
p-Automata: New Foundations for Discrete-Time Probabilistic Verification

Michael Huth, Nir Piterman, and Daniel Wagner
Department of Computing, Imperial College London, London, UK

Abstract

We develop a new approach to probabilistic verification
by adapting notions and techniques from alternating tree
automata to the realm of Markov chains. The resulting p-
automata determine languages of Markov chains which are
proved to be closed under Boolean operations, to subsume
bisimulation equivalence classes of Markov chains, and to
subsume the set of models of any PCTL formula.

Our acceptance game for an input Markov chain to a
p-automaton is shown to be well-defined and to be in EXP-
TIME in general; but its complexity is that of PCTL model
checking for automata that represent PCTL formulas. We
also derive a notion of simulation between p-automata that
approximates language containment in EXPTIME.

These foundations therefore enable abstraction-based
probabilistic model checking for probabilistic specifications
that subsume Markov chains, and LTL and CTL* like logics.

1 Introduction
Markov chains are a very important modeling formal-

ism in many areas of science. In computing, Markov chains
form the basis of central techniques such as performance
modeling, and the design and correctness of randomized
algorithms used in security and communication protocols.
Recognizing this prominent role of Markov chains, the
formal-methods community has devoted significant atten-
tion to these models, e.g., in developing model checking for
qualitative [15, 5, 23] and quantitative [1] properties, logics
for reasoning about Markov chains [14, 19], and probabilis-
tic simulation and bisimulation [20, 19]. Model-checking
tools such as PRISM [12] and LiQuor [3] support such rea-
soning about Markov chains and have users in many fields
of computer science and beyond.

In the non-probabilistic setting, the automata-theoretic
approach to verification unifies such reasoning support for
systems modeled as Kripke structures. Automata furnish
the foundations for reasoning about such models through
logic, model checking, synthesis, and abstraction. Alter-
nating tree automata [10] were introduced to prove the de-
cidability of satisfiability for monadic, second-order logic
and they provide a unifying framework for all branching-

time temporal logics such as µ-calculus, CTL, and CTL*.
Of particular interest to us is the result that alternating tree
automata afford a complete framework for abstraction with
respect to branching-time logic [6, 7]. Thus, in this con-
text, alternating automata form the right basis for abstrac-
tion, the technique that makes model checking scale to re-
alistic designs in the hardware and software industry. For
Markov chains, their aforementioned techniques lack such
a unifying framework and the quest for robust notions of
abstraction is an active line of research. Here, we define
p-automata and show that they render such a framework.

A p-automaton reads a Markov chain as input and either
accepts or rejects it. PCTL formulas, the de-facto standard
for model checking Markov chains, can be expressed as
p-automata, and PCTL model checking can be reduced to
deciding the acceptance of Markov chains by p-automata.
Similarly, probabilistic versions of LTL, CTL*, or proba-
bilistic ω-regular extensions of these logics one might wish
to develop, can also be expressed as p-automata. Further,
one can embed a Markov chain as a p-automaton accepting
the language of Markov chains that are bisimilar to it.

The definition of p-automata is motivated by PCTL and
alternating tree automata: it combines the rich combinato-
rial structure of alternating automata with PCTL’s ability to
quantify the probabilities of regular sets of paths. Much
like alternating tree automata, whose acceptance of Kripke
structures is determined by solving games (cf. [10]), ac-
ceptance by p-automata is determined by solving stochastic
games. We show that acceptance of finite Markov chains
can be determined in exponential time. But the acceptance
games for p-automata that arise from PCTL are simpler,
their complexity matching that of PCTL model checking.

We show that the languages of p-automata are closed un-
der Boolean operations. Being more expressive than PCTL,
emptiness of p-automata generalizes the long-standing open
problem of PCTL satisfiability, and is here left open. We
also define simulation of p-automata, show that simulation
approximates language containment, and that this approxi-
mation is exact for p-automata arising from Markov chains.

We also introduce a new probabilistic separation opera-
tor, written ∗ in the paper, that decomposes the witness path
set for a probability threshold into disjoint subsets. This

novel operator for probabilistic specifications leads, e.g.,
to succinct p-automata whose language is the bisimulation
equivalence class of a Markov chain. Use of this operator,
however, has a certain price in the complexity of the result-
ing acceptance games.

We show that the framework of p-automata constitutes
the first complete abstraction framework for PCTL model
checking on Markov chains: if an infinite-state Markov
chain satisfies a PCTL formula, there is a finite p-automaton
that abstracts (i.e. simulates) this Markov chain and whose
language is contained in that of the formula. Thus, p-
automata are a suitable back end for future counter-example
guided abstraction refinement of PCTL model checking.

Our framework also enables extensions to PCTL, simi-
lar to those of LTL developed for hardware model check-
ing. Our framework of p-automata further suggests a new
approach to understanding the open problem of decidability
of PCTL satisfiability: one can mimick the algorithms for
checking emptiness of alternating tree automata and solv-
ing satisfiability of monadic second-order logic, µ-calculus,
CTL*, and dynamic logic by trying to define a suitable
notion of non-deterministic p-automata (for which non-
emptiness would be decidable for standard reasons) and to
show that p-automata can be converted into such a form.

In Section 2 we fix notation and recall needed concepts.
Our p-automata are introduced in Section 3, their accep-
tance games defined in Section 4, and our expressiveness re-
sults featured in Section 5. Simulation and its salient prop-
erties are presented in Section 6. In Section 7 we discuss
related and future work. Section 8 contains our conclusions.

2 Background
A countable labeled Markov chain M over set of atomic

propositions AP is a tuple (S, P, L, sin), where S is a count-
able set of locations, P : S×S → [0, 1] a stochastic matrix,
sin ∈ S the initial location, and L : S → 2AP a labeling
function with L(s) the set of propositions true in location s.
Let succ(s) be the set {s′ ∈ S | P (s, s′) > 0} of successors
of s. All Markov chains are assumed to be finitely branch-
ing, i.e. succ(s) is finite for all s ∈ S. We write MCAP for
the set of all (finitely branching) Markov chains over AP.
A path π from location s in M is an infinite sequence of
locations s0s1 . . . with s0 = s and P (si, si+1) > 0 for all
i ≥ 0. For Y ⊆ S, let P (s, Y) abbreviate

∑
s′∈Y P (s, s′).

For Markov chain M = (S, P, L, sin), a bisimulation
[20] is an equivalence relationH ⊆ S×S such that (s, s′) ∈
H implies (i) L(s) = L(s′) and (ii) P (s, C) = P (s′, C) for
all equivalence classes C ∈ S/H . The union of all bisimu-
lations forM is the greatest bisimulation∼; locations s and
s′ are called bisimilar iff s ∼ s′. This definition extends to
Markov chains M1 and M2 by considering bisimilarity of
their initial locations in the disjoint union of M1 and M2.

Without loss of generality [8], one may define the prob-

φ, ψ ::= PCTL formulas
a,¬a Atom
φ ∧ ψ Conjunction
φ ∨ ψ Disjunction
[α]./p Path Probability

α ::= Path formulas
Xφ Next
φUψ Until
φWψ Weak Until

Figure 1. Syntax of PCTL, where a ∈ AP, p ∈
[0, 1], and ./ ∈ {>,≥}

abilistic temporal logic PCTL [11] in “Greater Than Nega-
tion Normal Form”: only propositions can be negated and
probabilistic bounds are either ≥ or > – see Fig. 1.

Our semantics of PCTL is as in [11]: path formulas α
are interpreted as predicates over paths in M , and wrap
PCTL formulas into “LTL” operators for Next, (strong) Un-
til, and Weak Until. The semantics ‖φ‖ ⊆ S of PCTL for-
mula φ lifts path formulas to state formulas: s ∈ ‖[α]./p‖
iff ProbM (s, α), the probability of the measurable set [17]
Path(s, α) of paths ss1s2 . . . in M with ss1s2 . . . |= α,
satisfies ./ p. M satisfies φ, denoted M |= φ, if sin ∈ ‖φ‖.

