
reachable fromv0 (possibly tagged withB) and contains a vertex fromα.

Proof: Suppose that there is some non-trivial MSCC inG′ with a vertexv from α. Let
π = v0, v1, . . . , be a path fromv0 that visitsv infinitely often. We show that we can find a
pumpable pathπ′ fromv0 that visitsv infinitely often. (Note thatV ′ ⊆ V ∪(V ×{B, F}), thus
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Figure 3: A colored Büchi graphG and the graphG′ resulting from the transformation.

we abuse here notation and move to talk about the projection of π onV ). Consider the pathπ.
Every edge inπ is in one of the six sets of edges that compriseE′. Partitionπ to thep-blocks
that comprise itπ0, π1, . . ., whereπi = vji , vji+1, . . . , vji+1−1. We construct by induction a
pathπ′ in which every block is pumpable. Consider the blocksπ0 andπ1. Suppose thatπ0

is green andπ1 is red (the dual case is similar). It follows that(vj1−1, vj1) ∈ Eg→r and that
vj1−1 ∈ forwardg(Sg). Hence, there has to be a path inGg betweenv0 andvj1−1 that passes
through some MSCC inGg. Letπ′

1 be the path that goes fromv0 to vj1−1 through this MSCC
and passes at least some vertex in this MSCC twice. Consider the blocksπi−1, πi, πi+1.
Assume thatπi−1 is green,πi is red, andπi+1 is green. Then(vji−1, vji) ∈ Eg→r and
(vji+1−1, vji+1

) ∈ Er→g. It follows that vji ∈ backr(Sr) andvji+1−1 ∈ forwardr(Sr).
Thenπi visits some vertexv in Sr, and we setπ′

i to be a path betweenvji andvji+1−1 that
visits v twice. The case where the pathπ has only finitely manyp-blocks can be handled
similarly.

Consider a pumpable fair pathπ = v0, v1, . . . in G. We can tag some of the vertexvi by
B or F according to its location in its block (tag withB vertices not inSg that appear before
the repeating state and tag withF vertices not inSg that appear after the repeating state). It is
easy to see that all the edges in the tagged version ofπ are present inG′. It follows that inG′

there is some reachable MSCC that visitsα.

We analyze the time it takes to constructG′ and to check whether it has a non-trivial
MSCC that intersectsα. Clearly, the MSCC decomposition ofGg andGr can be done in
linear time. The search forbackg andforwardg is done by backward and forward propagation
from Sg. During the search, the edges ine-backg ande-forwardg can be marked. The case
of backr andforwardr is similar. This stage can be completed in linear time as well. Finally,
the MSCC decomposition ofG′ is completed again in linear time. Since the size ofG′ is at
most twice the size ofG, the overall running time is linear.

We note than our algorithm is based on MSCC-decomposition. It is an open question
whether a linear-time algorithm based on nested depth-first-search can be found (see discus-
sion of these types of algorithms in [Var07]).

In Section 6 we reduce assume-guarantee model-checking forPROMPT-LTL to a pumpable
nonemptiness problem for colored Büchi graphs with two sets of colors. We now turn to con-
sider such graphs.

A colored B̈uchi graph of degree twois a tupleG = 〈{p, q}, V, E, v0, L, α〉. It is similar
to a colored Büchi graph, only that now there are two sets of colors, described byp andq (p,
¬p, q, and¬q). Accordingly,L : V → 2{p,q}. Also, α is a generalized Büchi condition of
index 2, thusα = {α1, α2}, whereα1, α2 ⊆ V . A pathπ = v0, v1, v2, . . . of G is pumpable
if we can pump all itsq-blocks without pumping itsp-blocks. Formally, ifi andi′ are adjacent
q-change points, then there are positionsj, j′, andj′′ such thati ≤ j < j′ < j′′ < i′,
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vj = vj′′ andp ∈ L(vj) iff p /∈ L(vj′). Also, π is fair if it visits bothα1 andα2 infinitely
often. Thepumpable nonemptinessproblem is to decide, givenG, whether it has a pumpable
fair path.

