
Strategy Logic

Krishnendu Chatterjee a Thomas A. Henzinger a,b Nir Piterman c,∗
aEECS, University of California, Berkeley, USA

bComputer and Communication Sciences, EPFL, Switzerland
cImperial College London, UK

Abstract

We introduce strategy logic, a logic that treats strategies in two-player games as explicit first-
order objects. The explicit treatment of strategies allows us to specify properties of nonzero-sum
games in a simple and natural way. We show that the one-alternation fragment of strategy logic
is strong enough to express the existence of Nash equilibria and secure equilibria, and subsumes
other logics that were introduced to reason about games, such as ATL, ATL

∗, and game logic.
We show that strategy logic is decidable, by constructing tree automata that recognize sets of
strategies. While for the general logic, our decision procedure is nonelementary, for the simple
fragment that is used above we show that the complexity is polynomial in the size of the game
graph and optimal in the size of the formula (ranging from polynomial to 2EXPTIME depending
on the form of the formula).

Key words: Game theory, Logic, ATL and ATL
∗, Non-zero-sum games, Automata theory.

1. Introduction

In graph games, two players move a token across the edges of a graph in order to form an infinite path. The
vertices are partitioned into player-1 and player-2 nodes, depending on which player chooses the successor
node. The objective of player 1 is to ensure that the resulting infinite path lies inside a given winning set Ψ1

of paths. If the game is zero-sum, then the goal of player 2 is to prevent this. More generally, in a nonzero-sum
game, player 2 has her own winning set Ψ2.

Zero-sum graph games have been widely used in the synthesis (or control) of reactive systems [PR89,RW89],
as well as for defining and checking the realizability of specifications [ALW89,Dil89], the compatibility of
interfaces [dAH01], simulation relations between transition systems [HKR02,Mil71], and for generating test
cases [BGNV05], to name just a few of their applications. The study of nonzero-sum graph games has been
more recent, with assume-guarantee synthesis [CH07] as one of its applications.

The traditional formulation of graph games consists of a two-player graph (the “arena”) and winning
conditions Ψ1 and Ψ2 for the two players (in the zero-sum case, Ψ1 = ¬Ψ2), and asks for computing the
winning sets W1 and W2 of vertices for the two players (in the zero-sum case, determinacy [Mar75] ensures
that W1 = ¬W2). To permit the unambiguous, concise, flexible, and structured expression of problems and
solutions involving graph games, researchers have introduced logics that are interpreted over two-player
graphs. An example is the temporal logic ATL [AHK02], which replaces the unconstrained path quantifiers

∗ Corresponding Author

Preprint submitted to Information and Computation 8 April 2009

of CTL with constrained path quantifiers: while the CTL formula ∀Ψ asserts that the path property Ψ is
inevitable —i.e., Ψ holds on all paths from a given state— the ATL formula 〈〈1〉〉Ψ asserts that Ψ is enforcible
by player 1 —i.e., player 1 has a strategy so that Ψ holds on all paths that can result from playing that
strategy. The logic ATL has proved useful for expressing proof obligations in system verification, as well as
for expressing subroutines of verification algorithms.

However, because of limitations inherent in the definition of ATL, several extensions have been proposed
[AHK02], among them the temporal logic ATL

∗, the alternating-time µ-calculus, and a so-called game logic
of [AHK02]: these are motivated by expressing general ω-regular winning conditions, as well as tree properties
of computation trees that result from fixing the strategy of one player (module checking [KVW01]). All of
these logics treat strategies implicitly through modalities. This is convenient for zero-sum games, but awkward
for nonzero-sum games. Indeed, it was not known if Nash equilibria, one of the most fundamental concepts
in game theory, can be expressed in these logics. It would follow from our results that Nash equilibria can
be expressed in ATL

∗.
In order to systematically understand the expressiveness of game logics, and to specify nonzero-sum games,

we study in this paper a logic that treats strategies as explicit first-order objects. For example, using explicit
strategy quantifiers, the ATL formula 〈〈1〉〉Ψ becomes (∃x ∈ Σ)(∀y ∈ Γ)Ψ(x, y) —i.e., “there exists a player-1
strategy x such that for all player-2 strategies y, the unique infinite path that results from the two players
following the strategies x and y satisfies the property Ψ.” Strategies are a natural primitive when talking
about games and winning, and besides ATL and its extensions, Nash equilibria are naturally expressible in
strategy logic.

As an example, we define winning secure equilibria [CHJ04] in strategy logic. A winning secure equilibrium
is a special kind of Nash equilibrium, which is important when reasoning about the components of a system,
each with its own specification. At such an equilibrium, both players can collaborate to satisfy the combined
objective Ψ1 ∧ Ψ2. Moreover, whenever player 2 decides to abandon the collaboration and enforce ¬Ψ1,
then player 1 has the ability to retaliate and enforce ¬Ψ2; that is, player 1 has a winning strategy for the
relativized objective Ψ2 ⇒ Ψ1 (where ⇒ denotes implication). The symmetric condition holds for player 2;
in summary: (∃x ∈ Σ)(∃y ∈ Γ)[(Ψ1∧Ψ2)(x, y) ∧ (∀y′ ∈ Γ)(Ψ2 ⇒ Ψ1)(x, y′) ∧ (∀x′ ∈ Σ)(Ψ1 ⇒ Ψ2)(x

′, y)].
Note that the same player-1 strategy x which is involved in producing the outcome Ψ1 ∧Ψ2 must be able to
win for Ψ2 ⇒ Ψ1; such a condition is difficult to state without explicit quantification over strategies.

Our results are twofold. First, we study the expressive power of strategy logic. We show that the logic
is rich enough to express many interesting properties of zero-sum and nonzero-sum games that we know,
including ATL

∗, game logic (and thus module checking), Nash equilibria, and secure equilibria. Indeed, ATL
∗

and the equilibria can be expressed in a simple fragment of strategy logic with no more than one quantifier
alternation (note the ∃∀ alternation in the above formula for defining winning secure equilibria). We also
show that the simple one-alternation fragment can be translated to ATL

∗ (the translation in general is double
exponential in the size of the formula) and thereby the equilibria can be expressed in ATL

∗.
Second, we analyze the computational complexity of strategy logic. We show that, provided all winning

conditions are specified in linear temporal logic (or by word automata), strategy logic is decidable. The proof
goes through automata theory, using tree automata to specify the computation trees that result from fixing
the strategy of one player. The complexity is nonelementary, with the number of exponentials depending
on the quantifier alternation depth of the formula. In the case of the simple one-alternation fragment of
strategy logic, which suffices to express ATL

∗ and equilibria, we obtain much better bounds: for example, for
infinitary path formulas (path formulas that are independent of finite prefixes), there is a linear translation
of a simple one-alternation fragment formula to an ATL

∗ formula.
In summary, strategy logic provides a decidable language for talking in a natural and uniform way about

all kinds of properties on game graphs, including zero-sum, as well as nonzero-sum objectives. Of course, for
more specific purposes, such as zero-sum reachability games, more restrictive and less expensive logics, such
as ATL, are more appropriate; however, the consequences of such restrictions, and their relationships, is best
studied within a clean, general framework such as the one provided by strategy logic. In other words, strategy
logic can play for reasoning about games the same role that first-order logic with explicit quantification about
time has played for temporal reasoning: the latter has been used to categorize and compare temporal logics
(i.e., logics with implicit time), leading to a notion of completeness and other results in correspondence
theory [GPSS80,Kam68].

2

In this work we consider perfect-information games and, consequently, only pure strategies (no probabilistic
choice). An extension of this work to the setting of partial-information games is an interesting research
direction (cf. [Kai06]). Other possible extensions include reasoning about concurrent games and about perfect-
information games with probabilistic transitions, as well as increasing the expressive power of the logic by
allowing more ways to bound strategies (e.g., comparing strategies).

2. Graph Games

A game graph G = ((S, E), (S1, S2)) consists of a directed graph (S, E) with a finite set S of states, a set
E of edges, and a partition (S1, S2) of the state space S. The states in S1 are called player-1 states; the
states in S2, player-2 states. For a state s ∈ S, we write E(s) to denote the set {t | (s, t) ∈ E} of successor
states. We assume that every state has at least one out-going edge; i.e., E(s) is nonempty for all s ∈ S.

Plays. A game is played by two players: player 1 and player 2, who form an infinite path in the game graph
by moving a token along edges. They start by placing the token on an initial state and then they take moves
indefinitely in the following way. If the token is on a state in S1, then player 1 moves the token along one
of the edges going out of the state. If the token is on a state in S2, then player 2 does likewise. The result
is an infinite path π = 〈s0, s1, s2, . . .〉 in the game graph; we refer to such infinite paths as plays. Hence
given a game graph G, a play is an infinite sequence 〈s0, s1, s2, . . .〉 of states such that for all k ≥ 0, we have
(sk, sk+1) ∈ E. We write Π for the set of all plays.

Strategies. A strategy for a player is a recipe that specifies how to extend plays. Formally, a strategy σ for
player 1 is a function σ: S∗ ·S1 → S that given a finite sequence of states, which represents the history of the
play so far, and which ends in a player-1 state, chooses the next state. A strategy must choose only available
successors, i.e., for all w ∈ S∗ and all s ∈ S1, we have σ(w · s) ∈ E(s). The strategies for player 2 are defined
symmetrically. We denote by Σ and Γ the sets of all strategies for player 1 and player 2, respectively. Given
a starting state s ∈ S, a strategy σ for player 1, and a strategy τ for player 2, there is a unique play, denoted
as π(s, σ, τ) = 〈s0, s1, s2, . . .〉, which is defined as follows: s = s0, and for all k ≥ 0, we have (a) if sk ∈ S1,
then σ(s0, s1, . . . , sk) = sk+1, and (b) if sk ∈ S2, then τ(s0, s1, . . . , sk) = sk+1.

3. Strategy Logic

Strategy logic is interpreted over labeled game graphs. Let P be a finite set of atomic propositions. A
labeled game graph G = (G, P, L) consists of a game graph G together with a labeling function L: S → 2P

that maps every state s to the set L(s) of atomic propositions that are true at s. We assume that there is a
special atomic proposition tt ∈ P such that tt ∈ L(s) for all s ∈ S.

Syntax. The formulas of strategy logic consist of the following kinds of subformulas. Path formulas Ψ are
LTL formulas, which are interpreted over infinite paths of states. Atomic strategy formulas are path formulas
Ψ(x, y) with two arguments —a variable x that denotes a player-1 strategy, and a variable y that denotes a
player-2 strategy. From atomic strategy formulas, we define a first-order logic of quantified strategy formulas.
The formulas of strategy logic are the closed strategy formulas (i.e., strategy formulas without free strategy
variables); they are interpreted over states. We denote path and strategy formulas by Ψ and Φ, respectively.
We use the variables x, x1, x2, . . . to range over strategies for player 1, and denote the set of such variables
by X ; similarly, the variables y, y1, y2, . . . ∈ Y range over strategies for player 2. Formally, the path and
strategy formulas are defined by the following grammar:

Ψ ::= p | Φ | Ψ ∧Ψ | ¬Ψ | ©Ψ | Ψ U Ψ, where p ∈ P and Φ is closed;

Φ ::= Ψ(x, y) | Φ ∧ Φ | Φ ∨ Φ | Qx.Φ | Qy.Φ, where Q ∈ {∃, ∀}, x ∈ X, y ∈ Y.