Weak Games. A tuple G = ((V,E), (V0, V1, Vp), κ, α)
is a stochastic weak game if (V,E) is a directed graph,
(V0, V1, Vp) a partition of V , function κ associates with ev-
ery v ∈ Vp a distribution κ(v) of mass 1 over E(v) = {v′ |
(v, v′) ∈ E} such that (v, v′) ∈ E iff κ(v)(v′) 6= 0; we
write κ(v, v′) instead of κ(v)(v′). Set α ⊆ V is the win-
ning condition. Set V0 contains the Player 0 configurations,
V1 the Player 1 configurations, and Vp the probabilistic con-
figurations of G. We work with weak games, i. e. for every
maximal, strongly connected component (SCC) V ′ ⊆ V in
(V,E) either V ′ ⊆ α or V ′ ∩ α = {}. If Vp = {}, we call
G simply a weak game. Markov chains can be thought of as
stochastic weak games where V0 = V1 = {} and α = V .

A play in G is a maximal sequence v0v1 . . . of configu-
rations with (vi, vi+1) ∈ E for all i ∈ N. A play is winning
for Player 0 if it is finite and ends in a Player 1 configura-
tion, or if it is infinite and ends in a suffix of states in α.
Otherwise, that play is winning for Player 1. A (pure mem-
oryless) strategy for Player 0 is a function σ : V0 → V with
(v, σ(v)) ∈ E for all v ∈ V0. Play v0v1 . . . is consistent
with strategy σ if vi+1 = σ(vi) whenever vi ∈ V0. Strate-
gies for Player 1 are defined analogously. Let Σ (resp. Π)
be the set of all strategies for Player 0 (resp. Player 1).

Each (σ, π) ∈ Σ×Π from gameG determines a Markov
chain Mσ,π (with sinks for dead-ends in G) whose paths
are plays in G consistent with σ and π. The set of plays
from v ∈ V that Player 0 wins is measurable in Mσ,π . Let
valσ,π0 (v) be that measure, and valσ,π1 (v) = 1 − valσ,π0 (v).
Then val0(v) = supσ∈Σ infπ∈Π valσ,π0 (v) ∈ [0, 1] and
val1(v) = supπ∈Π infσ∈Σ valσ,π1 (v) ∈ [0, 1] are the game
values. Strategies that achieve these values are optimal.

Theorem 1 [4, 22] Let G = ((V, ·), . . .) be a stochastic
weak game and v ∈ V . Then val0(v) + val1(v) = 1. If

2

[[Q]]> = {[[q]]./p | q ∈ Q, ./ ∈ {≥, >}, p ∈ [0, 1]}
[[Q]]∗ = {∗(t1, . . . , tn) | n ∈ N, ∀i : ti ∈ [[Q]]>}
[[Q]]
∗∨ = {∗∨(t1, . . . , tn) | n ∈ N,∀i : ti ∈ [[Q]]>}

[[Q]] = [[Q]]∗ ∪ [[Q]]
∗∨

Figure 2. Derived term sets for set Q

G is finite, val0(v) is computable in NP∩co-NP, and opti-
mal strategies exist for both players. If G is a weak game,
val0(v) is in {0, 1} and linear-time computable.

One can generalize these results to the setting in which
some configurations have pre-seeded game values (in [0, 1]
for stochastic weak games, and in {0, 1} for weak games).

3 Uniform Weak p-Automata
We introduce p-automata and their uniform weak vari-

ant. Traditional probabilistic automata [21] map an input
to a probability of accepting it. Such an automaton A then
gives rise to a mapping from words to the probability of
their acceptance, and thus to probabilistic languages Lµ of
words which are accepted with probability above a fixed
threshold µ. In contrast, our p-automata either accept or re-
ject an entire Markov chain. In particular, a p-automaton
determines a language of Markov chains.

We assume familiarity with basic notions of trees and
(alternating) tree automata. For set T , let B+(T) be the set
of positive Boolean formulas generated from elements t ∈
T , constants tt and ff, and disjunctions and conjunctions:

ϕ,ψ ::= t | tt | ff | ϕ ∨ ψ | ϕ ∧ ψ (1)

Formulas in B+(T) are finite even if T is not.
For set Q, the set of states of a p-automaton, we define

term sets in Fig. 2. This uses n-ary operators ∗n and ∗∨n
for every n ∈ N, which we write as ∗ and ∗∨ throughout
as n will be clear from context. Intuitively, a state q ∈ Q
of a p-automaton and its transition structure model a prob-
abilistic path set. So [[q]]./p holds in location s if the mea-
sure of paths that begin in s and satisfy q is ./ p. Now,
∗([[q1]]>p1 , [[q2]]≥p2), e.g., means q1 and q2 hold with prob-
ability greater than p1 and greater than or equal to p2, re-
spectively; and that the sets supplying these probabilities
are disjoint. Dually, ∗∨([[q1]]≥p1 , [[q2]]≥p2) means that either
(i) there is i ∈ {1, 2} such that qi holds with probability at
least pi or (ii) the intersection of q1 and q2 holds with prob-
ability at least max(p1 + p2 − 1, 0). So ∗ and ∗∨ model a
“disjoint and” and “intersecting or” operator, respectively.
We may write [[q]]./p for ∗([[q]]./p), and similarly for ∗∨.

An element of Q ∪ [[Q]] is therefore either a state of the
p-automaton, a ∗ composition of terms [[qi]]./pi

, or a ∗∨ com-
position of such terms. Given ϕ ∈ B+(Q∪[[Q]]), its closure
cl(ϕ) is the set of all subformulas of ϕ according to (1). In
particular, ∗(t1, t2) ∈ cl(ϕ) does not imply t1, t2 ∈ cl(ϕ).
For a set Φ of formulas, let cl(Φ) =

⋃
ϕ∈Φ cl(ϕ).

b

q1 ∨ [[q2]]≥ 1
2

[[q1]]≥ 1
2

[[q2]]≥ 1
2

q1

u

b

q2

s2

1
3

a

b
1
3

1
3

1
2

1
2s0

s1

Figure 3. (a) Graph GA of automaton A from
Example 1 and (b) a Markov chain M

Definition 1 A p-automaton A is a tuple 〈Σ, Q, δ, ϕin, α〉,
where Σ is a finite input alphabet, Q a set of states (not
necessarily finite), δ : Q×Σ→ B+(Q∪ [[Q]]) the transition
function, ϕin ∈ B+(Q ∪ [[Q]]) the initial condition, and
α ⊆ Q an acceptance condition.

Below, p-automata have states, Markov chains have lo-
cations, and weak stochastic games have configurations.

Example 1 Let A = 〈2{a,b}, {q1, q2}, δ, [[q1]]≥0.5, {q2}〉 be
a p-automaton where δ is defined by

δ(q1, {a, b}) = δ(q1, {a}) = q1 ∨ [[q2]]≥0.5

δ(q2, {b}) = δ(q2, {a, b}) = [[q2]]≥0.5

δ(q1, {}) = δ(q1, {b}) = δ(q2, {}) = δ(q2, {a}) = ff

Term [[q2]]≥0.5 represents the recursive property φ, that
atomic proposition b holds at the location presently read by
q2, and that φ will hold with probability at least 0.5 in the
next locations. State q1 asserts that it is possible to get to
a location that satisfies [[q2]]≥0.5 along a path that satisfies
atomic proposition a. The initial condition [[q1]]≥0.5 means
the set of paths satisfying a Uφ has probability at least 0.5.

In order to be able to decide acceptance of input for p-
automata through the solution of weak stochastic games, we
restrict the cycles in the transition graph of p-automata. In
doing so, we differentiate states q′ appearing within a term
in [[Q]] (bounded transition) from q′ appearing “free” in the
transition of a state q (unbounded transition). In this way,
a p-automaton A = 〈Σ, Q, δ, . . .〉 determines a labeled, di-
rected graph GA = 〈Q′, E,Eb, Eu〉:

Q′ = Q ∪ cl(δ(Q,Σ))
E = {(ϕ1 ∧ ϕ2, ϕi), (ϕ1 ∨ ϕ2, ϕi) | ϕi ∈ Q′ \Q,

i ∈ {1, 2}} ∪ {(q, δ(q, σ)) | q ∈ Q, σ ∈ Σ}
Eu = {(ϕ ∧ q, q), (q ∧ ϕ, q), (ϕ ∨ q, q), (q ∨ ϕ, q) |

ϕ ∈ Q′, q ∈ Q}
Eb = {(ϕ, q) | ϕ ∈ [[Q]] and q ∈ gs(ϕ)}

where gs(ϕ) is the set of guarded states of ϕ: all q ∈ Q
occurring in some term in ϕ. Elements (ϕ, q) ∈ Eu are
unbounded transitions; elements (ϕ, q) ∈ Eb are bounded
transitions; and elements of E are called simple transitions.
We mark (ϕ, q) ∈ Eb with ∗ (and respectively, with ∗∨) if
ϕ ∈ [[Q]]∗ (respectively, ϕ ∈ [[Q]]∗∨). Note that E, Eu, and
Eb are pairwise disjoint. Let ϕ �A ϕ̃ iff there is a finite
path from ϕ to ϕ̃ in E ∪ Eb ∪ Eu. Let ≡ be �A ∩ �−1

A

and ((ϕ)) the equivalence class of ϕ with respect to≡. Each
((ϕ)) is an SCC in the directed graph GA.

