
PCTL Model Checking of Markov Chains:
Truth and Falsity as Winning Strategies in Games

Harald Fechera, Michael Huth∗,b, Nir Pitermanb, Daniel Wagnerb

aInstitut für Informatik, Universität Freiburg, Georges-Köhler-Allee 79, 79110 Freiburg,
Germany

bDepartment of Computing, Imperial College London, South Kensington campus, London, SW7
2AZ, United Kingdom

Abstract

Probabilistic model checking is a technique for verifying whether a model such
as a Markov chain satisfies a probabilistic, behavioral property – e.g. “with prob-
ability at least 0.999, a device will be elected leader.” Such properties are express-
ible in probabilistic temporal logics, e.g. PCTL, and efficient algorithms exist for
checking whether these formulae are true or false on finite-state models.

Alas, these algorithms do not supply diagnostic information for why a proba-
bilistic property does or does not hold in a given model. We provide here complete
and rigorous foundations for such diagnostics in the setting of countable labeled
Markov chains and PCTL. For each model and PCTL formula, we define a game
between a Verifier and a Refuter that is won by Verifier if the formula holds in the
model, and won by Refuter if it does not hold. Games are won by exactly one
player, through monotone strategies that encode the diagnostic information for
truth and falsity (respectively). These games are infinite with Büchi type accep-
tance conditions where simpler fairness conditions are shown to be not sufficient.
Verifier can always force finite plays for certain PCTL formulae, suggesting the
existence of finite-state abstractions of models that satisfy such formulae.

Key words: Markov chains, probabilistic computation tree logic, game theory,
fairness conditions, probabilistic evidence

∗Corresponding author
Email addresses: fecher@informatik.uni-freiburg.de (Harald Fecher),

M.Huth@doc.imperial.ac.uk (Michael Huth),
Nir.Piterman@doc.imperial.ac.uk (Nir Piterman),
dwagner@doc.imperial.ac.uk (Daniel Wagner)

Preprint submitted to Performance Evaluation July 8, 2009

2000 MSC: 60J10 (Markov chains with discrete parameter), 03B44 (temporal
logic), 91A05 (2-person games), 91A15 (stochastic games)

1. Introduction

Countable labeled Markov chains [16, 3] are an important class of stochastic
processes for the modeling of probabilistic systems. Probabilistic Computation
Tree Logic (PCTL) [8] is a probabilistic temporal logic whose formulae φ can
express practically relevant specifications, e.g. “with probability at least 0.999, a
device will be elected leader” – a requirement within a telecommunications stan-
dard such as [1] – can be written as [tt U someLeaderElected]≥0.999 in PCTL. A
denotational semantics [|φ|]M over labeled Markov chains M then renders truth or
falsity of φ, where [|φ|]M is the set of states in M at which φ is true.

Efficient algorithms exist that compute, over a finite-state labeled Markov
chain, the set of states that satisfy a given PCTL formula (e.g. the ones imple-
mented in the probabilistic model checker PRISM [11]). A specifier, however,
may need more information than just knowledge of that set. The specifier may
want to understand why a particular state or set of states of interest is in that set,
and any such information may be seen as evidence or diagnostics of truth. Equally,
the specifier may be interested in comprehending why a particular state is not in
that set, and any such information would now be evidence for falsity.

We here mean to provide such a mathematical formalism: a precise operational
account of truth and falsity of PCTL formulae, expressed in a manner that is ex-
plorable step by step by humans and machines alike. The formalism we suggest
is that of Hintikka games [10], played between two players Verifier and Refuter,
and their notion of strategy for these players. The appeal of these games is that
truth amounts to the existence of a winning strategy for Verifier, whereas falsity is
captured by the existence of a winning strategy for Refuter. Such Hintikka games
for PCTL over labeled Markov chains are meant to establish firm foundations on
which questions about the existence and computation of finitary evidence of truth
and falsity of PCTL formulae can be phrased, studied, and evaluated.

We now sketch the idea behind Hintikka games for first-order logic. A Tarskian
notion of truth, |=, is a formally defined predicate between models and formulae
of first-order logic and “property φ is true in model M” is defined as “predicate
M |= φ holds”. For example, if M is the set of natural numbers {0, 1, . . . } and φ
is ¬∃x ((x ∗ x < x+ 1) ∧ (x > 1)), then M |= φ holds since all natural numbers
are either at most 1 or their square is bigger than their successor number.

2

For model M and formula φ, a Hintikka game G(M,φ) involves two players,
Verifier V (who wants to prove that M satisfies φ) and Refuter R (who wants to
prove that M does not satisfy φ). Game G(M,φ) has as configurations triples
of form 〈M [~x 7→ ~a], ψ, C〉 where [~x 7→ ~a] binds a set of variables xi to natural
numbers ai, C is either Refuter R or Verifier V, and ψ is either φ or a strict sub-
formula of φ. The initial configuration is 〈M,φ, V〉, saying that V claims that φ
is true in M . Game G(M,φ) thus generates a game tree whose paths are plays –
finite sequences of configurations. Below, we write !C for the player other than C,
i.e. !V = R and !R = V.

For sake of illustration, consider the game for our example. The formula φ is a
negation, so the initial configuration has 〈M,ψ0, R〉 as sole next configuration for
ψ0 being ∃x ((x ∗ x < x + 1) ∧ (x > 1)). (Thus, we just swap the player – if C
claims ¬ψ then !C claims ψ – and remove the negation symbol when processing a
negation.) At configuration 〈M,ψ0, R〉, the formula is an existential one and so the
player that claims its truth (here R) can choose a natural number, say 5, and bind it
to x, resulting in the next configuration 〈M [x 7→ 5], ψ1, R〉, where ψ1 is (x ∗ x <
x+ 1)∧ (x > 1). (In particular, configuration 〈M,ψ0, R〉 has infinitely many next
configurations, one for each natural number a bound to x.) That formula ψ1 is a
conjunction claimed to be true by R, and so his opponent V can choose a conjunct.

If V chooses conjunct x > 1, the next configuration is 〈M [x 7→ 5], x > 1, R〉.
Formula x > 1 is atomic and x is bound to 5 so we simply evaluate this to 5 > 1,
which is true. Refuter has won this play. But if V chooses x ∗ x < x + 1, the
next configuration is 〈M [x 7→ 5], x ∗ x < x+ 1, R〉 and now Verifier wins since
5 ∗ 5 = 25 6< 6 = 5 + 1. Finally, if player V always chooses x ∗ x < x + 1
whenever a is greater than 1, and chooses x > 1 whenever a is at most 1, he wins
all plays in the game tree of G(M,φ), affirming that φ is true in M .

To summarize, existential quantifiers in a configuration 〈M, ∃xψ, C〉 require
binding its quantified variable x to an element a of the model, chosen by player C,
with next configuration 〈M [x 7→ a], ψ, C〉. Negation in a configuration 〈M,¬ψ, C〉
determines a swap of players and the removal of the negation with next configura-
tion 〈M,ψ, !C〉. Conjunction in a configuration 〈M,ψ1 ∧ ψ2, C〉 means that player
!C chooses a conjunct ψi for the next configuration 〈M,ψi, C〉. Atomic configura-
tions 〈M, δ, C〉 are simply evaluated, using the binding information of the model:
player C wins if δ is true in M , otherwise player !C wins.

Strategies for both players are objects that allow them to make necessary
choices for determining continuation plays. For example, Verifier needs to make
choices for existential quantifiers in configurations of form 〈M, ∃xψ, V〉, and for
conjunctions in configurations of form 〈M,ψ1 ∧ ψ2, R〉. A strategy σ is winning

3

for a player if all plays played according to the choices offered by strategy σ are
won by that player. Since all plays for first-order logic are finite, classical game
theory guarantees that games G(M,φ) are determined: exactly one of the two
players has a winning strategy for that game.

It is well known that in ordinary set theory ZF the assumption of the Axiom
of Choice is equivalent to that

(Correspondence) “Verifier wins game G(M,φ) if, and only if, pred-
icate M |= φ holds.”

holds. So one gets an operational and “small-step” account of truth in first-order
logic from the Axiom of Choice.

Our Hintikka games for PCTL retain the above idea: Verifier and Refuter are
adversarial players. A configuration in the game corresponds to a location in the
Markov chain (replacing the structure), the formula to be proven for this location,
and the player whose role is to prove it. The choices of sub-formulae are sim-
ilar to the choices in the case of first-order logic described above. The choices
of structural elements turn out to be sub-distributions that approximate transi-
tion distributions in labeled Markov chains. Structural choices prove the truth of
temporal formulae, such as [pU q]≥0.999. Such formulae can be either proven or
refuted immediately by proving q or refuting p. If this is impossible to do immedi-
ately, the player who is trying to prove this formula suggests how to partition the
obligation ≥ 0.999 between the successors of a state in a way that matches tran-
sitions in the underlying Markov chain. The opponent then chooses with which
successor to continue the game and the probability of pU q is adjusted according
to the promised obligation and the transition probability. Unlike the case of first-
order logic, our plays may be infinite and infinite plays are won according to the
configurations that appear infinitely often.

We here also rely on the Axiom of Choice in proving (Correspondence) in our
setting of PCTL and countable labeled Markov chains. This dependency appears
to vanish for finite-state models and for PCTL formulae whose threshold types
and controlling player satisfy simple consistency conditions developed in this pa-
per. The latter is of interest since any PCTL formula can be rewritten with the help
of small perturbations of thresholds that will not diminish their practical value to
specifiers but that establishes, in some cases, said consistency conditions. For ex-
ample, formulae [tt U someLeaderElected]≥0.999 and [tt U someLeaderElected]>p
with p = 0.999− 10−15 have different threshold types (≥ versus >) but the latter
formula may in practice be considered a valid substitute for the former one.