Observe that the closed strategy formulas can be reused as atomic propositions. We formally define the free
variables of strategy formulas as follows:

Free(Ψ(x, y)) = {x, y};
Free(Φ1 ∧ Φ2) = Free(Φ1) ∪ Free(Φ2);

3

Free(Φ1 ∨ Φ2) = Free(Φ1) ∪ Free(Φ2);
Free(Qx.Φ′) = Free(Φ′) \ {x}, for Q ∈ {∃, ∀};
Free(Qy.Φ′) = Free(Φ′) \ {y}, for Q ∈ {∃, ∀}.

A strategy formula Φ is closed if Free(Φ) = ∅. We define additional boolean connectives such as ⇒ , and
additional temporal operators such as 2 and 3, as usual. Note that in order to use the connective ⇒ we may
have to use the duality ¬∃z.Ψ is equivalent to ∀z.¬Ψ. We do not introduce formally the negation operator
for strategy formulas, its treatment is standard.

Semantics. For a set Z ⊆ X ∪Y of variables, a strategy assignment AZ assigns to every variable x ∈ Z ∩X ,
a player-1 strategy AZ(x) ∈ Σ, and to every variable y ∈ Z ∩ Y , a player-2 strategy AZ(y) ∈ Γ. Given
a strategy assignment AZ and player-1 strategy σ ∈ Σ, we denote by AZ [x ← σ] the extension of the
assignment AZ to the set Z ∪ {x}, defined as follows: for w ∈ Z ∪ {x}, we have AZ [x ← σ](w) = AZ(w) if
w 6= x, and AZ [x← σ](x) = σ. The definition of AZ [y ← τ] for player-2 strategies τ ∈ Γ is analogous.

The semantics of path formulas Ψ is the usual semantics of LTL. We now describe the satisfaction of a
strategy formula Φ at a state s ∈ S with respect to a strategy assignment AZ , where Free(Φ) ⊆ Z:

(s, AZ) |= Ψ(x, y) iff π(s, AZ(x), AZ (y)) |= Ψ;

(s, AZ) |= Φ1 ∧Φ2 iff (s, AZ) |= Φ1 and (s, AZ) |= Φ2;

(s, AZ) |= Φ1 ∨Φ2 iff (s, AZ) |= Φ1 or (s, AZ) |= Φ2;

(s, AZ) |= ∃x.Φ′ iff ∃σ ∈ Σ. (s, AZ [x← σ]) |= Φ′;

(s, AZ) |= ∀x.Φ′ iff ∀σ ∈ Σ. (s, AZ [x← σ]) |= Φ′;

(s, AZ) |= ∃y.Φ′ iff ∃τ ∈ Γ. (s, AZ [y ← τ]) |= Φ′;

(s, AZ) |= ∀y.Φ′ iff ∀τ ∈ Γ. (s, AZ [y ← τ]) |= Φ′.

The semantics of a closed strategy formula Φ is the set [[Φ]] = {s ∈ S | (s, A∅) |= Φ} of states.

Unnested path formulas. Of special interest is the fragment of strategy logic where path formulas do not
allow any nesting of temporal operators. This fragment has a CTL-like flavor, and as we show later, results
in a decision procedure with a lower computational complexity. Formally, the unnested path formulas are
restricted as follows:

Ψ ::= p | Φ | Ψ ∧Ψ | ¬Ψ | ©Φ | Φ U Φ, where p ∈ P and Φ is closed.

The resulting closed strategy formulas are called the unnested-path-formula fragment of strategy logic.

Examples. We now present some examples of formulas of strategy logic. We first show how to express
formulas of the logics ATL and ATL

∗ [AHK02] in strategy logic. The alternating-time temporal logic ATL
∗

consists of path formulas quantified by the alternating path operators 〈〈1〉〉 and 〈〈2〉〉, the existential path
operator 〈〈1, 2〉〉 (or ∃), and the universal path operator 〈〈∅〉〉 (or ∀). The logic ATL is the subclass of ATL

∗

where only unnested path formulas are considered. Some examples of ATL and ATL
∗ formulas and the

equivalent strategy formulas are as follows: for a proposition p ∈ P ,

[[〈〈1〉〉(3p)]] = {s ∈ S | ∃σ. ∀τ. π(s, σ, τ) |= 3p} = [[∃x. ∀y. (3p)(x, y)]];

[[〈〈2〉〉(23p)]] = {s ∈ S | ∃τ. ∀σ. π(s, σ, τ) |= 23p} = [[∃y. ∀x. (23p)(x, y)]];

[[〈〈1, 2〉〉(2p)]] = {s ∈ S | ∃σ. ∃τ. π(s, σ, τ) |= 2p} = [[∃x. ∃y. (2p)(x, y)]];

〈〈∅〉〉(32p) = {s ∈ S | ∀σ. ∀τ. π(s, σ, τ) |= 2p} = [[∀x. ∀y. (32p)(x, y)]].

Consider the strategy formula Φ = ∃x. (∃y1. (2p)(x, y1) ∧ ∃y2. (2q)(x, y2)). This formula is different from
the following two formulas:

4

p1, p2

s4 s0s1s2s3

Fig. 1. A two-player game graph.

– the formula 〈〈1, 2〉〉(2p)∧ 〈〈1, 2〉〉(2q) is too weak, i.e., for all game graphs we have [[Φ]] ⊆ [[〈〈1, 2〉〉(2p) ∧
〈〈1, 2〉〉(2q)]] and there exists a game graph such that the inclusion is strict; and

– the formula 〈〈1, 2〉〉(2(p ∧ q)) is too strong, i.e., for all game graphs we have [[〈〈1, 2〉〉(2p ∧ 2q)]] ⊆ [[Φ]]
and there exists game graph such that the inclusion is strict.

It was shown in [AHK02] (section 6.2 of [AHK02]) that the formula Φ cannot be expressed in ATL
∗.

One of the features of strategy logic is that we can restrict the kinds of strategies that interest us. For
example, the following strategy formula describes the states from which player 1 can ensure the goal Φ1

while playing against any strategy that ensures Φ2 for player 2:

∃x1. ∀y1. ((∀x2.Φ2(x2, y1)) ⇒ Φ1(x1, y1))

The mental exercise of “I know that you know that I know that you know . . . ” can be played in strategy
logic up to any constant level. The analogue of the above formula, where the level of knowledge is nested
up to level k, can be expressed in strategy logic. For example, the formula above (“knowledge nesting 1”) is
different from the following formula with “knowledge nesting 2”:

∃x1. ∀y1. ((∀x2.(∀y2.Φ1(x2, y2)) ⇒ Φ2(x2, y1)) ⇒ Φ1(x1, y1))

In Example 1 we show that the formulas with different knowledge nesting identify different parts of game
graphs. We do not know whether the corresponding fixpoint of ‘full knowledge nesting’ can be expressed in
strategy logic.
Example 1 (Knowledge nesting) Consider the game graph shown in Fig 1. The 2 states are player-1
states, and © states are player-2 states. The state s0 is labeled with propositions p1 and p2. The objectives
for the players are to reach the proposition p1 and p2, respectively, (i.e., objective for player 1 is 3p1 and
objective for player 2 is 3p2). With no knowledge nesting player 1 cannot satisfy her objective at state s2,
since player 2 can always choose the edge s1 → s1. But given player 2 plays a winning strategy for 3p2,
player 1 can satisfy 3p1 choosing the strategy s2 → s1. Similarly, without knowing that player 1 is playing
the strategy s2 → s1, player 2 cannot satisfy 3p2 at s3. However, with “knowledge nesting 2” player 2 can
satisfy 3p2 at s3 and with “knowledge nesting 3” player 1 can satisfy 3p1 at s4.

As another example, we consider the notion of dominating and dominated strategies [Owe95]. Given a
path formula Ψ and a state s ∈ S, a strategy x1 for player 1 dominates another player-1 strategy x2 if for
all player-2 strategies y, whenever π(s, x2, y) |= Ψ, then π(s, x1, y) |= Ψ. The strategy x1 is dominating if
it dominates every player-1 strategy x2. The following strategy formula expresses that x1 is a dominating
strategy:

∀x2. ∀y. (Ψ(x2, y) ⇒ Ψ(x1, y))

Given a path formula Ψ and a state s ∈ S, a strategy x1 for player 1 is dominated if there is a player-1
strategy x2 such that (a) for all player-2 strategies y1, if π(s, x1, y1) |= Ψ, then π(s, x2, y1) |= Ψ, and (b) for
some player-2 strategy y2, we have both π(s, x2, y2) |= Ψ and π(s, x1, y2) 6|= Ψ. The following strategy formula
expresses that x1 is a dominated strategy:

∃x2. ((∀y1. Ψ(x1, y1) ⇒ Ψ(x2, y1)) ∧ (∃y2. Ψ(x2, y2) ∧ ¬Ψ(x1, y2)))

The formulas for dominating and dominated strategies express properties about strategies and are not closed
formulas.

4. Simple One-Alternation Fragment of Strategy Logic

In this section we define a subset of strategy logic. Intuitively, the alternation depth of a formula is the
number of changes between ∃ and ∀ quantifiers (a formal definition is given in Section 6). The subset we
consider here is a subset of the formulas that allow only one alternation of strategy quantifiers. We refer

5

to this subset as the simple one-alternation fragment. We show later how several important concepts in
nonzero-sum games can be captured in this fragment.

Syntax. We are interested in strategy formulas that depend on three path formulas: Ψ1, Ψ2, and Ψ3.
The strategy formulas in the simple one-alternation fragment assert that there exist player-1 and player-2
strategies that ensure Ψ1 and Ψ2, respectively, and at the same time cooperate to satisfy Ψ3. Formally, the
simple one-alternation strategy formulas are restricted as follows:

Φ ::= Φ ∧Φ | ¬Φ | ∃x1. ∃y1. ∀x2. ∀y2. (Ψ1(x1, y2) ∧Ψ2(x2, y1) ∧Ψ3(x1, y1)),

where x1, x2 ∈ X , and y1, y2 ∈ Y . The resulting closed strategy formulas are called the simple one-alternation
fragment of strategy logic. Obviously, the formulas have a single quantifier alternation. We use the abbrevia-
tion (∃ Ψ1, ∃ Ψ2, Ψ3) for simple one-alternation strategy formulas of the form ∃x1.∃y1.∀x2.∀y2. (Ψ1(x1, y2)∧
Ψ2(x2, y1) ∧Ψ3(x1, y1)). We will show that ATL

∗ as well as important concepts like Nash equilibria and se-
cure equilibria of nonzero-sum games can be expressed in the simple one-alternation fragment. The simple
one-alternation fragment is a proper sub-class of the one alternation fragment and we will present more
efficient model checking algorithms for this fragment as compared to the general one-alternation fragment.