Theorem 5.4 The pumpable nonemptiness problem for colored Büchi graphs of degree two
is NLOGSPACE-complete and can be solved in linear time.

Proof: As before, we are searching for a pumpable fair path of the form uwω whereu,w ∈
V + and that|u| is ap-change point.

The search for aq-block that connectsv to v′ and contains a pumpable section is parti-
tioned as follows. We guessv′′ that agrees withv on the assignment toq and search for a
path fromv to v′ while maintaining the sameq assignment. Then we search for a path from
v′′ to itself. This path has to maintain the same assignment toq, however, has to change the
assignment top at least twice (as the path leads fromv′′ to itself the number of changes is
even). Finally, we search for a path fromv′′ to v′ that maintains the same assignment toq.

Using this basic reachability algorithm we do the following. We guess a vertexv1 that
is the first vertex inw. We make sure thatv1 is reachable fromv0 with a sequence of such
moves. We make sure thatv1 is reachable from itself with a sequence of such moves that visit
bothα1 andα2. The entire algorithm can be implemented in NLOGSPACE.

We now describe a linear-time algorithm for solving the problem. Assume thatv0 has
no incoming edges. Consider the graphGq = 〈Vq, Eq〉 whereVq is the subset of vertices
labeled byq, i.e. Vq = {v ∈ V | q ∈ L(v)} andEq = E ∩ (Vq × Vq). The graph
Gq = 〈Vq , Eq〉 is defined similarly for vertices not labeled byq. We can analyze the maximal
strongly connected components (MSCC) ofGq andGq in linear time [Tar72]. We restrict our
attention to MSCCs that contain both vertices labeled byp and vertices not labeled byp. Let
Sq ⊆ Vq denote the union of all non-trivial MSCCsM in Gq such that there existv, v′ ∈M
such thatp ∈ L(v) andp /∈ L(v′). DefineSq ⊆ Vq similarly.

For β ∈ {q, q}, the setsbackβ(Sβ), e-backβ(Sβ), forwardβ(Sβ), e-forwardβ(Sβ) are
defined as in the proof of Theorem 5.1. As there, the vertices in backβ(Sβ) \ Sβ are tagged
with B and the vertices inforwardβ(Sβ) \ Sβ are tagged withF.

Consider now the graphG′ = 〈{p}, V ′, E′, v0, L, α〉 of G whereV ′ = backq(Sq) ∪
forwardq(Sq) ∪ backq(Sq) ∪ forwardq(Sq) andE′ is as follows.

E′ = Eq→q ∪ Eq→q ∪ e-forwardq(Sq) ∪ e-forwardq(Sq) ∪ e-backq(Sq) ∪ e-backq(Sq),

whereEq→q andEq→q are defined as follows.

Eq→q = {〈u, u′〉 : E(ver (u), ver(u′)), u ∈ forwardq(Sq), andu′ ∈ backq(Sq)},
Eq→q = {〈u, u′〉 : E(ver (u), ver(u′)), u ∈ forwardq(Sq), andu′ ∈ backq(Sq)}.

Claim 5.5 The graphG is pumpable nonempty iffG′ has some non-trivial MSCC that is
reachable fromv0 (possibly tagged withB) and contains vertices fromα1 and fromα2.

Proof: Suppose that there is some non-trivial MSCC inG′ with a verticess1 ands2 from
α1 andα2, respectively. Letπ = v0, v1, . . . , be a path fromv0 that visitss1 ands2 infinitely
often. We show that we can find a pumpable pathπ′ from v0 that visitsα1 andα2 infinitely
often. Consider the pathπ. Every edge inπ is in one of the six sets of edges that compriseE′.
Partitionπ to theq-blocks that comprise itπ0, π1, . . ., whereπi = vji , vji+1, . . . , vji+1−1.
We build by induction a pathπ′ in which every block is pumpable. Consider the blocks
π0 andπ1. Suppose thatπ0 is labeled byq andπ1 is not labeled byq. It follows that
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(vj1−1, vj1) ∈ Eq→q and thatvj1−1 ∈ forwardq(Sq). Hence, there has to be a path inGq
betweenv0 and vj1−1 that visits some vertexv in Sq. By definition ofSq, the vertexv
belongs to an MSCCM that contains vertices labeled byp and vertices not labeled byp.
Let π′