3

Definition 2 A p-automaton A is called uniform if:
• For each cycle in GA, its set of transitions is either in
E ∪ Eb or in E ∪ Eu.

• For each cycle in 〈Q,E ∪ Eb〉, its set of markings is ei-
ther {}, {∗} or {∗∨}, and so cannot be {∗, ∗∨}.

• There are only finitely many equivalence classes ((ϕ))
with ϕ ∈ Q ∪ cl(δ(Q,Σ)).

A (not necessarily uniform) p-automaton A is called weak
if for all q ∈ Q, either ((q)) ∩Q ⊆ α or ((q)) ∩ α = {}.

Then, A is uniform, if the full subgraph of every equiv-
alence class in �A contains only one type of non-simple
transitions and at most one kind of marking ∗ or ∗∨. Also,
all states q′ ∈ Q or formulas ϕ occurring in δ(q, σ) for some
q ∈ Q and σ ∈ Σ can be classified as unbounded, bounded
with ∗, bounded with ∗∨, or simple – according to SCC ((q)).

Example 2 Figure 3(a) depicts the graph GA for A of Ex-
ample 1. p-Automaton A is uniform: ((q1)) = {q1, q1 ∨
[[q2]]≥0.5} and ((q2)) = {q2, [[q2]]≥0.5}; in ((q1)) there are no
bounded edges, in ((q2)) there are no unbounded edges; and
GA has no markings for ∗ or ∗∨. The SCC (([[q1]]≥0.5)) =
{[[q1]]≥0.5} is trivial. In addition, A is weak as α = {q2}.

Intuitively, the cycles in the structure of a uniform p-
automatonA take either no bounded edges or no unbounded
edges, and cycles that take bounded edges don’t have both
markings ∗ and ∗∨. Subsequently, all p-automata are uni-
form weak unless mentioned otherwise. Uniformity allows
to define acceptance of input for p-automata through the so-
lution of weak stochastic games. But, a more relaxed no-
tion of uniformity is what really drives the proof of well-
definedness: that any chain in the partial order on SCCs on
the graph of a p-automaton has only finitely many alterna-
tions between bounded and unbounded SCCs.

The requirement of weakness is made merely to sim-
plify the presentation. Using a parity condition instead, e.g.,
would still allow us to decide acceptance of input for uni-
form p-automata, by solving stochastic parity games.

4 Acceptance Games
For any AP, p-automata A = 〈2AP, Q, δ, ϕin, α〉 have

MCAP as set of inputs. For M = (S, P, L, sin) ∈ MCAP, we
exploit the uniform structure of A to reduce the decision of
whether A accepts M to solving a sequence of weak games
and stochastic weak games. Intuitively, unbounded cycles
in GA correspond to weak stochastic games and bounded
cycles to weak games. The weak acceptance of A implies
that these games are weak. Then the language of A is
L(A) = {M ∈ MCAP | A accepts M}. Just like accep-
tance games of alternating tree automata, all states of A and
all subformulas appearing in its transitions form part of ac-
ceptance games. ForA as above, let T = Q∪cl(δ(Q, 2AP)).

Finite partial order (T/≡,≤A) has set {((t)) | t ∈ T} or-
dered by ((t̃)) ≤A ((t)) iff t̃ �A t. ForM as above, each ((t))
determines a game GM,((t)) = ((V,E), (V0, V1, Vp), κ, α̃).
Most of its configurations are in S × T . The construction
is such that (sin, ϕin) occurs as configuration in exactly one
of these games GM,((t)), and val(sin, ϕin) ∈ [0, 1]. Then
A accepts M iff val(sin, ϕin) = 1. We define these games
as follows. Since A is uniform weak, each ((t)) is of one
of three types and each type determines a weak game or
weak stochastic game as detailed in the three cases below.
All game values already computed for games GM,((t̃)) of
SCCs ((t̃)) higher up with respect to ≤A (i.e. by induction)
are used as pre-seeded values in GM,((t)). Below, we write
val(s, ϕ) = ⊥ for configurations (s, ϕ) in GM,((t)) whose
game value has not been pre-seeded.
Case 1: For an SCC ((t)) such that none of its transitions
are in Eb, game GM,((t)) is a stochastic weak game with
V = {(s, t̃) | s ∈ S and t �A t̃} V0 = {(s, ϕ1 ∨ ϕ2) ∈ V }
V1 = {(s, ϕ1 ∧ ϕ2) ∈ V } Vp = (S ×Q) ∩ V
κ((s, q), (s′, δ(q, L(s)))) = P (s, s′) α̃ = {} or V

E =
{((s, ϕ1 ∧ ϕ2), (s, ϕi)) ∈ V × V | i ∈ {1, 2}}∪
{((s, ϕ1 ∨ ϕ2), (s, ϕi)) ∈ V × V | i ∈ {1, 2}}∪
{((s, q), (s′, δ(q, L(s)))) ∈ V × V | P (s, s′) > 0}

where α̃ equals V iff some state q in ((t)) is in α. By The-
orem 1, for every configuration c ∈ V we have val0(c) ∈
[0, 1]. We set val(c) = val0(c).
Case 2: Let ((t)) be an SCC such that none of its transi-
tions are in Eu and none have ∗∨ markings. For each for-
mula ϕ ∈ ((t)) ∩ [[Q]]∗ of form ∗([[q1]]./1p1 , . . . , [[qn]]./npn

)
we define, for each s ∈ S, sets V s,ϕ0 , V s,ϕ1 , and Es,ϕ. Then

V0 =
[
s,ϕ

V s,ϕ0 V1 =
[
s,ϕ

V s,ϕ1 Vp = {}

E =
[
s,ϕ

Es,ϕ α̃ = {} or V

defines the weak game GM,((t)) – where α̃ is V if some
q ∈ ((t)) is in α, and is empty otherwise. It remains to define
V s,ϕ0 , V s,ϕ1 , and Es,ϕ, for which we use pre-seeded values
val(s, t̃) for all s ∈ S and all t̃ 6∈ ((t)) with ((t)) ≤A ((t̃)).

As succ(s) and δ(qi, L(s)) are finite, so are

Rs,ϕ =

n[
i=1

{(s′, ϕ′) | s′ ∈ succ(s), ϕ′ ∈ cl(δ(qi, L(s)))}

Vals,ϕ = {0, 1, val(s′, ϕ′) | (s′, ϕ′) ∈ Rs,ϕ, val(s′, ϕ′) 6= ⊥}

Intuitively, Rs,ϕ is the set of configurations reachable from
(s, ϕ) using one transition of a state in ϕ. Thus, s′ are the
successors of s and ϕ′ are subformulas of δ(qi, L(s)). Set
Vals,ϕ includes 0, 1, and values of configurations in Rs,ϕ.
In game GM,((t)), a play proceeding from (s, ϕ) reaches ei-
ther a configuration whose value is in Vals,ϕ or a configu-
ration (s, ψ) for ψ ∈ ((t)). Sets V s,ϕ0 , V s,ϕ1 , and Es,ϕ are
defined in Fig. 4, the definition of F∗s,ϕ is deferred for now.

4

The intuition behind this weak game is as follows: Con-
figuration (s, ϕ) means that the transition of each qi holds
with probability ./i pi where the sets Xi measured by
these probabilities are pairwise disjoint. In order to check
that, given configuration (s, ϕ), Player 0 chooses a func-
tion f ∈ F∗s,ϕ that associates with location s′ ∈ succ(s)
and state qi the value Player 0 can achieve playing from
(s′, δ(qi, L(s))). The play continues with Player 1 choosing
a successor s′ of s and a state qi, and the play then reaches
configuration (s′, δ(qi, L(s)), f(i, s′)). From such value-
annotated configurations, Player 0 and Player 1 choose suc-
cessors according to the usual resolution of ∨ and ∧:
• In a configuration for which the value v was already de-

termined, either f(i, s′) ./i v, i.e. Player 0 achieved the
promised value and wins immediately; or Player 0 failed
to achieve the promised value and loses immediately.