Notation. For a path formula Ψ and a state s we define the set Win1(s, Ψ) = {σ ∈ Σ | ∀τ ∈ Γ. π(s, σ, τ) |=
Ψ} to denote the set of player-1 strategies that enforce Ψ against all player-2 strategies. We refer to the
strategies in Win1(s, Ψ) as the winning player-1 strategies for Ψ from s. Analogously, we define Win2(s, Ψ) =
{τ ∈ Γ | ∀σ ∈ Σ. π(s, σ, τ) |= Ψ} as the set of winning player-2 strategies for Ψ from s. Using the notation
Win1 and Win2, the semantics of simple one-alternation strategy formulas can be written as follows: if
Φ = (∃ Ψ1, ∃ Ψ2, Ψ3), then [[Φ]] = {s ∈ S | ∃σ ∈ Win1(s, Ψ1). ∃τ ∈ Win2(s, Ψ2). π(s, σ, τ) |= Ψ3}. Thus
the intuitive interpretation of the formula Φ = (∃ Ψ1, ∃ Ψ2, Ψ3) is as follows: there is a player-1 winning
strategy σ for Ψ1 and there is a player-2 winning strategy τ for Ψ2 such that the path formed by fixing the
strategies σ and τ satisfies Ψ3.

5. Expressive Power of Strategy Logic

In this section we show that ATL
∗ and several concepts in nonzero-sum games can be expressed in the

simple one-alternation fragment of strategy logic. We also show that game logic, which was introduced
in [AHK02] to express the module-checking problem [KVW01], can be expressed in the one-alternation
fragment of strategy logic (but not in the simple one-alternation fragment).

Expressing ATL
∗ and ATL. For every path formula Ψ, we have

[[〈〈1〉〉(Ψ)]] = {s∈S | ∃σ. ∀τ. π(s, σ, τ) |= Ψ} = [[∃x. ∀y. Ψ(x, y)]] = [[(∃Ψ, ∃tt, tt)]];

[[〈〈1, 2〉〉(Ψ)]] = {s∈S | ∃σ. ∃τ. π(s, σ, τ) |= Ψ} = [[∃x. ∃y. Ψ(x, y)]] = [[(∃tt, ∃tt, Ψ)]].

The formulas 〈〈2〉〉(Ψ) and 〈〈∅〉〉(Ψ) can be expressed similarly. Hence the logic ATL
∗ can be defined in the

simple one-alternation fragment of strategy logic, and ATL can be defined in the simple one-alternation
fragment with unnested path formulas. Observe that ATL

∗ formulas are expressed as closed formulas, and
hence nesting of 〈〈·〉〉 operators of ATL∗ formulas does not increase the alternation depth when expressed
as formulas in the strategy logic. Hence ATL

∗ can be expressed in the simple one-alternation fragment of
strategy logic.

Expressing Nash equilibria. In nonzero-sum games the input is a labeled game graph and two path
formulas, which express the objectives of the two players. We define Nash equilibria [Nas50] and show that
their existence can be expressed in the simple one-alternation fragment of strategy logic.

Payoff profiles. Given a labeled game graph (G, P, L), two path formulas Ψ1 and Ψ2, strategies σ and τ for
the two players, and a state s ∈ S, the payoff for player ℓ, where ℓ ∈ {1, 2}, is defined as follows:

pℓ(s, σ, τ, Ψℓ) =

{
1 if π(s, σ, τ) |= Ψℓ;

0 otherwise.

6

The payoff profile (p1, p2) consists of the payoffs p1 = p1(s, σ, τ, Ψ1) and p2 = p2(s, σ, τ, Ψ2) for player 1 and
player 2.

Nash equilibria. A strategy profile (σ, τ) consists of strategies σ ∈ Σ and τ ∈ Γ for the two players. Given
a labeled game graph (G, P, L) and two path formulas Ψ1 and Ψ2, the strategy profile (σ∗, τ∗) is a Nash
equilibrium at a state s ∈ S if the following two conditions hold:

(1) ∀σ ∈ Σ. p1(s, σ, τ∗, Ψ1) ≤ p1(s, σ
∗, τ∗, Ψ1);

(2) ∀τ ∈ Γ. p2(s, σ
∗, τ, Ψ2) ≤ p2(s, σ

∗, τ∗, Ψ2).

The state sets of the corresponding payoff profiles are defined as follows: for i, j ∈ {0, 1}, we have

NE (i, j) = {s ∈ S | there exists a Nash equilibrium (σ∗, τ∗) at s such that

p1(s, σ
∗, τ∗, Ψ1) = i and p2(s, σ

∗, τ∗, Ψ2) = j}.

Existence of Nash equilibria. We now define the state sets of the payoff profiles for Nash equilibria by simple
one-alternation strategy formulas. The formulas are as follows:

NE (1, 1) = [[(∃tt, ∃tt, Ψ1 ∧Ψ2)]];

NE (0, 0) = [[(∃¬Ψ2, ∃¬Ψ1, tt)]];

NE (1, 0) = {s ∈ S | ∃σ. (∃τ. π(s, σ, τ) |= Ψ1 ∧ ∀τ
′. π(s, σ, τ ′) |= ¬Ψ2)} = [[(∃¬Ψ2, ∃tt, Ψ1)]];

NE (0, 1) = [[(∃tt, ∃¬Ψ1, Ψ2)]].

Intuitively, every pair of strategies σ and τ , such that π(s, σ, τ) |= Ψ1∧Ψ2 is a NE (1, 1) because it achieves
the maximal payoff for each player, and hence neither player has an incentive to deviate. Conversely, if a
strategy pair σ and τ ensures a NE (1, 1), then π(s, σ, τ) |= Ψ1 ∧ Ψ2. For a Nash equilibrium strategy pair
(σ, τ), if the payoff for player 1 is 0, then it means that for all strategies σ′ we have π(s, σ′, τ) 6|= Ψ1, i.e.,
the strategy τ ensures ¬Ψ1 (or in other words, the strategy τ is winning for ¬Ψ1). Similar reasoning holds
when the payoff for player 2 is 0 for a Nash equilibrium. Every pair of strategies σ and τ , such that σ ensures
¬Ψ2 and τ ensures ¬Ψ1 is in NE (0, 0) because for every strategy σ′ player 1’s payoff is going to remain 0,
and analogously for player 2. Conversely, if σ and τ is Nash equilibrium strategy such that the payoff profile
is (0, 0), then σ ensures ¬Ψ1 and τ ensures ¬Ψ2. Finally, if σ ensures ¬Ψ2 and π(s, σ, τ) |= Ψ1, then we
have a NE (1, 0). Indeed, player 1’s payoff can only decrease and player 2’s payoff remains 0 regardless of the
chosen strategy. Thus we obtain the above characterization of Nash equilibrium payoff profile by strategy
logic formulas.

Expressing secure equilibria. A notion of conditional competitiveness in nonzero-sum games was for-
malized by introducing secure equilibria [CHJ04]. The notion of secure has been shown to be relevant in
the context of verification and assume-guarantee synthesis [CH07]. We show that the existence of secure
equilibria can be expressed in the simple one-alternation fragment of strategy logic.

Lexicographic ordering of payoff profiles. We define two lexicographic orderings �1 and �2 on payoff profiles.
For two payoff profiles (p1, p2) and (p′1, p

′
2), we have

(p1, p2) �1 (p′1, p
′
2) iff (p1 ≤ p′1) ∨ (p1 = p′1 ∧ p2 ≥ p′2);

(p1, p2) �2 (p′1, p
′
2) iff (p2 ≤ p′2) ∨ (p2 = p′2 ∧ p1 ≥ p′1).

Secure equilibria. A secure equilibrium is a Nash equilibrium with respect to the lexicographic preference
orderings �1 and �2 on payoff profiles for the two players. Formally, given a labeled game graph (G, P, L)
and two path formulas Ψ1 and Ψ2, a strategy profile (σ∗, τ∗) is a secure equilibrium at a state s ∈ S if the
following two conditions hold:

7

∀σ∈Σ. (p1(s, σ, τ∗, Ψ1), p2(s, σ, τ∗, Ψ2)) �1 (p1(s, σ
∗, τ∗, Ψ1), p2(s, σ

∗, τ∗, Ψ2));

∀τ∈Γ. (p1(s, σ
∗, τ, Ψ1), p2(s, σ

∗, τ, Ψ2)) �2 (p1(s, σ
∗, τ∗, Ψ1), p2(s, σ

∗, τ∗, Ψ2)).

The state sets of the corresponding payoff profiles are defined as follows: for i, j ∈ {0, 1}, we have

SE (i, j) = {s ∈ S | there exists a secure equilibrium (σ∗, τ∗) at s such that

p1(s, σ
∗, τ∗, Ψ1) = i and p2(s, σ

∗, τ∗, Ψ2) = j}.

It follows from the definitions that the sets SE (i, j), for i, j ∈ {0, 1}, can be expressed in the one-alternation
fragment (in the ∃∀ fragment). The state sets of maximal payoff profiles for secure equilibria are defined as
follows: for i, j ∈ {0, 1}, we have

MS (i, j) = {s ∈ SE (i, j) | if s ∈ SE (i′, j′), then (i′, j′) �1 (i, j) ∧ (i′, j′) �2 (i, j)}.

The following alternative characterizations of these sets are established in [CHJ04]:

MS (1, 0) = {s ∈ S |Win1(s, Ψ1 ∧ ¬Ψ2) 6= ∅};

MS (0, 1) = {s ∈ S |Win2(s, Ψ2 ∧ ¬Ψ1) 6= ∅};

MS (1, 1) = {s ∈ S | ∃σ ∈Win1(s, Ψ2 ⇒ Ψ1). ∃τ ∈ Win2(s, Ψ1 ⇒ Ψ2). π(s, σ, τ) |= Ψ1 ∧Ψ2};

MS (0, 0) = S \ (MS (1, 0) ∪MS (0, 1) ∪MS (1, 1)).

Existence of secure equilibria. From the alternative characterizations of the state sets of the maximal payoff
profiles for secure equilibria, it follows that these sets can be defined by simple one-alternation strategy
formulas. The formulas are as follows:

MS (1, 0) = [[(∃(Ψ1 ∧ ¬Ψ2), ∃tt, tt)]];

MS (0, 1) = [[(∃tt, ∃(Ψ2 ∧ ¬Ψ1), tt)]];

MS (1, 1) = [[(∃(Ψ2 ⇒ Ψ1), ∃(Ψ1 ⇒ Ψ2), Ψ1 ∧Ψ2)]].

The set MS (0, 0) can be obtained by complementing the disjunction of the three formulas for MS (1, 0),
MS (0, 1), and MS (1, 1).