4

Outline of paper. In Section 2, we review the familiar denotational semantics of
PCTL for countable labeled Markov chains as models, and prove a finite-state
approximation lemma for (Strong) Until formulae with non-strict thresholds under
that semantics. In Section 3, the game semantics for PCTL over countable labeled
Markov chains is being defined and these games are shown to be determined and
to capture precisely the denotational semantics of PCTL. In Section 4, we discuss
what structural properties one may assume in winning strategies for our games.
A discussion of the relevance of our results to finding finite representations of
winning strategies is contained in Section 5. In Section 6, we discuss related
work, and we conclude in Section 7.

2. Preliminaries

(Countable) Labeled Markov chains M over a set of atomic propositions AP
are triples (S, P, L), where S is a countable set of states, P : S × S → [0, 1] is
a countable stochastic matrix such that the countable sum of non-negative reals∑

s′∈S P (s, s′) converges to 1 for all s ∈ S, and L : AP → P(S) is a labeling
function where L(q) is the set of states at which atomic proposition q is true. We
say that M is finitely branching iff for all s ∈ S the set {s′ ∈ S | P (s, s′) > 0}
is finite. A path π from state s in M is an infinite sequence of states s0s1 . . . with
s0 = s and P (si, si+1) > 0 for all i ≥ 0. For Y ⊆ S, we write P (s, Y) as a
shorthand for the (possibly infinite but well defined) sum

∑
s′∈Y P (s, s′).

The syntax of PCTL is given in Fig. 1. Path formulae α are wrapping PCTL
formulae into “LTL” operators for Next, (Strong) Until, and Weak Until familiar
from linear-time temporal logic [21]. Until formulae φU ≤kψ are Strong Untils
since paths that satisfy such a formula have to maintain temporary invariant φ
until they reach a state satisfying ψ, and such a state has to be reached within
finite transitions, and also within k transitions if k 6= ∞. Weak Until formulae
φW ≤kψ are Weak Untils since reaching a state satisfying ψ is optional if φ is an
invariant on the path s0s1 . . . sk, which is understood to be the full path π when
k = ∞. The value k = ∞ is being used to express unbounded Untils, whereas
k ∈ N expresses a proper step bound on Untils. We write φUψ as a shorthand for
φU ≤∞ψ, and φWψ as shorthand for φW ≤∞ψ.

Path formulae α are interpreted as predicates π |= α over paths π of M .
PCTL formulae φ are interpreted as subsets [|φ|]M of S. The semantics of path
and PCTL formulae is the standard one, given in Fig. 2. The measure space of
path sets is generated from cylinder path sets in the standard fashion [16]. We
thus write ProbM(s, α) for the probability of the measurable set PathM(s, α) of

5

φ, ψ ::= PCTL formulae
q Atom
¬φ Negation
φ ∧ ψ Conjunction
[α]./p Path Probability

α ::= Path formulae
Xφ Next
φU≤kψ (Strong) Until
φW≤kψ Weak Until

Figure 1: Syntax of PCTL, where q ∈ AP, k ∈ N∪ {∞}, p ∈ [0, 1], and ./ ∈ {<,≤, >,≥}

π |= Xφ iff s1 ∈ [|φ|]M
π |= φU≤kψ iff ∃ l ∈ N : l ≤ k & sl ∈ [|ψ|]M & (∀0 ≤ j < l : sj ∈ [|φ|]M)
π |= φW≤kψ iff ∀ l ∈ N : 0 ≤ l ≤ k → (sl ∈ [|φ|]M) ∨ (∃ 0 ≤ j ≤ l : sj ∈ [|ψ|]M)

[|q|]M = L(q) [|φ ∧ ψ|]M = [|φ|]M ∩ [|ψ|]M

[|¬φ|]M = S \ [|φ|]M [|[α]./p|]M = {s ∈ S | ProbM (s, α) ./ p}

Figure 2: Semantics π |= α of path formulae for paths π = s0s1 . . . , and semantics [|φ|]M of
PCTL formulae: ProbM (s, α) is the probability of set PathM (s, α), consisting of those paths
π = s . . . in M with π |= α

paths π = s . . . with π |= α. PCTL formulae wrap path formulae with probability
thresholds (turning predicates on paths into predicates on states), interpret atoms
according to the labeling function L, and interpret negation and conjunction as
complement and intersection of predicates (respectively). The operators φ ∨ ψ
(disjunction) and φ → ψ (implication) are derived as ¬(¬φ ∧ ¬ψ) and ¬φ ∨ ψ,
respectively. Let ff be an abbreviation for any [α]>1, and tt denotes any [α]≥0.

Example 1 For the labeled Markov chainM in Fig. 3(a), [|[q U r]≥1/2|]M = {s0, s1}.
For the labeled Markov chainM s0

2 in Fig. 3(b) we have that [|[qW r]≥5/9|]M equals
{s0, s0s1, s0s1s1, s0s0, s0s0s1, s0s0s0}.

We say that PCTL formulae φ and ψ are semantically equivalent iff for all
labeled Markov chains M we have [|φ|]M = [|ψ|]M . Each PCTL formula φ is
semantically equivalent to a PCTL formula in “GreaterThan” normal form ob-

6

tained by replacing all occurrences of the form [α]<p in φ with the PCTL formula
¬[α]≥p, and by replacing any occurrences of the form [α]≤p in φ with the PCTL
formula ¬[α]>p. For example, the “GreaterThan” normal form of the formula
[[X [q U r]<1/3]≤1/2 U r]>1/4 is [¬[X¬[q U r]≥1/3]>1/2 U r]>1/4.

Assumption 1 (GreaterThan) Without loss of generality, PCTL of Fig. 1 is re-
stricted to ./ ∈ {≥, >}.

We now state and prove a finite-state approximation lemma for the validity of
Until formulae with non-strict probability thresholds at states of labeled Markov
chains. This lemma will be crucial in proving that our game semantics of PCTL,
developed in Section 3, captures exactly the denotational semantics in Fig. 2.

Definition 1 (Finite Unfoldings) Let M = (S, P, L) be a labeled Markov chain.
For each i ∈ N and s0 ∈ S we define the labeled Markov chainM s0

i = (Si, Pi, Li),
a random tree with root s0: unfold M from s0 as a full tree of depth i, where
edges have positive probability according to P . This may duplicate states but
such duplicates will satisfy the same atomic propositions. States at level i have
a self-loop with probability 1. The probability measures P (s, ·) at levels < i are
those in M . For each j ∈ N we restrict M s0

i to the finite-branching, and so finite-
state, labeled Markov chain M s0

i,j = (Si,j, Pi,j, Li,j) with one additional state tsink

which satisfies tt but no other q ∈ AP: For each s ∈ Si, let t1, t2, . . . be an
enumeration of {tk ∈ Si | P (s, tk) > 0} such that P (s, tk) ≥ P (s, tk+1) for all
k ∈ N. Then Pi,j is obtained from Pi by setting Pi,j(s, tk) = Pi(s, tk) for k ≤ j,
Pi,j(s, tsink) = 1 −

∑j
k=1 Pi,j(s, tk) and Pi,j(tsink, tsink) = 1; state set Si,j con-

sists of those s reachable from s0 via Pi,j , and Li,j is Li restricted to set Si,j and
extended to the new state tsink.

Example 2 Fig. 3(b) shows unfoldingM s0
2 for labeled Markov chainM of Fig. 3(a).

Lemma 1 (Finite-State Approximation) Let q, r ∈ AP and p ∈ [0, 1] for la-
beled Markov chain M = (S, P, L). Then s ∈ [|[q U r]≥p|]M iff for all n ∈ N there
are k, l ∈ N with s ∈ [|[q U r]>p−1/n|]Ms

k,l
.

PROOF OF LEMMA 1. Consider first the case thatM is finitely branching. Recall
that Path(s, q U r) denotes the set of paths beginning in s that satisfy q U r. Let
Pathi(s, q U r) be Path(s, (q U ≤ir) ∧

∧
0≤j<i ¬(q U ≤jr)), i.e., paths in which q

holds until location i where r holds and r does not hold in locations smaller than

7

(a) Labeled Markov chain M

(b) Unfolding Ms0
2 of M

Figure 3: Labeled Markov chainM with s0 ∈ [|[qU r]≥1/2|]M , since ProbM (s0, qU r) = 1/2

8

i. We set Path0(s, q U r) to be Path(s, q U ≤0r), i.e. the set {π = s0 · · · | s =
s0, s0 ∈ L(r)}

For the “if” part, assume that for all n ∈ N there is k ≥ 0 such that s ∈
[|[q U r]>p−1/n|]Ms

k
. Then, s ∈ [|[q U r]>p−1/n|]M follows by the monotonicity of the

denotational semantics for “GreaterThan” thresholds. Thus, s is in the intersection⋂
n∈N[|[q U r]>p−1/n|]M which equals [|[q U r]≥p|]M .

For the “only if” part, let s ∈ [|[q U r]≥p|]M and n ∈ N. It suffices to
find some k ≥ 0 with s ∈ [|[q U r]>p−1/n|]Ms

k
. As Pathi(s, q U r) is of form

Path(s, α) for a path formula α, that set of paths is measurable. For all i 6= j note
that sets Pathi(s, q U r) and Pathj(s, q U r) are disjoint. Since Path(s, q U r) =⋃
i≥0 Pathi(s, q U r) and as the latter is a disjoint union, we know that

ProbM (s,Path(s, qU r)) =
∑
i≥0

ProbM (s,Pathi(s, qU r))

By definition of convergence for that infinite sum, for every n ∈ N there exists
k ≥ 0 such that

k∑
i=0

ProbM (s,Pathi(s, qU r)) ≥ ProbM (s,Path(s, qU r))− 1/n

As
∑k

i=1 ProbM(s,Pathi(s, q U r)) equals ProbMs
k
(s, q U r) we obtain that s is in

[|[q U r]>p−1/n|]Ms
k

and we are done.
As M is finitely branching, there exists an upper bound l on the branching

degree for all states in M s
k . It follows that ProbMs

k
(s, q U r) = ProbMs

k,l
(s, q U r).