• Otherwise, the play ends up in another configuration of
the form (s′, ϕ′) for ϕ′ ∈ [[Q]]∗ and the play continues
and ignores the value f(i, s′) (as obviously f(i, s′) ≤ 1).
If the play continues ad infinitum, the winner is deter-
mined according to acceptance condition α̃.
We now define the function space F∗s,ϕ that captures

terms built from the seperation operator ∗. For n ∈ N,
let [n] = {1, . . . , n}. Throughout, let X → Y be the
set of total functions from set X to set Y . Let Fs,ϕ be
[n] × succ(s) → Vals,ϕ, the set of functions from pairs
consisting of ‘sub-stars’ of ϕ and successors of s to val-
ues in Vals,ϕ. Also, any f ∈ Fs,ϕ is disjoint if there are
{ai,s′ ∈ [0, 1] | i ∈ [n] and s′ ∈ succ(s)} such that (i)
Σs′∈succ(s)ai,s′f(i, s′)P (s, s′) ./i pi for all i ∈ [n] and (ii)
Σi∈[n]ai,s′ = 1 for all s′ ∈ succ(s). Intuitively, a function
f ∈ Fs,ϕ associates with q1, . . . , qn and s′ the value that
Player 0 can achieve from configuration (s′, δ(qi, L(s))).
Values in Vals,ϕ suffice, as no others are directly reachable.
We call f “disjoint”, as all the requirements from the dif-
ferent qi’s can be achieved using a partition (realized by the
existence of the above ai,s) of the probability of all succes-
sors. Let F∗s,ϕ be the set of disjoint functions. By The-
orem 1, V partitions into winning regions W0 and W1 of
configurations for Player 0 and Player 1, respectively. We
set val(c) = 1 for c ∈W0 and val(c) = 0 for c ∈W1.

Case 3: Finally, let ((t)) be an SCC such that none of its
transitions is in Eu and none has ∗ markings. For formu-
las ϕ ∈ ((t)) ∩ [[Q]]∗∨ of form ∗∨([[q1]]./1p1 , . . . , [[qn]]./npn)
we reuse the definitions of Rs,ϕ, Vals,ϕ, and Fs,ϕ. Weak
game GM,((t)) is defined as in Case 2. Sets V s,ϕ0 , V s,ϕ1 ,
and Es,ϕ are defined as in Fig. 4, except that functions f
don’t range over F∗s,ϕ but now range over F ∗∨s,ϕ, the set
of intersecting functions and the dual of F∗s,ϕ of Case 2:
function f ∈ Fs,ϕ is intersecting if for all sets {ai,s′ ∈
[0, 1] | i ∈ [n] and s′ ∈ succ(s)} either (i) there is i ∈ [n]
with Σs′∈succ(s)ai,s′f(i, s′)P (s, s′) ./i pi or (ii) there is
s′ ∈ succ(s) with Σi∈[n]ai,s′ 6= 1.

s0, [[q2]]≥ 1
2

s0, [[q2]]≥ 1
2
,

8<:s0→1
s1→0
s2→1

9=;
s0, [[q2]]≥ 1

2
,

8<:s0→1
s1→1
s2→1

9=;
s0, [[q2]]≥ 1

2
,

8<:s0→0
s1→1
s2→1

9=;
s2, [[q2]]≥ 1

2
, {s2→1}

s1, ff, 1

s0, ff, 1

s2, ff, 1

s2, [[q2]]≥ 1
2

s1, [[q2]]≥ 1
2

s1, [[q2]]≥ 1
2
,

s1→1
s2→0

ff

s1, [[q2]]≥ 1
2
,

s1→1
s2→1

ff

s1, [[q2]]≥ 1
2
,

s1→0
s2→1

ff

s0, [[q2]]≥ 1
2
,

8<:s0→1
s1→1
s2→0

9=;

Figure 5. Case 3 of acceptance game

As in Case 2, we say that wins for Player 0 have value 1,
and wins for Player 1 have value 0.

The intuition for this weak game is verbatim that of the
weak game in Case 2, except that Player 0 chooses a func-
tion f that is in F ∗∨s,ϕ instead of in F∗s,ϕ.

We point out that when n above is 1, i.e. in handling ϕ =
[[q1]]./1p1 , the definition of ∗ and ∗∨ coincide. Indeed, there is
then exactly one option for choosing {a1,s′ | s′ ∈ succ(s)}:
the value a1,s′ has to be 1 for all s′ ∈ succ(s). This justifies
dropping the ∗ or ∗∨ when applied to one operand.

Trivial SCCs ((t)), for which (((t)), E∪Eb∪Eu) is cycle-
free, may satisfy more than one of these three cases. This
ambiguity is unproblematic as game values in GM,((t)) are
then determined via propagation of pre-seeded game values.

Example 3 We verify that M ∈ L(A) for A from Exam-
ple 1 and M from Fig. 3(b), where locations are labeled
by propositions – e.g., L(s0) = {a}. The weak game of
SCC ((q2)), shown in Fig. 5, has only accepting configura-
tions or dead ends. So Player 0 wins only (s1, [[q2]]≥0.5) and
(s1, [[q2]]≥0.5, {s1→1, s2→0}), and loses everywhere else.

The stochastic weak game GM,((q1)) for the SCC ((q1)),
shown in Fig. 6, depicts stochastic configurations with a
diamond and configurations from other SCCs are put into
hexagons (with the hexagon labeled (s1, [[q2]]≥0.5) hav-
ing value 1 and all others having value 0). As none of
the configurations are accepting, Player 0 can only win
by reaching optimal hexagons. Hexagon (s1, [[q2]]≥0.5)
has value 1 and is the optimal choice for Player 0 from
configuration (s1, q1 ∨ [[q2]]≥0.5). Player 0 configuration
(s2, q1 ∨ [[q2]]≥0.5) has value 0. So the value for Player 0
of diamond configuration (s0, q1) is 0.5. Initial configu-
ration (s0, [[q1]]≥0.5) makes up a trivial bounded SCC (e.g.
Case 2), so its value equals 1 as 1

3 val(s0, q1 ∨ [[q2]]≥0.5) +
1
3 val(s1, q1 ∨ [[q2]]≥0.5) + 1

3 val(s2, q1 ∨ [[q2]]≥0.5) is 0.5.
Therefore, M ∈ L(A).

Theorem 2 Given a p-automaton A = 〈2AP, . . .〉, its lan-
guage L(A) is well defined. If A and M ∈ MCAP are finite,
M ∈ L(A) can be decided in EXPTIME.

For finite Markov chainM and p-automatonAwith non-
trivial, bounded SCCs, checking acceptance M ∈ L(A) is

5

V s,ϕ0 = {(s, ϕ)} ∪ {(s′, ϕ′, v) | s′ ∈ succ(s), ϕ′ ∈ Rs,ϕ, v ∈ Vals,ϕ, val(s′, ϕ′) 6= ⊥, and val(s′, ϕ′) < v} ∪
{(s′, ϕ1 ∨ ϕ2, v) | s′ ∈ succ(s), ϕ1 ∨ ϕ2 ∈ Rs,ϕ, v ∈ Vals,ϕ, and val(s′, ϕ1 ∨ ϕ2) = ⊥}

V s,ϕ1 = {(s, ϕ, f) | f ∈ F∗s,ϕ} ∪ {(s′, ϕ′, v) | s′ ∈ succ(s), ϕ′ ∈ Rs,ϕ, v ∈ Vals,ϕ, val(s′, ϕ′) 6= ⊥, and val(s′, ϕ′) ≥ v} ∪
{(s′, ϕ1 ∧ ϕ2, v) | s′ ∈ succ(s), ϕ1 ∧ ϕ2 ∈ Rs,ϕ, v ∈ Vals,ϕ, and val(s′, ϕ1 ∧ ϕ2) = ⊥}