Game logic and module checking. The syntax of game logic [AHK02] is as follows. State formulas have
the form ∃∃{1}. θ or ∃∃{2}. θ, where θ is a tree formula. Tree formulas are (a) state formulas, (b) boolean
combinations of tree formulas, and (c) either ∃Ψ or ∀Ψ, where Ψ is a path formula. Informally, the formula
∃∃{1}. θ is true at a state if there is a strategy σ for player 1 such that the tree formula θ is satisfied in the tree
that is generated by fixing the strategy σ for player 1 (see [AHK02] for details). Game logic can be defined in
the one-alternation fragment of strategy logic (but not in the simple one-alternation fragment). The following
example illustrates how to translate a state formula of game logic into a one-alternation strategy formula:

[[∃∃{1}.(∃Ψ1 ∧ ∀Ψ2 ∨ ∀Ψ3)]] = [[∃x. (∃y1. Ψ1(x, y1) ∧ ∀y2. Ψ2(x, y2) ∨ ∀y3. Ψ3(x, y3)]]

Consequently, the module-checking problem [KVW01] can be expressed by one-alternation strategy formulas.
The following theorem compares the expressive power of strategy logic and its fragments with ATL

∗, game
logic, the alternating-time µ-calculus [AHK02,Koz83], and monadic second-order logic [Rab69,Tho97]. We
remark that our formulas are interpreted over 2-player turn-based game structures, and the followint theorem
compares the expressive powers of different logics when interpreted over 2-player turn-based game structures.
Theorem 1 (Expressiveness). The following assertions hold.

(i) The expressiveness of the simple one-alternation fragment of strategy logic coincides with ATL
∗, and

the one-alternation fragment of strategy logic is more expressive than ATL
∗.

(ii) The one-alternation fragment of strategy logic is more expressive than game logic, and game logic is
more expressive than the simple one-alternation fragment of strategy logic.

8

(iii) The alternating-time µ-calculus is not as expressive as the alternation-free fragment of strategy logic,
and strategy logic is not as expressive as the alternating-time µ-calculus.

(iv) Monadic second order (MSO) logic is more expressive than strategy logic.
Proof. We prove all the cases below.

(i) We first show that ATL
∗ can be expressed in simple one-alternation fragment. For a path formula Ψ

we have

[[〈〈1〉〉(Ψ)]] = {s ∈ S | ∃σ.∀τ.π(s, σ, τ) |= Ψ} = [[∃x.∀y.Ψ(x, y)]] = [[(∃Ψ, ∃tt, tt)]]

[[〈〈2〉〉(Ψ)]] = {s ∈ S | ∃τ.∀σ.π(s, σ, τ) |= Ψ} = [[∃y.∀x.Ψ(x, y)]] = [[(∃tt, ∃Ψ, tt)]]

[[〈〈1, 2〉〉(Ψ)]] = {s ∈ S | ∃σ.∃τ.π(s, σ, τ) |= Ψ} = [[∃x.∃y.Ψ(x, y)]] = [[(∃tt, ∃tt, Ψ)]]

[[〈〈∅〉〉(Ψ)]] = {s ∈ S | ∀σ.∀τ.π(s, σ, τ) |= Ψ} = [[∀x.∀y.Ψ(x, y)]] = [[¬(∃tt, ∃tt,¬Ψ)]]

Since the simple one-alternation fragment allows closed formulas to be treated as atomic propositions,
it follows that the logic ATL

∗ can be expressed in the simple one-alternation fragment of strategy logic,
and ATL can be expressed in the simple-one alternation fragment with unnested path formulas. It follows
from Theorem 5 (part 1) (see the paragraph following Theorem 5) that the expressiveness of ATL

∗ and
simple one-alternation fragment coincide. Since game logic is more expressive than ATL

∗ [AHK02] and
game logic can be expressed in the one-alternation fragment it follows that one-alternation fragment
is more expressive than ATL

∗.
(ii) The game logic can be expressed in ∃∀ fragment of the strategy logic. The translation a state formula

of game logic into a closed one-alternation strategy formula is as follows:

[[∃∃{1}.(∃Ψ1 ∧ ∀Ψ2 ∨ ∀Ψ3)]] = [[∃x. (∃y1. Ψ1(x, y1) ∧ ∀y2. Ψ2(x, y2) ∨ ∀y3. Ψ3(x, y3)]].

The translation of any formula of game logic to a closed one-alternation strategy logic formula follows by
induction. Game logic is not as expressive as one-alternation fragment: for example, in one-alternation
fragment of strategy logic starting with a existential quantification over several strategy variables
(such as ∃x1.∃x2.∃y1.∃y2.) several strategy trees are created that can be analyzed simultaneously by
the inner formula, and such multiple instantiations of trees simultaneously is not allowed in game logic.
By part (1) it follows that the expressive power of simple one-alternation fragment coincides with ATL

∗,
and the result of [AHK02] shows that game logic is more expressive that ATL

∗. It follows that game
logic is more expressive than the simple one-alternation fragment.

(iii) It follows from the results of [AHK02] that the following formula

∃x. (∃y1. (2p)(x, y1) ∧ ∃y2. (2q)(x, y2))

cannot be expressed in alternating µ-calculus. The above formula is an alternation free strategy logic
formula. We now present alternating µ-calculus formulas that are not expressible in strategy logic.
Consider one-player structures (i.e., S2 = ∅). The following formula

νx. [p ∧AX(AX(x))]

specifies the set of states s such that in all paths from s every even position is labeled by the proposition
p. Such counting properties cannot be expressed in strategy logic. Also consider the following formula
over one-player structures:

µx.(q ∨ (p ∧ EX(x)) ∨ (¬p ∧AX(x)))

The formula says that the proposition p turns the one-player game into a two player game: states with
proposition p acts as player 1 states (i.e., [[p]] = S1) and states with proposition ¬p acts as player 2
states (i.e., [[¬p]] = S2), and the formula specifies that there is a p player strategy to reach q against
all ¬p player stategy. Thus alternating µ-calculus can transform a one-player structure to a 2-player
game structure. Strategy logic formulas on one-player structure can only quantify over strategies of one
player and cannot convert it to a 2-player game structure. Hence the above property is not expressible
by strategy logic on one-player structures.

(iv) We now argue that MSO is more expressive than strategy logic: encoding strategies as trees, a strategy
logic formula can be translated to an MSO formula. Hence MSO is as expressive as strategy logic. Since

9

MSO contains alternating µ-calculus and strategy logic is not as expressive as alternating µ-calculus,
it follows that MSO is more expressive than strategy logic.

6. Model Checking Strategy Logic

In this section we solve the model-checking problem for strategy logic. We encode strategies by using
strategy trees. We reason about strategy trees using tree automata, making our solution similar to Rabin’s
usage of tree automata for solving the satisfiability problem of monadic second-order logic [Rab69]. We give
the necessary definitions and proceed with the algorithm.

Strategy trees and tree automata. Given a finite set Υ of directions, an Υ-tree is a set T ⊆ Υ∗ such that
if x · υ ∈ T , where υ ∈ Υ and x ∈ Υ∗, then also x ∈ T . The elements of T are called nodes, and the empty
word ε is the root of T . For every υ ∈ Υ and x ∈ T , the node x is the parent of x · υ. Each node x 6= ε of T
has a direction in Υ. The direction of the root is the symbol ⊥ (we assume that ⊥ 6∈ Υ). The direction of a
node x · υ is υ. We denote by dir(x) the direction of node x. An Υ-tree T is a full infinite tree if T = Υ∗. A
path π of a tree T is a set π ⊆ T such that ε ∈ π, and for every x ∈ π there exists a unique υ ∈ Υ such that
x · υ ∈ π.

Given two finite sets Υ and Λ, a Λ-labeled Υ-tree is a pair 〈T, ρ〉, where T is an Υ-tree, and ρ: T → Λ
maps each node of T to a letter in Λ. When Υ and Λ are not important or clear from the context, we call
〈T, ρ〉 a labeled tree. We say that an ((Υ ∪ {⊥})×Λ)-labeled Υ-tree 〈T, ρ〉 is Υ-exhaustive if for every node
z ∈ T , we have ρ(z) ∈ {dir(z)} × Λ.

Consider a game graph G = ((S, E), (S1, S2)). For α ∈ {1, 2}, a strategy σ: S∗ · Sα → S can be encoded
by an S-labeled S-tree 〈S∗, ρ〉 by setting σ(v) = ρ(v) for every v ∈ S∗ ·Sα. Notice that σ may be encoded by
many different trees. Indeed, for a node v = s0 · · · sn such that either sn ∈ S3−α or there exists some i such
that (si, si+1) /∈ E, the label ρ(v) may be set arbitrarily. We may encode k different strategies by considering
an Sk-labeled S-tree. Given a letter λ ∈ Sk, we denote by λi the projection of λ on its i-th coordinate. In
this case, the i-th strategy is σi(v) = ρ(v)i for every v ∈ S∗ ·Sα. Notice that the different encoded strategies
may belong to different players. We refer to such trees as strategy trees, and from now on, we may refer to a
strategy as a tree 〈S∗, σ〉. In what follows we encode strategies by strategy trees. We construct tree automata
that accept the strategy assignments that satisfy a given formula of strategy logic.

We use tree automata to reason about strategy trees. As we only use well-known results about such
automata, we do not give a full formal definition, and refer the reader to [Tho97]. Here, we use alternating
parity tree automata (APTs). The language of an automaton is the set of labeled trees that it accepts.
The size of an automaton is measured by the number of states, and the index, which is a measure of the
complexity of the acceptance (parity) condition. The important qualities of automata that are needed for
this paper are summarized in Theorem 2 below.
Theorem 2 (i) Given an LTL formula Ψ, we can construct an APT AΨ with 2O(|Ψ|) states and index 3

such that AΨ accepts all labeled trees all of whose paths satisfy Ψ [VW94].
(ii) Given two APTs A1 and A2 with n1 and n2 states and indices k1 and k2, respectively, we can construct

APTs for the conjunction and disjunction of the languages of A1 and A2 with n1 +n2 states and index
max(k1, k2). We can also construct an APT for the complementary language of A1 with n1 states and
index k1 [MS87].

(iii) Given an APT A with n states and index k over the alphabet Λ × Λ′, we can construct an APT A′

that accepts a labeled tree over the alphabet Λ if some extension (or all extensions) of the labeling with
labels from Λ′ is accepted by A. The number of states of A′ is exponential in n · k, and its index is
linear in n · k [MS87].

(iv) Given an APT A with n states and index k, we can check whether the language of A is empty or
universal in time exponential in n · k [EJS93,MS87].

Model-checking algorithm. The complexity of the model-checking algorithm for strategy formulas de-
pends on the number of quantifier alternations of a formula. We now formally define the alternation depth
of a closed strategy formula. The alternation depth of a strategy formula is defined as follows. For path
formulas Ψ, we set QA(Ψ) = 0. For a strategy formula Φ we set QA(Φ) as follows.

– If Φ = Ψ(x, y), then QA(Φ) = 0.