For infinite branching M the proof is similar. We have to be more careful
in noticing that every path set Pathi(s, q U r) is still measurable and have to be
careful in the way in which we sum up the probability of the set Path(s, q U r).
But this works out since all infinite sums have absolute convergence, establishing
that for some k we have s ∈ [|[q U r]>p−1/n|]Ms

k
. The existence of M s

k,l as required
follows from the convergence of ProbMs

k,l
(s, q U r) to ProbMs

k
(s, q U r). 2

Example 3 Consider the labeled Markov chain in Fig. 3(a): ProbM(s0, q U r) =
1/2 is attained by paths of increasing length, as the value of the infinite sum∑∞

j=1(1/3)j . But for all n ∈ N there is i ∈ N such that
∑i

j=1(1/3)j > 1/2− 1/n
and where that finite sum is attainable in a finite unfolding of M . For example,
for M s0

2 in Fig. 3 the probability of q U r at s0 is 4
9

so for every n < 18 we have
s0 ∈ [|[q U r]>1/2−1/n|]Ms0

2
. In M s0

3 the probability of q U r at s0 is 13
27

and so for
every n < 54 we have s0 ∈ [|[pU q]>1/2−1/n|]Ms0

4
. Lemma 1 promises a similar

approximation for every (countable) labeled Markov chain.

9

Lemma 1 has a dual version, required in the proof of Theorem 2 below.

Corollary 1 For labeled Markov chain M = (S, P, L), q, r ∈ AP, and p ∈ [0, 1]:
s 6∈ [|[qW r]>p|]M iff for all n ∈ N there are k, l ∈ N with s 6∈ [|[qW r]≥p+1/n|]Ms

k,l
.

PROOF OF COROLLARY 1. s 6∈ [|[qW r]>p|]M iff s ∈ [|[¬rU (¬q ∧ ¬r)]≥1−p|]M ,
as qW r ≡ ¬(¬rU (¬q ∧ ¬r)). By Lemma 1, for all n ∈ N there are k, l ∈ N
with s ∈ [|[¬rU (¬q ∧ ¬r)]≥1−p−1/n|]Ms

k,l
. Thus, s 6∈ [|[qW r]>p+1/n|]Ms

k,l
. 2

3. Game semantics

Let M = (S, P, L) be a labeled Markov chain over the set of atomic propo-
sitions AP. For each state s ∈ S and PCTL formula φ we define a 2-person
Hintikka game GM(s, φ). As already mentioned, these games are played between
two players V (the Verifier) and R (the Refuter). As before, we let !V = R and
!R = V.

After having defined these games and their winning conditions, we show that
each game GM(s, φ) is won by player V iff s ∈ [|φ|]M ; and won by player R iff
s 6∈ [|φ|]M . In particular, each game GM(s, φ) is determined, exactly one of the
players V and R wins that game. The game GM(s, φ) has as set of configurations

CfM(s, φ) = {〈s′, ψ, C〉 | s′ ∈ S, ψ ∈ cl(φ), C ∈ {R, V}}

where we define the set of PCTL formulae cl(φ), the closure of φ, in Fig. 4. This
set merely delineates the universe of PCTL formulae ψ such that all configurations
〈t, ψ, C〉 reachable in game GM(s, φ) satisfy ψ ∈ cl(φ). Set cl1(φ) is part of the
closure as familiar from first-order logic. Set cl2(φ) is specific to PCTL and will
be discussed implicitly in game moves for clause Path Probability of PCTL. The
intuition behind a configuration 〈t, ψ, C〉 is that player C claims (or has the burden
of proof) that ψ holds in state t.

Definition 2 1. The moves of game GM(s0, φ) are defined by structural induc-
tion on ψ ∈ cl(φ), simultaneously for all s ∈ S, in Fig. 5.

2. A play in GM(s0, φ) is an element of CfM(s, φ)+ ∪CfM(s, φ)ω beginning in
〈s0, φ, V〉, where next configurations are determined as in Fig. 5.

The intuition behind the moves is as follows. In move M1, any formula [α]>1

is made semantically equivalent to ff whereas move M2 encodes that any formula
[α]≥0 is semantically equivalent to tt.

10

Set cl1(φ) is the actual set of sub-PCTL-formulae of φ, including φ itself. Set cl2(φ)
consists of all formulae [α]./p′ such that either

(a) α is ψ1 Uψ2, ./ is >, p ∈ [0, 1], and ./′ ∈ {>,≥} with [α]./′p ∈ cl1(φ),
(b) α is ψ1 Wψ2, ./ is ≥, p ∈ [0, 1], and ./′ ∈ {>,≥} with [α]./′p ∈ cl1(φ),
(c) α is ψ1 U≤k

′
ψ2, p ∈ [0, 1], and∞ > k > k′ with [ψ1 U≥kψ2]./p ∈ cl1(φ),

(d) α is ψ1 W≤k′ψ2, p ∈ [0, 1], and∞ > k > k′ with [ψ1 U≥kψ2]./p ∈ cl1(φ)

Figure 4: Closure cl(φ) = cl1(φ) ∪ cl2(φ) of φ satisfying an invariant: for all configurations
〈t, ψ, C〉 reachable in game GM (s, φ), formula ψ is in cl(φ).

Assumption 2 By nature of the moves M1 and M2, moves to configurations of
form 〈s, [α]./p, C〉 in which ./ p equals ≥ 0 or > 1 are never reached.

In move M3, the winner of configurations 〈s, q, C〉 is determined according
to whether atom q is true at state s. The moves M4 and M5 are basically those
familiar from first-order logic for negation and conjunction (respectively).

In order to handle more complex operators we have to devise more complex
moves. In games for branching-time logics such as CTL or the µ-calculus (see
e.g. [24]), the universal quantification in ∀X ψ (“at all next states, ψ holds”) is
resolved by Refuter’s choice of a successor state; and the existential quantification
in ∃X ψ (“at some next state, ψ holds”) is resolved by Verifier supplying one
successor state, both as familiar from the case of quantifiers in first-order logic.
For the next operator in PCTL, however, things are more complicated as reflected
in move M6. The next operator [Xφ]./p says that φ holds with probability ./ p,
“at least p” or “more than p”. Accordingly, at configuration 〈s, [Xψ]./p, C〉 of
move M6, player C chooses a subset Y of {s′ ∈ S | P (s, s′) > 0} satisfying
P (s, Y) ./ p. Intuitively, player C makes it explicit which are the successors of s
satisfying φ. The other player !C then chooses an element s′ from Y and the next
configuration is 〈s′, ψ, C〉. (By Assumption 2, player C does not have the option of
choosing Y = {}.)

This leaves us with explaining and motivating the moves in the case that α
is Weak or Strong Until. In qualitative games, Until operators are resolved by
using the logical equivalence q U r ≡ r∨ (q∧ X (q U r)) – and similarly for Weak
Until operators. The only problem in adopting this for PCTL is in the possibility
of deferring promises forever. For games in qualitative settings this is typically

11

M1 At configurations 〈s, [α]>1, C〉, player !C wins
M2 At configurations 〈s, [α]≥0, C〉, player C wins
M3 At configurations 〈s, q, C〉: player C wins if s ∈ L(q); player !C wins if s 6∈

L(q)
M4 At configuration 〈s,¬ψ, C〉, the next configuration is 〈s, ψ, !C〉
M5 At configuration 〈s, ψ1 ∧ ψ2, C〉, player !C chooses i ∈ {1, 2}, next configura-

tion is 〈s, ψi, C〉
M6 At configuration 〈s, [Xψ]./p, C〉, player C chooses a subset Y ⊆ {s′ ∈ S |

P (s, s′) > 0} satisfying P (s, Y) ./ p; then player !C chooses some s′ ∈ Y ,
next configuration is 〈s′, ψ, C〉

M7 At configuration 〈s, [ψ1 Uψ2]≥p, C〉, player !C chooses some n ∈ N such that
p− 1/n ≥ 0 with resulting next configuration 〈s, [ψ1 Uψ2]>p−1/n, C〉

M8 Dually, at configuration 〈s, [ψ1 Wψ2]>p, C〉, now player C chooses n ∈ N such
that p+ 1/n ≤ 1 with resulting next configuration 〈s, [ψ1 Wψ2]≥p+1/n, C〉

M9 At configuration 〈s, [α]./p, C〉 where either α is ψ1 Uψ2 and ./ is >; or α is
ψ1 Wψ2 and ./ is ≥

– player C either chooses to move to next configuration 〈s, ψ2, C〉 or passes
the turn to player !C

– if player C did not move, player !C either chooses to move to next con-
figuration 〈s, ψ1, C〉 or returns the turn to player C

– if neither player moved above, the play must proceed as follows: Player
C chooses a sub-distribution d : S → [0, 1] such that∑
s′∈S

d(s′) > 0 &
∑
s′∈S

d(s′) ≥ p & ∀s′ ∈ S : d(s′) ≤ P (s, s′)

(1)
Next, player !C chooses some state s′ ∈ S with d(s′) > 0 and the next
configuration is 〈s′, [α]./d(s′)·P (s,s′)−1 , C〉.