1 be the path that goes fromv0 to vj1−1, visitsv twice, and between the two visits tov
passes vertices labeled byp and vertices not labeled byp. Consider the blocksπi−1, πi, πi+1.
Assume thatπi−1 is labeled byq, πi is not labeled byq, andπi+1 is labeled byq. Then
(vji−1, vji) ∈ Eq→q and (vji+1−1, vji+1

) ∈ Eq→q. It follows that vji ∈ backq(Sq) and
vji+1−1 ∈ forwardq(Sq). Thenπi visits some vertexv in Sq, and we setπ′

i to be a path
betweenvji andvji+1−1 that visitsv twice, and in addition between the two visits tov passes
vertices labeled byp and vertices not labeled byp. We do not remove visits toα1 andα2,
hence, ifπ visitsα1 andα2 infinitely often so doesπ′. The case where the pathπ has only
finitely manyq-blocks can be handled similarly.

Consider a pumpable fair pathπ in G. It is easy to see that all the edges onπ are present
also inG. It follows that inG there is some reachable MSCC that visits bothα1 andα2.

As before, all parts of the algorithm can be executed in linear time.

Remark 5.6 The algorithms described above are explicit. A symbolicPROMPT-LTL model
checking algorithm follows from the translation ofPROMPT-LTL to theµ-calculus described
later in Theorem 7.3. The translation, however, involves a significant blow up. A symbolic
algorithm that performs well on the colored Büchi graphs isleft open. For standard Büchi
graphs, algorithms can be classified as ones that are based ona nested fixed point computation
that calculates the set of states that can reachα infinitely often [EL86], and ones that calculate
symbolically the MSCC of the graph [BGS00]. We believe that algorithms of the second type
can be extended to colored graphs.

6 Assume-Guarantee Model Checking

For two systemsS = 〈AP, S, ρ, s0, L〉 andS′ = 〈AP, S′, ρ′, s′0, L
′〉, the parallel composi-

tion of S with S′, denotedS‖S′, is the system that contains all the joint behaviors ofS and
S′. Formally,S‖S′ = 〈AP, S′′, ρ′′, s′′0 , L

′′〉, whereS′′ ⊆ S × S′ contains exactly all pairs
that agree on their label, that is〈s, s′〉 ∈ S′′ iff L(s) = L′(s′). Then,s′′0 = 〈s0, s′0〉 and
ρ′′(〈s, s′〉, 〈t, t′〉) iff ρ(s, t) andρ′(s′, t′). Finally,L′′(〈s, s′〉) = L(s).

An assume-guarantee specificationfor a systemS is a pair of two specificationsϕ1 and
ϕ2. The systemS satisfies the specification, denoted〈ϕ1〉S〈ϕ2〉, if it is the case that for all
systemsS′, if S‖S′ satisfiesϕ1, thenS‖S′ also satisfiesϕ2 [Pnu85]. In the context of LTL it
is not hard to see that〈ϕ1〉S〈ϕ2〉 iff S |= ϕ1 → ϕ2. Intuitively, since the‖ operator amounts
to taking the intersection of the languages ofS andS′, it is sound to restrict attention to
systemsS′ that correspond to single computations ofS. In the case ofPROMPT-LTL, we can
also restrict attention to single computations, but we haveto take the bounds into an account.
Formally, we have the following.

Lemma 6.1 Consider a systemS andPROMPT-LTL formulasϕ1 andϕ2. The specification
〈ϕ1〉S〈ϕ2〉 does not hold iff there is a boundk1 ≥ 0 such that for every boundk2 ≥ 0, there
is a tracew of S such that(w, 0, k1) |= ϕ1 but (w, 0, k2) 6|= ϕ2.