10

– If Φ = Φ1 ∧ Φ2 or Φ = Φ1 ∨ Φ2 then QA(Φ) = max(QA(Φ1), QA(Φ2)).
– If Φ = ∃x.Φ or Φ = ∃y.Φ then QA(Φ) is max(QA(Φ′) + 1), where Φ′ ranges over all universally

quantified subformulas of Φ. If Φ has no universally quantified subformulas, then QA(Φ) = 0.
– If Φ = ∀x.Φ or Φ = ∀y.Φ then QA(Φ) is max(QA(Φ′) + 1), where Φ′ ranges over all existentially

quantified subformulas of Φ. If Φ has no existentially quantified subformulas, then QA(Φ) = 0.
For example, consider the formula Φ = ∃x1. ∀y1.((∀x2.Ψ2(x2, y1)) ⇒ Ψ1(x1, y1)). The quantifier al-
ternation of ∃x2¬Ψ2(x2, y1), Ψ1(x1, y1), and their conjunction is zero. The quantifier alternation of
∀y1.((∀x2.Ψ2(x2, y1)) ⇒ Ψ1(x1, y1)) is one. Finally, QA(Φ) = 2.

Given a strategy formula Φ, we construct by induction on the structure of the formula a nondeterministic
parity tree (NPT) automaton that accepts the set of strategy assignments that satisfy the formula. Without
loss of generality, we assume that the variables in X ∪Y are not reused; that is, in a closed strategy formula,
there is a one-to-one and onto relation between the variables and the quantifiers.
Theorem 3 Given a labeled game graph G and a closed strategy formula Φ of alternation depth d, we can
compute the set [[Φ]] of states in time proportional to d-EXPTIME in the size of G, and (d + 1)-EXPTIME
in the size of Φ. If Φ contains only unnested path formulas, then the complexity in the size of the formula
reduces to d-EXPTIME.

Proof. The case where a closed strategy logic formula Φ is used as a state formula in a larger formula Φ′,
is solved by first computing the set of states satisfying Φ, adding this information to the labeled game graph
G, and then computing the set of states satisfying Φ′. In addition, if d is the alternation-depth of Φ then Φ is
a boolean combination of closed strategy formulas of alternation depth at most d. Thus, it suffices to handle
a closed strategy formula, and reduce the boolean reasoning to intersection, union, and complementation of
the respective sets. Consider a strategy formula Φ. Let Z = {x1, . . . , xn, y1, . . . , ym} be the set of variables
used in Φ. Consider the alphabet Sn+m and an Sn+m-labeled S-tree σ. For a variable v ∈ X ∪ Y , we denote
by σv the strategy that stands in the location of variable v and for a set Z ′ ⊆ Z we denote by σZ′ the
set of strategies for the variables in Z ′. We now describe how to construct an APT that accepts the set of
strategy assignments that satisfy Φ. We build the APT by induction on the structure of the formula. For a
subformula Φ′ we consider the following cases.
Case 1. Φ′ = Ψ(x, y) —by Theorem 2 we can construct an APT A that accepts trees all of whose paths

satisfy Ψ. According to Theorem 2, A has 2O(|Ψ|) states.
Case 2. Φ′ = Φ1 ∧ Φ2 —given APTs A1 and A2 that accept the set of strategy assignments that satisfy

Φ1 and Φ2, respectively; we construct an APT A for the conjunction of A1 and A2. According to
Theorem 2, |A| = |A1|+ |A2| and the index of A is the maximum of the indices of A1 and A2.

Case 3. Φ′ = ∃x.Φ1 —given an APT A1 that accepts the set of strategy assignments that satisfy Φ1 we do
the following. According to Theorem 2, we can construct an APT A′ that accepts a tree iff there exists
a way to extend the labeling of the tree with a labeling for the strategy for x such that the extended
tree is accepted by A1. The number of states of A′ is exponential in n · k and its index is linear in
n · k. Furthermore, we have to check that the extra labeling corresponds to a valid strategy. That is,
check that the transition enabled from a given state in the tree correspond to the transition enabled
from the same state in the game. This requires multiplying the number of states of A′ by the size of
the game. The cases where Φ′ = ∃y.Φ1, Φ′ = ∀x.Φ1, and Φ′ = ∀y.Φ1 are handled similarly.

We note that for a closed strategy formula Φ, the resulting automaton reads S∅-labeled S-trees. Thus, the
input alphabet of the automaton has a single input letter and it only reads the structure of the S-tree.

The above construction starts with an automaton that is exponential in the size of a given LTL formula
and incurs an additional exponent for every quantifier. In addition, the first quantification multiplies the
number of states of the automaton in the size of the game. Further quantifiers then incur an exponent in the
size of the game as well. In Appendix A we specialize these results by using nondeterministic and universal
tree automata to get the exact complexity of d + 1 exponents in the size of the formula and d exponents in
the size of the game.

Consider the case where only unnested path formulas are used. Then, given a path formula Ψ(x, y), we
construct an APT A that accepts trees all of whose paths satisfy Ψ. As Ψ(x, y) does not use nesting of
temporal operators, we can construct A with a linear number of states in the size of Ψ. 1 It follows that the

1 For a single temporal operator the number of states is constant, and boolean combinations between two automata may lead to
an automaton whose size is the product of the sizes of the two automata. The number of multiplications is at most logarithmic

11

total complexity is d exponents in the size of the formula and d exponents in the size of the game. Thus in
the case of unnested path formulas one exponent can be removed. The inductive construction is just like the
construction for the unrestricted logic that is presented in the appendix.

One-alternation fragment. Since ATL
∗ can be expressed in the simple one-alternation fragment of strategy

logic, it follows that model checking simple one-alternation strategy formulas is 2EXPTIME-hard [AHK02].
Also, since module checking can be expressed in the one-alternation fragment, it follows that model checking
one-alternation strategy formulas with unnested path formulas is EXPTIME-hard [KVW01]. These lower
bounds together with Theorem 3 yield the following results.
Theorem 4 Given a labeled game graph G and a closed one-alternation strategy formula Φ, the computation
of [[Φ]] is EXPTIME-complete in the size of G, and 2EXPTIME-complete in the size of Φ. If Φ contains only
unnested path formulas, then the complexity in the size of the formula is EXPTIME-complete.

Model checking the simple one-alternation fragment. We now present a model-checking algorithm
for the simple one-alternation fragment of strategy logic, with better complexity than the general algorithm.
We first present a few notations.

Notation. For a labeled game graph G and a set U ⊆ S of states, we denote by G ↾ U the restriction of
the labeled game graph to the set U , and we use the notation only when for all states u ∈ U , we have
E(u) ∩ U 6= ∅; i.e., all states in U have a successor in U . A path formula Ψ is infinitary if the set of paths
that satisfy Ψ is independent of all finite prefixes. Formally, for a path π and finite prefix w of π, let π|w
be the path obtained by removing w from π. A path formula Ψ is infinitary if for all paths π and all finite
prefixes w of π we have π |= Ψ iff π|w |= Ψ. The classical Büchi, coBüchi, parity, Rabin, Streett, and Müller
conditions are all infinitary conditions. Every LTL objective on a labeled game graph can be reduced to an
infinitary condition, such as a parity or Müller condition, on a modified game graph.
Lemma 1 Let G be a labeled game graph, and let Φ = (∃ Ψ1, ∃ Ψ2, Ψ3) be a simple one-alternation strategy
formula with path formulas Ψ1, Ψ2, and Ψ3 such that Ψ1 and Ψ2 are infinitary. Let W1 = [[〈〈1〉〉(Ψ1)]] and
W2 = [[〈〈2〉〉(Ψ2)]]. Then [[Φ]] = [[〈〈1, 2〉〉(Ψ1 ∧Ψ2 ∧Ψ3)]] in the restricted graph G ↾ (W1 ∩W2).
Proof. We first observe that [[Φ]] ⊆W1 ∩W2 as follows:

[[Φ]] = {s ∈ S | ∃σ ∈Win1(s, Ψ1). ∃τ ∈ Win2(s, Ψ2). π(s, σ, τ) |= Ψ3}

⊆ {s ∈ S |Win1(s, Ψ1) 6= ∅} ∩ {s ∈ S | Win2(s, Ψ2) 6= ∅}

= W1 ∩W2.

We now show that G ↾ W1 ∩W2 is a game graph. Since Ψ1 is infinitary, for a player 1 state s ∈ S1 ∩W1,
we have E(s) ∩W1 6= ∅ and for a player 2 state s ∈ S2 ∩W1, we have E(s) ⊆ W1. Similarly, for a player 1
state s ∈ S1 ∩W2, we have E(s) ⊆W2 and for a for a player 2 state s ∈ S2 ∩W2, we have E(s)∩W2 6= ∅. It
follows that G ↾ W1 ∩W2 is a game graph. For any winning strategy pair (σ, τ) for all states s ∈ W1 ∩W2

we have π(s, σ, τ) |= 2(W1 ∩W2) (i.e., π(s, σ, τ) only visits states in W1 ∩W2). Let U = [[Φ]] and we prove
that U = [[〈〈1, 2〉〉(Ψ1 ∧Ψ2 ∧Ψ3)]] in G ↾ (W1 ∩W2) by proving inclusion in both directions.

(i) We already showed that U ⊆W1∩W2. We first argue that U ⊆ [[〈〈1, 2〉〉(Ψ1∧Ψ2∧Ψ3)]] in G ↾ (W1∩W2).
For a state s in U , fix a witness strategy pair (σ, τ) such that σ ∈ Win1(s, Ψ1), τ ∈ Win2(s, Ψ2) and
π(s, σ, τ) |= Ψ3. We have π(s, σ, τ) |= 2(W1 ∩W2), and since σ ∈ Win1(s, Ψ1) and τ ∈ Win2(s, Ψ2) we
have π(s, σ, τ) |= Ψ1 ∧Ψ2 ∧Ψ3. Hence (σ, τ) is a witness to show that

s ∈ {s1 ∈ S ∩ (W1 ∩W2) | ∃σ. ∃τ. π(s1, σ, τ) |= Ψ1 ∧Ψ2 ∧Ψ3},

i.e., s ∈ [[〈〈1, 2〉〉(Ψ1 ∧Ψ2 ∧Ψ3)]] in G ↾ (W1 ∩W2).
(ii) We now prove the other inclusion to complete the proof. Let s ∈ [[〈〈1, 2〉〉(Ψ1∧Ψ2∧Ψ3)]] in G ↾ (W1∩W2).

Fix a witness strategy pair (σ1, τ1) in G ↾ (W1∩W2) such that π(s, σ1, τ1) |= Ψ1∧Ψ2∧Ψ3. We construct
witness strategies to show that s ∈ U as follows:

– Player 1 strategy σ∗. Player 1 plays the strategy σ1 as long as player 2 follows τ1; if player 2
deviates at state s1, then player 1 switches to a strategy σ̂ ∈ Win1(s1, Ψ1). Observe that any

in the size of the formula, resulting in a linear total number of states.

12

player 2 deviation still keeps the game in W1 since for all states in s1 ∈ W1 ∩S2 we have E(s1) ⊆
W1 and hence the construction is valid.

– Player 2 strategy τ∗. Player 2 plays the strategy τ1 as long as player 1 follows σ1; if player 1
deviates at state s1, then player 2 switches to a strategy τ̂ ∈ Win1(s1, Ψ2). Observe that any
player 1 deviation still keeps the game in W2 since for all states in s1 ∈ W2 ∩S1 we have E(s1) ⊆
W2 and hence the construction is valid.