M10 At configuration 〈s, [α]./p, C〉where α is ψ1 U≤kψ2 or ψ1 W≤kψ2 with k ∈ N:
– if k = 0 and α is ψ1 U≤kψ2, the next configuration is 〈s, ψ2, C〉
– if k = 0 and α is ψ1 W≤kψ2, player C chooses as next configuration

either 〈s, ψ1, C〉 or 〈s, ψ2, C〉
– if k > 0, the moves are defined as in M9, except in the last item,

where now k in α is decreased to k − 1 for that next configuration
〈s′, [α]./d(s′)·P (s,s′)−1 , C〉

Figure 5: Moves of game GM (s, φ)

12

handled by fairness, but for PCTL fairness is not strong enough:

Example 4 PCTL formula [q U r]≥1/2 holds at state s0 in the labeled Markov
chain of Fig. 3(a). But we have to appeal to the entire infinite sum

∑∞
i=1(1/3)i for

proving this. Any fairness constraint forcing a transition from s0 into {s1, s2} cuts
that infinite sum down to a finite one, failing to prove that formula for state s0.

However, allowing to defer the satisfaction of the Strong Until indefinitely is
unsound. The PCTL formula [q U r]> 1

2
does not hold at s0 but allowing Verifier

to delay promises forever may be unsound, e.g., Verifier could supply the promise
1/3 immediately, promising more than 1/6 in the future, and then – by deferring
the promise indefinitely – Verifier could win game GM(s0, [q U r]> 1

2
).

To address this problem we add a special ε-move as well as acceptance condi-
tions for infinite plays. If the probability is at least p, player C (who claims this)
should be able to prove that it is greater than p − ε for every ε > 0. On the other
hand, if the probability is strictly less than p then there exists an ε for which it is
less than p− ε; and player !C does not lose ground by giving up an ε. Thus, player
!C chooses the ε and player C proves in finite time (appealing to Lemma 1) that she
can get as close as needed to the bound. The same intuition (but dual) works for
Weak Until, when the Weak Until formula in question does not hold. This follows
from the semantic equivalence ¬(φUψ) ≡ (¬ψ) W (¬φ ∧ ¬ψ) of path formulae.

In move M7, player !C makes such an ε = 1/nmove and the next configuration
is the original one except that the threshold changes from ≥ p to > p − 1/n.
Player !C can indeed choose such an n since p cannot be 0. The intuition is that
[p, 1] =

⋂
n∈N(p− 1/n, 1] so this behaves like a universal quantification.

In move M8, player C can choose such an n since p < 1. The intuition
is that a Weak Until with a > threshold is the dual of a Strong Until with a ≥
threshold (based on ¬(φUψ) ≡ (¬ψ) W (¬φ ∧ ¬ψ)), so it is like an existential
quantification. The next configuration is the original one except the threshold
changes from > p to ≥ p+ 1/n.

Move M9 is the most complex one. At configuration 〈s, [α]./p, C〉, player C
can claim that ψ2 is true. If she does not do this, player !C can claim that ψ1 is not
true. If none of these happen, player C has to choose a structural element of the
model, a sub-distribution d of P (s, ·) that has positive mass, under-approximates
the probability distribution P (s, ·), and specifies the re-distribution of promise ./
p into promised probabilities at successor states. If successor s′ “contributes” d(s′)
towards the probability of α at s, and p′ is the probability of α at s′, then d(s′) =
P (s, s′) · p′. Accordingly, when going to the next configuration, the contribution

13

d(s′) is adjusted by multiplying it by P (s, s′)−1. Since d(s′) > 0, we also have
0 < d(s′) · P (s, s′)−1 ≤ 1 in the next configuration 〈s′, [α]./d(s′)·P (s,s′)−1 , C〉 of
move M9 by (1).

Move M10 behaves like move M9 except that a Bounded Until with bound 0
has to realize ψ2 right away; a Bounded Weak Until with bound zero has to realize
at least one of ψ1 or ψ2 right away; and the k is decreased to k− 1 in α if the next
configuration does not have a proper sub-formula of α to consider.

In most moves, plays either end or move to configurations with proper sub-
formula in the closure. In a configuration with Strong Until with non-strict bound
or Weak Until with strict bound, the next configuration changes from non-strict to
strict bound or vice versa. In a configuration with Strong Until with strict bound
or Weak Until with non-strict bound, the next configuration has the same path
formula and threshold type, or has a proper sub-formula.

Thus, all infinite plays end with an infinite suffix of configurations that are

A1. all of the form 〈si, [ψ1 Wψ2]≥pi , C〉 or A2. all of the form 〈si, [ψ1 Uψ2]>pi , C〉

Configurations of these suffixes are either labeled by Strong Until with strict
bound or Weak Until with non-strict bound, where the states and the exact proba-
bility bound may still change, but where neither the player C nor the sub-formulae
ψ1 and ψ2 change.

Definition 3 (Acceptance conditions) 1. Player V wins all infinite plays with
an infinite suffix either of type A1 above with C = V, or of type A2 above with
C = R. Player R wins all other infinite plays: those with an infinite suffix either of
type A1 when C = R, or of type A2 when C = V.

2. Finite plays are won as stipulated in Fig. 5. In particular, if a player has to
make a choice and cannot do so, the other player wins that play.

These are Büchi type acceptance conditions, and so our games are known to be
determined [19]. We use the notion of strategy for player C informally. But such
strategies contain, for each configuration of a game, at most one set of choices as
required by the applicable move from M1-M10.

Example 5 We describe a winning strategy for player V in game GM(s0, [α]≥1/2)
forM as in Fig. 3(a) and α = q U r. The initial configuration is 〈s0, [α]≥1/2, V〉. In
the first move, player R chooses n ∈ N with next configuration 〈s0, [α]>1/2−1/n, V〉.
Then, as long as the play Γ0Γ1 . . . remains in configurations Γi of the form

14

〈s0, [α]>pi
, V〉, player V is going to choose the sub-distribution d with constant

values d(s2) = 0 and d(s1) = 1
3
− 1

2n
, and dynamic value d(s0) = pi − d(s1).

A simple calculation shows that as long as player R chooses s0 as the next state
(clearly, if she chooses s1 she is going to lose as s1 ∈ L(r)) the promised proba-
bility > pi is going to decrease according to the following sequence: p0 = 1

2
− 1

n
,

p1 = 1
2
− 3

2n
, p2 = 1

2
− 6

2n
, p3 = 1

2
− 15

2n
, and in general pi = 1

2
− 3i+3

4n
for i ∈ N.

Whenever pi decreases below 1
3

(and there is some i ∈ N for which this happens),
player V still chooses d with d(s2) = 0 as above but now defines d(s1) = pi and
d(s0) = 0, thereby forcing player R to move to s1 and lose.

Example 6 Although the choice of d in Example 5 may seem arbitrary, it meshes
well with the use of Lemma 1. Consider again the game from Example 5. Suppose
player R chooses 9 ∈ N in the first move, with next configuration 〈s0, [α]>7/18, V〉.
Since for the M s0

2 in Fig. 3, ProbMs0
2

(s0, α) = 4
9
> 7

18
, player V can use M s0

2

to guide her choices. In M s0
2 , ProbMs0

2
(s0s1, α) = 1 and ProbMs0

2
(s0s0, α) = 1

3
.

Player V uses the gap of 1
18

and re-distributes it between the successors of s0.
She can choose, for example, d(s1) = 1

3
− 1

54
and d(s0) = 1

9
− 1

54
. The next

possible configurations are then 〈s1, [α]>17/18, V〉 and 〈s0, [α]>5/18, V〉. Player V

identifies the resulting states with those obtained in M s0
2 , here s0s1 and s0s0 (re-

spectively). As s0s1 ∈ [|r|]Ms0
2

the first is clearly a winning configuration. From
〈s0, [α]>5/18, V〉 and the corresponding location s0s0 in M s0

2 , player V notices that
ProbMs0

2
(s0s0s1, α) = 1 and chooses d(s1) = 5/18. The next configuration is

〈s1, [α]>15/18, V〉 (with corresponding s0s0s1 in M s0
2) and won by supplying r.

We define winning strategies and use them to define which player wins a game.

Definition 4 1. A strategy σ for player C in game GM(s, φ) is winning from a
configuration Γ in that game iff player C wins all plays beginning in config-
uration Γ when player C plays according to his strategy σ.

2. Player C wins GM(s, φ) iff player C has a winning strategy from 〈s, φ, V〉.

We can now formalize our main result that the denotational semantics of PCTL
is captured exactly by the existence of winning strategies in games GM(s, φ).

Theorem 2 Let M = (S, P, L) be a labeled Markov chain over AP, s ∈ S, and φ
a PCTL formula. Then s ∈ [|φ|]M iff player V wins game GM(s, φ); and s 6∈ [|φ|]M
iff player R wins game GM(s, φ). In particular, game GM(s, φ) is determined.

15

PROOF OF THEOREM 2. Given PCTL formula φ, both “iff” claims are shown by
structural induction on PCTL formulae ψ in the closure of φ, simultaneously on
all states of M . As exactly one of s ∈ [|ψ|]M and s 6∈ [|ψ|]M holds, it suffices to
show both “iff” claims in Theorem 2 for such ψ in their “only if” versions, which
each consists of six cases. We prove only the most interesting case here, when φ
equals [α]./p where either

(a) α is ψ1 Uψ2 and ./ is >

(b) α is ψ1 Wψ2 and ./ is ≥ or

(c) α is ψ1 U ≤kψ2 or ψ1 W ≤kψ2 with k ∈ N and ./ is either > or ≥:

(All other cases follow a routine argument.) We show for all three cases above that
(#1) s ∈ [|φ|]M implies player V wins game GM(s, φ) and (#2) s /∈ [|φ|]M implies
player R wins game GM(s, φ).