Since refuting assume-guarantee specifications refers to two bounds, we extend the alternating-
color technique to refer to two sets of colors. The atomic propositionp partitions the com-
putation to blocks that boundk1, and a new atomic propositionq does the same fork2.
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According to Lemmas 2.1 and 6.1, refuting〈ϕ1〉S〈ϕ2〉 amounts to finding a boundk1 ≥ 0
such that for all boundsk2 ≥ 0, there is a computationw of S such thatw has ak1-bounded
p-coloring that satisfiesaltp ∧ relp(ϕ1), butw also has ak2-spacedq-coloring that satisfies
altq∧¬relq(ϕ2). Indeed, such a computation satisfiesϕ1 with boundk1, and does not satisfy
ϕ2 with boundk2.

The intuition above led us to the definition of colored Büchigraphs of degree two and the
corresponding definition of pumpable nonemptiness. As before, the pumpable nonemptiness
technique can be used for solving the assume-guarantee model-checking problem.

Let c(ϕ1) = altp∧relp(ϕ1) andc(ϕ2) = altq∧¬relq(ϕ2), and letAc(ϕ1) = 〈2AP∪{p}, Q1, δ1, q
1
0 , α1〉,

andAc(ϕ2) = 〈2AP∪{q}, Q2, δ2, q
2
0 , α2〉 be the corresponding NBWs (per Theorem 4.1). We

define the product ofS with Ac(ϕ1) andAc(ϕ2) as the following colored Büchi graph of
degree two:

P =

〈

{p, q}, S × 2{p,q} ×Q1 ×Q2,M, 〈s0, {p, q}, q10, q
2
0〉, L,

{S × 2{p,q} × α1 ×Q2, S × 2{p,q} ×Q1 × α2}

〉

whereM(〈s, c, q1, q2〉, 〈s′, c′, q′1, q
′
2〉) iff ρ(s, s′), q′1 ∈ δ1(q1, L(s) ∪ (c ∩ {p})), andq′2 ∈

δ2(q2, L(s) ∪ (c ∩ {q})). Finally,L(〈s, c, q1, q2〉) = c.

Theorem 6.2 The specification〈ϕ1〉S〈ϕ2〉 does not hold iff the product ofS with Ac(ϕ1)

andAc(ϕ2) is pumpable nonempty.

Proof: Assume that〈ϕ1〉S〈ϕ2〉 does not hold. Then, by Lemma 6.1, there is a boundk1 ≥ 0
such that for every boundk2 ≥ 0, there is a tracewk1,k2 of S such that(wk1,k2 , 0, k1) |= ϕ1

but (wk1,k2 , 0, 2k2) 6|= ϕ2. Let k2 be larger than2 · |S| · |Q1| · |Q2| · k1 and letπk1,k2 be as
above. Since(πk1,k2 , 0, k1) |= ϕ1, then, by Lemma 2.1, for allk1-spacedp-coloringsπ′

k1,k2

of πk1,k2 , we have(π′
k1,k2

, 0) |= c(ϕ1). Since(πk1,k2 , 0, 2k2) 6|= ϕ2, then, by Lemma 2.1,
for all k2-boundedq-coloringsπ′′

k1,k2
of πk1,k2 , we have(π′′

k1,k2
, 0) 6|= c(ϕ2). Consider the

k1-tight p-coloring andk2-tight q-coloringπ′
k1,k2

of πk1,k2 that starts withp andq. By the
above,(π′

k1,k2
, 0) 6|= c(ϕ2). Also, clearly,(π′

k1,k2
, 0) |= altq. Thus,(π′

k1,k2
, 0) |= c(ϕ2). In

addition, sincek2 > 2 · |S| · |Q1| · |Q2| · k1, every path in the productP is (p, q)-pumpable.
Hence, the product ofπ′

k1,k2
with accepting runs ofAc(ϕ1) and ofAc(ϕ2) is a(p, q)-pumpable

fair path inP .
Assume now thatP contains a(p, q)-pumpable fair pathπ = 〈s0, c0, q10 , q