Since (a) π(s, σ1, τ1) |= Ψ1 ∧Ψ2 ∧Ψ3 (hence also π(s, σ1, τ1) |= Ψ1 ∧Ψ2), (b) the players switch to a
respective winning strategy if the other player deviates, and (c) Ψ1 and Ψ2 are infinitary, it follows that
σ∗ ∈ Win1(s, Ψ1) and τ∗ ∈ Win2(s, Ψ2). Moreover, we have π(s, σ1, τ1) = π(s, σ∗, τ∗) |= Ψ1 ∧Ψ2 ∧Ψ3.
Hence we have s ∈ U .

The desired result follows and it also follows that

[[Φ]] = [[〈〈1, 2〉〉

(
Ψ1 ∧Ψ2 ∧Ψ3 ∧ 2

(
〈〈1〉〉(Ψ1) ∧ 〈〈2〉〉(Ψ2)

))
]].

Lemma 2 Let G be a labeled game graph, and let Φ = (∃ Ψ1, ∃ Ψ2, Ψ3) be a simple one-alternation
strategy formula with unnested path formulas Ψ1, Ψ2, and Ψ3. Let W1 = [[〈〈1〉〉(Ψ1)]] and W2 = [[〈〈2〉〉(Ψ2)]].
Then [[Φ]] = [[〈〈1, 2〉〉(Ψ1 ∧Ψ2 ∧Ψ3)]] ∩W1 ∩W2.
Proof. Similar to the proof for Lemma 1 we have [[Φ]] ⊆ W1 ∩ W2. Let U = [[Φ]] and we prove that U =
[[〈〈1, 2〉〉(Ψ1 ∧Ψ2 ∧Ψ3)]] ∩W1 ∩W2 by proving inclusion in both directions.

(i) We already argued that U ⊆ W1 ∩W2. We first argue that U ⊆ [[〈〈1, 2〉〉(Ψ1 ∧ Ψ2 ∧ Ψ3)]] ∩W1 ∩W2.
For a state s in U , fix a witness strategy pair (σ, τ) such that σ ∈ Win1(s, Ψ1), τ ∈ Win2(s, Ψ2) and
π(s, σ, τ) |= Ψ3. Since σ ∈ Win1(s, Ψ1) and τ ∈ Win2(s, Ψ2) we have π(s, σ, τ) |= Ψ1 ∧ Ψ2 ∧ Ψ3. Hence
(σ, τ) is a witness to show that

s ∈ {s1 ∈ S ∩ (W1 ∩W2) | ∃σ. ∃τ. π(s1, σ, τ) |= Ψ1 ∧Ψ2 ∧Ψ3},

i.e., s ∈ [[〈〈1, 2〉〉(Ψ1 ∧Ψ2 ∧Ψ3)]] ∩W1 ∩W2.
(ii) We now prove the other inclusion to complete the proof. Let s ∈ [[〈〈1, 2〉〉(Ψ1 ∧Ψ2 ∧Ψ3)]]∩W1 ∩W2. Fix

a witness strategy pair (σ1, τ1) in G ↾ (W1 ∩W2) such that π(s, σ1, τ1) |= Ψ1 ∧Ψ2 ∧Ψ3. We construct
witness strategies to show that s ∈ U as follows: let Ψ1 = Φ1

1UΦ2
1 and and Ψ2 = Φ1

2UΦ2
2. The witness

strategy construction follows from the following two parts.
– Player 1 strategy σ∗. We first observe that for all s ∈ S2∩(W1 \ [[Φ2

1]]) we have E(s) ⊆W1. Player 1
plays the strategy σ1 as long as player 2 follows τ1; if player 2 deviates at state s1, then either
s1 ∈ [[Φ2

1]] (in which case Ψ1 is satisfied) or else player 1 switches to a strategy σ̂ ∈ Win1(s1, Ψ1).
Observe that any player 2 deviation from states other than [[Φ2

1]] still keeps the game in W1, and
hence the construction is valid.

– Player 2 strategy τ∗. We again observe that for all s ∈ S1∩(W2\[[Φ2
2]]) we have E(s) ⊆W2. Player 2

plays the strategy τ1 as long as player 1 follows σ1; if player 1 deviates at state s1, then either
s1 ∈ [[Φ2

2]] (in which case Ψ2 is satisfied) or else player 1 switches to a strategy τ̂ ∈ Win2(s1, Ψ2).
Observe that any player 1 deviation from states other than [[Φ2

2]] still keeps the game in W2, and
hence the construction is valid.

Since π(s, σ1, τ1) |= Ψ1 ∧ Ψ2 ∧ Ψ3 (hence also π(s, σ1, τ1) |= Ψ1 ∧ Ψ2), and the players switch to
a respective winning strategy if the other player deviates, it follows that σ∗ ∈ Win1(s, Ψ1) and τ∗ ∈
Win2(s, Ψ2). Moreover, we have π(s, σ1, τ1) = π(s, σ∗, τ∗) |= Ψ1 ∧Ψ2 ∧Ψ3. Hence we have s ∈ U .

The desired result follows and it also follows that

[[Φ]] = [[〈〈1, 2〉〉(Ψ1 ∧Ψ2 ∧Ψ3) ∧ 〈〈1〉〉(Ψ1) ∧ 〈〈2〉〉(Ψ2)]].

Theorem 5 Let G be a labeled game graph with n states, and let Φ = (∃ Ψ1, ∃ Ψ2, Ψ3) be a simple
one-alternation strategy formula.

(i) We can compute the set [[Φ]] of states in n2O(|Φ|)

· 22O(|Φ|·log |Φ|)

time; hence for formulas Φ of constant
length the computation of [[Φ]] is polynomial in the size of G. The computation of [[Φ]] is 2EXPTIME-
complete in the size of Φ.

13

(ii) If Ψ1, Ψ2, and Ψ3 are unnested path formulas, then there is an ATL
∗ formula Φ′ with unnested path

formulas such that |Φ′| = O(|Ψ1| + |Ψ2| + |Ψ3|) and [[Φ]] = [[Φ′]]. Therefore [[Φ]] can be computed in
polynomial time.

Theorem 5 follows from Lemmas 1 and 2. We present details only for part (1): given Ψ1, Ψ2, and Ψ3 as
parity conditions, from Lemma 1, it follows that [[(∃Ψ1, ∃Ψ2, Ψ3)]] can be computed by first solving two parity
games, and then model checking a graph with a conjunction of parity conditions (i.e., a Streett condition).

An LTL formula Ψ can be converted to an equivalent deterministic parity automaton with 22O(|Ψ|·log |Ψ|)

states
and 2O(|Ψ|) parities (by converting Ψ to a nondeterministic Büchi automaton, and then determinizing). From
the conversion of an LTL formula to a deterministic parity automaton (that is an infinitary condition) and
Lemma 1 it follows that expressive power of simple one-alternation fragment and ATL

∗ coincide. By applying
an algorithm for solving parity games [Jur00] and a polynomial-time algorithm for model checking Streett
conditions, we obtain the desired upper bound. Observe that the model-checking complexity of the simple
one-alternation fragment of strategy logic with unnested path formulas, as well as the program complexity of
the simple one-alternation fragment (i.e., the complexity in terms of the game graph, for formulas of bounded
size), are exponentially better than the corresponding complexities of the full one-alternation fragment.

7. Conclusions

We introduced Strategy Logic, a logic for reasoning about two-player games. The logic treats strategies
as explicit first-order objects. We showed that the logic is more expressive than ATL, ATL

∗, and game logic.
Nash equilibria and secure equilibria can be directly expressed in the logic. We gave automata-theoretic
algorithms for model checking Strategy Logic, and more efficient algorithms for the one-alternation fragment
of the logic. In the case of the one-alternation fragment, our algorithms are tight.

One important direction of extending Strategy Logic would be to concurrent games [dAHK98] and stochas-
tic games [Con92]. In these games, winning strategies may need randomization [dAHK98], and qualitative
as well as quantitative modes of winning are of interest. In the quantitative case, given strategies for both
players, the value of an LTL formula would no longer be Boolean, but a probability value. Existential and
universal quantification over strategies may then be replaced by the supremum and infimum. Current tech-
niques for stochastic games [CJH04,CdAH05] may enable us to model check the one-alternation fragment
of the logic, but we have no theory of automata that would allow a simple solution to the general model-
checking problem. We note that the work of Baier et al. [BBGK07] extends ATL and ATL

∗ with probabilities
but lacks the explicit treatment of strategies as in Strategy Logic.

We mentioned that it may be worthwhile to extend Strategy Logic also in the direction of partial-
information games. One would then have to introduce a hierarchy of knowledge within the logic to preserve
decidability [Kai06]. In addition, pure (i.e., non-randomized) strategies are no longer sufficient for partial-
information games [CH05,CDHR06], and as for concurrent and stochastic games, the lack of automata-
theoretic methods for probabilities makes model checking difficult. If we restrict our attention to handle
pure strategies, work on handling partial-information games in the context of automata [KV00] may be
extended to our setting.

Finally, the algorithms presented in this article for model checking Strategy Logic are exponential in
both the size of the formula and the size of the game structure. We showed the tightness of the complexity
bounds in the case of the one-alternation fragment of the logic. For higher levels of the quantifier alternation
hierarchy, the complexity keeps increasing, but no matching lower bounds are known. It would be interesting
to find either matching lower bounds or improve the upper bounds. This is especially important for the
complexity in terms of size of the game structure.

Acknowledgments. We thank Lukasz Kaiser for discussions on possible extension of Strategy Logic to
partial-information games. This research was supported in part by the Swiss National Science Foundation
and by the NSF grants CCR-0225610 and CCR-0234690.

14

References

[AHK02] R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time temporal logic. Journal of the ACM, 49(5):672–713,
September 2002.

[ALW89] M. Abadi, L. Lamport, and P. Wolper. Realizable and unrealizable concurrent program specifications. In Proc. 16th

International Colloquium on Automata, Languages and Programming, volume 372, pages 1–17. Springer-Verlag,
July 1989.

[BBGK07] C. Baier, T. Brázdil, M. Grösser, and A. Kucera. Stochastic game logic. In QEST’07, pages 227–236. IEEE, 2007.

[BGNV05] A. Blass, Y. Gurevich, L. Nachmanson, and M. Veanes. Play to test. In 5th Formal Approaches to Software Testing,
volume 3997 of Lecture Notes in Computer Science, pages 32–46. Springer-Verlag, 2005.

[CdAH05] K. Chatterjee, L. de Alfaro, and T.A. Henzinger. The complexity of stochastic Rabin and Streett games. In
ICALP’05, pages 878–890. LNCS 3580, Springer, 2005.

[CDHR06] K. Chatterjee, L. Doyen, T.A. Henzinger, and J.F. Raskin. Algorithms for omega-regular games with imperfect
information. In CSL’06, pages 287–302. LNCS 4207, Springer, 2006.

[CH05] K. Chatterjee and T.A. Henzinger. Semiperfect-information games. In FSTTCS’05. LNCS 3821, Springer, 2005.