Es,ϕ = {((s, ϕ), (s, ϕ, f)) | f ∈ F∗s,ϕ} ∪ {((s′, ϕ′, v), (s′, ϕ′)) | s′ ∈ succ(s), ϕ′ ∈ [[Q]], v ∈ Vals,ϕ, and val(s′, ϕ′) = ⊥} ∪
{((s, ϕ, f), (s′, δ(qi, L(s)), f(i, s′))) | s′ ∈ succ(s), i ∈ [n], and f(i, s′) > 0} ∪
{((s′, ϕ1 ∨ ϕ2, v), (s′, ϕi, v)) | s′ ∈ succ(s), ϕ1 ∨ ϕ2 ∈ Rs,ϕ, i ∈ {1, 2}, v ∈ Vals,ϕ, and val(s′, ϕ1 ∨ ϕ2) = ⊥} ∪
{((s′, ϕ1 ∧ ϕ2, v), (s′, ϕi, v)) | s′ ∈ succ(s), ϕ1 ∧ ϕ2 ∈ Rs,ϕ, i ∈ {1, 2}, v ∈ Vals,ϕ, and val(s′, ϕ1 ∧ ϕ2) = ⊥}

Figure 4. Components of the game GM,((t)), where ((t)) does not contain ∗∨ transitions

1
2

s2, ff

s0, q1

s1, q1

s0, [[q2]]≥ 1
2

s1, [[q2]]≥ 1
2

s1, ff

1
3

1
3

1
3

s2, q1

s2, [[q2]]≥ 1
2

s1
s2

s0

q1∨[[q2]]≥ 1
2

q1∨[[q2]]≥ 1
2

q1∨[[q2]]≥ 1
2

1
2

Figure 6. Case 1 of acceptance game

dual(∗∨(t1, . . . , tn)) = ∗(dual(t1), . . . , dual(tn))

dual(∗(t1, . . . , tn)) = ∗∨(dual(t1), . . . , dual(t2))
dual(ϕ1 ∧ ϕ2) = dual(ϕ1) ∨ dual(ϕ2)
dual(ϕ1 ∨ ϕ2) = dual(ϕ1) ∧ dual(ϕ2)

dual(q) = q
dual(q) = q

dual([[q]]./p) = [[q]]dual(./p)

dual(≥ p) = > 1− p
dual(> p) = ≥ 1− p

Figure 7. Definition of dual(ϕ)

exponential in the branching degree ofM and in the branch-
ing degree of ∗ and ∗∨ operators of A, but not in the number
of states or locations. If A has only trivial bounded-SCCs,
checking M ∈ L(A) reduces to solving a linear number of
linear sized stochastic weak games.

5 Expressiveness of p-Automata
We show that the languages of p-automata are closed

under Boolean operations and bisimulation, and emptiness
and containment of languages are equi-solvable; that each
Markov chain determines a p-automaton whose language is
the bisimulation class of that Markov chain; and that each
PCTL formula determines a p-automaton whose language
consists of all Markov chains satisfying that formula.

Closure of Languages. It is routine to see that p-
automata are closed under union and intersection. But
they are also closed under complementation: Given a
p-automaton A = 〈Σ, Q, δ, ϕin, α〉, its dual dual(A) is
〈Σ, Q, δ, dual(ϕin), Q \ α〉 with Q = {q | q ∈ Q} and
δ(q, σ) = dual(δ(q, σ)), where dual(ϕ) is defined in Fig. 7.
The structure of uniform weak p-automata ensures that

dual(A) is also uniform weak. The languages of A and
dual(A) are complements.

Theorem 3 Let A be a p-automaton with Σ = 2AP. Then
L(A) = MCAP \ L(dual(A)).

The key part of proving Theorem 3 is to show that, for all
states q of A and all locations s of M , we have val(s, q) =
1− val(s, q) for the respective acceptance games.

Corollary 1 Let Σ = 2AP.
• The set of languages accepted by p-automata with Σ is

closed under Boolean operations.
• Language containment of p-automata with Σ reduces to

language emptiness of such p-automata, and vice versa.

Languages of p-automata are closed under bisimulation.

Lemma 1 For p-automaton A = 〈2AP, Q, δ, ϕin, α〉 and
M1,M2∈MCAP with M1∼M2: M1∈L(A) iff M2∈L(A).

To prove this, we use induction on the partial order on
the SCCs in A to show that for all t ∈ Q ∪ [[Q]] and for all
locations s1 in M1 and locations s2 in M2 with s1 ∼ s2 we
have val(s1, t) = val(s2, t).
Embedding of Markov Chains. A Markov chain M =
(S, P, L, sin) ∈ MCAP can be converted into a p-automaton
AM = 〈2AP, Q, δ, ϕin, α〉 whose language L(AM) is the set
of Markov chains bisimilar toM . The definition ofAM im-
plicitly appeals in ∗ expressions to an enumeration of each
set succ(s′):

Q = {(s, s′) ∈ S × S | P (s, s′) > 0}
δ((s, s′), L(s)) = ∗([[(s′, s′′)]]≥P (s′,s′′) | s′′ ∈ succ(s′))

δ((s, s′), σ) = ff if σ 6= L(s)

ϕin = ∗([[(sin, s′)]]≥P (sin,s′) | P (sin, s′) > 0)

α = Q

State (s, s′) represents the transition from s to s′. Labels
are compared for location s. Location s′ is used to require
that there are successors of probability at least P (s, s′).
This p-automaton AM has only bounded transitions and
uses only the ∗ operator. In particular, it is uniform weak.

Theorem 4 For any Markov chain M ∈ MCAP, the lan-
guage L(AM) is the bisimulation equivalence class of M .

6

By Lemma 1, one half of Theorem 4 follows from a
proof that AM accepts M . To show this, it suffices to
demonstrate that Player 0 can infinitely often reach config-
urations of form (s, ∗([[(s, s′)]]≥P (s,s′))) with s′ ∈ succ(s)
for all locations s in M . For the other half, we use proof
by contradiction: given M ′ with initial state tin such that
M ′ 6∼ M , we appeal to the usual partition-refinement al-
gorithm to get a coarsest partition that witnesses sin 6∼ tin.
That witnessing information can then be transformed into
a winning strategy for Player 1 in the acceptance game for
deciding M ′ ∈ L(AM), and so M ′ 6∈ L(AM) follows.

The construction of AM for infinite Markov chains was
the only reason why we allow p-automata with infinite state
sets. Finite state sets suffice for embedding finite Markov
chains. The construction of AM was also our initial rea-
son for introducing the ∗ and ∗∨ operators. But we believe
that the separation of concern expressed in these operators
is useful in p-automata in general. The conjunctive operator
∗ used in the construction of AM effectively hides an expo-
nential blowup. If a Markov chain is deterministic (all suc-
cessors of any location disagree on their labelings), we can
eliminate the use of ∗ in AM and still secure Theorem 4.
But this embedding without ∗ does break Theorem 4 for
non-deterministic Markov chain.
Embedding of PCTL Formulas. Each PCTL formula
φ over AP yields a p-automaton Aφ without ∗ markings,
〈2AP, clt(φ) ∪ AP, ρX , ρε(φ), F 〉, that accepts exactly the
Markov chains satisfying φ. The construction resembles the
translation from CTL to alternating tree automata:
• clt(φ) denotes the set of temporal subformulas of φ
• F consists of AP and their negations, and all ψ of clt(φ)

not of form ψ1 Uψ2

• functions ρX and ρε are defined in Fig. 8.
Function ρX unfolds fix-points and replaces the thresh-

old context [·]./p with [[·]]./p. That replacement is also done
by function ρε for the initial condition. The effect of these
functions is similar to that achieved by using ε transitions to
translate CTL formulas into two-way tree automata.

We now have that ψ ∈ clt(φ) for subformulas [ψ]./p of
φ. Also, [ψ1 Uψ2]./p may be an element in clt(φ) whereas
[[ψ1 Uψ2]]./p can only be an element of [[clt(φ)]]>, it wraps
ψ1 Uψ2 in the probabilistic quantification [[·]]./p of Aφ.

Theorem 5 For anyM ∈ MCAP and PCTL formula φ over
AP, M |= φ iff M ∈ L(Aφ). Deciding M ∈ L(Aφ) is
polynomial in the size of M and linear in the size of φ.