2
0〉, 〈s1, c1, q

1
1 , q

2
1〉,

〈s2, c2, q12 , q
2
2〉, . . .. Let k1 denote the size of the maximalp-block inπ (as explained in Sec-

tion 5, if P is (p, q)-pumpable nonempty, then it has a regular(p, q)-pumpable path, thus the
maximum is well defined). We claim that for everyk2 ≥ 0, we can pump the computation
s0, s1, s2, . . . of S to a computation that satisfiesϕ1 with bound2k1 but does not satisfyϕ2

with boundk2. Note that if we pumpπ, we get a pathπ′ such that thep-coloring of the trace
that corresponds toπ′ is k1-bounded and satisfiesc(ϕ1). In addition, for eachk2, we can
pump that pathπ to a fair pathπk2 such that theq-coloring of the trace that corresponds to
πk2 is 2k2-spaced and satisfies¬relq(ϕ2). Hence, by Lemma 2.1, it satisfiesϕ1 with bound
2k1, and does not satisfyϕ2 with boundk2.

Theorems 4.1, 5.4, and 6.2 imply the upper bound in the following theorem. The lower
bound follows from the known lower bound for LTL.

Theorem 6.3 The assume-guarantee model-checking problem forPROMPT-LTL is PSPACE-
complete and can be solved in time exponential in the length of the formulas and linear in the
size of the system.
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Remark 6.4 For LTL, fairness constraints about the system can be specified in the formula.
Thus, checking thatϕ2 holds in all computations that satisfy the fairness constraint ϕ1 can
be reduced to model checkingϕ1 → ϕ2. A fairness assumption can also be specified in
PROMPT-LTL. Here, however, one has to allow the fairness assumption and the specifica-
tion to be satisfied with different bounds. Thus, fairness should be reduced to checking
〈ϕ1〉S〈ϕ2〉.

For two formulasϕ1 andϕ2, we say thatϕ1 impliesϕ2 iff for every systemS, if S satisfies
ϕ1, then it also satisfiesϕ2. In the case of LTL,ϕ1 impliesϕ2 iff the formulaϕ1 → ϕ2 is
valid. In the case ofPROMPT-LTL, ϕ1 impliesϕ2 iff 〈ϕ1〉U〈ϕ2〉, whereU is the universal
system (a clique over2AP that contains all traces overAP ). Indeed, since for every system
S we have thatS‖U = S, then〈ϕ1〉U〈ϕ2〉 does not hold iff there is a systemS such that
if S satisfiesϕ1 but S 6|= ϕ2. SinceU is exponential inAP , and the PSPACE complexity
of assume-guarantee model checking originates from an algorithm that is polynomial in the
formulas and only logarithmic in the system, we have the following (the lower bound follows
from the PSPACE hardness of LTL implication).

Theorem 6.5 The implication problem forPROMPT-LTL is PSPACE-complete.

7 Expressiveness

In this section we study expressiveness aspects ofPROMPT-LTL. We show that aPROMPT-
LTL formula ϕ has an equivalent LTL formula iffϕ and live(ϕ) are equivalent, thus the
problem of deciding whetherϕ can be translated to LTL is PSPACE-complete. Since the
semantics ofPROMPT-LTL is defined with respect to a system, a natural question iswhether
we can translatePROMPT-LTL formulas to branching temporal logics. We show that indeed,
all PROMPT-LTL formulas can be translated to theµ-calculus.

All our results refer to finite-state systems. Thus, we say that two formulasϕ andϕ′ are
equivalent iff for all finite systemsS, we have thatS |= ϕ iff S |= ϕ′. In fact, we later
show that the finiteness of the systems is crucial, and the results are different for infinite-state
systems.

7.1 From PROMPT-LTL to LTL

SomePROMPT-LTL formulasϕ are equivalent to the LTL formulalive(ϕ). For example, it is
not hard to see thatFpr is equivalent toFr, for an atomic propositionr. On the other hand,
as demonstrated in Section 1, thePROMPT-LTL formula FpGr is not equivalent to the LTL
formulaFGr. IsFpGq equivalent to another LTL formula? A negative answer follows from
Lemma 7.1 below.