(#1) First, let s ∈ [|φ|]M . The formula α is logically equivalent to ψ2 ∨ (ψ1 ∧
Xα) and, in case that α is bounded, the bound decreases by 1. It follows that
it is either the case that s ∈ [|ψ2|]M or s ∈ [|ψ1 ∧ [Xα]./p|]M . In the first case,
player V chooses to move to configuration 〈s, ψ2, V〉 and by induction she has a
winning strategy from this configuration. In the second case, by induction there
is a winning strategy for player V from configuration 〈s, ψ1, V〉, so if player R

chooses to go to this configuration, player V wins. If player R does not move to
ψ1, then M9 demands that player V chooses a sub-distribution d : S → [0, 1]
satisfying (1). By assumption s ∈ [|[Xα]./p|]M . Let T be the set of states t such
that ProbM(t, α) > 0 and P (s, t) > 0. We choose d such that d(s′) = 0 for all
s′ ∈ S \ T . So it suffices to specify d on set T .
Consider the case that α = ψ1 Uψ2 and ./ equals >. Let p′ = ProbM(t, α) =∑

t∈T P (s, t) · ProbM(t, α). By assumption p′ > p.
We appeal to Lemma 1. We treat sub-formulae ψ1 and ψ2 as propositions

(respectively, the q and r in that lemma) and annotate states of M by ψ1 and
ψ2. By definition of p′ we have s ∈ [|[ψ1 Uψ2]≥p′|]M . Let n ∈ N be such that
p′ > p′ − 1/n > p. By Lemma 1 (applied to p′ instead of p), there are k, l ≥ 0
with s ∈ [|[ψ1 Uψ2]>p′−1/n|]Ms

k,l
and so the probability of ψ1 Uψ2 in M s

k,l at s is
greater than p. Player V’s strategy is to consider this system M s

k,l.
In the case that p = 0, we choose some state t ∈ T such that ProbMs

k,l
(t, α) >

0, we set d(t) = ProbMs
k,l

(t, α) · P (s, t), and d(t′) = 0 for all t′ 6= t. Otherwise,
when p > 0, let p′′ = ProbMs

k,l
(s, α) and let δ = p′′ − p. We are going to define

16

the sub-distribution d : T → [0, 1] by distributing part of this gap δ between all
the states in T according to the distribution P (s, ·). That is, for every t ∈ T

d(t) = max(0, (ProbMs
k,l

(t, α)− δ) · P (s, t))

In case that ProbMs
k,l

(t, α) ≤ δ we thus have d(t) = 0 (and so effectively
remove t from the set T above). As p′′ =

∑
t∈S ProbMs

k,l
(t, α) · P (s, t) and

p > 0 there must be at least one state t such that ProbMs
k,l

(t, α) ≥ p′′ and hence
ProbMs

k,l
(t, α)−δ > 0, implying d(t) > 0. It follows that

∑
t∈T d(t) ≥ p′′−δ ≥ p.

By definition of M s
k,l there can be only finite sequences of configurations of

the form 〈s′, [α]>p, V〉, and so player V wins (cf. Example 6).
Consider the case that α = ψ1 Wψ2 and ./ equals ≥. As before, let p′ =
ProbM(t, α), which equals

∑
t∈T P (s, t) · ProbM(t, α). By assumption p′ ≥ p.

Let δ be p′ − p. For all t ∈ T , let

d(t) = max(0, (ProbM(t, α)− δ) · P (s, t))

In particular, if ProbM(t, α) ≤ δ, then d(t) = 0. This completes the specification
of sub-distribution d chosen by player V.

Now regardless of the choice of player R, the next configuration is 〈t, [α]./p′ , V〉
such that t ∈ [|[α]./p′ |]M . So player V maintains the truth value of the configuration.
Notice that also the distance from the promised bound p and the real probability
(p′) is being maintained.

All infinite plays have a suffix of configurations of form 〈s′, [ψ1 Wψ2]≥p, V〉
and are thus winning for player V. Finite plays again reach configurations of the
form 〈s′, ψi, V〉 for i ∈ {1, 2}, where induction applies directly.
Consider the case that α is bounded. The case of bounded operators is handled
like the case of Weak Until. Let p′ = ProbM(s, α) and let δ = p′ − p. As before
we set

d(t) = max(0, (ProbM(t, α)− δ) · P (s, t))

As the bound decreases, in a finite number of steps the play moves to configu-
rations of the form 〈s′, ψi, V〉 for i ∈ {1, 2}, where induction applies directly, and
in the desired manner.

(#2) Let s 6∈ [|φ|]M . It follows that ProbM(s, α) ≤ p in case that ./ is >;
and ProbM(s, α) < p in case that ./ is ≥. As above, α is logically equivalent
to ψ2 ∨ (ψ1 ∧ Xα) and in case that α is bounded its bound k decreases by 1.
It follows that s 6∈ [|ψ2|]M and hence there is a winning strategy for player R

from configuration 〈s, ψ2, V〉. Also, it is either the case that s 6∈ [|ψ1|]M or s 6∈

17

[|[Xα]./p|]M . In the first case, player R has a winning strategy from configuration
〈s, ψ1, V〉 and chooses this configuration. In the second case, player V chooses a
sub-distribution d : S → [0, 1] such that (1) holds.

We claim that there is some s′ ∈ S with d(s′) > 0 and ProbM(s′, α) 6./ d(s′) ·
P (s, s′)−1. Proof by contradiction: otherwise, ProbM(s′, α) · P (s, s′) ./ d(s′) for
all s′ with d(s′) > 0 implies that∑

s′|d(s′)>0

ProbM(s′, α) · P (s, s′) ./
∑
s′∈S

d(s′) ≥ p

by (1). But this renders
∑

s′|d(s′)>0 ProbM(s′, α) · P (s, s′) ./ p which directly
contradicts s 6∈ [|[Xα]./p|]M . Thus, player R can choose such an s′ and maintain
the play in configurations of the form 〈s′′, [α]./p′′ , V〉 such that s′′ 6∈ [|[α]./p′′|]M .
Notice that player R can choose a configuration 〈s′′, [α]./p′′ , V〉 such that

p′′ − ProbM(s′′, α) ≥ p− ProbM(s, α)

i.e., the gap between the promise and the actual probability does not decrease.
We now study the consequences of this capability of player R for the different

forms of path formula α:
Case (a): For Weak Until formulae where ./ equals ≥, we appeal to Corol-

lary 1. As before, we treat ψ1 and ψ2 as propositions and annotate states of
M by them. Let p′ = ProbM(s, ψ1 Wψ2). By assumption p′ < p. In par-
ticular, s /∈ [|[ψ1 Wψ2]>p′ |]M . Let n ∈ N be such that p′ < p′ + 1/n < p.
By Corollary 1, there are k, l ≥ 0 with s /∈ [|[ψ1 Wψ2]≥p′+1/n|]Ms

k,l
and so the

probability of ψ1 Wψ2 in M s
k,l at s is less than p. Player R’s strategy is to con-

sider this system M s
k,l. Let d : S → [0, 1] be the sub-distribution chosen by

player V. As s /∈ [|[ψ1 Wψ2]≥p′+1/n|]Ms
k,l

, there is some s′ ∈ S such that s′ /∈
[|[ψ1 Wψ2]≥d(s′)·P (s,t)−1|]Ms

k,l
. So player R chooses this s′. By definition of M s

k,l,
there can be only finite sequences of configurations of form 〈s′, [α]≥p, V〉, and so
player R wins. This is dual to the strategy depicted for V in Example 6.

Case (b): For (Strong) Until formulae where ./ equals>, infinite plays of con-
figurations of the form 〈s′, [ψ1 Uψ2]./p, V〉 are winning for player R by the winning
conditions for infinite plays. Any finite play reduces to configurations of the form
〈s′, ψi, V〉 for i ∈ {1, 2}, where induction applies directly, and in the desired man-
ner.

Case (c): For bounded operators, as the bound decreases, in a finite number
of steps the play moves to configurations of the form 〈s′, ψi, V〉 for i ∈ {1, 2} and
so player R wins by induction. 2

18

In game GM(s, φ), player V owns initial configuration 〈s, φ, V〉. For a dual
game, with the same moves but with initial configuration 〈s, φ, R〉, Theorem 2 and
its proof then remain to be valid if we swap the role of players in both.

Example 7 Consider game GM(s0, [q U r]>1/2), where M is as in Fig. 3(a), and
let α = q U r. From configuration 〈s0, [α]>1/2, V〉, player V will not move to
〈s0, r, V〉 as she would then lose. For the same reason, player R will not move
to 〈s0, q, V〉. So if both players play strategies that are “optimal” for them, player
V has to choose a sub-distribution d at the initial configuration.

If d(s2) > 0, player V loses as player R can then choose s2. So d(s2) = 0 for
any “optimal” strategy of player V. But both d(s1) and d(s0) have to be positive
since otherwise the mass of d can be at most 1/3 by (1), which would violate (1).
Since player V plays an “optimal” strategy, d(s1) 6= 1/3, as otherwise player
R could choose as next configuration 〈s1, [α]>(1/3)·(1/3)−1 , V〉 and would then win
by move M1. By (1), there is therefore ε > 0 such that d(s1) = 1/3 − ε. In
particular, player R will not choose s1 as she would lose the next configuration
〈s1, [α]>1−3ε, V〉 (since s1 ∈ L(r)). So player R chooses s0 and the next configu-
ration is 〈s0, [α]>3d(s0), V〉. By (1), 3d(s0) must be at least 1/2 + 3ε and so player
V promises more in > 3d(s0) than she promised in the previous configuration.

At configuration 〈s0, [α]>3d(s0), V〉, player V avoids losing only by choosing a
sub-distribution d that maps s2 to 0 and all other states to positive mass as before,
and for the same reasons. Similarly, d(s1) < 1/3 has to hold. So although a new
function d with a new value of ε may be chosen, the next configuration is still of
the same type 〈s0, [α]>p′ , V〉 with p′ > 1/2. Thus, either the play is finite and so
lost for player V as described above; or the play is infinite and so lost for player
V by the acceptance conditions A2 on infinite plays.