[CH07] K. Chatterjee and T.A. Henzinger. Assume guarantee synthesis. In 13th Tools and Algorithms for the Construction

and Analysis of Systems, volume 4424 of Lecture Notes in Computer Science, pages 261–275. Springer-Verlag, 2007.

[CHJ04] K. Chatterjee, T.A. Henzinger, and M. Jurdziński. Games with secure equilibria. In Proc. 19th IEEE Symp. on

Logic in Computer Science, pages 160–169. IEEE, 2004.

[CJH04] K. Chatterjee, M. Jurdziński, and T.A. Henzinger. Quantitative stochastic parity games. In SODA’04, ACM-SIAM,
pages 114–123, 2004.

[Con92] A. Condon. The complexity of stochastic games. Information and Computation, 96(2):203–224, 1992.

[dAH01] L. de Alfaro and T.A. Henzinger. Interface automata. In 8th Foundations of Software Engineering, pages 109–120.
ACM press, 2001.

[dAHK98] L. de Alfaro, T.A. Henzinger, and O. Kupferman. Concurrent reachability games. In FOCS,98, pages 564–575.
IEEE, 1998.

[Dil89] D.L. Dill. Trace theory for automatic hierarchical verification of speed independent circuits. MIT Press, 1989.

[EJS93] E.A. Emerson, C. Jutla, and A.P. Sistla. On model-checking for fragments of µ-calculus. In Proc. 5th International

Conference on Computer Aided Verification, volume 697 of Lecture Notes in Comptuer Science, pages 385–396,
Elounda, Crete, June 1993. Springer-Verlag.

[GPSS80] D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal analysis of fairness. In Proc. 7th ACM Symp. on

Principles of Programming Languages, pages 163–173, January 1980.

[HKR02] T.A. Henzinger, O. Kupferman, and S. Rajamani. Fair simulation. Information and Computation, 173(1):64–81,
2002.

[Nas50] J.F. Nash Jr. Equilibrium points in n-person games. Proceedings of the National Academy of Sciences USA,
36:48–49, 1950.

[Jur00] M. Jurdziński. Small progress measures for solving parity games. In 17th Annual Symposium on Theoretical Aspects

of Computer Science, volume 1770 of Lecture Notes in Computer Science, pages 290–301. Springer-Verlag, 2000.

[Kai06] L. Kaiser. Game quantification on automatic structures and hierarchical model checking games. In 15th Computer

Science Logic, volume 4207 of Lecture Notes in Computer Science, pages 411–425. Springer-Verlag, 2006.

[Kam68] J.A.W. Kamp. Tense Logic and the Theory of Order. PhD thesis, UCLA, 1968.

[Koz83] D. Kozen. Results on the propositional µ-calculus. Theoretical Computer Science, 27:333–354, 1983.

[KV00] O. Kupferman and M.Y. Vardi. Synthesis with incomplete information. In Advances in Temporal Logic, pages
109–127. Kluwer Academic Publishers, January 2000.

[KV05] O. Kupferman and M.Y. Vardi. Safraless decision procedures. In Proc. 46th IEEE Symp. on Foundations of

Computer Science, pages 531–540, Pittsburgh, October 2005.

[KVW01] O. Kupferman, M.Y. Vardi, and P. Wolper. Module checking. Information and Computation, 164:322–344, 2001.

[Mar75] D.A. Martin. Borel determinacy. Annals of Mathematics, 65:363–371, 1975.

[Mil71] R. Milner. An algebraic definition of simulation between programs. In Proc. 2nd International Joint Conference on

Artificial Intelligence, pages 481–489. British Computer Society, September 1971.

[MS87] D.E. Muller and P.E. Schupp. Alternating automata on infinite trees. Theoretical Computer Science, 54:267–276,
1987.

15

[Owe95] G. Owen. Game Theory. Academic Press, 1995.

[PR89] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proc. 16th ACM Symp. on Principles of

Programming Languages, pages 179–190, Austin, January 1989.

[Rab69] M.O. Rabin. Decidability of second order theories and automata on infinite trees. Transaction of the AMS, 141:1–35,
1969.

[RW89] P.J.G. Ramadge and W.M. Wonham. The control of discrete event systems. IEEE Transactions on Control Theory,
77:81–98, 1989.

[Tho97] W. Thomas. Languages, automata, and logic. Handbook of Formal Language Theory, III:389–455, 1997.

[VW94] M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Information and Computation, 115(1):1–37,
November 1994.

16

Appendix

Appendix A. Model Checking

We specialize the automata construction presented in the proof of Theorem 3 to get the exact stated
complexity bound. We start by stating a few more known results and then incorporate them into our
construction.

We start by formalizing the concept of d-EXPTIME. Let exp(0, n) = n and let exp(d + 1, n) = 2exp(d,n).
We say that a function f is d-EXPTIME in n if for some polynomial p and for every n we have f(n) ≤
exp(d, p(n)). The following properties of the function exp(d, n) are simple to show.
Lemma 3 For every positive d1, d2, n1, and n2, if d = max(d1, d2) and n = max(n1, n2) all the following
are true.

– 2 · exp(d1, n1) ≤ exp(d1, n1 + 1).
– exp(1, n1) · exp(1, n2) = exp(1, n1 +n2) and for d > 1 we have exp(d1, n1) · exp(d2, n2) ≤ exp(d, n+1).
– exp(d1, n1) + exp(d2, n2) ≤ exp(d, n + 1).
– exp(1, n)! ≤ exp(2, n log n) and for d1 > 1 we have exp(d1, n1)! ≤ exp(d1 + 1, n1 + 1).

Proof.
Case 1. If d1 = 1, then 2 · exp(d1, n1) = 2 · 2n1 = 2n1+1 = exp(d1, n1 + 1). If d1 > 1, then 2 · exp(d1, n1) =

21+exp(d1−1,n1) ≤ 2exp(d1−1,n1+1) = exp(d1, n1 + 1).
Case 2.

exp(1, n1) · exp(1, n2) = 2n1+n2 = exp(1, n1 + n2)
Suppose that d > 1.

exp(d1, n1) · exp(d2, n2) ≤ exp(d, n) · exp(d, n) =

2exp(d−1,n)+exp(d−1,n) ≤ 2exp(d−1,n+1) =

exp(d, n + 1)

Case 3. Follows from Case (1) above.
Case 4.

Suppose that d1 > 1.

exp(d1, n1)! ≤ exp(d1, n1)
exp(d1,n1) = 2exp(d1−1,n1)·exp(d1,n1) ≤

2exp(d1,n1+1) = exp(d1 + 1, n1 + 1)

We use the acronyms NBW for nondeterministic Büchi word automaton and NPT for nondeterministic
parity tree automaton. Given an APT A = 〈Σ, S, δ, s0, α〉 we define the dual A = 〈Σ, S, δ, s0, α + 1〉, where
δ(s, a) is obtained from δ(s, a) by replacing ∨ by ∧ and ∧ by ∨ and α + 1 is the acceptance condition
obtained from α by replacing Fi by Fi+1. It is well known that A and A accept complementary languages.
We use the acronym UPT for the dual of an NPT. The transition function of an NPT can be represented

as δ : S × Σ → 2Sk

where k is the branching degree of the tree, or equivalently for every s ∈ S and a ∈ Σ
we have δ(s, a) =

∨
i∈I

∧k
j=1(j, si,j). For a UPT, the transition function is δ such that for every s ∈ S and

a ∈ Σ we have δ(s, a) =
∧

i∈I

∨k
j=1(j, si,j). Notice that this is different from the usual definition of universal

tree automaton where the transition is purely conjunctive (cf. [KV05]).
We now state a few known results about automata and logic.

Theorem 6 (i) Given a path formula Ψ(x, y), we can construct an NBW NΨ with 2O(|Ψ|) states that
accepts all infinite words that satisfy Ψ [VW94].

(ii) Given two NPTs N1 and N2 with n1 and n2 states and indices k1 and k2, respectively, we can construct
an NPT for the disjunction of N1 and N2 with n1 + n2 states and index max(k1, k2) and an NPT for

the conjunction of N1 and N2 with n1 · n2 ·
(k1+k2)!

k1!k2!
states and index k1 + k2.

(iii) Given an NPT N over alphabet Λ × Λ′, we can construct an NPT N ′ that accepts a labeled tree over
the alphabet Λ if some extension of the labeling with labels from Λ′ is accepted by N . The number of
states of N ′ and its index are equal to those of N .

(iv) Given an NPT N with n states and index k, we can check whether the language of N is empty in time
proportional to nO(k) [Jur00].

17

(v) Given an APT A with n states and index k, we can construct an equivalent NPT N with 2O(nk log nk)

states and index O(nk) [MS87].
The following are additional facts about NPT and UPT that mostly follow from the duality of NPT and
UPT.
Corollary 1 (i) Given a path formula Ψ(x, y), we can construct an NBT NΨ with |S| · 2O(|Ψ|) states that

accepts all strategy trees such that the path described by the combination of strategies x and y satisfies
Ψ.

(ii) Given a path formula Ψ(x, y), we can construct a UPT UΨ with |S| · 2O(|Ψ|) states that accepts all
strategy trees such that the path described by the combination of strategies x and y satisfies Ψ.

(iii) Given two UPTs U1 and U2 with n1 and n2 states and indices k1 and k2, respectively, we can construct
a UPT for the conjunction of U1 and U2 with n1 + n2 states and index max(k1, k2) and a UPT for the

disjunction of U1 and U2 with n1 · n2 ·
(k1+k2)!

k1!k2! states and index k1 + k2.
(iv) Given a UPT U over alphabet Λ × Λ′, we can construct a UPT U ′ that accepts a labeled tree over

alphabet Λ if all extensions of the labeling with labels from Λ′ are accepted by U ′. The number of states
of U ′ and its index are equal to those of U .

(v) Given a UPT U with n states and index k, we can check whether the language of N is universal in
time proportional to nO(k).

(vi) Given an NPT N with n states and index k, we can construct an equivalent UPT U with 2O(nk log nk)

states and index O(nk).
(vii) Given a UPT U with n states and index k, we can construct an equivalent NPT N with 2O(nk log nk)

states and index O(nk).
Proof.
(i) Consider the path formula Ψ. By Theorem 6 there exists an NBW NΨ that accepts all infinite words

that satisfy Ψ. Let NΨ = 〈2P , Q, δ, q0, F 〉 and let S be the set of states of the game G. Consider some
Λ-labeled S-tree 〈T, ρ〉 where Λ = Sk for some k. For every λ ∈ Λ denote by λx the projection of λ on
the strategy x and by λy the projection of λ on the strategy y. We construct an NBT N that reads
Λ-labeled S-trees and runs NΨ in the directions prescribed by the strategies x and y. Technically, we
define the NBT N = 〈Λ, (S ×Q) ∪ {⊤}, η, (s0, q0), (S × F) ∪ {⊤}〉, where for every (s, q) ∈ S ×Q and
λ ∈ Λ the transition η is defined as follows.