Lemma 7.1 Consider aPROMPT-LTL formulaϕ. There is an LTL formula equivalent toϕ
iff ϕ is equivalent tolive(ϕ).

Proof: Assume thatϕ has an equivalent LTL formula. Then, there is anω-regular language
Lϕ ⊆ (2P )ω such that a systemS satisfiesϕ iff all the traces ofS are contained inLϕ. We
prove that then, for every systemS, we have thatS |= live(ϕ) iff S |= ϕ. The direction
from right to left holds always. For the other direction, assume by way of contradiction that
S |= live(ϕ), butS 6|= ϕ. Thus, the traces ofS are not contained inLϕ. SinceS is finite
state andLϕ is ω-regular, but there is anω- regular tracew of S that does not belong toLϕ.
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Let k be such thatw satisfieslive(ϕ) with boundk (sincew is a single trace of a finite state
system, such a boundk must exist). Then,w satisfies alsoϕ, and it therefore belongs toLϕ.

Theorem 7.2 Deciding whether aPROMPT-LTL formula has an equivalent LTL formula is
PSPACE-complete.

Proof: By Lemma 7.1, the problem of deciding whether aPROMPT-LTL formulaϕ has an
equivalent LTL formula can be reduced to checking the equivalence ofϕ andlive(ϕ). Since
ϕ → live(ϕ) is valid for allϕ, one should only check the implicationlive(ϕ) → ϕ, which,
according to Theorem 6.5, can be done in PSPACE.

We prove hardness in PSPACE by a reduction from the satisfiability problem of LTL.
Consider an LTL formulaϕ, and a propositionr not used inϕ. It is not hard to prove that the
PROMPT-LTL formulaϕ ∧FpGr has an equivalent LTL formula iffϕ is unsatisfiable.

7.2 From PROMPT-LTL to the µ-calculus

It is not hard to prove that thePROMPT-LTL formulaFpGq is equivalent to the CTL formula
AFAGq. Indeed, a system satisfies both formulas iff there is a boundk ≥ 0 such that all
the computations may visit a state in whichq does not hold only in the firstk positions.
One may wonder whether this argument can be generalized, leading to a simple translation
of PROMPT-LTL formulas to CTL⋆ formulas: given aPROMPT-LTL formulaϕ, translate it
to a CTL⋆ formulaϕ′ by (recursively) replacing all subformulas of the formFpθ by FAθ
(and adding an externalA). To see that the reduction does not hold in general, consider the
PROMPT-LTL formula ϕ = Fp(Gq ∨ Xr). While the systemS′ obtained from the system
S in Figure 1 by addingr to the initial state satisfiesϕ (with bound 2), the systemS′ does
not satisfy the CTL⋆ formulaϕ′ = AFA(Gq ∨ Xr). The question whetherPROMPT-LTL
can be expressed in CTL⋆ is open. On the other hand, the two-color technique can be used in
order to translate aPROMPT-LTL formula overP to an alternating parity tree automaton over
the alphabet2P∪{p}, and then to aµ-calculus formula overP . The proof of the following
theorem assumes familiarity withµ-calculus and alternating parity tree automata.

Theorem 7.3 EveryPROMPT-LTL formula has an equivalentµ-calculus formula.