We prove Theorem 5 by structural induction on PCTL
formulas (i.e., state formulas), showing that for all locations
s in M and all PCTL subformulas ϕ′ of PCTL formula ϕ
we have s ∈ ‖ϕ′‖ iff val(s, ρε(ϕ′)) = 1 for configuration
(s, ρε(ϕ′)) in the acceptance game of M ∈ L(Aϕ). As
for the complexity, the membership game for M ∈ L(Aφ)
collapses to solving a sequence (linear in the size of φ) of

weak stochastic games with solely probabilistic configura-
tions. Such games are solvable in polynomial time.
Example 4 For ϕ = [a U [X b]>0.5]≥0.3 we have Aϕ =
〈2{a,b}, clt(ϕ) ∪ {a, b}, ρX , ρε(ϕ), F 〉, where clt(ϕ) =
{a U [X b]>0.5, X b}, ρε(ϕ) = (a ∧ [[a U [X b]>0.5]]≥0.3) ∨
[[X b]]>0.5, set F equals {X b, a, b}, ρX (X b) = b, and
ρX (a U [X b]>0.5) = (a ∧ a U [X b]>0.5) ∨ [[X b]]>0.5.

Corollary 1 and Theorem 5 imply that any algorithm for
solving language emptiness or containment of p-automata
would prove that satisfiability of PCTL is decidable [14, 2].

In comparing automata and temporal logic, automata
usually can count but temporal logics cannot. Thus, just
as alternating tree automata are more expressive than CTL
and CTL*, p-automata are more expressive than PCTL.

Additionally, p-automata can encode recursive, proba-
bilistic properties that we believe to be not expressible in
PCTL. For example, AR = 〈2{a}, {q2}, δ, [[q2]]>0, {q2}〉
with δ(q2, {a}) = [[q2]]≥0.5 and δ(q2, {}) = ff, asserts the
recursive, probabilistic property that a location is labeled
a, and that the probability of its successors with the same
property is at least 0.5. A naive attempt of expressing this
in PCTL would be η = a∧[(¬a∨[X a]≥0.5) W¬a]≥1. Then
L(Aη) ⊂ L(AR) but this inclusion is strict.

6 Simulation of p-Automata
We now define simulation of p-automata that under-

approximates language containment: if p-automatonB sim-
ulates p-automaton A (denoted A ≤ B), then L(A) is con-
tained in L(B), under qualifications detailed in the formal
theorem below. This simulation is defined as a combination
of fair simulation [13], simulation for alternating word au-
tomata [9], probabilistic bisimulation [20], and the games
defined in Section 3. The simulation takes into account the
structure of the automata, their acceptance condition, and
local probabilistic constraints. We show that whether B
simulates A can be decided in EXPTIME and that simu-
lation under-approximates language containment.

We define simulation through a series of games G≤ on
the product of states and transitions ofA andB: state u ofB
simulates state r of A iff Player 0 wins from configuration
(r, u) in the corresponding game. More general configura-
tions (α, β) are such that α is part of a transition of A and
β is part of a transition of B. The classification of α and
β as unbounded, bounded with ∗, bounded with ∗∨, or sim-
ple classifies (α, β) as one of 9 types. Here, we restrict our
attention to the case that A and B do not use the ∗∨ opera-
tor. Furthermore, a state that is part of a bounded SCC in B
cannot simulate a state that is part of an unbounded SCC in
A. These restrictions lead to the consideration of four cases,
and are sufficient for handling simulation of automata that
result from embedding PCTL formulas or Markov chains.

For sake of simplicity, p-automata A = 〈Σ, Q, δ, ϕin
a , F 〉

and B = 〈Σ, U, δ, ψin
b , F 〉 satisfy Q∩U = {} and we use δ

7

ρx(a, σ) = tt if a ∈ σ ρx(a, σ) = ff if a /∈ σ ρε(a) = a ρε(¬a) = ¬a
ρx(¬a, σ) = tt if a /∈ σ ρx(¬a, σ) = ff if a ∈ σ ρε(ϕ1 ∨ ϕ2) = ρε(ϕ1) ∨ ρε(ϕ2)
ρε(ϕ1 ∧ ϕ2) = ρε(ϕ1) ∧ ρε(ϕ2) ρε([Xϕ1]./p) = [[Xϕ1]]./p ρx(Xϕ1, σ) = ρε(ϕ1)

ρε([ϕ1 Uϕ2]./p) = (ρε(ϕ1) ∧ [[ϕ1 Uϕ2]]./p) ∨ ρε(ϕ2) ρx(ϕ1 Uϕ2, σ) = (ρε(ϕ1) ∧ ϕ1 Uϕ2) ∨ ρε(ϕ2)
ρε([ϕ1 Wϕ2]./p) = (ρε(ϕ1) ∧ [[ϕ1 Wϕ2]]./p) ∨ ρε(ϕ2) ρx(ϕ1 Wϕ2, σ) = (ρε(ϕ1) ∧ ϕ1 Wϕ2) ∨ ρε(ϕ2)

Figure 8. Transition function ρx and auxiliary function ρε of Aϕ

for the transition function of both automata and F for both
acceptance conditions. We determine whether B simulates
A by a sequence of weak and stochastic weak games. The
strict versions of the partial orders on equivalence classes
of A and B are well-founded and so their lexicographical
ordering is a well-founded ordering≺ on the sets of config-
urations of the game. Namely, (((ϕ)), ((ψ))) ≺ (((ϕ̃)), ((ψ̃)))
if either ((ϕ)) ≺A ((ϕ̃)), or ((ϕ)) = ((ϕ̃)) and ((ψ)) ≺B ((ψ̃)).
Consider a pair of equivalence classes (((ϕ)), ((ψ))), where
ϕ is in A and ψ is in B. As before, all pairs larger than
(((ϕ)), ((ψ))) with respect to ≺ have already been handled:
for every ϕ′ and ψ′ with (((ϕ)), ((ψ))) ≺ (((ϕ′)), ((ψ′)))
value val(ϕ′, ψ′) 6= ⊥ is pre-seeded.

Case 1: Let ((ϕ)) and ((ψ)) be SCCs where ((ϕ)) has no
transitions in Eb, and ((ψ)) no transitions in Eu and no ∗∨
markings. We set val(ϕ,ψ) = 0; bounded-with-∗ states
cannot simulate unbounded states.

Case 2: Let ((ϕ)) and ((ψ)) be SCCs such that both ((ϕ))
and ((ψ)) have no transitions inEb. ThenG≤(((ϕ)), ((ψ))) is
a stochastic weak game with V0, V1, andE defined in Fig. 9,
V = {(ϕ̃, ψ̃) | ϕ̃ �A ϕ and ψ̃ �B ψ}, and Vp = {}. As
pre-seeded values val(ϕ̃, ψ̃) for configurations (ϕ̃, ψ̃) with
(((ϕ)), ((ψ))) ≺ (((ϕ̃)), ((ψ̃))) may be in the open interval
(0, 1), we treat G≤(((ϕ)), ((ψ))) as a stochastic weak game.

Intuitively, Player 1 resolves disjunctions on the left and
conjunctions on the right and does this before Player 0
needs to move. Player 0 resolves conjunctions on the left
and disjunctions on the right when Player 1 cannot move.
From configurations of the form (q′, u′), where q′ is a state
of A and u′ is a state of B, Player 1 chooses a letter σ ∈ Σ
and applies the transitions of q′ and u′ reading σ.

Finally, an infinite play in G≤(((q)), ((u))) is winning for
Player 0 if ((ϕ)) ∩ Q ⊆ F implies ((ψ)) ∩ U ⊆ F . By
Theorem 1 every configuration c has a value for Player 0.
We set val(c) to that value.