η((s, q), λ) =

∨

q′∈δ(q,L(s))

(ρx(λ), (ρx(λ), q′)) ∧
∧

s′ 6=ρx(λ)

(s′,⊤) If s ∈ S1

∨

q′∈δ(q,L(s))

(ρy(λ), (ρy(λ), q′)) ∧
∧

s′ 6=ρx(λ)

(s′,⊤) If s ∈ S2

Finally, for every λ ∈ Λ the transition η(⊤, λ) =
∧

s∈S(s,⊤).
It is simple to see that N ′ accepts a strategy tree if the path that is the combination of x and y

satisfies Ψ.
(ii) Consider the path formula (¬Ψ)(x, y). By the construction above there exists an NBT N¬Ψ that

accepts all trees in which the path described by the combination of strategies x and y satisfies ¬Ψ. Let
UΨ = N¬Ψ. The UPT UΨ accepts a legal strategy tree if the path described by the combination of x
and y does not satisfy Ψ.

(iii) Consider the NPTs N1 = U1 and N2 = U2. By Theorem 6 there exist NPTs N∪ and N∩ for the
disjunction and conjunction of N1 and N2. The UPTs U∩ = N∪ and U∪ = N∩ are the required
automata.

(iv) Let N = U . By Theorem 6 there exists an NPT N∃ that accepts a tree over alphabet Λ if some
extension of the labeling with labels from Λ′ is accepted by N . It follows that U∀ = N∃ accepts a tree
over alphabet Λ if all extensions of the labeling with labels from Λ′ are accepted by U .

(v) By duality of UPT and NPT.
(vi) Consider an NPT N . It is simple to construct an APT A that complements N with same index and

same number of states. By Theorem 6 there is an NPT N ′ that accepts the same language as A. The
UPT U = N ′ accepts the same language as N .

(vii) This is dual to the construction described above for the conversion of NPT to UPT.
We now turn to the proof of Theorem 3.

18

Proof. The idea behind this tighter construction is to use NPTs and UPTs and maintain them in this
form as long as possible. Nondeterministic automata are good for existential quantification, which comes to
them for free, and UPTs are good for universal quantification, which comes to them for free. Every quantifier
alternation requires to go from NPT to UPT or vice versa incurring an exponential blow-up. As we start
with an automaton whose size may be exponential in the size of a path subformula, we get d+1-exponentials
in the size of the formula and d-exponentials in the size of the game, where d is the number of quantifier
alternations.

Consider a formula Φ. As explained above, we assume that Boolean combinations of formulas are handled
separately and thus assume Φ is of the form Qz.Φ′ for Q ∈ {∃, ∀}. If Q = ∀ we say that Φ is universal and
if Q = ∃ we say that Φ is existential. Consider Φ′ a strict subformula of Φ. We say that Φ′ is universal if
the minimal subformula Qz.Φ′′ such that Φ′ is a subformula of Φ′′ is universal, i.e., Q = ∀. We say that Φ′

is existential if it is not universal. For every existential subformula we are going to construct an NPT and
for every universal subformula we are going to construct a UPT.

Recall, that the set of strategy formulas is defined as follows:

Φ ::= Ψ(x, y) | Φ ∧ Φ | Φ ∨ Φ | Qx.Φ | Qy.Φ, where Q ∈ {∃, ∀}, x ∈ X, y ∈ Y

Consider a strategy formula Φ. Let Z = {x1, . . . , xn, y1, . . . , ym} be the set of variables used in Φ. Consider
the alphabet Sn+m and an Sn+m-labeled S-tree σ. For a variable v ∈ X ∪ Y , we denote by σv the strategy
that stands in the location of variable v and for a set Z ′ ⊆ Z we denote by σZ′ the set of strategies for the
variables in Z ′. We now describe how to construct an automaton that accepts the set of strategy assignments
that satisfy Φ. Our automata respect the following invariants:

(i) The automaton is NPT whenever the subformula is existential
(ii) The automaton in UPT whenever the subformula is universal.
(iii) The size of the automaton is at most d + 1-exponential in the size of the formula d-exponential in the

size of the game and its index is at most d-exponential in the size of the formula and d− 1-exponential
in the size of the game, where d is the number of quantifier alternations of the subformula.

We build the automaton by induction on the structure of the formula. For a subformula Φ′ we consider the
following cases.
Case 1. Φ′ = Ψ(x, y) where Φ′ is existential—we construct an NPT N that accepts all trees in which the

path prescribed by the combination of the strategies x and y satisfies Ψ. By Theorem 6 the automaton
N has |S| · 2O(|Ψ|) states and has index 3. It follows that the invariants are satisfied.

Case 2. Φ′ = Ψ(x, y) where Φ′ is universal—we construct a UPT U that accepts all trees in which the path
prescribed by the combination of the strategies x and y satisfies Ψ. By Corollary 1 the automaton U
has |S| · 2O(|Ψ|) states and has index 3. It follows that the invariants are satisfied.

Case 3. Φ′ = Φ1 ∧ Φ2 where Φ′ is existential—by definition Φ1 and Φ2 are also existential and hence we
have NPTs N1 and N2 for the sets of strategy assignments that satisfy Φ1 and Φ2, respectively; we
construct an NPT N for the conjunction of N1 and N2. Let n1 and n2 denote the number of states
of N1 and N2 and let k1 and k2 denote their indices. Let n denote the number of states of N and
k its index. According to Theorem 6, n = n1n2

(k1+k2)!
k1!k2! and k = k1 + k2. By Lemma 3 if for some

d, m we have n1, n2 ≤ exp(d, m) and k1, k2 ≤ exp(d − 1, m) and d > 1, then n ≤ exp(d, m + 1) and
k ≤ exp(d, m + 1).

Case 4. Φ′ = Φ1 ∧ Φ2 where Φ′ is universal—by definition Φ1 and Φ2 are also universal and hence we have
UPTs U1 and U2 for the sets of strategy assignments that satisfy Φ1 and Φ2, respectively; we construct
a UPT U for the conjunction of U1 and U2. The number of states of U is the sum of the number of
states of U1 and U2 and its index is the maximal index of the two.

Case 5. Φ′ = Φ1 ∨ Φ2 where Φ′ is existential—by definition Φ1 and Φ2 are also existential and hence we
have NPTs N1 and N2 for the sets of strategy assignments that satisfy Φ1 and Φ2, respectively; we
construct an NPT N for the disjunction of N1 and N2. The number of states of N is the sum of the
number of states of N1 and N2 and its index is the maximal index of the two.

Case 6. Φ′ = Φ1 ∨ Φ2 where Φ′ is universal—by definition Φ1 and Φ2 are also universal and hence we have
UPTs U1 and U2 for the sets of strategy assignments that satisfy Φ1 and Φ2, respectively; we construct
a UPT U for the disjunction of U1 and U2. Let n1 and n2 denote the number of states of U1 and U2 and
let k1 and k2 denote their indices. Let n denote the number of states of U and k its index. According to

19

Theorem 6, n = n1n2
(k1+k2)!

k1!k2!
and k = k1 +k2. By Lemma 3 if for some d, m we have n1, n2 ≤ exp(d, m)

and k1, k2 ≤ exp(d− 1, m) and d > 1, then n ≤ exp(d, m + 1) and k ≤ exp(d, m + 1).
Case 7. Φ′ = ∃z.Φ1 —by definition Φ1 is existential and there exists an NPT N1 that accepts the set of

strategy assignments that satisfy Φ1. We construct a DPT D that checks that the strategy assigned to
z is legal (i.e., the choice depicted by the strategy is available). The automaton D is linear in S and has
index 1. Let N2 denote the conjunction of N1 and D. Its number of states is the product of the number
of states of N1 and D and its index is the index of N1. According to Theorem 2, we can construct an
NPT N ′ that accepts a tree iff there exists a way to extend the labeling of the tree with a labeling for
the strategy for z such that the extended tree is accepted by N2, i.e., the strategy for z is legal and
satisfies Φ1. The number of states of N ′ and its index are equal to those of N2. If Φ′ is existential then
N ′ is the NPT for Φ′. If Φ′ is universal then according to Corollary 1 there exists a UPT U that accepts
the language of N ′. Let n and k denote the number of states of N ′, then the number of states of U is
n′ = 2O(nk log nk) and its index is k′ = O(nk). By Lemma 3 if for some d, m we have n ≤ exp(d, m)
and k ≤ exp(d− 1, m) and d > 1, then n′ ≤ exp(d + 1, m + 3) and k ≤ exp(d, m + 1).

Case 8. Φ′ = ∀z.Φ1 —by definition Φ1 is universal and there exists a UPT U1 that accepts the set of strategy
assignments that satisfy Φ1. We construct a DPT D that checks that the strategy assigned to z is legal
(i.e., the choice depicted by the strategy is available). Let D1 denote the DPT that complements D.
As before D1 is linear in S and has index 1. Let U2 denote the disjunction of U1 and D1. Its number of
states is the product of the number of states of U1 and D1 and its index is the index of U1. According
to Corollary 1, we can construct a UPT U ′ that accepts a tree iff all ways to extend the labeling of the
tree with a labeling for the strategy for z are accepted by U2, i.e., either the strategy for z is illegal
or it satisfies Φ1. The number of states of U ′ and its index are equal to those of U1. If Φ′ is universal
then U ′ is the UPT for Φ′. If Φ′ is existential then according to Corollary 1 there exists an NPT N
that accepts the language of U ′. Let n and k denote the number of states of U ′, then the number of
states of N is n′ = 2O(nk log nk) and its index is k′ = O(nk). By Lemma 3 if for some d, m we have
n ≤ exp(d, m) and k ≤ exp(d− 1, m) and d > 1, then n′ ≤ exp(d + 1, m + 3) and k ≤ exp(d, m + 1).

We analyze the size of the resulting automaton. We start with automata created from path formulas that
are exponential in the length of the formula and linear in the size of the graph. Quantifier alternations incur
an increase in the number of exponents. All other operations maintain the same number of exponents. We
note that in cases 3,6,7, and 8 we assume that the automata are large enough in order to use Lemma 3. It
follows that many conjunctions of NPTs or many disjunctions of UPTs may cause further explosion in the
number of states and index of the resulting automata. However, this is adjusted by the relation between the
length of the formula and its quantifier alternation. In order to handle cases 7 and 8 we note that in low
levels of the quantifier alternation hierarchy the polynomials in the exponent may have a large degree.

Hence we get either a UPT or an NPT that accepts the set of strategy trees that satisfy the formula. If the
formula is closed, it follows that the automaton accepts the tree without actually reading the labeling. Thus,
the automaton is non-empty iff it is universal. If the automaton is an NPT we check whether it is nonempty
and if the automaton is a UPT we check whether it is universal. If the automaton has n ≤ exp(d+1, m) states
and index k ≤ exp(d, m) then its emptiness / universality can be decided in time exp(d + 1, m)exp(d,m) ≤
exp(d + 1, m + 1) for large enough d.

Finally, we note that for unnested path formulas, we start with an automaton of constant size instead of
exponential. Thus, the number of exponentials in the size of the formula reduces by one and the required
bound follows. The Theorem follows.

20