Proof: Given aPROMPT-LTL formula ϕ overP , let A∀c(ϕ) be an alternating parity tree
automaton that accepts exactly all trees all of whose paths satisfy c(ϕ); in fact,A∀c(ϕ) can
be taken to be a universal co-Büchi automaton [KV05]. Note thatA∀c(ϕ) is over the alphabet
2P∪{p}, thus it refers also to the atomic propositionp. Letψ be aµ-calculus formula equiv-
alent toA∀c(ϕ) [JW95]. We prove that over finite systems,ϕ is equivalent to∃p.ψ. Assume
first that a systemS satisfiesϕ with boundk. Then, the unwinding ofS augmented with a
p-coloring that is2k-tight satisfiesψ, and thus, by Lemma 2.1,S satisfies∃p.ψ. Assume now
thatS satisfies∃p.ψ. Then, by [Rab69], there also exists a regular labeling of the unwinding
of S by p such that the unwinding ofS augmented with this regular labeling satisfiesψ. Let
n be the product of the number of states inS and the transducer that generates the regular
labeling byp. Then, thep-labeling of computations in the unwinding ofS must be(n+ 1)-
bounded. Indeed, as detailed in the proof of Theorem 3.1, otherwise we can generate a path
of S with thep-labeling that does not satisfyaltp. Hence, by Lemma 2.1,S satisfiesϕ with
bound2n+ 2.
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It is left to prove that∃p.ψ, and hence alsoϕ, is equivalent to someµ-calculus formula.
By [JW96], every monadic second-order logic sentence that is preserved under bisimulation
is equivalent to aµ-calculus formulas. Thus, is it enough to show that∃p.ψ can be expressed
in monadic second order logic and is preserved under bisimulation. The first claim follows
from the fact that theµ-calculus can be expressed in monadic second order logic. The second
follows from the fact thatPROMPT-LTL cannot distinguish between systems with the same
language, thusφ is preserved under bisimulation.

The proof of Theorem 7.3 explains why we conjecture thatPROMPT-LTL is incomparable
to CTL⋆. By [HT87], CTL⋆ formulas can be translated to monadic SnS formulas in which
all set quantifiers are over paths. The expressiveness strength of PROMPT-LTL is its ability
to relate different paths (they all have to satisfy the prompt eventualities in the formula with
the same bound). In our proof, the labeling of the quantified propositionp refers to the whole
tree and it does not seem replaceable by set quantifiers over paths.

Recall that our results refer to finite-state systems. We nowshow that they do not stay
valid in the context of infinite-state systems.

Theorem 7.4 In the context of infinite-state systems, noµ-calculus formula is equivalent to
thePROMPT-LTL formulaGFpq.

Proof: Assume by way of contradiction that there is aµ-calculus formulaψ equivalent to
GFpq. Then, by [EJ91, MS95], there is a finite-state nondeterministic parity tree automaton
Aψ that accepts exactly all trees that satisfyGFpq. LetUψ be the restriction ofAψ to trees
of branching degree1. Thus,Uψ is a word automaton accepting all words that satisfyGFpq.
The automatonUψ accepts the infinite family of computations({p} · ∅k)ω, for all k ≥ 1.
Indeed, a computation({p} · ∅k)ω in the family satisfiesGFpq with boundk. We claim that
then,Uψ also accepts a computationw = {p} · ∅i1 · {p} · ∅i2 · {p} · ∅i3 · · · with ij+1 > ij for
all j ≥ 1. The computationw, however, does not satisfyGFpq, and should not be accepted
by Uψ.

We construct the computationπ as follows. Letn be the number of states inUψ. Recall
thatUψ accepts the infinite family of computations({p} · ∅k)ω, for all k ≥ 1. In particular,
it acceptsw′ = ({p} · ∅n+1)ω . In the accepting runr′ of Uψ onw′, at least one state repeats
in the run on each sub-computation of the form∅n+1. We can pumpw′ andr′ and obtain
the required computationw along with a runr of Uψ on it. Thus, we obtainw′ by pumping
the sub-computation between a repeated state in the(j + 1)-th block of∅’s sufficiently many
times to get a block that is longer than thej-th block. We then obtainr′ by pumping the
behavior ofr along the pumped sub-computation. It is easy to see that a state q belongs
to inf(r) iff there are infinitely many indicesj ≥ 1 such thatq is visited byr at least once
between reading thej-th and the(j+1)-th{p}, and similarly forr′. Hence,inf(r) = inf(r′).
Sincer′ is accepting, so isr, and thus,Uψ acceptsw.

It follows from Theorem 7.4 that Theorem 7.3 does not hold in the context of infinite state
systems.
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