We conclude that player R wins that game. A winning strategy for her from the
initial configuration only needs to be specified for move M9:

• player R will never choose a configuration of form 〈s0, q, V〉, should such an
opportunity arise

• whenever player V chooses sub-distribution d with d(s2) > 0, player R will
choose s2

• otherwise, it must be the case that both d(s1) and d(s2) are positive; if
d(s1) ≥ 1/3, player R chooses s1

• if d(s1) < 1/3, player R chooses s0

19

4. Winning strategies

Given a winning strategy, it is important to analyze its structure. In general,
a strategy may need to memorize the history of the computation. This could lead
to strategies with infinite memory requirements, hindering their implementation.
In memoryless strategies the next step suggested by the strategy depends only on
the current configuration. As the games defined above are a special type of Büchi
games, it is obvious that winning can be realized by memoryless strategies. In
the Hintikka games defined here, the configuration contains a probability bound
and in general the space of possible configurations is continuous. It follows that
memoryless strategies are not sufficient for implementability. Therefore, we are
searching for additional restrictions on the structure of the strategy that relate to
its implementability.

In this section we show that when a player can win game GM(s, φ) she can
use winning strategies that are of a specific type. These winning strategies choose
structured distributions when re-visiting a state in a configuration with a Strong or
Weak Until operator. Thus, although strategies manipulate infinite (in fact contin-
uous) objects, the results of this section suggest that it may be possible to finitely
represent and use them.

As before, we use the notion of strategy informally. As usual, we say that a
play is consistent with a strategy for player C if every move of player C is that play
is done as prescribed in that strategy. A strategy is memoryless if the choices of
its player depend solely on the current configuration, not on the finite history of
configurations that preceded the current one in a play. In our games, there can be
configurations of type 〈s, [α]./p, C〉 for the same state s and the same path formula
α (e.g., ψ1 Uψ2) but with different bounds ./ p. We show that it is enough to
consider winning strategies which induce bounds that change monotonically, as
defined below. Subsequently, for sub-distributions d, d′ : S → [0, 1], we write

• d ≤ d′ iff for all s ∈ S we have d′(s) ≤ d(s)

• d′ < d iff d′ ≤ d and d′(s) < d(s) for some s ∈ S

For a locally monotone strategy the choice of sub-distribution d at configuration
〈s, [α]./p, C〉 is monotone in ./ p, regardless of the history of a play.

Definition 5 (Locally Monotone Strategies) Strategy σ for player C in GM(s, φ)
is locally monotone iff for all configurations 〈s, [α]./p, C〉 and 〈s, [α]./p′ , C〉 that
occur in plays consistent with σ (but not necessarily in the same play), where d

20

and d′ are the sub-distributions chosen according to σ at these two configurations
(respectively), then p ≥ p′ implies d ≥ d′ and p > p′ implies d > d′.

A cyclically monotone strategy is monotone on cyclic paths within single
plays: its player can force a decrease or increase of the thresholds depending
on the path formula and on whether it is a V or R configuration.

Definition 6 (Cyclically Monotone Strategies) A strategy σ for player C in game
GM(s, φ) is cyclically monotone iff for any two configurations 〈s, [α]./p, C

′〉 and
〈s, [α]./p′ , C

′〉 that occur in this order on some play consistent with σ, then

• α = ψ1 Uψ2 and C = C′ imply p′ < p,

• α = ψ1 Wψ2 and C = C′ imply p′ ≤ p,

• α = ψ1 Uψ2 and !C = C′ imply p′ ≥ p,

• α = ψ1 Wψ2 and !C = C′ imply p′ > p.

The existence of winning strategies implies the existence of winning strategies
that are locally monotone and cyclically monotone.

Theorem 3 For every game GM(s, φ), there exists a winning strategy for player
C iff there exists a memoryless winning strategy for player C that is also locally
monotone and cyclically monotone.

PROOF OF THEOREM 3. Assuming that there exists some winning strategy for
player C in game GM(s, φ), it suffices to show that a slight modification of the
winning strategy synthesized in the proof of Theorem 2 is memoryless, locally
monotone, and cyclically monotone. That slightly modified strategy will clearly
be memoryless by construction. We now describe this modified winning strategy
and first prove its local monotonicity, by induction as in the proof of Theorem 2.
Then we prove that it is cyclically monotone.

Modified winning strategy and its local monotonicity. The only configurations
where player C needs to make choices are of form 〈s, [α]./p, C

′〉, 〈s, ψ1 ∨ ψ2, C〉,
and 〈s, ψ1 ∧ ψ2, !C〉.

With the latter two, we restrict C’s strategy to choose ψ1 whenever possible
and, only when impossible, to choose ψ2. This is similar to what one can do in

21

Hintikka games for first-order logic. We show that the way configurations of the
form 〈s, [α]./p, C

′〉 are handled induces a memoryless and monotone strategy.
If α = Xψ, then the strategy defined in the proof of Theorem 2 chooses the

set of successors according to the state s, and is clearly memoryless.
If !C = C′ and either α = ψ1 Uψ2 and ./ = ≥; or α = ψ1 Wψ2 and ./ = >,

then player C has to choose a value n ∈ N. By choosing the minimal possible n
she ensures that the strategy is memoryless.

Consider two configurations 〈s, [α]./p1 , C
′〉 and 〈s, [α]./p2 , C

′〉. Whenever the
play moves to configurations of the form 〈s′, ψi, C′〉 for i ∈ {1, 2}, the strategy is
memoryless, locally monotone, and cyclically monotone by induction. We start
with proving local monotonicity for moves that may choose sub-distributions.

1. For configurations where α = ψ1 Wψ2, α = ψ1 W ≤kψ2, or α = ψ1 U ≤kψ2,
and C = C′ we claim that the strategy composed in the proof of Theorem 2 is
locally monotone by induction. Intuitively, this can be seen by the strategy using
the gap δ between the probability of the formula and the required threshold. The
strategy partitions this gap between all successors, so if the same state is visited
with different thresholds, the partition of the gap implies that the distribution does
not increase.

Let p′ = ProbM(s, α) and δi = p′ − pi for i ∈ {1, 2}. According to the proof
of Theorem 2 in configuration 〈s, [α]./pi

, C〉 player C chooses the distribution

di(t) = max(0, (ProbM(t, α)− δi) · P (s, t))

It follows that if p1 ≥ p2, then for every t ∈ S we have d1(t) ≥ d2(t). It follows
that if p1 = p2, then d1 = d2. Consider the case that p1 > p2. Then p1 > 0 and
for some t we have d1(t) > 0 and d1(t) = ProbM(t, α) − δ1. As δ1 < δ2 and
d2(t) = ProbM(t, α)− δ2 it follows that d1(t) > d2(t).

2. For the case where α = ψ1 Uψ2 and C = C′, the strategy as defined in the
proof of Theorem 2 is not locally monotone. We modify it as follows: For every
configuration 〈s, [ψ1 Uψ2]>p, C〉 the sub-distribution d is chosen according to the
minimal k such that some fraction of ProbMs

k
(s, α) is greater than p. Intuitively,

the fraction is chosen so as to maximize the satisfaction of α as soon as possible.
At the same time, in order to ensure both local monotonicity and cyclic mono-
tonicity, we cannot use the full weight of paths that fulfill α fast. This is why, we
use the increasing sequence 1

2
, 3

4
, 7

8
, . . . to take increasing parts of this probability

but always leave some leeway to play with to ensure the monotonicity. The exact
definition of this fraction is given below. Furthermore, we use the gap between

22

ProbMs
k
(s, α) and ProbMs

k−1
(s, α) to ensure local (and later cyclic) monotonicity.

The definition of the sub-distribution d and the proof itself are quite technical.
Consider the configuration 〈s, [α]>p, C〉. We assume, without loss of general-

ity, that s /∈ [|ψ2|]M . We measure the exact probability to satisfy α within i steps.
For every t ∈ S let

nt0 = ProbMt
0
(t, α) nti = ProbMt

i
(t, α)− ProbMt

i−1
(t, α) (i > 0)

Consider the following increasing sequence:

N t
0 =

nt
0

2
N t
i = N t

i−1 +
∑i

j=0
1

2i+1−jn
t
j (i > 0)

That is, N t
1 = 3

4
nt0 + 1

2
nt1, N t

2 = 7
8
nt0 + 3

4
nt1 + 1

2
nt2, N t

3 = 15
16
nt0 + 7

8
nt1 + 3

4
nt2 + 1

2
nt3,

and so on. Notice that limi→∞N
t
i = ProbMt

k
(t, α). Let i0 be minimal such that∑

t∈S N
t
i0
· P (s, t) > p. For i ≥ 0, we write Ks

i =
∑

t∈S N
t
i · P (s, t). That is,

Ks
i is the sum of the different N t

i normalized by their probabilities to get from s
to t. To simplify notations, for i < 0 and for all t we set N t

i = Ks
i = 0. The

value N t
i0
· P (s, t) is going to be the basis for defining d(t). Notice that it must

be the case that Ks
i0−1 ≤ p and that N t

i0
− N t

i0−1 > 0. In order to maintain local
monotonicity we distribute the gap between the required threshold p and Ks

i0−1

between all the states t where N t
i0+1 > 0. We have to be extremely careful with

the states s for which Ks
i0−1 = p. For these states, we take a constant fraction of

N t
i0
− N t

i0−1 and distribute it among the successors t. We then have to scale the
distribution d for all states s for which this constant fraction surpasses the required
bound.

We set d(t) as follows:

d(t) =

(
N t
i0−1 +

(
1

4
+

3

4

p−Ks
i0

Ks
i0
−Ks

i0−1

)(
N t
i0
−N t

i0−1

))
· P (s, t)

It is simple to see that
∑

t∈S d(t) > p. Indeed,
∑

t∈S d(t) is the sum of the
following three expressions:∑

t∈S

N t
i0−1 · P (s, t) = Ks

i0∑
t∈S

N t
i0
−N t

i0−1

4
· P (s, t) =

Ks
i0
−Ks

i0−1

4∑
t∈S

3

4

p−Ks
i0−1

Ks
i0
−Ks

i0−1

· (N t
i0
−N t

i0−1) · P (s, t) =
3

4
(p−Ks

i0−1)

23

As Ks
i0
> p the result follows.