Case 3: Let ((ϕ)) and ((ψ)) be SCCs such that both
have neither transitions in Eu nor ∗∨ markings. Then
G≤(((ϕ)), ((ψ))) is a weak game. Let

ϕ̃ = ∗([[q1]]./1p1 , . . . , [[qn]]./npn)

ψ̃ = ∗([[u1]]./′1p′1 , . . . , [[um]]./′mp′m)

Fϕ̃,ψ̃ = [n]× [m]→ [0, 1]

Also, f ∈ Fϕ̃,ψ̃ is disjoint if there is {ai,j ∈ [0, 1] | i ∈
[n] and j ∈ [m]} with (i) Σj∈[m]ai,j = 1 for all i ∈ [n]
and (ii) Σi∈[n]ai,j · pi · f(i, j) > p′j for all j ∈ [m], or

Σi∈[n]ai,j · pi · f(i, j) = p′j and either ./′j is ≥ or there is i′
with ai′,j > 0 and ./i′ is >. Let F∗

ϕ̃,ψ̃
be the set of disjoint

functions. The configurations of G≤(((ϕ)), ((ψ))) are

V = {(ϕ̃, ψ̃, f) | ϕ̃ ∈ ((ϕ)), ψ̃ ∈ ((ψ)), and f ∈ F∗
ϕ̃,ψ̃
} ∪

{(ϕ̃, ψ̃), (ϕ̃, ψ̃, v) | ϕ̃ �A ϕ, ψ̃ �B ψ, and v ∈ [0, 1]}

and the definition of V0, V1, and E are given in Fig. 10. Set
V above is uncountable and infinitely branching, as branch-
ing includes a choice of a function f : [n] × [m] → [0, 1].
The techniques that were used in Section 3 can be used
to make these games finite branching; and, if both A and
B are finite, these games will be finite, too. For (γ, ε) ∈
[[Q]]∗ × [[U]]∗ with

γ = ∗([[q1]]./1p1 , . . . , [[qn]]./npn)

ε = ∗([[u1]]./′1p′1 , . . . , [[um]]./′mp′m)

in order to show that ε simulates γ, Player 0 needs to
show that the probability of ε (and its partition) can be sup-
ported by γ. Accordingly, from (γ, ε) Player 0 chooses
f : [n]× [m] → [0, 1] and moves to configuration (γ, ε, f).
Such a configuration relates to the claim that qi is related
to uj with proportion f(i, j) and that f can be partitioned
(using the {ai,j} to support the different uj’s). Then,
Player 1 chooses i and j such that f(i, j) > 0 and an al-
phabet letter σ ∈ Σ, leading to a configuration of the form
(δ(qi, σ), δ(uj , σ), f(i, j)). Conjunctions and disjunctions
are resolved in the usual way until either reaching another
configuration in [[Q]]∗ × [[U]]∗ × [0, 1], in which case the
value f(i, j) is ignored (as f(i, j) ≤ 1), or until the play
reaches a configuration with a pre-seeded value v. Then, if
f(i) ≤ v Player 0 has fulfilled her obligation and she wins.
If f(i) > v, Player 0 failed and she loses. An infinite play
in G≤(((ϕ)), ((ψ))) is winning for Player 0 if ((ϕ))∩Q ⊆ F
implies ((ψ)) ∩ U ⊆ F . By Theorem 1, every c ∈ V has a
value in {0, 1} for Player 0. We set val(c) to that value.

Case 4: Let ((ϕ)) and ((ψ)) be SCCs where ((ϕ)) has noEu
transitions or ∗∨ markings, and ((ψ)) has no Eb transitions.
Then G≤(((ϕ)), ((ψ))) is a stochastic weak game defined in
Fig. 11 where α, αi and β, βi range over formulas in tran-
sitions of A and B (resp.) while γ and u range over [[Q]]∗

and U (resp.). For probabilities pi that don’t sum up to 1,
we add a sink state (losing for Player 0) that fills that gap.

An infinite play in G≤(((ϕ)), ((ψ))) is winning for
Player 0 if ((ϕ)) ∩ Q ⊆ F implies ((ψ)) ∩ U ⊆ F . By
Theorem 1 every configuration c has a value for Player 0.
We set val(c) to that value.

8

V0 = {c ∈ V | ∃ϕi, ψi : c = (ϕ1 ∧ ϕ2, ψ1 ∨ ψ2)} ∪ {c ∈ V | ∃q′ : c = (q′, ψ1 ∨ ψ2), or ∃u′ : c = (ϕ1 ∧ ϕ2, u
′)}

V1 = {c ∈ V | ∃q′, u′ : c = (q′, u′)} ∪ {c ∈ V | ∃ϕi, ψ : c = (ϕ1 ∨ ϕ2, ψ), or ∃ϕ,ψi : c = (ϕ,ψ1 ∧ ψ2)}
E = {((q′, u′), (δ(q′, σ), δ(u′, σ)) ∈ V × V | σ ∈ Σ} ∪

{((ϕ1 ∨ ϕ2, ψ), (ϕi, ψ)), ((ϕ,ψ1 ∧ ψ2), (ϕ,ψi)) ∈ V × V | i ∈ {1, 2}} ∪
{((ϕ1 ∧ ϕ2, ψ2 ∨ ψ2), (ϕi, ψj)) ∈ V × V | i, j ∈ {1, 2}} ∪
{((ϕ1 ∧ ϕ2, u

′), (ϕi, u
′)), ((q′, ψ1 ∨ ψ2), (q′, ψi)) ∈ V × V | i ∈ {1, 2}}

Figure 9. Game G≤(((ϕ)), ((ψ))) for ((ϕ)) and ((ψ)) unbounded

V0 = {(α1 ∧ α2, β1 ∨ β2, v), (α1 ∧ α2, ε, v), (γ, β1 ∨ β2, v), (γ, ε)} ∪ {(α, β, v) | val(α, β) 6= ⊥ and v > val(α, β)}
V1 = {(γ, ε, f), (α1 ∨ α2, β, v), (α, β1 ∧ β2, v)} ∪ {(α, β, v) | val(α, β) = ⊥ or v ≤ val(α, β)}
E = {((α1 ∨ α2, β, v), (αi, β, v)), ((α, β1 ∧ β2, v), (α, βi, v)) | i ∈ {1, 2}} ∪ {((γ, ε), (γ, ε, f))} ∪

{((α1 ∧ α2, ε, v), (αi, ε, v)), ((γ, β1 ∨ β2, v), (γ, βi, v)) | i ∈ {1, 2}} ∪
{((γ, ε, f), (δ(qi, σ), δ(uj , σ), f(i, j))) | f(i, j) > 0 and σ ∈ Σ} ∪
{((α1 ∧ α2, β2 ∨ β2, v), (αi, βj , v)) | i, j ∈ {1, 2}}

Figure 10. Game G≤(((ϕ)), ((ψ))) for ((ϕ)) and ((ψ)) bounded with ∗. Where α and β range over formulas
in transitions of A and B, respectively, γ and ε range over formulas in [[Q]]∗ and [[U]]∗, respectively

V = {(ϕ̃, ψ̃) | ϕ̃ �A ϕ and ψ̃ �B ψ} ∪ [[Q]]× U × Σ
V0 = {(α1 ∧ α2, β1 ∨ β2), (α1 ∧ α2, u), (γ, β1 ∨ β2)}
V1 = {(α1 ∨ α2, β), (α, β1 ∧ β2), (γ, u)}
Vp = [[Q]]∗ × U × Σ
E = {((α1 ∨ α2, β), (αi, β)) | i ∈ {1, 2}} ∪

{((α, β1 ∧ β2), (α, βi)) | i ∈ {1, 2}} ∪
{((α1 ∧ α2, β1 ∨ β2), (αi, βj)) | i, j ∈ {1, 2}} ∪
{((γ, u), (γ, u, σ)), ((γ, u, σ), (δ(qi, σ), δ(u, σ)))}

κ((γ, u, σ))((δ(qi, σ), δ(u, σ))) = pi

Figure 11. Weak stochastic game for Case 4.

Intuitively, a state u measures the probability of some
regular set of paths, and a state [[q]]./p can restrict the imme-
diate steps taken by a Markov chain as well as enforce some
regular structure on paths. Thus, this stochastic weak game
establishes the conditions under which a Markov chain ac-
cepted from [[q]]./p can be also accepted from u.

The case when ((ϕ)) or ((ψ)) is a trivial SCC is subsumed
by at least one of the four preceding cases. As for the ac-
ceptance game, this ambiguity is unproblematic as the game
values in G≤(((ϕ)), ((ψ))) are then determined by the prop-
agation of pre-seeded game values.

Definition 3 We say that B simulates A, denoted A ≤ B,
if the value of configuration (ϕin

a , ψ
in
b), computed in the pre-

vious sequence of games, is 1.

Theorem 6 Let A and B be p-automata over 2AP that con-
tain no occurrence of ∗∨. If A and B are finite, then A ≤ B
implies L(A) ⊆ L(B) and A ≤ B can be decided in EX-
PTIME. If A is AM for a M ∈ MCAP, then A ≤ B iff
L(A) ⊆ L(B) for all B ∈ MCAP.
We now get sound and complete verification of M |= φ
through simulations, in the sense of Dams & Namjoshi [6].

Corollary 2 For every infinite Markov chain M ∈ MCAP
and PCTL formula φ over AP we have M |= φ iff there is a
finite p-automata A with AM ≤ A and A ≤ Aφ.
To see this, any such A implies L(AM) ⊆ L(A) and
L(A) ⊆ L(Aφ) by both parts of Theorem 6 – noting
that neither AM nor Aφ have any occurrence of ∗∨. Thus,
M |= φ holds by Theorems 4 and 5. Conversely, if there is
no suchA, thenAφ can also not be such anA. AsAφ ≤ Aφ
this implies AM 6≤ Aφ and so L(AM) 6⊆ L(Aφ). So there
is some M ′ ∼ M with M ′ 6|= φ. Since M ′ ∼ M , we get
M 6|= φ as well by Lemma 1.

This method for deciding M |= φ via simulations is thus
complete in the sense of [6]. To our knowledge, this is the
first such completeness result for PCTL and Markov chains.

We now discuss the proof of Theorem 6. The first claim
of Theorem 6 is proved as follows. Assuming M ∈ L(A)
and A ≤ B we consider configurations (s, ϕ) and (ϕ,ψ) in
the corresponding games, respectively. This determines a
configuration (s, ψ) in the acceptance game forM ∈ L(B).
We show an invariant, that val(s, ϕ) · val(ϕ,ψ) ≤ val(s, ψ)
for all such “synchronized” configurations. In particular, we
get val(sin, ϕin

a) · val(ϕin
a , ψ

in
b) = 1 · 1 ≤ val(sin, ψin

b) which
proves M ∈ L(B). Extending this result to infinite-state
automata seems to require the treatment of infinite converg-
ing products of real numbers.

The second claim of Theorem 6 follows since the simu-
lation game collapses to an acceptance game when the au-
tomaton A in A ≤ B is derived from a Markov chain.

7 Related and Future Work
Automata for coalgebras [24], for the functor whose

coalgebras are Markov chains, have a corresponding logic
that enjoys the finite model property. Since PCTL does not
have that property, these automata cannot express PCTL –
notably its path modalities. Probabilistic processes [19]
use automata-theoretic techniques for refinement checking

9

only. Probabilistic automata [21] give only rise to proba-
bilistic languages of non-probabilistic models. And prob-
abilistic verification of specifications written in linear-time
temporal logic (LTL) [23] uses automata-theoretic machin-
ery but cannot reason about combinations of LTL operators
and probability thresholds as found in PCTL. The stochas-
tic games of [18] abstract Markov decision processes as a 2-
person game where two sources of non-determinism, stem-
ming from the MDP and the state space partition respec-
tively, are controlled by different players. This separation
allows for more precision of abstractions but is not com-
plete in the sense of [6], as shown in [16]. In [8], a Hin-
tikka game was defined for satisfaction, M |= φ, between
Markov chains and PCTL formulas. That game resembles
our acceptance game for M ∈ L(Aφ).

We are in the process of developing a more general no-
tion of game such that acceptance of input for non-uniform
p-automata can be decided by solving a single such game.
These games generalize stochastic games and will be the
subject of a future paper. Apart from the aforementioned
research questions, we plan to do the following: (i) Prove
matching lower bounds for acceptance by p-automata. (ii)
Develop p-automata that embed Markov decision processes
and stochastic games. (iii) Extend the framework to Markov
chains with infinite branching.

8 Conclusions
We presented a novel kind of automata, p-automata, that

read in an entire Markov chain and either accept or reject
that input. We demonstrated how this acceptance can be de-
cided through a series of stochastic weak games and weak
games, at worst case exponential in the size of the automa-
ton and in the size of the Markov chain.

We proved p-automata to be closed under Boolean oper-
ations, that language containment and emptiness are equi-
solvable, and that the language of a p-automaton is closed
under bisimulation. Bisimulation equivalence classes of any
Markov chain as well as the set of models of any PCTL for-
mula were shown to be expressible as such languages. In
particular, the complexity of the acceptance game matches
that of probabilistic model checking for such formulas.

These results suggest that emptiness, universality, and
containment of p-automata are all tightly related to the open
problem of decidability of PCTL satisfiability. We then de-
veloped a (fair) simulation between p-automata that stem
from Markov chains or PCTL formulas. We proved simula-
tion to be decidable in EXPTIME and to under-approximate
language containment. In particular, p-automata are a com-
plete abstraction framework for PCTL: if an infinite Markov
chain satisfies a PCTL formula, there is a finite p-automaton
that abstracts this Markov chain and whose language is con-
tained in that of the p-automaton for that PCTL formula.

Acknowledgments. This research was supported by grant
UK EPSRC EP/E028985/1.

References
[1] A. Aziz, V. Singhal, F. Balaxin, R.K. Brayton, and

A.L. Sangiovanni-Vincentelli. It usually works: The tem-
poral logic of stochastic systems. In Proc. of CAV, LNCS
939, 1995.

[2] T. Brázdil, V. Forejt, J. Kretı́nský, and A. Kucera. The Sat-
isfiability Problem for Probabilistic CTL. In Proc. of LICS,
2008.

[3] F. Ciesinski and C. Baier. LiQuor: A tool for Qualitative
and Quantitative linear time analysis of reactive systems. In
Proc. of QEST, 2006.

[4] A. Condon. The complexity of stochastic games. Inform.
and Comp., 96(2), 1992.

[5] C. Courcoubetis and M. Yannakakis. The Complexity of
Probabilistic Verification. J. ACM, 42(4), 1995.

[6] D. Dams and K. Namjoshi. The existence of finite abstrac-
tions for branching time model checking. In Proc. of LICS,
2004.

[7] D. Dams and K. Namjoshi. Automata as Abstractions. In
Proc. of VMCAI, LNCS 3385, 2005.

[8] H. Fecher, M. Huth, N. Piterman, and D. Wagner. Hintikka
games for PCTL on labeled Markov chains. Performance
Evaluation, 2009. To appear.

[9] C. Fritz and T. Wilke. State space reductions for alternating
Büchi automata: Quotienting by simulation equivalences. In
Proc. of FSTTCS, 2002.

[10] E. Grädel, W. Thomas, and Th. Wilke (editors). Automata,
Logics, and Infinite Games. LNCS 2500, Springer, 2002.

[11] H. Hansson and B. Jonsson. A logic for reasoning about time
and reliability. Formal Aspects of Comp., 6, 1994.

[12] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker.
PRISM: A tool for automatic verification of probabilistic
systems. In Proc. of TACAS, LNCS 3920, 2006.

[13] T. Henzinger, O. Kupferman, and S. Rajamani. Fair simula-
tion. Inform. and Comp., 173(1), 2002.

[14] S. Hart and M. Sharir. Probabilistic propositional temporal
logics. Inform. and Cont., 70(2–3), 1986.

[15] S. Hart, M. Sharir, and A. Pnueli. Termination of Probabilis-
tic Concurrent Programs. In Proc. of POPL, 1982.

[16] M. Kattenbelt and M. Huth. Verification and Refutation of
Probabilistic Specifications via Games. In Proc. of FSTTCS,
LIPIcs 4, 2009.

[17] J. G. Kemeny, J. L. Snell, and A. W. Knapp. Denumerable
Markov Chains. Springer Verlag, 1976.

[18] M. Kwiatkowska, G. Norman, and D. Parker. Game-based
abstraction for Markov decision processes. In Proc. of QEST,
2006.

[19] K. G. Larsen and B. Jonsson. Specification and Refinement
of Probabilistic Processes. In Proc. of LICS, 1991.

[20] K. G. Larsen and A. Skou. Bisimulation through probabilis-
tic testing. Inform. and Comp., 94, 1991.

[21] M. O. Rabin. Probabilistic automata. Inform. and Cont., 6,
1963.

[22] P. Ramadge and W. Wonham. The control of discrete event
systems. Trans. on Control Theory, 77, 1989.

[23] Moshe Y. Vardi. Automatic Verification of Probabilistic
Concurrent Finite-State Programs. In Proc. of FOCS, 1985.

[24] Y. Venema. Automata and Fixed Point Logic: a Coalgebraic
Perspective. Inform. and Comp., 204(4), 2006.

10