Furthermore, when going to some successor t of s the choice of i0 for s implies
that for the choice of the sub-distribution d for t some value i′0 < i0 is going to be
used. Thus, the sequence of configurations of the form 〈t′, [α]>p′ , C〉 is finite and
player C is winning.

We show that this definition of the sub-distribution d implies local monotonic-
ity. Consider two configurations 〈s, [α]>p1 , C〉 and 〈s, [α]>p2 , C〉. Let d1 and d2 be
the sub-distributions chosen by σ in these configurations and let i10 and i20 be the
values used to define d1 and d2, respectively. By definition, dj(t) is in the open
interval (N t

ij0−1
· P (s, t), N t

ij0
· P (s, t)) for j ∈ {1, 2}. By definition, if p1 = p2,

then i10 = i20 and it follows that d1 = d2. Similarly, if p1 > p2, then i10 ≥ i20. If
i10 > i20, the strictness of d1 > d2 follows from the strictness of the sequence N t

i .
If i10 = i20, then d1 > d2 as p1 > p2.

Cyclic monotonicity of modified winning strategy. We turn now to consider cyclic
monotonicity. Consider the configurations 〈s, [α]./p1 , C

′〉 and 〈s, [α]./p2 , C
′〉 that

appear in a play consistent with player C’s strategy σ according to this order.

1. Consider the case where C = C′ and either α = ψ1 Wψ2, α = ψ1 W ≤kψ2, or
α = ψ1 U ≤kψ2. The strategy defined in the proof of Theorem 2 is also cyclically
monotone. Indeed, from configuration 〈s, [α]./p, C〉 where ProbM(s, α) − p = δ
we pass to configuration 〈t, [α]./p′ , C〉 and we know that ProbM(t, α) − p′ = δ.
Hence, if configurations 〈s, [α]./p1 , C〉 and 〈s, [α]./p2 , C〉 appear in the same play,
we have p1 ≥ p2.

2. Consider the case where α = ψ1 Uψ2 and C = C′ and the strategy is as defined
above. Let i10 be the bound used for choosing the sub-distribution d in configu-
ration 〈s, [α]>p1 , C〉. By construction, values smaller than i10 are going to be used
to define the sub-distributions in successor configurations. It follows that if con-
figuration 〈s, [α]>p2 , C〉 is visited, a value i20 < i10 is going to be used to define
its sub-distribution. From the strictness of the sequence N t

i (and Ks
i), and as

Ks
ij0−1
≤ pj < Ks

ij0
, it follows that p2 < p1.

3. Consider the case where !C = C′ and either α = ψ1 Uψ2, α = ψ1 U ≤k, or
α = ψ1 W ≤kψ2. Let p′ = ProbM(s′, α) and δi = pi−p′ for i ∈ {1, 2}. Let d be the
distribution suggested by player !C in configuration 〈s, [α]./p1 , !C〉. By definition
of d, we have

∑
t∈S d(t) ≥ p1. By assumption, 〈s, [α]./p2 , !C〉 is reachable from

24

〈s, [α]./p1 , !C〉, so both players do not choose to go to configurations of the form
〈t, ψi, !C〉 for i ∈ {1, 2}. It follows that

ProbM(s, α) =
∑
t∈S

P (s, t) · ProbM(t, α)

We know that
∑

t∈S d(t) ≥ p′ + δ1. Then, there must exist some t ∈ S such that

d(t) · P (s, t)−1 ≥ ProbM(t, α) + δ1

It follows that if player C chooses this state t, the gap between the actual probabil-
ity and the threshold does not decrease. Thus p1 ≤ p2.

4. Consider the case where α = ψ1 Wψ2 and !C = C′. Then the proof is sim-
ilar to the one in the previous item. By assumption, C wins from 〈s, [α]≥p1 , !C〉
and hence s 6∈ [|[α]≥p1|]M . Let p′ = ProbM(s, α). As player C wins from
〈s, [α]≥p1 , !C〉, we conclude that p′ < p1. In particular, s /∈ [|[ψ1 Wψ2]>p′|]M .
Let n ∈ N be such that p′ < p′ + 1/n < p. By Corollary 1, there are k, l ≥ 0
with s /∈ [|[ψ1 Wψ2]≥p′+1/n|]Ms

k,l
and so the probability of ψ1 Wψ2 in M s

k,l at s is
less than p1. Player C is going to use system M s

k,l to guide her decisions. As usual
ProbMs

k,l
(s, α) is equal to the sum

∑
t∈Sk,l

P (s, t) · ProbMs
k,l

(t, α). Let

p′′ = ProbMs
k,l

(s, α)

As mentioned p′′ < p1. Let δ1 = p1−p′′ and let d be the distribution suggested by
player !C in configuration 〈s, [α]≥p1 , !C〉. By definition of d, we have

∑
t∈S d(t) ≥

p1 = δ1 + p′′. Then, there must exist some t ∈ S such that

d(t) · P (s, t)−1 ≥ ProbMs
k,l

(t, α) + δ1

Thus, if player C chooses this state t, the gap between the actual probability in
M s

k,l and the threshold does not decrease. In Lemma 4 below, we prove that the
probability of α increases when revisiting the state in M s

k,l. Hence, p2 > p1. 2

Lemma 4 Let M be a labeled Markov chain, q and r in AP, α the path formula
qW r, and M s

k,l given for some state s of M and k, l ∈ N. Let t and t′ be different
states in M s

k,l that both correspond to some state s′ of M such that

• there is a path from t to t′ in M s
k,l, and

25

• q holds throughout the unique and finite path from the root of M s
k,l to t′.

If we have ProbMs
k
(t, α) < 1, then ProbMs

k
(t′, α) > ProbMs

k
(t, α) follows.

PROOF OF LEMMA 4. As ProbMs
k
(t, qW r) < 1 it follows that there is some

“leaf” t′′ in M s
k,l that is reachable from t in M s

k,l such that the unique finite path
from t to t′′ in M s

k,l does not satisfy qW r. As M s
k,l is an unwinding of M , it fol-

lows that the subtree reachable from t′ inM s
k,l is contained in the subtree reachable

from t inM s
k,l. Clearly, ProbMs

k,l
(t′, α) ≥ ProbMs

k,l
(t, α). Indeed, if a path satisfies

qW r then every prefix of the path also satisfies qW r. We use proof by contra-
diction to argue that there is a path from t that does not satisfy qW r and does not
pass through t′. Assume such a path does not exist. Then every path beginning
in t that does not satisfy qW r has to pass through t′. However, both t and t′ cor-
respond to state s′ in M . It follows that the only option to falsify qW r in game
GM(s′, α) is by “going in a loop” from state s′ to itself. But by assumption all
states on the path between t and t′ satisfy q, a contradiction. 2

Example 8 The winning strategy for player R in Example 7 is locally mono-
tone as R never meets a pair of configurations that need to be checked for lo-
cal monotonicity. That strategy is also cyclically monotone: From configuration
〈s0, [q U r]>p, V〉, the only possible cycles lead to configurations 〈s0, [q U r]>p′ , V〉.
As explained already, Verifier is restricted to d(s2) = 0 and d(s1) < 1/3 or
she loses in the next step. Let p > 1/2 and ε = 1/3 − d(s1). Then d(s0) ≥
1/6 + (p− 1/2) + ε. Thus, p′ ≥ 1/2 + 3(p− 1/2) + 3ε in the next configuration
〈s0, [q U r]>p′ , V〉. As ε > 0 and p− 1/2 > 0 we have p′ > p. Finally, if p1, p2, . . .
is the sequence of bounds obtained in this manner, then pi+2 − pi+1 > pi+1 − pi
for all i ≥ 1.

5. Discussion

Table 1 summarizes which PCTL sub-formulae can always be coerced into
finite plays if the winning player plays according to a winning strategy. For exam-
ple, the truth of a Strong Until with strict bound implies the existence of a winning
strategy for Verifier that forces to explore only a finite portion of the game before
going to sub-formulae, and similarly from a negated Weak Until with a non-strict
bound. To determine whether a PCTL formula is won by means of such finite
plays only, we can either convert it into “GreaterThan” normal form and check
whether each such sub-formula has a negation polarity that corresponds to the

26

Table 1: Sub-formulae that can (3) or cannot (7) be forced into finite plays by which winning
player; ticks in parentheses indicate finite plays after an initial ε-correction of bounds

X > X ≥ W > W ≥ U > U ≥

Verifier 3 7 (3) 7 7 3 7 (3)

Refuter 7 7 7 (3) 3 7 7

desired player in that table, or we can convert it into negation normal form and
interpret that table as is on the resulting sub-formulae. As already discussed, one
can change the strictness of a threshold bound by slightly changing the required
probabilities in the formula. Thus, an ε-correction may change a formula whose
truth does not force finite plays to a formula whose truth does force finite plays.
Note that the operator X ≥ does not lead to infinite plays but may lead to using
infinite sets of states.

For example, formula η = [q U r]>0.999 ∧ ¬[qW r]≥0.9991 is such that player V
can win by ensuring only finite plays, if she can win at all. Furthermore, if the
Markov chain is infinite, the game explores only a finite portion of it. Based on
these insights, in subsequent work we study completeness of abstraction of PCTL
[12]. Abstractions are finite-state labeled Markov chains A where the labeling
function L has type L : AP × S → {0, 1,⊥} (instead of L : AP → P(S)), there
is a notion of satisfaction between PCTL formulae and abstract models A, the
abstraction relation (A, a) ≺ (M, s) for countable labeled Markov chains M is a
variant of Larsen-Skou probabilistic simulation [18]; and “completeness” means
if there is a PCTL formula η for which Verifier can force finite plays in all M ,
then s ∈ [|η|]M implies there is some abstraction A with state a with (A, a) ≺
(M, s) where (A, a) satisfies η. In [12], we show that these 3-valued labeled
Markov chains and probabilistic simulation cannot render such completeness for
all of PCTL and identify a fragment of PCTL for which completeness is achieved.
Future work will therefore also attempt to generalize these abstractions A to a
kind of tree automata such that we can then secure completeness for the entire
logic PCTL.

27

6. Related work

The results in Lemma 1 are related to the results described in [13, 22, 4]. In
[13], it is shown that in infinite-state Markov chains derived from lossy channel
systems, it is possible to approximate the probability of a linear-time property to
within a given bound by “trying” increasing lengths of channels. Rabinovich also
studies lossy channel systems and shows that by considering paths of increasing
length it is possible to approximate the probability of a linear-time property [22].
Finally, in [4], a logic with only the next operator and the threshold > is studied.
For such formulae and infinite state Markov chains, it is shown how to construct
a sequence of approximations of the system such that a finite-state approximation
satisfies the formula.

In [7], finite-state (discrete-time) labeled Markov chains and probabilistic CTL
(PCTL) are considered in their standard semantics, and different forms of evi-
dence are being developed for documenting the falsity of a PCTL formula in a
given state. One form computes those paths that contribute most to the falsity of a
formula. Another form computes most probable sub-trees to gain more precise di-
agnostic evidence. Both forms, studied for Strong and Weak Until, are supported
with shortest-path type algorithms for computing such evidence.

In [2], the line of work from [7] is being pushed into the world of Markov
decision processes, with a focus on upwards-bounded probability thresholds in
PCTL formulae – whereas we study the downwards-bounded case without loss of
generality. The shortest-path algorithms in [2] are then combined with AND/OR
trees in order to filter the computed set of paths to one with high explanatory value,
and to compute the probability of that filtered path set.

In [25], bounded model-checking techniques are applied to the generation of
counter-examples for probabilistic reachability properties. These techniques are
combined with optimizations such as loop-detection to speed up that computation
and to contain the size of these counter-example path sets.

In [9], the soundness of probabilistic counter-examples based on simulation
preorders of [14, 23], represented as finite-state Markov chains, appeals to prop-
erties of the possibly infinitely many concretizations of that finite-state Markov
chain. An alternative approach is that proposed in [15], where finite, stochastic, 2-
person games G are used as abstractions of Markov decision processes M . These
games have a satisfaction relation for PCTL that is sound with respect to abstrac-
tion. Therefore, the winning strategies that witness such satisfaction G |= φ are
guaranteed to transfer into winning strategies that witness the satisfaction M |= φ
for the model M that G abstracts. This is an incomplete abstraction method in the

28

sense discussed in Section 5 of [15].
In [6], a quantitative µ-calculus with an explicit discount operator, and with

models whose transitions are labeled with discount factors has non-negative real
numbers as results of model checks. Quantitative parity games are developed and
shown to correspond to model checks for formulae of the quantitative µ-calculus.
However, winning strategies are no longer memoryless in general as they may
have to “make up” for discount factors encountered en-route in a play – even in
games with finite set of configurations.

In [20], a quantitative µ-calculus (qMµ) is defined over models that contain
both non-deterministic and probabilistic choice but no discounting. A denota-
tional semantics generalizing Kozen’s familiar one [17] is given. For any finite-
state model and formula of qMµ a probabilistic analogue of parity games is given,
and the determinacy of this game is shown. It is also proved that its game value
equals that of the denotational semantics for the model and formula in question
and that there exist memoryless winning strategies.

This paper is a journal version of the paper [5].

7. Conclusions

We captured the denotational PCTL semantics over countably labeled Markov
chains through Hintikka games with Büchi acceptance conditions. This therefore
renders an operational account of truth and falsity of PCTL model checks on such
models in terms of winning strategies for the players Verifier and Refuter (re-
spectively). Game moves depend on the strictness or non-strictness of probability
thresholds for path formulae. Winning strategies may be assumed to be memory-
less and monotone in their choice of structural elements (here sub-distributions).
PCTL formulae in “GreaterThan” normal form that contain Until operators with
a certain combination of threshold type and negation polarity – statically derived
from Table 1 – have winning strategies that may be interpreted as a finitary witness
of the falsity (respectively, truth) of the formula under consideration.

Acknowledgments. We acknowledge the kind support of the German DFG project
(SFB/TR14 AVACS), the UK EPSRC project Efficient Specification Pattern Li-
brary for Model Validation (EP/D50595X/1), the UK EPSRC project Complete
and Efficient Checks for Branching-Time Abstractions (EP/E028985/1), and the
Computing Laboratory at Oxford University (which hosted the second author dur-
ing his sabbatical leave).

29

References

[1] IEEE standard for a high performance serial bus, August 1996. Std 1394-
1995.

[2] H. Aljazzar, S. Leue. Counterexamples for model checking of Markov de-
cision processes, Technical Report soft-08-01 (abstract), University of Kon-
stanz, December 2007.

[3] J. Desharnais, A. Edalat, P. Panangaden, Bisimulation for Labelled Markov
Processes, Information and Computation 179 (2002) 163–193.

[4] J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. Approximating
Labelled Markov Processes. Information and Computation 184 (2003) 160–
200.

[5] H. Fecher, M. Huth, N. Piterman, D. Wagner, Hintikka Games for PCTL on
Labeled Markov Chains, in: Proc. 5th Intl. Conf. Quantitative Evaluation of
SysTems (QEST), 14-17 September 2008, St Malo, France, pp. 169–178.

[6] D. Fischer, E. Grädel, L. Kaiser, Model checking games for the quantitative
µ-calculus, in: Proc. 25th Annual Symposium Theoretical Aspects of Com-
puter Science (STACS 2008), pp. 301–312. arXiv:0802.2871v1 [cs.LO],
2008.

[7] T. Han, J.-P. Katoen, Counterexamples in probabilistic model checking, in:
Proc. 13th Intl. Conf. Tools and Algorithms for the Construction and Analy-
sis of Systems, 24 March - 1 April 2007, Braga, Portugal, pp. 72–86.

[8] H. Hansson, B. Jonsson, A logic for reasoning about time and reliability,
Formal Aspects of Computing 6 (1994) 512–535.

[9] H. Hermanns, B. Wachter, L. Zhang, Probabilistic CEGAR, in: Proc. 20th
Intl. Conf. Computer Aided Verification (CAV’08), 7-14 July 2008, Prince-
ton, USA, pp. 162–175.

[10] J. Hintikka, Logic, Language-Games and Information: Kantian Themes in
the Philosophy of Logic, Clarendon Press, Oxford, 1973.

[11] A. Hinton, M. Kwiatkowska, G. Norman, D. Parker, PRISM: A tool for
Automatic Verification of Probabilistic Systems, in: Proc. 12th Intl. Conf.

30

Tools and Algorithms for the Construction and Analysis of Systems (TACAS
’06), 25 March-2 April 2006, Vienna, Austria, pp. 441–444.

[12] M. Huth, N. Piterman, and D. Wagner. Three-valued abstrations of Markov
chains: Completeness for a sizeable fragment of PCTL, in Proc. 18th Int.
Symp. on Fundamentals of Computation Theory (FCT ’09), 2009, to appear.

[13] S. P. Iyer and M. Narasimha. Probabilistic lossy channel systems, in Proc.
7th Int. Joint Conf. on Theory and Practice of Software Development (TAP-
SOFT ’97), 1997, pp. 667–681.

[14] B. Jonsson, K. G. Larsen, Specification and refinement of probabilistic pro-
cesses, in: Proc. 6th Annual Symp. Logic in Computer Science (LICS ’91),
15-18 July 1991, Amsterdam, The Netherlands, pp. 266–277.

[15] M. Kattenbelt, M. Huth, Abstraction Framework for Markov Decision Pro-
cesses and PCTL Via Games, Technical Report RR-09-01, Oxford Univer-
sity Computing Laboratory, February 2009.

[16] J. G. Kemeny, J. L. Snell, A. W. Knapp, Denumerable Markov Chains (sec-
ond edition), Springer Verlag, 1976.

[17] D. Kozen, Semantics of probabilistic programs, Journal of Computer and
Systems Sciences 22 (1981) 328–350.

[18] K. G. Larsen, A. Skou, Bisimulation Through Probabilistic Testing, in: Proc.
16th Annual ACM Symp. Principles of Programming Languages, January
1989, Austin, Texas, pp. 344–352.

[19] D. A. Martin, Borel Determinacy, Annals of Mathematics 102 (1975) 363–
371.

[20] C. Morgan, A. McIver, Results on the quantitative µ-calculus qMµ, ACM
Trans. Comp. Logic 8 (1) (2007) 1–43.

[21] A. Pnueli. A temporal logic of programs, Theor. Comp. Science 13
(1981) 45–60.

[22] A. Rabinovich. Quantitative analysis of probabilistic lossy channel systems,
in: Proc. 30th Int. Col. on Automata, Languages and Programming (ICALP
’03), 2003, pp 1008–1021.

31

[23] R. Segala, N. A. Lynch, Probabilistic simulations for probabilistic processes,
in: Proc. 5th Intl. Conf. Concurrency Theory, Uppsala, Sweden, 22-25 Au-
gust 1994, pp. 481–496.

[24] T. Wilke, Alternating tree automata, parity games, and modal µ-calculus,
Bull. Soc. Math. Belg. 8 (2) (2001).

[25] R. Wimmer, B. Braitling, B. Becker, Counterexample Generation for
Discrete-Time Markov Chains Using Bounded Model Checking, in: Proc.
10th Intl. Conf. Verification, Model Checking, and Abstract Interpretation
(VMCAI’09), 18-20 January 2009, Savannah, USA, pp. 366–380.

32

